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Any customer can have a car painted any colour that he
wants so long as it is black.

My Life and Work (1922) by Henry Ford

The limits of my language mean the limits of my world.

Tractatus Logico-Philosophicus (1922)
by Ludwig Wittgenstein
translated by C. K. Ogden and D.F. Pears
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categorical algorithmics
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Section 2

Insertion and selection sort |
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h:::i the area of sorting and searching provides an
ideal framework for discussing a wide variety of
important general issues:

e How are good algorithms discovered?

o h::ii
Indeed, | believe that virtually every important
aspect of programming arises somewhere in the
context of sorting or searching!

The Art of Computer Programming
Volume 3: Sorting and Searching
by Donald E. Knuth

University of Oxford — Ralf Hinze 9-86



The Computational Essence of Sorting Algorithms — Insertion and selection sort | WG 2.8

The time you spent working on the challenge problem will pay dividends
as you continue to read this chapter. Chances are your solution is one of the
following types:

A. An insertion sort. The items are considered one at a time, and each new
item is inserted into the appropriate position relative to the previously-sorted
items. (This is the way many bridge players sort their hands, picking up one

~ card at a time.)

B. An ezchange sort. If two items are found to be out of order, they are
interchanged. This process is repeated until no more exchanges are necessary.

C. A selection sort. First the smallest (or perhaps the largest) item is lo-

-~ cated, and it is somehow separated from the rest; then the next smallest (or next
largest) is selected, and so on.

D. An enumeration sort. Each item is compared with each of the others; an
item’s final position is determined by the number of keys that it exceeds.
E. A special-purpose sort, which works nicely for sorting five elements as
‘stated in the problem, but does not readily generalize to larger numbers of items.
F. A lazy attitude, with which you ignored the suggestion above and decided
not to solve the problem at all. Sorry, by now you have read too far and you
have lost your chance.

G. A new, super sorting technigue that is a definite improvement over known
‘methods. (Please communicate this to the author at once.)
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The Computational Essence of Sorting Algorithms — Insertion and selection sort | WG 2.8

2.1 Insertion sort

also known as “bridge player sort”

e idea: maintain an ordered sequence (invariant)

consume the input sequence one by one

insert each element into the ordered sequence

the focus is on the input

University of Oxford — Ralf Hinze 11-86
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2.1 Knuth’s straight insertion sort

Program S (Straight insertion sort). The records to be sorted are in locations
PUT+1 through INPUT+N; they are sorted in place in the same area, on a full-

ord key. rIl = j — N; rI2 =4; rA = R = K; assume that N > 2,

START ENT1 2-N 1 S1. Loopon j. j+ 2.

2H LDA INPUT+N,1 N-1 S2. Set up i, K, R.
ENT2 N-1,1 N-1 i—j-1.

3H CMPA INPUT,2 B+N-1-A S3. Compare K : K;.
JGE 5F B+N-1-A ToS5if K > K.

4H LDX INPUT,2 B S4. Move R;, decrease i.
STX I"PUT+1 ,2 B R.‘+1 = R,‘.
DEC2 1 B i—i—1.
J2P 3B B To S3 if i > 0.

5H STA INPUT+1,2 N-1 S5. R into Ri.,.
INC1 1 N-1
JINP 2B N-1 2<7<N. |

University of Oxford — Ralf Hinze 12-86
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2.1 A functional insertion sort

insertSort:: Orda ) a ' a
insertSort
insertSort x:Xs X ‘insert‘ insertSort xs

insert:: Orda al® a ' a
insert x X
insert X y:xs

jx vy XY XS

j otherwise vy :insert x xs

University of Oxford — Ralf Hinze 13-86
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2.1 insertSort is an instance of foldr

X1 Xo: D Xn 1. Xn

foldr insert

X1 ‘insert X, ‘insert* ‘insert’ x, 1 ‘insert‘ x, ‘insert’

University of Oxford — Ralf Hinze 14-86
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2.1 foldr captures a recursion pattern

X111 Xo! D Xp 1. Xn o

foldr e

X1 X2 Xn 1 Xn €

Slogan: replacing constructors by functions.
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2.1 Insertion sort, revisited

insertSort : Orda ) a ' a
insertSort  foldr insert

insert:: Orda al® a ' a
insert x X
insert X y:xs

jx vy XY XS

j otherwise vy :insert x xs

But what about insert?
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2.2 Selection sort

idea: produce an ordered sequence by repeatedly
selecting the minimum element

initial seed or state: input sequence

the focus is on the output

selection sort is in some sense dual to insertion sort

University of Oxford — Ralf Hinze 17-86
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2.2 Knuth’s straight selection sort

Program S (Straight selection sort). As in previous programs of this chapter,
UT+N are sorted in place, on a full-
k (the current search

the records in locations INPUT+1 through INP
word key. rA = current maximum, Il = j — 1, rl2 =

position), r13 = i. Assume that N > 2.

