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New phase of life: freedom (to live in CA, free time)

What to do?

* maintain and improve SML/NJ
  
* PL course (online?)
  - useful, thorough tutorial on induction

* survey of module theory

* new projects (theory/design/implementation)
  - learn Coq properly (only dabbled so far)
  - successor ML
  - teaching ML
    [embarrassments of teaching FP with Haskell]
  - new topics?  (take advantage of Silicon Valley opportunities?)
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Anatomy of an inductive argument

1. an inductive structure (typically terms of some sort)
   e.g. Nat = Z | S Nat

2. a logical statement of the "inductive principle" for the structure
   (a unary 2nd order predicate). E.g.

   IP(P) = 
    P(Z) &                  -- base case

    ∀x.P(x) => P(S x)       -- inductive case, with inductive hypothesis P(x)
       => ∀x.P(x) 

3. This gives the outline of inductive proofs on the given structure:
   
   (1) Lemma: P(Z)    -- the base case
        ....
   (2) Lemma: ∀y.P(y) => P(S y)    -- the inductive case
        ....
   (3) Theorem: ∀x.P(x)
       by (1), (2), IP(P)
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This is commonly abbreviated to the following scheme:

For any x, show that P(x), by induction on x:
   base case x = Z:
      .... P(Z),
      hence P(x)
   inductive case x = S y: 
      assume IH: P(y)
      ... P(S y),   (invoking IH somewhere)
      hence P(x)
   [hence ∀x.P(x) by IP(P)]
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But often the explicit statement of Induction Hypotheses is omitted.

   Show that P(x) by induction on x.
   case x = Z:
      .... P(Z)
   case x = S y: 
      ....
      by induction, P(y)
      .... P(S y)

Sometimes don't even make the inductive structure explicit,
and we don't have the explicit constructors (like Z, S).

Example: Substitution Lemma
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Substitution Lemma from Pierce, Types and Programming Languages.

9.3.8. Lemma [Preservation of types under substitution]:
   If Γ, x:S ⊦ t:T and Γ ⊦ s:S, then Γ ⊦ [x " s]t : T.

Proof: By induction on a derivation of the statement Γ, x:S ⊦ t:T. For
a given derivation, we proceed by cases on the final typing rule used
in the proof.  The most interesting cases are the ones for variables
and abstractions.
...

Case T-Abs: t = λy:T2.t1
          T = T1 " T2
         Γ, x:S, y:T2 ⊦ t1:T1

By convention 5.3.4, we may assume x ≠ y and y ∉ FV(s). Using
permutation on the given subderivation, we obtain Γ, y:T2, x:S ⊦ t1:T1.
Using weakening on the other given derivation (Γ ⊦ s:S), we
obtain Γ, y:T2 ⊦ s:S. Now, by the induction hypothesis [?],
Γ, y:T2 ⊦ [x " s]t1: T1. By T-Abs, Γ ⊦ λy:T2. [x " s]t1 : T1 " T2.
But this is precisely the needed result, since, by the definition
of substitution, [x " s]t = λy:T2. [x " s]t1.
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Problem: Students can’t “formalize” this proof.  They can’t write down
the inductive hypothesis that was invoked, and they don’t know what the
relevant Induction Principle is.
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Abstract syntax of SAEL (Simple Arithmetic Expressions with Let)

   v ::= x, y, z, ...    (alphanumeric variables)
   n ::= 0, 1, 2, ...    (natural numbers)

   bop ::= Plus, Times, ...     (primitive binary operators)

   e ::= Num(n)              -- number constants, as before
       | Var(v)              -- variable expressions
       | Bapp(bop, e, e)
       | Let(v, e, e)
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Rules for relative closure judgements: Γ ⊦ e ok
(“e is closed relative to variable set Γ”)

Rules:

(1)   
        Γ ⊦ Num(n) ok

        (x ∈ Γ)
(2)   
        Γ ⊦ x ok

        Γ ⊦ e1 ok       Γ ⊦ e2 ok
(3)  
         Γ ⊦ Bapp(bop,e1,e2) ok

        Γ ⊦ e1 ok       Γ ⋃ {x} ⊦ e2 ok
(4)   
          Γ ⊦ let x = e1 in e2  ok
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Lemma 4.4 [Substitution]: Γ ⊦ e1 ok  ∧  Γ⋃{x} ⊦ e2 ok  ∧  x ∉ Γ 
          =>  Γ ⊦ [e1/x]e2 ok.

Case: Γ⋃{x} ⊦ e2 ok by Rule (4). Then e2 is of the form

   e2 = let y = e3 in e4
   ...

But how do we state the Induction Hypothesis in this case?  If
we can’t talk about derivations explicitly, we end up trying
something like:

(1)  ∀e1.∀Γ1. Γ1 ⊦ e1 ok =>
        (∀e2.∀Γ2.∀x∈Var. x ∉ Γ1  ∧  Γ1 ⊆ Γ2  ∧  Γ2⋃{x} ⊦ e2 ok
                            => Γ2 ⊦ [e1/x]e2 ok)

to deal with the variation in contexts (Γ vs Γ⋃{x}).

[See Lecture 7 for detailed discussion.]
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Make Derivations Explicit!

First let us be precise about the structure of derivations and the
definitions of context and subject of a derivation.

