
Cache and I/O Efficient Functional Algorithms

Guy E. Blelloch Robert Harper
Carnegie Mellon University

guyb@cs.cmu.edu rwh@cs.cmu.edu

Abstract
The widely studied I/O and ideal-cache models were developed
to account for the large difference in costs to access memory at
different levels of the memory hierarchy. Both models are based on
a two level memory hierarchy with a fixed size primary memory
(cache) of size M , an unbounded secondary memory organized
in blocks of size B. The cost measure is based purely on the
number of block transfers between the primary and secondary
memory. All other operations are free. Many algorithms have been
analyzed in these models and indeed these models predict the
relative performance of algorithms much more accurately than the
standard RAM model. The models, however, require specifying
algorithms at a very low level requiring the user to carefully lay
out their data in arrays in memory and manage their own memory
allocation.

In this paper we present a cost model for analyzing the memory
efficiency of algorithms expressed in a simple functional language.
We show how some algorithms written in standard forms using
just lists and trees (no arrays) and requiring no explicit memory
layout or memory management are efficient in the model. We then
describe an implementation of the language and show provable
bounds for mapping the cost in our model to the cost in the ideal-
cache model. These bound imply that purely functional programs
based on lists and trees with no special attention to any details
of memory layout can be as asymptotically as efficient as the
carefully designed imperative I/O efficient algorithms. For example
we describe an O(n

B
logM/B

n
B

) cost sorting algorithm, which is
optimal in the ideal cache and I/O models.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; F.2.2 [Analysis of Algo-
rithms and Problem Complexity]: Tradeoffs and Complexity Mea-
sures; F.3.2 [Logics and Meanings of Programs]: Semantics of
Programming Languages

General Terms Algorithms, Design, Languages, Performance,
Theory.

Keywords cost semantics, I/O algorithms

1. Introduction
On today’s computers there is a vast difference in cost for accessing
different levels of the memory hierarchy, whether it be registers,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’13, January 23–25, 2013, Rome, Italy.
Copyright c© 2013 ACM 978-1-4503-1832-7/13/01. . . $10.00

one of many levels of cache, the main memory, or a disk. On
current processors, for example, there is over a factor of a hundred
between the time to access a register and main memory, and another
factor of a hundred or so between main memory and disk, even
a solid state disk (SSD). This variance in costs is contrary to the
standard Random Access Machine (RAM) model, which assumes
that the cost of accessing memory is uniform. To account for non
uniformity several cost models have been developed that assign
difference costs to different levels of the memory hierarchy. The
widely used I/O [2] and ideal-cache [9] models both assume a
two level memory hierarchy with a fixed size primary memory
(cache) of size M , an unbounded secondary memory partitioned
into blocks of size B. Cost is measured in terms of the number
of block transfers between primary and secondary memory—all
other operations are considered free. The parameters M and B are
considered variables for the sake of analysis and therefore show up
in asymptotic bounds.

Algorithms that do well in these models are often referred to as
I/O efficient or cache efficient—in this paper we will generically
use the term cache efficient. The theory of cache efficient algo-
rithms is now well developed (see e.g. the surveys [4, 6, 10, 15, 17,
22]) and the models indeed much more accurately capture the rela-
tive cost of algorithms on real machines than the RAM model does.
This is true both in the context of algorithms that must run off disk
when there is not enough main memory, and also in the context of
algorithms that can fit in main memory, but not in various levels of
the cache. For example, the models properly indicate that a blocked
or hierarchical matrix-matrix multiply is much more efficient than
the naı̈ve triply nested loop (Θ

(
n3

B
√
M

)
vs. Θ(n3)). In the RAM

they have equal costs. The models also indicate that properly imple-
mented versions of mergesort and quicksort are reasonably cache
efficient but that samplesort and multiway mergesort are more effi-
cient, and in fact optimal. Correspondingly all the fastest disk sorts
indeed use some variant of samplesort or multiway mergesort, as
the theory predicts [19].

Although the study of cache efficient algorithms has been very
successful in identifying algorithms that are fast in practice, not sur-
prisingly designing and programming algorithms for these models
requires a careful layout of memory and careful management of
space. Both temporal and spatial locality is critical in achieving
good bounds. Spatial locality is important since memory is moved
in blocks of size B, corresponding to either cache lines or memory
pages. For example although merging two arrays of integers is rea-
sonably efficient, the cost of merging two linked lists will depend
on how the links are laid out in memory and needs to be considered
with care. Care is also needed when allocating and freeing memory
since touching unused memory incurs a cache miss. It is therefore
important to reuse freed space immediately rather than returning
it to a pool which might be evicted by the time it is reused—a
generic memory allocator or garbage collection scheme will likely
not do the right thing. To properly manage this problem, memory

is typically preallocated and fully managed by the user/algorithm
designer.

Needless to say, this form of programming is inconsistent with
functional programming, especially when using recursive data
types such as lists or trees. However, it is known experimentally that
by using certain standard memory allocation schemes purely func-
tional programs (no side effects) can be reasonably cache efficient
with regards to both spatial and temporal locality [7, 8, 12, 23]. We
give two examples.

Firstly, consider applying map with some simple function (e.g.
increment) over a list of integers, and then applying the same map to
the output. If the allocator keeps a pointer that gets incremented on
each allocation, then after the first map all the cells of the list will
be allocated adjacently. On the second map since the allocations
are adjacent, reading the whole list will only incur O(n/B) cache
misses, whereB is the block size, and evicting the newly generated
blocks will also incur only O(n/B) misses. This gives O(n/B)
cost, which asymptotically matches the cost of an optimal array
version in an imperative setting. If the list were in an arbitrary order,
the cost would beO(n). All we have done is noted that the temporal
locality of the allocations will lead to spatial locality of how they
are laid out in memory.

