
Testing atomicity
Finding race conditions by random testing

John Hughes

"We know there is a lurking bug somewhere
in the dets code. We have got 'bad object'
and 'premature eof' every other month the
last year. We have not been able to track the
bug down since the dets files is repaired
automatically next time it is opened.“

Tobbe Törnqvist, Klarna, 2007

What is it?

Application

Mnesia

Dets

File system

Invoicing services for web shops

Distributed database:
transactions, distribution,
replication

Tuple storage

700+
people in
6 years

Race
conditions?

QuickCheck

1999—invented by Koen Claessen and me (ICFP
2000), in Haskell

2006—Quviq founded marketing Erlang version

2009—Race condition testing method (ICFP)

Real successes and further developments

Imagine Testing This…

dispenser:take_ticket()

dispenser:reset()

 ok =

 1 =

 2 =

 3 =

 ok =

 1 =

A Unit Test in Erlang

test_dispenser() ->

Expected
results

reset(),

take_ticket(),

take_ticket(),

take_ticket(),

reset(),

take_ticket().

Side-effects
require a
sequence of
calls to test

State Machine Specifications

API

Calls
API

Calls
API

Calls
API

Calls

Model
state

Model
state

Model
state

Model
state

postconditions

Modelling the dispenser

reset take take take

0 0 1 2

ok 1 2 3

A Parallel Unit Test

• Three possible correct
outcomes!

reset

take_ticket

take_ticket

take_ticket

1

2

3

1

3

2

1

2

1

ok

Another Parallel Test

• 42 possible correct outcomes!

reset

take_ticket

take_ticket

take_ticket

take_ticket

reset

Deciding a Parallel Test

reset
ok

take
1

take
3

take
2

0 0 1 2

Atomic operations:
an important
special case

Prefix:

Parallel:
1. dispenser:take_ticket() --> 1

2. dispenser:take_ticket() --> 1

Result: no_possible_interleaving

take_ticket() ->
 N = read(),
 write(N+1),
 N+1.

dets

• Tuple store:

 {Key, Value1, Value2…}

• Operations:

– insert(Table,ListOfTuples)

– delete(Table,Key)

– insert_new(Table,ListOfTuples)

– …

• Model:

– List of tuples (almost)

QuickCheck Specification

... …

... …
<100 LOC

> 6,000
LOC

Bug #1

Prefix:

 open_file(dets_table,[{type,bag}]) -->

 dets_table

Parallel:

1. insert(dets_table,[]) --> ok

2. insert_new(dets_table,[]) --> ok

Result: no_possible_interleaving

insert_new(Name, Objects) -> Bool

Types:
Name = name()
Objects = object() | [object()]
Bool = bool()

Bug #2

 Prefix:

 open_file(dets_table,[{type,set}]) --> dets_table

Parallel:

1. insert(dets_table,{0,0}) --> ok

2. insert_new(dets_table,{0,0}) --> …time out…

=ERROR REPORT==== 4-Oct-2010::17:08:21 ===
** dets: Bug was found when accessing table dets_table

Bug #3

 Prefix:

 open_file(dets_table,[{type,set}]) --> dets_table

Parallel:

1. open_file(dets_table,[{type,set}]) --> dets_table

2. insert(dets_table,{0,0}) --> ok

 get_contents(dets_table) --> []

Result: no_possible_interleaving !

Is the file corrupt?

Bug #4

Prefix:

 open_file(dets_table,[{type,bag}]) --> dets_table

 close(dets_table) --> ok

 open_file(dets_table,[{type,bag}]) --> dets_table

Parallel:

1. lookup(dets_table,0) --> []

2. insert(dets_table,{0,0}) --> ok

3. insert(dets_table,{0,0}) --> ok

Result: ok

premature eof

Bug #5

Prefix:

 open_file(dets_table,[{type,set}]) --> dets_table

 insert(dets_table,[{1,0}]) --> ok

Parallel:

1. lookup(dets_table,0) --> []

 delete(dets_table,1) --> ok

2. open_file(dets_table,[{type,set}]) --> dets_table

Result: ok

false

bad object

"We know there is a lurking bug somewhere
in the dets code. We have got 'bad object'
and 'premature eof' every other month the
last year.”

Tobbe Törnqvist, Klarna, 2007

Each bug fixed the day after
reporting the failing case

Testing a Worker Pool

• Check out a worker

• Check in a worker

• Handle workers
crashing

• Handle clients
crashing while
holding a worker

• Loads and loads of bugs found

• 80 unit tests passed throughout!

• Parallel testing found no race conditions

Problem: checking
out a worker blocks
if there isn’t one!

Blocking operations

Test deadlocks? In
practice, lock times out

Should this test pass?

But a blocked
operation should not

run before an
unblocked one!

Serializability with Blocking

• Specify when an atomic operation should
block

• When exploring interleavings, never choose a
blocked operation when there is an unblocked
alternative

• We rule out some interleavings, potentially
making test fail that would otherwise have
passed

A race condition in Poolboy?

 Start the worker
pool (1 worker)

checkout checkout checkout

checkin checkin

Conclusion

• Serializability is a

– simple condition

– that is surprisingly effective

– at revealing bugs in real industrial code

Not quite done…

Provoking races

• We’ve used:

– Repeated execution on a multicore processor

– Random scheduling

– ”Procrastination”… repeating a test, but
reordering message deliveries to the same process

– Model checking—all possible schedules