01 START ENT1 N-1
02 2H ENT2 0,1

03 ENT3 1,1

04 LDA INPUT,3
05 8H CMPA INPUT,2
06 JGE *+3

07 ENT3 0,2

08 LDA INPUT,3
09 DEC2 1

10 J2P 8B

11 LDX INPUT+1,1
12 STX INPUT,3
13 STA INPUT+1,1
14 DEC1 1

15 JIP 2B

University of Oxford — Ralf Hinze

1
N-=-1
N-1
N-1

A
A
B
B
A
A
N-1
N-1
N-=1
N-1
N-1

S1. Loop on j. j « N.

52. Find max(K;..... K;). k<j—1.

i+ ].
1A « K.

Jump if K; > K.

Otherwise set i + k.
rA « Ki.

ke—k-1

Repeat if k > 0.

53. Exchange with R;.

Ri + RJ.

Rj +rA.

N2j>2 1

WG 2.8

18-86



The Computational Essence of Sorting Algorithms — Insertion and selection sort | WG 2.8

2.2 A functional selection sort

selectSort :: Orda ) a ! a
selectSort  unfoldr select

select:: Orda ) a ! Maybe a; a
select Nothing
select x:xs

case select xs of

Nothing ¥ Just x;
Just y;ys

jx y ¥ Just X;Xxs

j otherwise ¥ Just y;Xx:ys

But what about select?

University of Oxford — Ralf Hinze 19-86
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2.2 Intermediate summary

e unfoldr is the categorical dual of foldr
e insertion is in some sense dual to selection

¢ the details of this relationship are somewhat shrouded
by our language

¢ to illuminate the connection, we use a type-driven
approach to algorithm design
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Section 3

Background
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3.0 Background

the list datatype is recursively defined
data a ja: a

e semantics: fixed point of an associated higher-order
type constructor

data List lista Nil jCons a list a
o for simplicity, let’s fix the type of elements,
data List list  Nil j Cons K list

where K is some key type that admits ordering

e categorical concept: initial algebra of a functor

e NB. List is the non-recursive base functor of the list
datatype; List is then the recursive list type

University of Oxford — Ralf Hinze 23-86
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3.1 Functor in Haskell

in Haskell, a functor is given by a datatype definition
data List list  Nil j Cons K list

e and an associated Functor declaration

instance Functor List where
map f Nil Nil
map f Cons k ks Cons k f ks

the mapping function changes the elements of a
container, but keeps its structure intact

the type parameter list marks the ‘recursive’ component

University of Oxford — Ralf Hinze 24-86
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3.2 Algebra and algebra homomorphism

e an F-algebra a is an arrow of type FA I A

Fh

FA FA FB FB

a a b b

A A B B
h

e an F-algebra homomorphism h preserves the structure

e F-algebras and homomorphisms form a category

University of Oxford — Ralf Hinze
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3.2 Initial algebra

e the initial object in this category, the initial F-algebra, is
the ‘least’ fixed point of F

F fold a

_—

¢ initiality entails that there is a unique homomorphism
from the initial algebra to any algebra a, called fold a

e initial List-algebra: finite lists (in Set)

University of Oxford — Ralf Hinze 26-86
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3.2 Initial algebra in Haskell

e in Haskell, f can be defined
newtype f Infin =f f g

e as an aside, In a will be written as dae

e since in is an isomorphism, we can turn the commuting
diagram into a generic definition of fold

fold:: Functorf ) fala I f g
foldf f map foldf in

University of Oxford — Ralf Hinze 27-86
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3.3 Duality

e we obtain the categorical dual by reversing the arrows
¢ algebras dualise to coalgebras
e initial algebras dualise to final coalgebras