Secondly, consider a block recursive matrix multiply on two
n × n matrices. Such an algorithm will never require more than
O(n2) live space but if recursion stops at problems of a constant
size it will allocate a total of O(n3) space. Assuming that the max-
imum live space fits within the cache we should be able to run our
matrix multiply with onlyO(n2/B) cache misses, needed for load-
ing the two matrices and storing the result, but this would require
being careful about reusing freed space that is already in cache. For-
tunately generational garbage collectors have approximately this
effect [8]. In particular if we make the first generation smaller than
the size of the cache (M) then we will reclaim the memory when-
ever the allocation area fills, and reuse memory that is already in
cache. This does not quite work in general since what is live at
the time of the minor collection might get bumped from cache, but
it gives some indication that it is not hopeless to make the natu-
ral recursive matrix multiply algorithm, as well as similar recursive
algorithms, cache efficient.

We show that one can indeed implement cache-efficient algo-
rithms in a call-by-value functional setting using recursive data
types, and get provably efficient bounds on cache complexity. In
particular we show that one can express algorithms at a high level
using standard techniques and achieve optimal asymptotic perfor-
mance when implemented on the ideal cache. Of course we do
not expect the algorithm designer to understand the intricacies the
garbage collector works in order to analyze their algorithm. Instead
our approach consist of providing a reasonably high-level cost se-
mantics that abstracts away from implementation details such as
the garbage collection method, but still admits precise analysis of
the cost of an algorithm on a two-level memory architecture. We
then describe a provably-efficient implementation of the language
on the ideal-cache model. We show that by using this implementa-
tion the costs analyzed in the high-level cost model asymptotically
match the number of cache misses in the underlying ideal-cache
model. The general idea of using high-level cost models based on a
cost semantics along with a provable efficient implementation that
maps the cost onto a lower level machine model has previously
been used in the context of parallel cost models [5, 11, 13, 21].

Our high-level cost model consists of an operational semantics
for a call-by-value variant of PCF in which we make explicit the
allocation of and access to data objects. The store consists of three
parts: a main memory, an allocation cache and a read cache. Both
caches have size M and the memory is organized in blocks of
size B (both measured in terms of abstract data objects). Data can

migrate from the allocation cache to memory and from memory to
the read cache, always in blocks of size B. Allocations are made in
the allocation cache, and if the number of live objects in the cache
exceeds M , then the B oldest locations are evicted to memory
as a block, having unit cost. The read cache contains a subset of
the memory blocks. A read has no cost if its location is in the
read or allocation cache, otherwise it requires loading a block from
memory into the read cache, having unit cost, and possibly ejecting
an existing block. Hence the only costs are for evicting a block from
the allocation cache or loading a block into the read cache. Since
we are only concerned with measuring the traffic between main
memory and cache memory, garbage collection for main memory is
not modeled, but we do account for the detection of live objects, and
their migration to main memory, when the cache limit is exceeded.

The provable implementation uses a generational collector to
maintain the allocation cache. It uses a nursery of size 2M and al-
locates until the space runs out. It then traces the nursery for the live
data. If there is L > M live data, then L−M locations are written
to memory in blocks ofB, leaving the nursery with at mostM loca-
tions. The implementation allocates the stack in the heap and must
amortize the cost of loading old stack frames against other opera-
tions since they are not modeled in the high-level cost semantics.
We emphasize that the algorithm designer need not know anything
about the garbage collector or how the stack is managed to ana-
lyze their algorithm; these concepts are only part of the provable
implementation. The cost model is described in Section 3 and the
provable implementation is described in Sections 4 and 5.

To demonstrate the utility of our approach, in Section 6 we
describe some general techniques for analyzing the cost of algo-
rithms in our model and show three examples of how to analyze
the cost of algorithms in the model: mergeSort, k-way mergeSort
and matrix multiply. Importantly our results on sorting and matrix
multiply match the bounds for algorithms implemented directly in
the ideal-cache model (O

(
n
B

logM/B
n
B

)
and O

(
n3

B
√
N

)
respec-

tively). The bounds for sorting are optimal. Because of our provable
implementation bounds these results imply that on the ideal-cache
model our algorithms written in a functional style using lists and
trees are asymptotically as efficient as the low-level imperative pro-
grams. To analyze the algorithms we introduce the notion of a data
structure being compact with respect to a traversal order. This is the
way we capture the spatial locality of data structures in a language
that has no explicit way to express memory layout.

Related Work
Although there has been a large amount of experimental work on
showing how good garbage collection can lead to efficient use of
caches and disks ([7, 8, 12, 23] and many references in [14]), we
know of none that try to prove bounds for algorithms for functional
programs when manipulating recursive data types such as lists or
trees. Abello et. al. [1] show how a functional style can be used
to design cache efficient graph algorithms. They however assume
that data structures are in arrays (called lists), and that primitives
for operations such as sorting, map, filter and reductions are sup-
plied and implemented with optimal asymptotic cost (presumably
at a lower level using imperative code). Their goal is therefore to
design graph algorithms by composing these high-level operations
on collections. They do not explain how to deal with garbage col-
lection or memory management.

2. Background
I/O and Caching Models
The two-level I/O model of Aggarwal and Vitter [2] assumes a
memory hierarchy consisting of main memory of sizeM and an un-

bounded secondary memory.1 Both memories are partitioned into
blocks of sizeB of consecutive memory locations. All computation
must be performed from main memory, which is treated like a stan-
dard RAM, but there is an additional instruction for moving a block
of memory from secondary memory to main memory and one for
moving the other way. The cost of an algorithm is analyzed in terms
of the number of block transfers—the cost of operations within
the main memory is ignored. Many algorithms can be analyzed in
this model and it is perhaps surprising how accurately it is able
to capture the relative performance of algorithms. In their original
work, for example, Aggarwal and Vitter showed tight upper and
lower bounds for sorting n keys, with I/O cost Θ

(
n
B

logM/B
n
B

)
.

The two algorithm that match this bound are a multiway merge-
sort and a distribution sort, which are the standard algorithms used
for disk based sorting, and they both perform significantly better
than quicksort or standard mergesort. These algorithms are more
efficient since they do not need to pass over the data as many times.

