Teaching Induction

Dave MacQueen

Friday, November 9, 12

New phase of life: freedom (to live in CA, free time)

What to do?

* maintain and improve SML/NJ

* PL course (online?)
- useful, thorough tutorial on induction

*x survey of module theory

* new projects (theory/design/implementation)
- learn Coq properly (only dabbled so far)
- successor ML
- teaching ML
[embarrassments of teaching FP with Haskell]
- new topics? (take advantage of Silicon Valley opportunities?)

Friday, November 9, 12

Anatomy of an inductive argument

1. an inductive structure (typically terms of some sort)
e.g. Nat = Z | S Nat

2. a logical statement of the "inductive principle” for the structure
(a unary 2nd order predicate). E.g.

IP(P) =
P(Z) & -- base case
vx.P(x) => P(S x) -- 1nductive case, with inductive hypothesis P(x)
=> Vx.P(x)

3. This gives the outline of inductive proofs on the given structure:
(1) Lemma: P(Z2) -- the base case
(2) Lemma: Vy.P(y) => P(S y) -- the inductive case

(3) Tﬁéééem: vXx.P(x)
by (1), (2), IP(P)

Friday, November 9, 12

This 1s commonly abbreviated to the following scheme:

For any x, show that P(x), by induction on x:
base case x = Z:
.... P(2D),
hence P(x)
inductive case x = S y:
assume IH: P(y)
... P(S vy), (invoking IH somewhere)
hence P(x)
[hence Vx.P(x) by IP(P)]

Friday, November 9, 12

But often the explicit statement of Induction Hypotheses 1is omitted.
Show that P(x) by induction on x.
case x = /Z:
. P(2)
case x = S y:
by induction, P(y)
. P(S vy)
Sometimes don't even make the inductive structure explicit,

and we don't have the explicit constructors (like Z, S).

Example: Substitution Lemma

Friday, November 9, 12

Substitution Lemma from Pierce, Types and Programming Languages.

9.3.8. Lemma [Preservation of types under substitution]:
If T, x:S+t:Tand [F s:S, then T + [x » s]t : T.

Proof: By induction on a derivation of the statement [, x:S F t:T. For

a given derivation, we proceed by cases on the final typing rule used
in the proof. The most interesting cases are the ones for variables
and abstractions.

Case T-Abs: t = Ay:T2.t1
T=T1 » T2
[, x:S, y:T2 F t1:T1

By convention 5.3.4, we may assume x = y and y ¢ FV(s). Using
permutation on the given subderivation, we obtain I, y:T2, x:SF t1:T1.
Using weakening on the other given derivation (I + s:S), we
obtain [, y:T2 + s:S. Now, by the induction hypothesis [?],

[, y:T2 F [x » s]t1: T1. By T-Abs, [F Ay:T2. [x » s]t1 : T1 > T2.
But this is precisely the needed result, since, by the definition
of substitution, [x » s]t = Ay:T2. [x » s]t1.

Friday, November 9, 12

Problem: Students can’t “formalize” this proof. They can’t write down
the inductive hypothesis that was invoked, and they don’t know what the
relevant Induction Principle 1is.

Friday, November 9, 12

Abstract syntax of SAEL (Simple Arithmetic Expressions with Let)

V i:= X, VY, Z, ... (alphanumeric variables)
n ::=0, 1, 2, ... (natural numbers)
bop ::= Plus, Times, ... (primitive binary operators)
e ::= Num(n) -- number constants, as before
Var(v) -- varilable expressions
Bapp(bop, e, e)
Let(v, e, e)
8

Friday, November 9, 12

Rules for relative closure judgements: [F e ok
(“e is closed relative to variable set [”)

Rules:
(1)

[F Num(n) ok

(x € [
(2)

[+ x ok

[+ el ok [+ e2 ok
(3)

[+ Bapp(bop,el,e2) ok

[+ el ok [U {x} I e2 ok
(4)

[F let x = el in e2 ok

Friday, November 9, 12

Lemma 4.4 [Substitution]: I + el ok A TU{x}Fre2o0k A xe&l
=> [+ [e1/x]e2 ok.

Case: TU{x} F e2 ok by Rule (4). Then e2 is of the form
e2 = let y = e3 in e4
But how do we state the Induction Hypothesis in this case? If

we can’t talk about derivations explicitly, we end up trying
something like:

(1) vel.vl1. 1+ el ok =>
(ve2.vl2.vxevar. x ¢ 1T A T1 €12 A T2u{x} F e2 ok

=> [2 + [el/x]e2 ok)
to deal with the variation in contexts (I vs [u{x}).
[See Lecture 7 for detailed discussion.]

|0

Friday, November 9, 12

Make Derivations Explicit!

First let us be precise about the structure of derivations and the
definitions of context and subject of a derivation.