University of Oxford — Ralf Hinze 28-86
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3.3 Coalgebra

e an F-coalgebra c is an arrow of type C ¥ FC

C C———D D

c C d d

FC FC———FD FD
Fh

e an F-coalgebra homomorphism h preserves the structure

e F-coalgebras and homomorphisms form a category

University of Oxford — Ralf Hinze 29-86
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3.3 Final coalgebra

¢ the final object in this category, the final F-coalgebra, is
the ‘greatest’ fixed point of F

unfold ¢
c out

C——F
F unfold c

o finality entails that there is a unique homomorphism to
the final coalgebra from any coalgebra c, called unfold ¢

o final List-coalgebra: finite and infinite lists (in Set)

University of Oxford — Ralf Hinze 30-86
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3.3 Final coalgebra in Haskell

in Haskell, f can be defined

newtype f Out fout:f f g

as an aside, Out a will be written as bac

since out is an isomorphism, we can turn the
commuting diagram into a generic definition of unfold

unfold:: Functorf ) a¥fa ¥ al f
unfold f out map unfoldf f

Haskell: initial algebras and final coalgebras coincide!
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3.4 Embedding initial into final

Least fixed points can be embedded into greatest fixed
points.

upcast :: Functorf ) f I f

University of Oxford — Ralf Hinze 32-86
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3.4 Embedding initial into final

Least fixed points can be embedded into greatest fixed
points.

upcast :: Functorf ) f ¢ f
How to define upcast? We can write it as a fold . ..

fold ::: : FY F
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3.4 Embedding initial into final

Least fixed points can be embedded into greatest fixed
points.

upcast :: Functorf ) f ¢ f
How to define upcast? We can write it as a fold . ..

fold unfoldc : FY F
unfoldec : F F ¢ F
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3.4 Embedding initial into final

Least fixed points can be embedded into greatest fixed
points.

upcast :: Functorf ) f I f
How to define upcast? We can write it as a fold . ..

fold unfoldc : F Y F
unfoldec : F F ¢ F
c:F F YFF F
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3.4 Embedding initial into final

Least fixed points can be embedded into greatest fixed

points.

upcast :: Functorf ) f ¢ f

How to define upcast? We can write it as a fold . ..

fold unfold c
unfold ¢

C

...or as an unfold:
unfold fold a :

University of Oxford — Ralf Hinze
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3.4 Embedding initial into final

Least fixed points can be embedded into greatest fixed
points.

upcast :: Functorf ) f ¢ f
How to define upcast? We can write it as a fold . ..

fold unfoldc : FY F
unfoldec : F F ¢ F
c:F F YFF F

...or as an unfold:
unfold folda : F Y F

foda : FYF F
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3.4 Embedding initial into final

Least fixed points can be embedded into greatest fixed
points.

upcast :: Functorf ) f ¢ f
How to define upcast? We can write it as a fold . ..
fold unfoldc : F Y F

unfoldec : F F ¢ F
c:F F YFF F

...or as an unfold:
unfold folda : F Y F

foda : FIF F
a:FF F YF F
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3.4 Embedding initial into final

Least fixed points can be embedded into greatest fixed
points.

upcast :: Functorf ) f ¢ f
How to define upcast? We can write it as a fold . ..
fold unfoldc : F Y F
unfoldc : F F T F
c:F FUYFF F

...or as an unfold:
unfold folda : F Y F

foda : FIF F
a:FF F YF F

Obvious candidates: ¢  map outanda map in.
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The coalgebra fold map in is the inverse of in; the algebra

unfold map out is the inverse of out. Moreover,

fold map in in

F

F

Fem—k—— >

F

R

fold out

unfold in

I

F

WG 2.8

out unfold map out

out

F

(The triples h F;in;in i and h F;out ;outi are examples of

bialgebras, more later.)