The I/O model can capture either the distinction between cache
and main memory or between main memory and disk. In the first
case the memory size corresponds to the cache size and the block
size to the cache-line size, and in the second case the memory size
corresponds to the main memory size and the block size to the
page size (or whatever the transfer size between the disk and main
memory is). One might note, however, that while the I/O model
assumes two address spaces and the user explicitly moves data
between them, a machine with caches assumes a single address
space and makes its own decisions about what gets evicted from
cache, e.g., using a least recently used (LRU) policy.

The ideal-cache model [9] can be used to better model a cache.
It is similar to the I/O model but assumes the primary memory
is treated as a cache with an ideal eviction policy. In particular
the programmer only accesses one address space and a block is
brought into the cache when a memory location is accessed whose
block is not already in cache. Bringing in a block might require
evicting another block from the cache. The model assumes that
the best decision is always made, which is to evict the line used
furthest in the future (the optimal off-line replacement policy).
Since in practice we don’t know the future, this is not possible
on-line, but it is proved by Sleator and Tarjan’s seminal work on
competitive paging [20] that an LRU policy is always competitive
with the optimal strategy (within constant factors in time and cache
size). Therefore from a theoretical point of view the models are
asymptotically the same. In this paper we will be using the ideal-
cache model for simplicity although the results are also apply to the
I/O model.

The ideal-cache model is often used in the context of cache-
oblivious algorithms. These are simply algorithms for which the
algorithm does not make any decisions based on the cache parame-
ters M and B, although of course the analysis of cache complexity
will depend on M and B. The advantage of cache-oblivious algo-
rithms is that since they are oblivious to the cache parameters they
work across multiple levels of a cache hierarchy simultaneously.
Most of the algorithms in this paper are cache oblivious, but our
k-way mergesort is not. We leave it as an open question whether it
is possible to develop an I/O-efficient cache-oblivious sorting algo-
rithm in our model.

Cache Efficient Algorithms
We now review some basic well known results on cache efficient
algorithms in the imperative setting. The functional algorithms we
present in Section 6 are based on the algorithms described here,

1 Aggarwal and Vitter also considered a version of the model with “parallel”
disk access, but most interesting results are explained with the single disk
version.

but do not require arrays or explicitly memory management. We
first consider mergesort. Throughout our discussion we assume that
the elements being sorted each fit in a single machine word. All
cache efficient algorithms we know of for sorting store the input
and output elements directly in arrays.

First consider merging two arrays of keys A and B into an
output array C of length n (as usual we assume the inputs are
sorted in A and B in increasing order). The standard sequential
algorithm for merging starts at the beginning of each array keeping
a finger on each, finding the the lesser of the two keys at the fingers,
copying this key to C, and incrementing the appropriate finger. This
algorithm has a cache complexity O(n/B) as long as M ≥ 3B.
This can be seen by noting that at any given time we only need one
block from each of A, B and C resident in cache, and that we fully
process the block before needing the next block. Therefore every
block is only needed once.

For mergesort we assume the standard divide-and-conquer ver-
sion, which recursively sorts each half of the array and then merges
the result. Since merging as described cannot be done in place we
have to be specific on how to manage memory. In particular allo-
cating a new array for the result and then freeing the two old arrays
using a general purpose memory allocator will likely not lead to
the desired bounds (unless one can ensure special properties of the
memory allocator). Instead the algorithm needs to pre-allocate a
temporary array of length n and pass parts of this array to all sub-
calls. In particular mergesort could take as arguments both the input
array and an equal length temporary array. The result is returned in
the input array and the temporary array is used to merge into. Al-
though these optimizations are relatively obvious and standard to
programmers of imperative code, we bring them up to emphasize
the care that needs to be taken to ensure the cache bounds—it is
not simply an issue of reducing the number of calls to the memory
allocator, it can actually asymptotically affect the cache bounds.

The cache complexity of this mergesort can be analyzed by
considering two cases. The first is when the full computation fits
in cache. In this case the two arrays need only be loaded into cache
once and all the work can be done in cache. The problem fits in
cache as long as 2n + log n ≤ M , where the logn accounts for
the stack size. The second case is when the problem does not fit in
cache. In this case we have to pay for the cache misses on the two
recursive calls plus the cache misses of the merge. This gives the
following recurrence for the cache complexity Q(n):

Q(n) =

{
2Q(n

2
) +O(n

B
) 2n+ logn > M

O(n
B

) otherwise (1)

The solution to this recurrence can be derived by noting that
the top log2(2n/M) levels of the recursion do not fit in memory
while the lower levels do. The total cache complexity across each
of the upper levels is O(n/B) so the total overall cache complex-
ity is O(n/B log2(n/M)). We note that this does not match the
optimal cache complexity for sorting but is significantly better than
simply assuming every access is a cache miss—specifically, a fac-
tor of B logn/(logn− logM) better. For sorting 1012 words in a
memory with 109 words and a block size of 103 words, it is about a
factor of about 4000 better. Quicksort has basically the same com-
plexity as mergesort, although in the expected case. This is because
scanning the input array to split it into the lesser and larger ele-
ments can be done using two fingers like in merging so again each
block only needs to be loaded once.

We now describe a sort that is optimal for the I/O model.
The idea is instead of partitioning the input array into two and
recursively calling sort on each, to partition the input array into
k parts, sort each part, and then merge all the parts. Since instead
of having just two arrays to merge we have k arrays, we require
a k-way merge. Without going into too much detail, such a merge

can be implemented using one block of memory for each of the
inputs needing to be merged as well as one block for the output. We
keep a finger on each input and on each step select the minimum
key at the fingers, move it to the output buffer and increment that
finger. As long as all input blocks, the output block and any data for
maintaining the fingers fit in cache, then the k-way merge will run
with cache complexity O(n/B), which is the same as the binary
merge. Since there will be k input blocks and 1 output blocks, the
space needed for the blocks is (k + 1)B. Therefore accounting for
overheads everything will fit in cache as long as ckB ≤ M , or
equivalently k ≤ M/(cB) for some constant c. We therefore pick
k to be as large as possible, giving k = M/(cB) As in the two
way merge we need to be careful about allocation and preallocate
temporary arrays to copy the output. We again can analyze the
algorithm by considering the case when the problem fits in memory
and when it does not. This gives the recurrence:

Q(n) =

{
M
B
Q(n

M/cB
) +O(n

B
) nc′ > M

O(n
B

) otherwise
(2)

where c and c′ are constants, but n, B and M are variables. This
solves to O(n/B logM/B(n/B)). This bound matches the lower
bound for sorting in the I/O model [2] and hence also the ideal-
cache model. The k-way mergesort is therefore asymptotically
optimal.

