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New phase of life: freedom (to live in CA, free time)

What to do?

* maintain and improve SML/NJ

* PL course (online?)
- useful, thorough tutorial on induction

*x survey of module theory

* new projects (theory/design/implementation)
- learn Coq properly (only dabbled so far)
- successor ML
- teaching ML
[embarrassments of teaching FP with Haskell]
- new topics? (take advantage of Silicon Valley opportunities?)
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Anatomy of an inductive argument

1. an inductive structure (typically terms of some sort)
e.g. Nat = Z | S Nat

2. a logical statement of the "inductive principle” for the structure
(a unary 2nd order predicate). E.g.

IP(P) =
P(Z) & -- base case
vx.P(x) => P(S x) -- 1nductive case, with inductive hypothesis P(x)
=> Vx.P(x)

3. This gives the outline of inductive proofs on the given structure:
(1) Lemma: P(Z2) -- the base case
(2) Lemma: Vy.P(y) => P(S y) -- the inductive case

(3) Tﬁéééem: vXx.P(x)
by (1), (2), IP(P)
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This 1s commonly abbreviated to the following scheme:

For any x, show that P(x), by induction on x:
base case x = Z:
.... P(2D),
hence P(x)
inductive case x = S y:
assume IH: P(y)
... P(S vy), (invoking IH somewhere)
hence P(x)
[hence Vx.P(x) by IP(P)]
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But often the explicit statement of Induction Hypotheses 1is omitted.
Show that P(x) by induction on x.
case x = /Z:
. P(2)
case x = S y:
by induction, P(y)
. P(S vy)
Sometimes don't even make the inductive structure explicit,

and we don't have the explicit constructors (like Z, S).

Example: Substitution Lemma
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Substitution Lemma from Pierce, Types and Programming Languages.

9.3.8. Lemma [Preservation of types under substitution]:
If T, x:S+t:Tand [ F s:S, then T + [x » s]t : T.

Proof: By induction on a derivation of the statement [, x:S F t:T. For

a given derivation, we proceed by cases on the final typing rule used
in the proof. The most interesting cases are the ones for variables
and abstractions.

Case T-Abs: t = Ay:T2.t1
T=T1 » T2
[, x:S, y:T2 F t1:T1

By convention 5.3.4, we may assume x = y and y ¢ FV(s). Using
permutation on the given subderivation, we obtain I, y:T2, x:SF t1:T1.
Using weakening on the other given derivation (I + s:S), we
obtain [, y:T2 + s:S. Now, by the induction hypothesis [?],

[, y:T2 F [x » s]t1: T1. By T-Abs, [ F Ay:T2. [x » s]t1 : T1 > T2.
But this is precisely the needed result, since, by the definition
of substitution, [x » s]t = Ay:T2. [x » s]t1.
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Problem: Students can’t “formalize” this proof. They can’t write down
the inductive hypothesis that was invoked, and they don’t know what the
relevant Induction Principle 1is.
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Abstract syntax of SAEL (Simple Arithmetic Expressions with Let)

V i:= X, VY, Z, ... (alphanumeric variables)
n ::=0, 1, 2, ... (natural numbers)
bop ::= Plus, Times, ... (primitive binary operators)
e ::= Num(n) -- number constants, as before
Var(v) -- varilable expressions
Bapp(bop, e, e)
Let(v, e, e)
8
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Rules for relative closure judgements: [ F e ok
(“e is closed relative to variable set [”)

Rules:
(1)

[ F Num(n) ok

(x € [
(2)

[+ x ok

[+ el ok [+ e2 ok
(3)

[ + Bapp(bop,el,e2) ok

[+ el ok [ U {x} I e2 ok
(4)

[ F let x = el in e2 ok
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Lemma 4.4 [Substitution]: I + el ok A TU{x}Fre2o0k A xe&l
=> [ + [e1/x]e2 ok.

Case: TU{x} F e2 ok by Rule (4). Then e2 is of the form
e2 = let y = e3 in e4
But how do we state the Induction Hypothesis in this case? If

we can’t talk about derivations explicitly, we end up trying
something like:

(1) vel.vl1. 1+ el ok =>
(ve2.vl2.vxevar. x ¢ 1T A T1 €12 A T2u{x} F e2 ok

=> [2 + [el/x]e2 ok)
to deal with the variation in contexts (I vs [u{x}).
[See Lecture 7 for detailed discussion. ]

|0
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Make Derivations Explicit!

First let us be precise about the structure of derivations and the
definitions of context and subject of a derivation.