University of Oxford — Ralf Hinze
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3.4 Intermediate summary

¢ initial algebra: syntax (finite trees)
o folds: replacing constructors by functions

¢ (denotational semantics: compositional valuation
function that maps syntax to semantics—folding over
syntax trees)

¢ final coalgebra: behaviour (finite and infinite trees)

e unfolds: tracing a state space

e (operational semantics: unfolding to transition trees)

¢ we have seen a glimpse of type-driven program
development

e running time (assuming a strict setting):

o fold: proportional to the size of the input

e unfold: proportional to the size of the output
(output-sensitive algorithm)

University of Oxford — Ralf Hinze 34-86
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Section 4

Exchange sort
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4.0 Back to sorting

A sorting function takes a list to an ordered list,
sort:: List ¥ List

where List is the datatype of ordered lists:
data List list  Nil j Cons K list

instance Functor List where
map f Nil Nil
map f Cons k ks Cons k f ks

(No guarantees, we use List for emphasis.)
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To define a sorting function let us follow a type-directed
approach:

f o List ¥ List
f unfoldc
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To define a sorting function let us follow a type-directed
approach:

f o List ¥ List
f unfoldc

c :: List ¥ List List
¢ fold a
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To define a sorting function let us follow a type-directed
approach:

f o List ¥ List

f unfold c

(@]

List ¥ List List
fold a

(@]

a:List List List ¥ List List

a Nil Nil
a Cons x Nil  Cons x dNile
a Consx Consy xs
jx vy Cons x dCons y xse

j otherwise  Consy dCons x xse

University of Oxford — Ralf Hinze 38-86
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4.1 Bubble sort

We have re-invented bubble sort!

bubbleSort :: List ¥ List
bubbleSort unfold bubble

bubble:: List ¥ List List
bubble fold bub

bub:: List List List ¥ List List
bub Nil Nil
bub Cons x Nil Cons x dNile
bub Cons x Consy xs
jx vy Cons x dCons y xse
J otherwise Cons y dCons x xse
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Dually, we can start with a fold:

f o List ¥ List
f folda
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The Computational Essence of Sorting Algorithms — Exchange sort

Dually, we can start with a fold:

f o List ¥ List
f folda

a : List List ¥ List
a unfold c
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Dually, we can start with a fold:
f o List ¥ List
f folda

a  List List T List
a unfold c

—

c:List List ¥
¢ Nil Nil
¢ Cons x bNilc  Cons x Nil
¢ Cons x bCons y xsc

Z

jx vy Cons x Consy xs
jotherwise Consy Cons X xs

University of Oxford — Ralf Hinze
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4.2 Nalive insertion sort

We obtain a nailve variant of insertion sort!

naivelnsertionSort :: List ¥ List
naivelnsertionSort fold naivelnsert

naivelnsert :: List List ¥ List
naivelnsert unfold naivelns

naivelns ::List List ¥ List List List
naivelns Nil Nil

naivelns Cons X bNilc Cons x Nil
naivelns Cons x bCons y xsc

jx vy Cons x Consy xs
J otherwise Consy Cons X xs
Why naive?
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The algebra and the coalgebra are almost identical:

a:List List List ¥ List List

a Nil Nil
a Cons x Nil  Cons x dNile
a Consx Consy xs
ix vy Cons x dCons y xse

jotherwise  Consy dCons x xse

University of Oxford — Ralf Hinze 42-86
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The algebra and the coalgebra are almost identical:

a:List List List ¥ List List cuList List ¥ List List List

a Nil Nil ¢ Nil Nil

a Cons x Nil  Cons x dNile ¢ Cons x bNilc  Cons a Nil

a Consx Consy xs ¢ Cons x bhCons y xsc
ix vy Cons x dCons y xse ix vy Cons x Consy xs
j otherwise  Consy dCons x xse Jj otherwise Consy Cons x xs
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The algebra and the coalgebra are almost identical:

a:List List List ¥ List List cuList List ¥ List List List

a Nil Nil ¢ Nil Nil

a Cons x Nil  Cons x dNile ¢ Cons x bNilc  Cons a Nil

a Consx Consy xs ¢ Cons x bhCons y xsc
ix vy Cons x dCons y xse ix vy Cons x Consy xs
jotherwise  Consy dCons x xse j otherwise Consy Cons x xs