3. Cost Semantics
In this section we define an evaluation dynamics that assigns a
cost to a complete execution of a program. Following the I/O
model, the cost measures the cache complexity, which is defined
to be the traffic caused by the transfer of objects between the main
memory and the memory cache. Accesses to objects in cache are
considered to be cost-free, whereas migration of objects from cache
into memory and from memory into the cache are charged unit cost.
The dynamics is based on a two-level model of storage that includes
a fixed-size allocation cache and a fixed-size read cache together
with a main memory of unbounded size.

The evaluation dynamics provides the basis for assessing both
the correctness and the cache complexity of programs. It is formu-
lated at a sufficiently abstract level to free the programmer from
having to reason directly about the compiler and run-time system,
but is sufficiently concrete as to admit an implementation with a
provable bound on its cache complexity. Thus, we may achieve the
same overall results as are obtained using only low-level machine
models in previous work on I/O algorithms, while working at the
much more practical level of abstraction offered by functional pro-
gramming languages.

We give the dynamics of a call-by-value variant of Plotkin’s
PCF language [18]. The syntax of expressions is summarized by
the following grammar:

e ::= x | z | s(e) | ifz(e; e0;x.e1) |
fun(x, y.e) | app(e1; e2)

The conditional tests whether a number is zero or not, and passes
the predecessor to the non-zero case. Functions are equipped with
a name for themselves to allow for recursion. The typing rules are
standard, and are omitted here for the sake of concision. (See, for
example, Chapter 10 of [13].)

For illustrative purposes natural numbers are treated as heap-
allocated data structures of unbounded size (as will become evident
shortly). It is straightforward to extend the language to account
for a richer variety of data structures, including sum, product,
finite sequence, and recursive types, and to account for typical
hardware-oriented concepts such as machine words and floating
point numbers.

Storage Model
Following Morrisett, et al. [16], the dynamics distinguishes large
from small values, with large values being allocated in memory
and represented by a location, and small values being those that
are manipulated directly. In the present case the only small values
are locations, but it is also possible to consider, for example, fixed-
sized numbers as forms of small value. Correspondingly, all other
forms of value (numbers and functions) are large. We also allocate
stack frames, which reify the control state of evaluation, in memory.
A memory object is either a large value of a stack frame.

The two-level memory model is parameterized by two con-
stants, the block size B, and the cache size M = c×B determined
by some constant c representing the number of blocks in the cache.

A memory µ is a finite mapping assigning a memory object to
each of a finite set dom(µ) of abstract locations. The memory may
grow without bound. (We do not consider here the separate problem
of garbage collection for main memory, for which see Morrisett, et
al. [16].) As a technical convenience, we assume that locations are
divided into two classes, value locations, l, and stack locations, s,
and require that a memory map value locations to large values and
stack locations to stack frames. When the distinction is immaterial,
we speak simply of locations and objects in memory.

A memory µ comes equipped with an equivalence relation l ≡µ
l′ over dom(µ) specifying that l and l′ are neighbors in µ. Addi-
tionally, we require that each equivalence class in the domain of a
memory is of size B. A memory whose domain consists of a sin-
gle equivalence class of sizeB is called a block. The neighborhood
nbhd(µ, l) of a location l ∈ dom(µ) is the restriction of µ to the
neighbors of l in µ, a single block. The expansion µ⊕β of a mem-
ory µ by a block β such that dom(β)∩ dom(µ) = ∅ is the memory
µ′ that agrees with µ and β on their respective domains and for
which l ≡µ′ l′ iff l ≡µ l′ or l ≡β l′.

There are two forms of cache mediating access to memory. A
read cache ρ for a memory µ is the restriction of µ to a finite set of
locations of size at most M . The contraction ρ	 β of a read cache
ρ by a block β ⊆ ρ is the read cache ρ′ such that ρ = ρ′ ⊕ β.
A nursery ν is a finite mapping that associates an object to each
a finite set dom(ν) of locations. A nursery comes equipped with a
linear ordering l ≺ν l′ of dom(ν), called the allocation ordering.
If l ≺ν l′ we say that l is older than l′ and that l′ is newer than
l in ν. The extension ν[l 7→ o] of a nursery ν binding a location
l /∈ dom(µ) to an object o is the nursery ν′ such that (1) ν′(l) = o
and ν′(l′) = ν(l′) for each l′ ∈ dom(ν), and (2) l′ ≺ν′ l for every
l′ ∈ dom(ν). The contraction ν 	 β of a nursery ν by a block
β ⊆ ν is the restriction of ν to dom(ν) \ dom(β).

The live locations live(R, ν) in a nursery ν relative to a subset
R ⊆ dom(ν) consists of those locations in dom(ν) that are (tran-
sitively) reachable from locations in R. The scan scan(R, ν) of a
nursery ν with respect to a subset R ⊆ dom(ν) is the block β of
consisting of the oldest B live locations in live(R, ν). (See Mor-
risett, et al. [16] for formal definitions of these standard concepts.)
It will be an invariant of the dynamics that the nursery contains at
most M live objects relative to the roots of the computation.

A store σ is a triple (µ, ρ, ν) consisting of a memory µ, a read
cache ρ for µ, and a nursery ν such that dom(ν)∩dom(µ) = ∅. The
domain of a store σ is defined by dom(σ) = dom(µ) ∪ dom(ν).
An initial store is a store in which the main memory contains only
large values and in which the read cache and allocation area are
empty.

