
Expositor: Scriptable, Time-travel
Debugging with First-class Traces

Work in progress
Khoo Yit Phang, Michael Hicks, Jeffrey Foster

University of Maryland, College Park

1

Thursday, November 8, 2012

Debugging

• “...we talk a lot about finding bugs, but really,
[Firefox’s] bottleneck is not finding bugs but fixing
[them]...” —Robert O’Callahan

• Debugging = scientific method in action
■ Programmer makes observations

■ Proposes a hypothesis about the cause of the failure

■ Uses hypothesis to make predictions

■ Tests predictions with experiments

■ Victory? Then fix bug. Else repeat.

2

Thursday, November 8, 2012

Tools for understanding a bug

• “[In debugging,] understanding how the failure came
to be...requires by far the most time and other
resources” —Andreas Zeller

• Many tools/techniques in use
■ Interactive debuggers (e.g., gdb)

■ Print statements

■ Profilers, visualizers, etc.

■ Record-replay executions (a.k.a., time travel)

- VMware Replay, UndoDB, rudimentary support in
gdb, OCaml debugger, ...

3

Thursday, November 8, 2012

Scriptable debugging

• Make observations, test hypotheses etc. by
writing programs over program executions
■ Benefit: automate tedious repetition

■ Hopefully also:

- reuse scripts on different programs (or parts of a program)

- compose old scripts into new ones,

- build sophisticated tools (e.g., visualizations) ...

• Problem: scripts tend to be brittle, hard to reuse

• Solution: make scripts lazy and functional!

4

Thursday, November 8, 2012

Expositor

• Expositor presents the programmer with a first-
class abstraction for an execution trace
■ A sequence of snapshots, one per program event

• Programmers write scripts that are a
composition of maps, filters, scans, and other
combinators on executions

• For efficiency, Expositor builds on top of time
travel debugging, and uses laziness liberally
■ Materialize events when you need them

5

Thursday, November 8, 2012

Counting function calls in GDB

foo = gdb.Breakpoint(“foo”)

count = 0; more = True;

def stop_handler(evt):

 if isinstance(evt, gdb.BreakpointEvent) \

 and foo in evt.breakpoints

 global count; count += 1

def exit_handler(evt):

 global more; more = False

6

gdb.events.stop.connect(stop_handler)

gdb.events.exited.connect(exit_handler)

gdb.execute(“start”)

while more:

 gdb.execute(“continue”)

gdb.events.exited.disconnect
(exit_handler)

gdb.events.stop.disconnect
(stop_handler)

foo.delete()

count contains the total count

Thursday, November 8, 2012

Classic callback-style programming

• Scripts hard to understand, compose, reuse

■ Control flow is not “straight-line” but smeared across
handlers in possibly many different scripts

■ Effects conflict

- One script implemented by setting/disabling breakpoints on
particular calls may conflict with composed script that
attempts to count all calls

- Name clashes on global variables, event names

7

Thursday, November 8, 2012

Counting function calls in Expositor

• Easier to reuse and compose scripts
■ len(foo.filter(lambda s: p))

• Control-flow is “straight line” — list processing

• Evaluation is lazy
■ After line 1, no computation has been done

■ Line 2 call to len forces computation

- Sets the breakpoints and runs the program

8

1 foo = the_execution.breakpoints(“foo”)

2 count = len(foo)

Thursday, November 8, 2012

Expositor API: Execution

class Execution

 get_at(i)

 breakpoints(fname)

 syscalls(sname)

 watchpoints(vname, rwflags)

 all_calls()

 all_returns()

 cont()

 get_time()
9

has singleton instance the_execution

snapshot at time i

snapshots of calls to fname

snapshots of syscalls sname

r/w’s to var vname

snapshots at all function calls

snapshots at all function returns

continue interactive execution

get time of paused execution

Thursday, November 8, 2012

Traces

class Trace

 len()

 iter()

 get_at(t), get_before(t), get_after(t)

 filter(p), map(f)

 slice(t0,t1)

 merge(f,tr)

 scan(f,acc)
10

derived initially from the_execution

called by len(trace)

called by for item in trace

get items at, just before, or just after time t

usual filter or map of trace

subtrace in time interval [t0,t1]

merge with trace tr

like fold

Thursday, November 8, 2012

Merge and scan

11

tr0

tr1

tr0.merge(f, tr1)

f None

tr0

tr1

tr0.trailing_merge(f, tr1)

f f ff

tr

tr.scan(f, acc)

acc f f f

Thursday, November 8, 2012

Example: finding stack corruption

calls = the_execution.all_calls()

rets = the_execution.all_returns()

calls_rets = calls.merge(None,rets)

shadow_stacks = calls_rets.map(lambda s: s.retaddrs())