We can unify them in a single natural transformation:

swap :: List Lista ¥ List List a

swap Nil Nil

swap Cons x Nil  Cons x Nil

swap Cons x Consy xs
jx vy Cons x Consy xs
j otherwise Consy Cons x xs
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swap :: List List x ¥ List List x

swap Nil Nil

swap Cons x Nil  Cons x Nil

swap Consx Consyl
jx vy Cons x Consy xs
j otherwise Consy Cons x xs

University of Oxford — Ralf Hinze
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swap :: List List x ¥ List List x

swap Nil Nil

swap Cons x Nil  Cons x Nil

swap Consx Consyl
jx vy Cons x Consy xs
j otherwise Consy Cons x xs

We can re-define bubble and ndive insertion sort using swap:

bubbleSort :: List ¥ List
bubbleSort unfold fold map in swap

naivelnsertionSort :: List ¥ List
naivelnsertionSort fold unfold swap map out

In a sense, swap extracts the computational ‘essence’ of
bubble and naive insertion sorting.
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bubble sort

initial input
2 4 1 3 2$%1 451 1$3
2$3 4%$3
354

ndive insertion sort

1$3
451 453
2%$51 2$3 3$H4

2
2
2
2
1

final output
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4.2 Intermediate summary

e swap exchanges adjacent elements

e swap is the computational essence of bubble sort and
nailve insertion sort

e running time n?
e how can we write true insertion sort?

o first: proof that bubbleSort and naivelnsertionSort are
equal (in a strong sense)
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Section 5

Bialgebras and distributive laws
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Recall that bubble is a List-algebra homomorphism.

) . map bubble . .
List  List List List List
jswap
in List List List
jmap in
List List  List
bubble

University of Oxford — Ralf Hinze 48-86



The Computational Essence of Sorting Algorithms — Bialgebras and distributive laws

Let us rearrange the diagram.

| |
I in \ List List List
| |

: List : swap
| ‘ |

I bubble | List List List
|

|

The algebra in and the coalgebra bubble form a
swap-bialgebra: h List;in; bubblei.

University of Oxford — Ralf Hinze
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Recall that naivelnsert is a List-coalgebra homomorphism.

TLFS{ 7@ﬁ map out

\
naivelnsert List List List
: & : swap
: out : List List List
|
‘ -

I
map naivelnsert
J

The algebra naivelnsert and the coalgebra out also form a
swap-bialgebra: h List; naivelnsert; outi.

University of Oxford — Ralf Hinze 50-86



The Computational Essence of Sorting Algorithms — Bialgebras and distributive laws WG 2.8

5.1 Bialgebra

For an algebra a and coalgebra ¢ to be a swap-bialgebra, we
must have that

List List X

\

\ \

\ \

| |

X swap
| |

! ! List List X
\

\
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5.2 Bialgebra homomorphism

A swap-bialgebra homomorphism h is simultaneously an
List-algebra and a List-coalgebra homomorphism.

List X — 5t gy
a b
X h Y
c d
List X —— = List Y

swap-bialgebras and homomorphisms form a category.
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5.2 Initial and final bialgebra

The initial object in this category is h List;in; bubblei; the
final object is h List; naivelnsert; outi.

List List —— = List List

in naivelnsert
fold naivelnsert
List— - - - - k----> List
unfold bubble
bubble out

List List ————List List
By uniqueness, naivelnsertionSort and bubbleSort are equal.
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5.2 Intermediate summary

swap is a distributive law

h List;in;bubblei is the initial swap-bialgebra

e h List; naivelnsert; outi is the final swap-bialgebra

bubble sort and ndive insertion sort are two (strongly
related) variations of the same idea: repeatedly
exchanging adjacent elements
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Section 6

Insertion and selection sort lI
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e sorting algorithms as folds of unfolds or unfolds of
folds necessarily have a running time of n?

e to define insertion and selection sort, we need variants
of folds and unfolds, so-called para- and apomorphisms
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6.1 Paramorphism

e we start by defining products

dataa b As foutl:: a;outr:bg

ccla I clp ¥ cla b
f gx As fx gx

e we write As a b as a—~b (we use it like Haskell’'s a@b).
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6.1 Paramorphism

e we start by defining products

dataa b As foutl:: a;outr:bg

ccla I clp ¥ cla b
f gx As fx gx
e we write As a b as a—~b (we use it like Haskell’'s a@b).
e we are now ready to define paramorphisms:

para: Functorf ) f f a BTa @ f1I3g
paraf f map id paraf in

a paramorphism also provides the intermediate input:
the ‘algebra’ hastypef f a @ ainsteadoffal a

e slogan: eats its argument and keeps it too
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6.2 Apomorphism

e products dualise to sums
dataa b StopajPlayb
calc @ pbic I a blc

f g Stopa fa
f g Playb gb

e we write Stop a as as, and Play b as »b

University of Oxford — Ralf Hinze 59-86



The Computational Essence of Sorting Algorithms — Insertion and selection sort Il