Evaluation Dynamics
The overall goal of the evaluation dynamics is to define the evalu-
ation of a closed expression by an inductive definition of a relation
between an expression and its value, which is always small, and its
cost, a non-negative integer. The cost is computed by tracking the

σ@ z ↑nR σ′@ l′

σ@ z ⇓nR σ′@ l′ (3a){
σ@ s(−) ↑nR∪locs(e′) σ

′
@ s′ σ′@ e′ ⇓n

′
R∪{s′} σ

′′
@ l′′

σ′′@ s(l′′) ↑n
′′
R σ′′′@ l′′′

}
σ@ s(e′) ⇓n+n

′+n′′

R σ′′′@ l′′′

(3b)
σ@ ifz(−; e2;x.e3) ↑n1

R∪locs(e1)
σ1 @ s1

σ1 @ e1 ⇓n
′
1
R∪{s1} σ

′
1 @ l′1

σ′1 @ l′1 ↓n
′′
1 σ2 @ z σ2 @ e2 ⇓n2

R σ′@ l′

σ@ ifz(e1; e2;x.e3) ⇓n1+n

′
1+n

′′
1 +n2

R σ′@ l′ (3c)
σ@ ifz(−; e2;x.e3) ↑n1

R∪locs(e1)
σ1 @ s1

σ1 @ e1 ⇓n
′
1
R∪{s1} σ

′
1 @ l′1

σ′1 @ l′1 ↓n
′′
1 σ3 @ s(l′′1) σ3 @ [l′′1/x]e3 ⇓n3

R σ′@ l′

σ@ ifz(e1; e2;x.e3) ⇓n1+n

′
1+n

′′
1 +n3

R σ′@ l′ (3d)

σ@ fun(x, y.e) ↑nR σ′@ l

σ@ fun(x, y.e) ⇓nR σ′@ l (3e)
σ@ app(−; e2) ↑n1

R∪locs(e1)
σ1 @ s1 σ1 @ e1 ⇓n

′
1
R∪{s1} σ

′
1 @ l′1

σ′1 @ l′1 ↓n
′′
1 σ′′1 @ fun(x, y.e) σ′′1 @ app(l′1;−) ↑n

′′′
1
R σ2 @ s2

σ2 @ e2 ⇓n2
R∪{s2} σ

′
2 @ l′2 σ′2 @ [l′1, l

′
2/x, y]e ⇓n2

R σ′@ l′

σ@ app(e1; e2) ⇓n1+n

′
1+n

′′
1 +n′′′

1 +n2+n
′
2

R σ′@ l′

(3f)

Figure 1. Cost Dynamics

l ∈ dom(ρ)

(µ, ρ, ν) @ l ↓0 (µ, ρ, ν) @ ρ(l) (4a)

l ∈ dom(ν)

(µ, ρ, ν) @ l ↓0 (µ, ρ, ν) @ ν(l) (4b)

l /∈ dom(ρ) ∪ dom(ν) | dom(ρ)| ≤M −B
(µ, ρ, ν) @ l ↓1 (µ, ρ⊕ nbhd(µ, l), ν) @µ(l) (4c)

l /∈ dom(ρ) ∪ dom(ν) | dom(ρ)| = M β ⊆ ρ
(µ, ρ, ν) @ l ↓1 (µ, ρ	 β ⊕ nbhd(µ, l), ν) @µ(l) (4d)

| live(R ∪ locs(o), ν)| < M l /∈ dom(ν)

(µ, ρ, ν) @ o ↑0R (µ, ρ, ν[l 7→ o]) @ l (5a)

| live(R ∪ locs(o), ν)| = M β = scan(R ∪ locs(o), ν) l /∈ dom(ν)

(µ, ρ, ν) @ o ↑1R (µ⊕ β, ρ, (ν 	 β)[l 7→ o]) @ l
(5b)

Figure 2. Reading and Allocation

movement of objects among the components of the store, charg-
ing one unit of cost whenever a block of objects must be moved
to or copied from main memory, and charging zero cost otherwise.
(So, for example, a computation that runs entirely in cache will be
assigned zero cost, consistently with the I/O model.) To account
for the memory traffic involving values, the dynamics makes ex-
plicit the allocation of objects in the nursery, their eviction to main
memory when the capacity of the nursery is exceeded, and their
movement into the read cache as they are required by the computa-
tion. To account for the memory traffic attributable to the implicit
control stack, the dynamics also allocates (but does not otherwise
use) stack frames, and ensures that any data that would appear in
the stack is kept live by the dynamics.

These considerations lead to the evaluation judgment

σ@ e ⇓nR σ′@ l

stating that the expression e, when evaluated with respect to a store
σ such that dom(σ) ⊇ locs(e) and to roots R ⊆ dom(σ), results
in a modified store σ′, a location l representing the (large) value of
the expression, and a cost n representing the cache complexity of
the execution. The modifications to the store consist of allocations
in the nursery, migrations of objects from the nursery to the main
memory, and copying of objects from the main memory to the
read cache. All memory traffic occurs in blocks of B objects,
corresponding to loading a cache line or reading a block from disk.
The roots R represent locations that are to be kept live by virtue of
their being present in the implicit control stack or expression under
evaluation.

The evaluation judgment is defined by the rules in Figure 1,
making use of two auxiliary judgments for reading and allocating
objects defined in Figure 2. It may be helpful to read through the
rules once while ignoring all but the evaluation judgments to see
that the rules define a conventional eager dynamics for a functional
language. On such a reading the root set plays no role, and can be
ignored. Moreover, the cost assignment has no significance under
such a simplification.

Next, let us consider the roles of the read judgments σ@ l ↓n
o@σ′ and the allocate judgments σ@ v ↑nR σ′@ l, where v is a
value, in the dynamics. The quoted read judgment states that the
result of reading location l in store σ results in the object o and
the modified store σ′, and has cost n = 0 or n = 1. The cost is
non-zero only if the read causes a block to be loaded into the read
cache. The modified store represents the possible effect of loading
a block into the read cache. The quoted write judgment states that
allocating the large value v in store σ results in a modified store
σ′ and location l ∈ dom(σ′), and has cost n = 0 or n = 1. The
cost is non-zero only if the allocation causes the eviction of a block
from the nursery in order to maintain the live-size invariant. The
read and allocate operations in the dynamics record the memory
traffic engendered by the creation and examination of values during
computation.