Derivations d in Der[ok] are inductively constructed using
rule-constructors corresponding to the four rules (1) through (4).

d ::=0K1([, n)
| oK2(l', 2)
| OK3(bop,d1,d2) -- d1 and d2 are the derivations for el and e2
| OK4(z,d1,d2) -- d1 is derivation for definiens, d2 for body

These rule constructors are not "free” constructors, because a valid
construction of a derivation has to satisfy some preconditions,
specified as follows:

ok2(l',z) : z el
OK3(bop,d1,d2) : context(dl) = context(d2)
OK4(z,d1,d2) context(d2) = context(dl) U {z}

Friday, November 9, 12

Next we define the subject and context functions for derivations as
follows:

S1: subject(OK1(l', n)) = Num n

S2: subject(OK2(l', z)) = Var z

S3: subject(0OK3(bop,d1,d2)) = Bapp(bop,subject(dl),subject(d2))
S4: subject(0OK4(z,d1,d2)) = Let(z,subject(dl),subject(d2))

C1: context(OK1(l', n)) =T

C2: context(OK2(l', z)) =T
C3: context(0OK3(bop,d1,d2)) = context(dl)
C4: context(OK4(x,d1,d2)) = context(dl)

Friday, November 9, 12

The Induction Principle for Derivations

IPo(P): (P a predicate over derivations)

vl .vn.P(OK1([,n)) A

vl .vz. x e [= P(OK2([,2)) A

vbop.vdl.vd2.(P(d1) A P(d2) * context(dl) = context(d2)
=> P(OK3(bop,d1,d2))) A

vz.vdl.vd2.(P(d1) A P(d2) A context(d2) = context(dl)u{z}
=> P(OK4(z,d1,d2)))

=> vd.P(d)

where it is understood that [ranges over variable sets,

n over Nat, z over variables, bop over primitive operators,
and d,d1,d2 over Derl[ok].

Friday, November 9, 12

Lemma 4.4 [Substitution]: I + el ok A TU{x}Fre2 ok A x &l
=> [F [el1/x]e2 ok. Proof in terms of derivations:

We will assume we are given a derivation d of a judgement
[+ el ok
(i.e., [= context(d) and el = subject(d)).

We also assume a variable x ¢ [is given. Then we will prove that
vdeDer[ok].P(d), where P 1is the property:

P(d) == C context(d) => context(d)\{x} + [e/x]subject(d) ok

The proof 1is by induction on the the structure of a derivation
d € Derlok] as defined above in terms of derivation constructors OKT1,
OK2, OK3, and OK4.

Friday, November 9, 12

Ind Case: d = 0K4(y,d3,d4).

Let e3 = subject(d3) and e4 = subject(d4) and [2 = contect(d3). Then it

must be the case that ['3 = context(d4) = [2U{y} by the OK4 constraint.
We then have e2 = Let(y,e3, e4). We can assume that the local let-bound

variable y i1is chosen so that y # x and y ¢ FV(e3) (by &X-converting, if
necessary, to make it so). We can also assume that ['1 € [2, since
otherwise P(d) is true vacuously. Since ['1 € [2, we also have ['1 € [3.

[2 => T[2\{x} + [el/x]Je3 ok
[3 => T[3\{x} + [el/x]ed4 ok

IH1: P(d3) == [
IH2: P(d2) == T[1

N 1N

By IH1 and the fact that ['1 € [2, we have
[2\{x} + [e1/x]Je3 ok (1)
and by IH2 and ['1 € ['3 we have

[3\{x} + [e1/x]Je4 ok (2)

Friday, November 9, 12

Another Problem: students have trouble writing “prose” proofs. They
often confuse the logic.

Possible solution: teach them to write precise proofs in “Lamport”
style.

See example in Chapter 7.

Question: Could we support this proof style with a tool for editing and
checking proofs?

Friday, November 9, 12

Why not use Coq?

x If students can’t do conventional proofs using classical logic, they
probably won’t find Coq proofs easier.

* Coq 1s indirect. I want students to write proofs directly and concretely.

* There wasn’t enough time to learn Coq in addition to the primary PL material
in a 10 week course.

Friday, November 9, 12

Can these proofs be automatically checked?
Prospect of creating an online course.

What is the best online format for the text?
- HTML (MathType, blahTeX?)
- PDF (LaTeX)
PDF -> HTML?
- 1Book

Friday, November 9, 12

PL Course web site (lecture notes, exercises, etc.)

http://www.classes.cs.uchicago.edu/archive/2011/fall/22100-1/index.html

Draft Tutorial on Induction (in development)

http://www.classes.cs.uchicago.edu/archive/2011/fall/22100-1/handouts/induction.pdf

Friday, November 9, 12

http://www.classes.cs.uchicago.edu/archive/2011/fall/22100-1/lectures.html
http://www.classes.cs.uchicago.edu/archive/2011/fall/22100-1/lectures.html