6.2 Apomorphism

e products dualise to sums
dataa b StopajPlayb
alc " p¥Ic I a bic

f g Stopa fa
f g Playb gb

e we write Stop a as as, and Play b as »b

e paramorphisms dualise to apomorphisms:

apo: Functorf ) al!'f f a
apof out map id apof f

the corecursion is split into two branches, with no

recursive call on the left
e apomorphisms improve the running time
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With apomorphisms, we can write the insertion function as
one that stops scanning after inserting an element:

insertSort :: List ¥ List
insertSort  fold insert
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With apomorphisms, we can write the insertion function as
one that stops scanning after inserting an element:

insertSort :: List ¥ List
insertSort  fold insert

insert :: List List ¥ List
insert apoins
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With apomorphisms, we can write the insertion function as
one that stops scanning after inserting an element:

insertSort :: List ¥ List
insertSort  fold insert

insert :: List List ¥ List
insert apoins

ins::List List ¥ List List List List
ins Nil Nil
ins Cons x bNilc Cons x bNilcs
ins Cons x bCons y xsc
ix 'y Cons x bCons y xscs
J otherwise Consy » Cons X xs
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From ins we can extract a natural transformation, which we
call swop for swap‘n’stop:

swop :List a Lista U List a Lista

swop Nil Nil
swop Cons x xs=Nil Cons X Xs=
swop Consx xs= Consyys
ix 'y Cons x Xsw=
J otherwise Consy » Cons xys
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From swop we get both insertion and selection sort:

insertSort :: List ¥ List
insertSort  fold apo swop map id out

selectSort :: List ¥ List
selectSort unfold para map id in swop

In general, a natural transformation such as swop gives rise
to two algorithms. Algorithms for free!
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6.3

Intermediate summary

apomorphisms improve the running time

running time of insertion sort: worst case still n? ,
but bestcase n
(paramorphisms don’t improve the running time)

the computational essence of insertion and selection
sort is the natural transformation swop

in general, we shall seek natural transformation of type
FA GA IGA FA

(proof of equality involves (co-) pointed functors)
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Section 7

Quicksort and treesort
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e so far: one-phase sorting algorithms
List ¥ List

e to improve performance we need to exchange
non-adjacent elements

e next: two-phase sorting algorithms that make use of an
intermediate data structure

List ¥ Tree ¥ Tree ! List

e the intermediate data structure can sometimes be
deforested (turning a data into a control structure)

e we can play our game for each phase
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7.0 Search trees

e an obvious intermediate data structure is a binary tree

data Tree tree Empty j Node tree K tree

instance Functor Tree where
map f Empty Empty
map f Nodel kr Node fl k fr

e we assume a ‘horizontal’ ordering

type SearchTree Tree
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7.1 Phase one: growing a search tree

e the essence of growing a search tree

sprout ::List a SearchTreea ¥ SearchTree a Lista
sprout Nil Empty
sprout Cons x t=Empty Node ts X t=
sprout Consx t= Nodelyr
jx 'y Node » Consxl y r=
J otherwise Node I= y » Consxr

e this is the only sensible definition: no choices

e we compare elements across some distance
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e we can either recursively partition a list, building
subtrees from the resulting sublists, or start with an
empty tree and repeatedly insert the elements into it

grow :: List ¥ SearchTree
grow unfold para map id in sprout

grow’ :: List I SearchTree
grow’ fold apo sprout map id out

e the algebra is a useful function on its own: insertion
into a search tree

e efficient insertion into a tree is necessarily an
apomorphism
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7.2 Phase two: withering a search tree

e the essence of withering a search tree

wither :: SearchTree a Lista ¥ List a SearchTree a
wither Empty

Nil

wither Node I=Nil x r=_
Consx ra=

wither Node I= ConsxI° y r=_

Consx » Nodel’yr

e again, this is the only sensible definition
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e this should surprise no one: the second phase would
surely be an in-order traversal

flatten :: SearchTree ¥ List
flatten fold apo wither map id out

flatten® :: SearchTree ¥ List
flatten® unfold para map id in wither

o the algebra is essentially a ternary version of append

e the coalgebra deletes the leftmost element from a
search tree
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7.2 Putting things together