It remains to consider the role of the allocation judgments of the
form σ@ s ↑nR σ′@ f , which represent the allocation of a stack
frame in the store at stack location s. The purpose of allocating
these frames is purely to ensure that the cost assigned to a com-
putation is accurate with respect to the underlying implementation.
Although an evaluation semantics has no explicit control stack, it
is nevertheless the case that an implementation must allocate space
for the representation of the control state, and this space alloca-
tion does influence the cache behavior of the computation. It may
not, therefore, be ignored. Our method for accounting for the mem-
ory effects of the control stack is to allocate explicitly frames that
would appear in the control stack to ensure that space usage is prop-
erly accounted for, and that required liveness information (to be

detailed shortly) is properly maintained. The frames are denoted as
app(−; e2) and app(l′1;−) in the cost dynamics.

With this in mind, let us examine in detail Rule 3f in Figure 1.
We are to evaluate and determine the cost of app(e1; e2) in store σ
with given roots R. First, we allocate a stack frame s1 representing
the pending evaluation of e2 during the evaluation of e1. This
frame is now considered live, even though it does not appear in
any expression under consideration. Accordingly, we evaluate e1
relative to the store containing this frame, treating the just-allocated
stack pointer to be live (as indicated by ⇓R∪{s1}). This results in a
location l′1, which we then read from the store to obtain a function
abstraction (as would be guaranteed by the static type discipline
omitted here). We then create another frame s2 corresponding
to the suspended application of the function at location l′1, and
evaluate e2 with this stack pointer considered live (as indicated by
⇓R∪{s2}) to obtain location l′2. Finally, we evaluate the function
body, replacing the “self” variable by l′1 and the argument by l′2.
The overall cost of the computation is the sum of the costs of each
of these steps, which are given either inductively or by the uses
of the read and allocate judgments. Observe that this rule properly
accounts for tail recursion in that no extra space is held during tail
recursive calls (as indicated by ⇓R).

It remains to explain the read and allocate judgments defined in
Figure 2. The read judgment assigns cost zero to any read from a
location in either the nursery or the read cache (Rules 4b and 4a).
Such reads have no effects, and hence induce no cache traffic. A
read of a location that is only in main memory induces a load of
the neighborhood of that location (a block of memory) into the read
cache. If there is sufficient room for it in the read cache, the block is
added to the cache and the contents is returned, at a cost of one unit
(Rule 4c). If there is insufficient room in the read cache, a block is
selected non-deterministically to be replaced by the required block,
and once again a unit cost is charged to the read (Rule 4d). At the
end of the section we discuss the use of non-deterministic eviction.

The allocate judgement defines the procedure for creating new
objects in the store. Of course, new objects are considered newer
in the allocation ordering than the objects already present in the
nursery. If the new object fits within the nursery, it is allocated
there at zero cost (Rule 5a). If the new object will not fit within
the nursery, then the block consisting of the oldestB live objects in
the nursery is evicted to main memory, making room for the newly
allocated object; such an allocation is charged unit cost (Rule 5b).
It is important to our method that the oldest objects be evicted
from the cache as a block forming the neighborhood of each of its
locations. Whether an object fits within the nursery is determined
as follows. The nursery is full if the number of live objects in
it is exactly M . (It is for the sake of assessing liveness that the
allocation judgment is parameterized by a root set.) Eviction of
a block reduces this to at most M − B objects, so that the next
B−1 allocations will not cause an eviction. Thus we are, in effect,
charging at most 1/B units of cost to each allocation (less if objects
die before needing to be evicted).

It is essential to our results that the liveness of objects in the
nursery may be assessed without accessing main memory. Given
roots R we need only trace objects in the nursery itself, and need
never consider locations lying outside of it. This is ensured by two
properties of the dynamics. First, since the model is purely func-
tional, the dependency graph of objects in the nursery is acyclic;
an object may only refer to objects allocated earlier in the compu-
tation as defined by the allocation ordering. Second, implicit stack
frames are explicitly allocated in the nursery to ensure that liveness
may be assessed solely by examining the nursery itself, starting
from the root set. Put another way, an object in the nursery can-
not be live solely because of a pointer from main memory back to

the nursery. This property is a consequence of immutability and the
explicit allocation of stack frames in the semantics.

In Section 6 we will make use of a deep copy operation on
values of certain types. In the illustrative language considered here
this operation is definable on natural numbers as follows:

fun(copy, x.ifz(x; z;x′.s(app(copy;x′)))).

Calling this function on a number n has the effect of creating a
“fresh copy” of n in the heap. No such operation is definable, or
required, for function types. Deep copying is easily extended to
product, sum, and inductive types, but would need to be provided as
a primitive for base types such as fixed precision integers or floating
point numbers.

Discussion
We briefly discuss some of the motivation for the decisions we
made in formulating the dynamic semantics. The overall goal is to
allow a simple analysis for the algorithm developer while capturing
all the costs needed to prove asymptotic implementation bounds.

The separate allocation cache is important both for convenience
of analysis and properly accounting for costs. It ensures that all
short lived allocations never need to be allocated to memory. For
a subcomputation in which the maximum footprint of live data
allocated fits in the allocation cache, the user need not worry about
any costs for any temporary memory. In a block matrix multiply
on n × n matrices, for example, once kn2 ≤ M for some small
constant k, the only cost that needs be considered is the cost of
reading the input and evicting the output. This is the case even
though the multiply will allocate a total of Θ(n3) space. It is
also important that the partitioning of locations into blocks is not
decided until locations are evicted from the allocation cache, which
ensures that only live data is ever migrated to memory. If blocking
were to be decided on allocation, for example, then by the time the
objects are evicted most of the objects in a block may no longer be
live. This would break the bounds we give in Section 6.