12

Thursday, November 8, 2012

Example: finding stack corruption

def find_corrupted(snap, opt_shadow):

 if opt_shadow.force() is not None:

 for x,y in zip(snap.read_retaddrs(), opt_shadow.force()):

 if x != y:

 return x

 return None

corrupted_addrs = calls_rets \

 .trailing_merge(find_corrupted, shadow_stacks) \

 .filter(lambda x: x is not None)

13

Thursday, November 8, 2012

Running it

% expositor tinyhttpd

(expositor) python-interactive

>> the_execution.cont()

httpd running on port 47055

Now I pwn your computer

^C

>> corrupted_addrs = stack_corruption()

>> t = the_execution.get_time()

>> last_corrupt = corrupted_addrs.get_before(t)

>> bad_writes = the_execution.wps(last_corrupt.value,rw=WRITE)

>> last_bad_write = bad_writes.get_before(last_corrupt.time)

14

% ./exploit.py 47055
Trying port 47055
pwning...

Thursday, November 8, 2012

Implementing lazy traces

• Builds on top of time-travel debugger, UndoDB
■ Adds to gdb: go to time t, and run backward

• Expositor goal: minimize demand for snapshots
■ Typical script: run (full speed) for a while, then interact

with the execution (as per previous example)

• Lazy traces implemented as interval trees,
materialized on demand

15

Thursday, November 8, 2012

Basic idea

• foo = the_execution.breakpoints(“foo”)

• foo.get_before(100) # event at time 50

16

0 ∞

0 ∞

0 ∞

50.1 ∞

100 ∞50.1 100

0 50.1

foo 50.1500 50

Thursday, November 8, 2012

Lazy datastructures needed

• Problem: time-travel efficiency thwarted when
computing with datastructures

■ Must perform full execution to get sets.get_before(t),
even if x was added just before time t

• Solution: lazy EditHAMT
■ EditHAMT = Editable Hash Array Map Trie

17

sets = add_elems_to_a_set(tr)

is_member(x, sets.get_before(t))

Thursday, November 8, 2012

EditHAMT class

class edithamt

 find(k)

 find_multi(k)

 # the following class methods are purely functional

 addkeyvalue(lazy_eh,k,v)

 remove(lazy_eh,k)

 concat(lazy_eh1, lazy_eh2)

18

return most recent value for k, or None

return iterator for all values for k

add (k ➞ v) to lazy_eh

remove all (k ➞ v) from lazy_eh

return lazy_eh1 + lazy_eh2

Thursday, November 8, 2012

EditHAMT: rough construction

• Hash Array Mapped Trie (HAMT)
■ Hash keys to fixed-width integers

• Values in HAMT are (lazy) edit lists
■ Tabulate additions/removals for each key

• Persistent and lazy
■ Each update shares structure with parent, without

forcing it to be fully computed

• Requests to find keys force necessary
computation

19

Thursday, November 8, 2012

A lazy set as a EditHAMT

20

Thursday, November 8, 2012

Implementation status

• Basic implementation working
■ Performing detailed performance experiments now

■ One area of concern: balancing space/time tradeoff

• Performed one significant case study: debug
Firefox memory leak
■ Cause: a combination of a timing bug and a data race

■ First submitted “fix” did not actually correct the bug

■ Wrote a custom happens-before race detector as a
script using EditHAMTs

21

Thursday, November 8, 2012

Continuing work

• Adding support for self-adjusting computation
■ foo = the_execution.slice(10,20)

■ bar = script_on(foo)

■ update foo to be the_execution.slice(5,20)

- want bar to update automatically

• Expand API
■ Tied to C-style compilation/calling conventions

■ Support for manipulating snapshots is primitive

• Visualization for traces

22

Thursday, November 8, 2012

Notable related work

• Functional reactive programming
■ MzTake for Racket applies FrTime to debugging Java

■ Here, time always marches forward (eagerly), making it
hard to “interact” with an execution

• Record-replay strategies; simple query languages
■ Amber: Snapshot entire executions

■ UndoDB, VMware, OCaml: snapshot + logging

• PTQL, PQL: query languages over executions
■ Implemented as dynamic instrumentation

23

Thursday, November 8, 2012

Summary

• Expositor introduces scripting on execution
traces
■ Purely functional. Supports compositionality

• Built on top of time-travel debugging
■ Use laziness for efficiency

■ Could build on top of full captures, too

24

Thursday, November 8, 2012