We obtain the famous quicksort and the less prominent
treesort algorithms,

quickSort :: List ¥ List
quickSort flatten downcast grow

treeSort :: List ¥ List
treeSort flatten downcast grow’

where downcast :: Functor f ) f I f projects the final
coalgebra onto the initial algebra.
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7.2 Intermediate summary

e once the intermediate data structure has been fixed,
everything falls into place: no choices

e observation: only the first phase performs comparisons

e quicksort and treesort are are two (strongly related)
variations of the same idea

e running time: worst case still n? , but average case
nlogn
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Section 8

Heapsort and minglesort
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8.0 Heaps

e a search tree imposes a horizontal ordering

e we can also assume a ‘vertical’ ordering

type Heap Tree

University of Oxford — Ralf Hinze
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8.1 Phase one: piling up a heap
e the essence of piling up a heap
pile::List a Heapa Y Heap a Lista
pile Nil Empty
pile Cons x t=Empty Node tms X t=
pile Consx t= Nodelyr
jx vy Node » Consyr X I=
j otherwise Node » Consxr y I=
¢ now we have a choice (3rd equation)! Braun’s trick!
University of Oxford — Ralf Hinze
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8.1 Phase one: piling up a heap

e the essence of piling up a heap

pile::List a Heapa Y Heap a Lista

pile Nil Empty

pile Cons x t=Empty Node tms X t=

pile Consx t= Nodelyr
jx vy Node » Consyr X I=
j otherwise Node » Consxr y I=

¢ now we have a choice (3rd equation)! Braun’s trick!
e leta x‘'min‘yandb x‘max‘y,

Node » Consbl a r=
Node r= a » Consbl
Node I= a » Consbr
Node » Consbr a I=
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e as usual we obtain two algorithms

heapify :: List ¥ Heap
heapify unfold para map id in pile

heapify® :: List ¥ Heap
heapify® fold apo pile map id out

e the algebra is a useful function on its own: insertion
into a heap
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8.2 Phase two: sifting through a heap

e the essence of sifting through a heap

sift :Heap a Lista U List a Heapa

sift Empty Nil

sift Node I=Nil x r=_ Cons X rm

sift Node I=_ x r=Nil Consx Im=

sift Node I= Consy ! x r= Conszr?

Cons x » Nodel’yr

jy z
» Nodel zr?

j otherwise Cons x
e when constructing the heap node to continue with, we
have the option to swap left with right, but this buys us

nothing
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e again, we obtain two algorithms

unheapify :: Heap ¥ List
unheapify fold apo sift map id out

unheapify? :: Heap ¥ List
unheapify’® unfold para map id in sift

e the coalgebra deletes the mimimum element from a
heap
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8.2 Putting things together

e we obtain heapsort and a variant of heapsort that

behaves suspiciously like mergesort

heapSort :: List ¥ List

heapSort unheapify downcast heapify

mingleSort :: List ¥ List

mingleSort  unheapify’ downcast heapify?®

e trimerous mergesort, called minglesort, builds a heap by
repeatedly dividing the input into three parts: two lists
of balanced length along with the minimum element

e the merging phase is a similarly trimerous operation
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8.2 Intermediate summary

¢ the intermediate data structure provides us with a
choice (heaps are more flexible than search trees)

e observation: both phases use comparisons

e running time: worst case nlogn —insensitive to the
input

e minglesort is a recent variant of heapsort (closely

related to Heap-Mergesort, see Computer and
Mathematics with Applications 39, 2000)

e an analogous approach using binary leaf trees works for
true mergesort
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Section 9

Epilogue
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9.1 Summary

e categorical algorithmics

e type-driven algorithm design building on a few
principled recursion operators

o few design decisions: intermediate data structures
e no rabbits!
e categorical duality gives us algorithms for free

e see WGP 12 paper: Sorting with Bialgebras and
Distributive Laws by Ralf Hinze, Daniel W. H. James,
Thomas Harper, Nicolas Wu and José Pedro Magalhaes
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9.2 Summary and future work

e computational essence

naive insertion and bubble sort: swap
insertion and selection sort: swop
growing a search tree; sprout
withering a search tree: wither

piling up a heap: pile

sifting through a heap: sift

e top-down algorithms: regular datatypes

e bottom-up algorithms: nested datatypes
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