Derivations d in Der[ok] are inductively constructed using
rule-constructors corresponding to the four rules (1) through (4).

   d  ::= OK1(Γ, n)
        | OK2(Γ, z)
        | OK3(bop,d1,d2)   -- d1 and d2 are the derivations for e1 and e2
        | OK4(z,d1,d2)     -- d1 is derivation for definiens, d2 for body

These rule constructors are not "free" constructors, because a valid
construction of a derivation has to satisfy some preconditions,
specified as follows:

   OK2(Γ,z) :        z ∈ Γ
   OK3(bop,d1,d2) :  context(d1) = context(d2)
   OK4(z,d1,d2) :    context(d2) = context(d1) ⋃ {z}

11

Friday, November 9, 12



Next we define the subject and context functions for derivations as
follows:

   S1: subject(OK1(Γ, n)) = Num n
   S2: subject(OK2(Γ, z)) = Var z
   S3: subject(OK3(bop,d1,d2)) = Bapp(bop,subject(d1),subject(d2))
   S4: subject(OK4(z,d1,d2)) = Let(z,subject(d1),subject(d2))

   C1: context(OK1(Γ, n)) = Γ
   C2: context(OK2(Γ, z)) = Γ
   C3: context(OK3(bop,d1,d2)) = context(d1)
   C4: context(OK4(x,d1,d2)) = context(d1)
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The Induction Principle for Derivations

IPok(P): (P a predicate over derivations)

   ∀Γ.∀n.P(OK1(Γ,n)) ∧
   ∀Γ.∀z. x ∈ Γ => P(OK2(Γ,z)) ∧
   ∀bop.∀d1.∀d2.(P(d1) ∧ P(d2) ^ context(d1) = context(d2)
                  => P(OK3(bop,d1,d2)))  ∧
   ∀z.∀d1.∀d2.(P(d1) ∧ P(d2) ∧ context(d2) = context(d1)⋃{z}
                 => P(OK4(z,d1,d2)))
   => ∀d.P(d)

where it is understood that Γ ranges over variable sets,
n over Nat, z over variables, bop over primitive operators,
and d,d1,d2 over Der[ok].
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Lemma 4.4 [Substitution]: Γ ⊦ e1 ok  ∧  Γ⋃{x} ⊦ e2 ok  ∧  x ∉ Γ 
          =>  Γ ⊦ [e1/x]e2 ok. Proof in terms of derivations:

We will assume we are given a derivation d of a judgement

Γ ⊦ e1 ok

(i.e., Γ = context(d) and e1 = subject(d)).

We also assume a variable x ∉ Γ is given. Then we will prove that 
∀d∈Der[ok].P(d), where P is the property:

  P(d) == Γ ⊆ context(d)  =>  context(d)\{x} ⊦ [e/x]subject(d) ok

The proof is by induction on the the structure of a derivation
d ∈ Der[ok] as defined above in terms of derivation constructors OK1,
OK2, OK3, and OK4.

14

Friday, November 9, 12



Ind Case: d = OK4(y,d3,d4).

Let e3 = subject(d3) and e4 = subject(d4) and Γ2 = contect(d3). Then it 
must be the case that Γ3 = context(d4) = Γ2⋃{y} by the OK4 constraint. 
We then have e2 = Let(y,e3, e4). We can assume that the local let-bound 
variable y is chosen so that y ≠ x and y ∉ FV(e3) (by α-converting, if 
necessary, to make it so). We can also assume that Γ1 ⊆ Γ2, since 
otherwise P(d) is true vacuously. Since Γ1 ⊆ Γ2, we also have Γ1 ⊆ Γ3.

IH1: P(d3)  ==  Γ1 ⊆ Γ2  =>  Γ2\{x} ⊦ [e1/x]e3 ok
IH2: P(d2)  ==  Γ1 ⊆ Γ3  =>  Γ3\{x} ⊦ [e1/x]e4 ok

By IH1 and the fact that Γ1 ⊆ Γ2, we have

      Γ2\{x} ⊦ [e1/x]e3 ok    (1)

and by IH2 and Γ1 ⊆ Γ3 we have 

      Γ3\{x} ⊦ [e1/x]e4 ok   (2)
...
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Another Problem: students have trouble writing “prose” proofs. They 
often confuse the logic.

Possible solution: teach them to write precise proofs in “Lamport” 
style.

See example in Chapter 7.

Question: Could we support this proof style with a tool for editing and 
checking proofs?
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Why not use Coq?

* If students can’t do conventional proofs using classical logic, they
probably won’t find Coq proofs easier.

* Coq is indirect.  I want students to write proofs directly and concretely.

* There wasn’t enough time to learn Coq in addition to the primary PL material
in a 10 week course.
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Can these proofs be automatically checked?

Prospect of creating an online course.

What is the best online format for the text?
- HTML (MathType, blahTeX?)
- PDF (LaTeX)

PDF -> HTML?
- iBook
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PL Course web site (lecture notes, exercises, etc.)

http://www.classes.cs.uchicago.edu/archive/2011/fall/22100-1/index.html

Draft Tutorial on Induction (in development)

http://www.classes.cs.uchicago.edu/archive/2011/fall/22100-1/handouts/induction.pdf
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