The cost semantics accounts for the allocation of stack frames
in order to account for the space required to manage the control
state of evaluation. This is particularly important in the case that no
allocation is associated with the creation of a frame, for then there
is no possibility to amortize the space required for the frame against
the allocated object. Note that the semantics only models the space
taken by the frames in the allocation cache and the cost of evicting
them. It does not model any costs associated with reloading them
into the read cache. As described in the next section, in a lower
level model this can be amortized against the cost of evicting the
frames in the first place.

It is important that the stack frames be heap allocated. A crucial
invariant we require is that all live data in the allocation cache can
be determined solely through the caches. If we had a separate stack
cache it could allow for the eviction of a stack frame that references
data in the allocation cache, breaking the required invariant. There
are other techniques to handle this problem but we found that
allocating the stack frames in the heap is the easiest.

Our model is non-deterministic in the choice of what block is
evicted from the read cache in the case of a read miss. In our
provable implementation bounds we show that if there is a (non-
deterministic) execution that gives certain cache complexity then
we can guarantee those bounds on the ideal cache model (within
constant factors). When analyzing an algorithm this allows one to
consider any policy for eviction. This is possible because the ideal
cache makes the optimal decisions and will therefore be at least as
good as the policy the user assumes. The justification for the ideal
cache model is given in Section 2.

4. Abstract Machine
The abstract cost of a computation assigned by the evaluation dy-
namics given in the preceding section is validated in two stages.
First, in this section we define an abstract machine with an ex-
plicit control stack, and show that the evaluation dynamics accu-
rately predicts the behavior of the abstract machine with respect
to both the outcome and the cost of the computation. Second, in
Section 5 we show how to implement the basic operations of the
abstract machine with only a small overhead. Taken together these
two arguments demonstrate that the evaluation semantics provides
an accurate model of the cache complexity of a program when im-
plemented as described in these two steps.

The abstract machine takes the form of a labeled transition
system between states of two different forms:

1. Evaluation state: σ@ k . e, where k ∈ dom(σ) is a stack
pointer, and locs(e) ⊆ dom(σ), stating that e is to be evaluated
on stack k relative to store σ.

2. Return state: σ@ k / l, where k, l ∈ dom(σ), stating that small
value l is to be returned to stack k relative to store σ.

The control stack is represented by a stack location, k, that refers to
a linked list of frames, either the empty stack, written •, or a frame
together with another stack location, written f ;k. The label on a
transition is either 0, 1, or 2, and specifies the amount of work to
be charged for that transition.

The rules given in Figure 3 define the abstract machine. Their
overall form is standard (see, for example, Chapter 27 of [13]), with
the main differences being that allocation and reading of values is
made explicit, just as in the evaluation dynamics, and that the stack
is explicitly represented as a linked data structure in the store. The
multistep transition judgment s n7−→

∗
s′ means that there is a finite,

possibly empty, sequence of transitions from s to s′ whose labels
sum to n.

THEOREM 4.1 (Correctness of Evaluation Dynamics). Let σ0 be
an initial store, let e0 be a closed expression such that locs(e0) ⊆
dom(σ0). Let the abstract machine be equipped with one additional
block in the read cache, and let k0 be a reserved stack location not
used in the evaluation dynamics. If

σ0 @ e0 ⇓n∅ σ@ l,

then there is an evaluation

σ0[k0 7→ •] @ k0 . e0
m7−→
∗
σ′[k0 7→ •] @ k0 / l

′

such that

1. the results are isomorphic, σ@ l ∼= σ′@ l′, and
2. the cost m is at most 3n.

The relation σ@ l ∼= σ′@ l′ states that the reachable graph from l
in σ is isomorphic to the reachable graph from l′ in σ′.

Theorem 4.1 states that the outcome of a computation on the
abstract machine is the same, up to choice of locations, as the out-
come of the same computation according to the evaluation dynam-
ics. Moreover, the total cost of the machine execution (measured
in accordance with the I/O model described earlier) is at most a
small constant factor larger than the cost assigned by the evalua-
tion dynamics. The content of the theorem amounts to a proof that
the space required by the control stack in a computation may be
managed so as not to interfere with space usage of the computation
itself.

The correctness proof may be decomposed into three major
components. The first obligation is to relate the outcome of the
evaluation dynamics to that of the abstract machine, disregarding,
for the moment, the cost. The required correspondence is proved

σ@ k . l
07−→ σ@ k / l (6a)

σ@ z ↑n{k} σ′@ l

σ@ k . z
n7−→ σ′@ k / l (6b)

σ@ s(−);k ↑nlocs(e′) σ
′
@ k′

σ@ k . s(e′)
n7−→ σ′@ k′ . e′ (6c)

σ@ k ↓n σ′@ s(−);k′ σ′@ s(l) ↑n
′
{k′} σ

′′
@ l′

σ@ k / l
n+n′
7−−−→ σ′′@ k′ / l′ (6d)

σ@ ifz(−; e2;x.e3);k ↑nlocs(e1) σ
′
@ k′

σ@ k . ifz(e1; e2;x.e3)
n7−→ σ′@ k′ . e1 (6e)

σ@ k ↓n1 σ′@ ifz(−; e2;x.e3);k′ σ′@ l ↓n2 σ′′@ z

σ@ k / l
n1+n27−−−−→ σ′′@ k′ . e2 (6f)

σ@ k ↓n1 σ′@ ifz(−; e2;x.e3);k′ σ′@ l ↓n2 σ′′@ s(l′)

σ@ k / l
n1+n27−−−−→ σ′′@ k′ . [l′/x]e3

(6g)
σ@ fun(x, y.e) ↑n{k} σ′@ l′

σ@ k . fun(x, y.e)
n7−→ σ′@ k / l′ (6h)

σ@ app(−; e2);k ↑nlocs(e1) σ1 @ k1

σ@ k . app(e1; e2)
n7−→ σ1 @ k1 . e1 (6i){

σ@ k ↓n1 σ1 @ app(−; e2);k1

σ1 @ app(l1;−);k1 ↑n2
locs(e2)

σ2 @ k2

}
σ@ k / l1

n1+n27−−−−→ σ2 @ k2 . e2 (6j)

σ@ k ↓n1 σ1 @ app(l1;−);k2 σ1 @ l1 ↓n2 σ2 @ fun(x, y.e)

σ@ k / l2
n1+n27−−−−→ σ2 @ k2 . [l1, l2/x, y]e

(6k)

Figure 3. Abstract Machine

by induction on the derivation of evaluation judgment. Specifically,
we prove that if σ@ e ⇓nR σ′@ l, then for any stack pointer k,

σ@ k . e 7→∗ σ@ k / l.