Derivations d in Der[ok] are inductively constructed using
rule-constructors corresponding to the four rules (1) through (4).

d ::=0K1([, n)
| oK2(l', 2)
| OK3(bop,d1,d2) -- d1 and d2 are the derivations for el and e2
| OK4(z,d1,d2) -- d1 is derivation for definiens, d2 for body

These rule constructors are not "free” constructors, because a valid
construction of a derivation has to satisfy some preconditions,
specified as follows:

ok2(l',z) : z el
OK3(bop,d1,d2) : context(dl) = context(d2)
OK4(z,d1,d2) context(d2) = context(dl) U {z}
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Next we define the subject and context functions for derivations as
follows:

S1: subject(OK1(l', n)) = Num n

S2: subject(OK2(l', z)) = Var z

S3: subject(0OK3(bop,d1,d2)) = Bapp(bop,subject(dl),subject(d2))
S4: subject(0OK4(z,d1,d2)) = Let(z,subject(dl),subject(d2))

C1: context(OK1(l', n)) =T

C2: context(OK2(l', z)) =T
C3: context(0OK3(bop,d1,d2)) = context(dl)
C4: context(OK4(x,d1,d2)) = context(dl)
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The Induction Principle for Derivations

IPo(P): (P a predicate over derivations)

vl .vn.P(OK1([,n)) A

vl .vz. x e [ = P(OK2([,2)) A

vbop.vdl.vd2.(P(d1) A P(d2) * context(dl) = context(d2)
=> P(OK3(bop,d1,d2))) A

vz.vdl.vd2.(P(d1) A P(d2) A context(d2) = context(dl)u{z}
=> P(OK4(z,d1,d2)))

=> vd.P(d)

where it is understood that [ ranges over variable sets,

n over Nat, z over variables, bop over primitive operators,
and d,d1,d2 over Derl[ok].
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Lemma 4.4 [Substitution]: I + el ok A TU{x}Fre2 ok A x &l
=> [ F [el1/x]e2 ok. Proof in terms of derivations:

We will assume we are given a derivation d of a judgement
[+ el ok
(i.e., [ = context(d) and el = subject(d)).

We also assume a variable x ¢ [ is given. Then we will prove that
vdeDer[ok].P(d), where P 1is the property:

P(d) == C context(d) => context(d)\{x} + [e/x]subject(d) ok

The proof 1is by induction on the the structure of a derivation
d € Derlok] as defined above in terms of derivation constructors OKT1,
OK2, OK3, and OK4.
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Ind Case: d = 0K4(y,d3,d4).

Let e3 = subject(d3) and e4 = subject(d4) and [2 = contect(d3). Then it

must be the case that ['3 = context(d4) = [2U{y} by the OK4 constraint.
We then have e2 = Let(y,e3, e4). We can assume that the local let-bound

variable y i1is chosen so that y # x and y ¢ FV(e3) (by &X-converting, if
necessary, to make it so). We can also assume that ['1 € [2, since
otherwise P(d) is true vacuously. Since ['1 € [2, we also have ['1 € [3.

[2 => T[2\{x} + [el/x]Je3 ok
[3 => T[3\{x} + [el/x]ed4 ok

IH1: P(d3) == [
IH2: P(d2) == T[1

N 1N

By IH1 and the fact that ['1 € [2, we have
[2\{x} + [e1/x]Je3 ok (1)
and by IH2 and ['1 € ['3 we have

[3\{x} + [e1/x]Je4 ok (2)
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Another Problem: students have trouble writing “prose” proofs. They
often confuse the logic.

Possible solution: teach them to write precise proofs in “Lamport”
style.

See example in Chapter 7.

Question: Could we support this proof style with a tool for editing and
checking proofs?
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Why not use Coq?

x If students can’t do conventional proofs using classical logic, they
probably won’t find Coq proofs easier.

* Coq 1s indirect. I want students to write proofs directly and concretely.

* There wasn’t enough time to learn Coq in addition to the primary PL material
in a 10 week course.
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Can these proofs be automatically checked?
Prospect of creating an online course.

What is the best online format for the text?
- HTML (MathType, blahTeX?)
- PDF (LaTeX)
PDF -> HTML?
- 1Book
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PL Course web site (lecture notes, exercises, etc.)

http://www.classes.cs.uchicago.edu/archive/2011/fall/22100-1/index.html

Draft Tutorial on Induction (in development)

http://www.classes.cs.uchicago.edu/archive/2011/fall/22100-1/handouts/induction.pdf
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