The proof proceeds along standard lines, as described, for example,
in Chapter 27 of the second author’s textbook [13]. The same
choice of locations may be made in the machine derivation as were
made in the evaluation derivation, because the sequence of value
allocations is precisely the same in both forms of dynamics.

The next step of the proof is to show that the abstract machine
performs the same sequence of value reads in the same order as
specified by the evaluation dynamics. This may be proved along
with the correspondence described in the preceding paragraph.
The argument relies on two important properties of the evaluation
dynamics:

1. Any read of a value location is either a read of a location in
the initial store, or a location that was allocated earlier in the
evaluation.

2. Stack frames are allocated, but never read, in order to ensure
that eviction of blocks from the nursery occurs in exactly the
order imposed by the stack-based abstract machine.

A deterministic nursery eviction policy is required to ensure that the
memory reads correspond exactly between the evaluation dynamics
and the abstract machine. We can assume whatever policy is used
the the dynamic semantics is also used by the abstract machine.

It remains to show that the stack reads employed by the abstract
machine do not impose an asymptotically significant cost beyond
what is predicted by the evaluation dynamics. Without special
provision, access to the control stack would interfere with the
allocation of data in the read cache, invalidating the cost given to
the computation by the evaluation dynamics. To avoid this we make
use of a dedicated read cache block in the abstract machine, which
we will call the stack cache block, and explicitly manage this cache
block as follows. Whenever a stack location is read from main
memory, its neighborhood is loaded into the stack cache block,
evicting the block that currently occupies it. We will argue that
the cost of loading the stack cache can be amortized across the
execution sequence, even if the same block is loaded into the stack
cache more than once, a possibility that will be detailed shortly.
The validity of the argument depends on two special properties of
the run-time stack, namely that each allocated frame is read exactly
once in a complete computation, and that the preceding stack frame
is always older than the current one. Given such an amortization,
it is then clear that the overall cost of execution on the abstract
machine is bounded by a small constant factor of the cost ascribed
to it by the evaluation dynamics, establishing the theorem.

To complete the proof, we describe the amortization of the cost
of stack management in more detail. As an invariant we put a
“dollar” on every memory block that contains a stack frame, except
if it is the youngest such block and resides in the stack cache
block, in which case it has no “money” associated with it. When
the abstract machine evicts a block containing a stack frame from
the allocation cache we spend three dollars—one for the eviction
itself, one to put a dollar on the evicted block, and one to put a
dollar on the block that is in the cache stack block. This third dollar
might be needed to maintain our invariant since that block, if there
is one, will no longer be the youngest memory block containing a
stack frame. Now when the abstract machine loads a block into
the stack cache block from memory we spend its dollar for the
load. All blocks with older frames have a dollar on them already by
the invariant, so the invariant is maintained. In summary we spend
3 block transfers (worst case) per block that is evicted from the
allocation cache.

We finally note that there is no need to explicitly maintain the
stack cache block in the abstract machine semantics since we are
assuming an “ideal cache”. Therefore as long as the cache has an
extra block available, then the cache policy will do at least as well
as the one we described.

5. Provable Implementation
In this section we describe an implementation of the abstract ma-
chine given in Section 4 in the ideal cache model with the same
asymptotic cost. The efficiency proof for the implementation takes
account of two issues that are treated abstractly in the evaluation
semantics and in the abstract machine. The main issue is how to
implement the allocation judgment defined in Figure 2. Rules 5a
and 5b make reference to liveness of the data, and evict a block
consisting of the oldestB live objects in the nursery. To ensure that
the predicted costs are realized in practice we must argue that these
conditions can be met by an implementation. The second issue is
that we must account for the size of the stored objects (values and
frames) that may appear in a computation, and account for the cost
of handling these objects in an implementation.

Define the size of a machine state σ0 @ k0 . e0 be the sum of the
size of e0 and the size of any function in σ0. This may be thought

of as the size of the program, including any λ-abstractions that may
be present in the initial store.

THEOREM 5.1. Fix an initial state σ0 @ k0 . e0 of size s0, and
consider a complete computation

σ0 @ k0 . e0
m7−→ σ@ k0 / l

with s1 objects in the final store, σ. This computation be simulated
in the ideal cache model with cache complexity c×m for some con-
stant c, provided that words are of size at least d log(max(s0, s1))
for some d > 0 and that the cache has at least (4M + B) × s0
words. (The constants c and d are independent of σ0, k0 and e0.)

Theorem 5.1 states that the implementation asymptotically realizes
the work attributed to the computation by the evaluation semantics,
and hence validates the algorithm analysis performed using that
semantics.

The requirement on the word size in Theorem 5.1 ensures that
all objects are addressable by a word-sized pointer, and accounts for
the sizes of the objects themselves in storage. (A closure can be as
large as the initial program.) The requirement on the cache size in
Theorem 5.1 ensures that we may implement the abstract memory
hierarchy with no more than a small constant factor of overhead
in a manner that we now describe. (The B × s0 additional words
account for the stack cache described in Section 4; it remains to
discuss the implementation of allocation.)

The allocation judgment defined in Figure 2 relies on an assess-
ment of the live size of the nursery, and on the eviction of blocks
from the nursery to ensure that the nursery contains no more than
M live objects. As we note earlier, the liveness of data in the nurs-
ery may be assessed without reference to the main memory; the
liveness computation takes place entirely within the cache. Rather
than assess liveness, possibly evicting a block, on each allocation,
we instead amortize these costs across multiple allocations accord-
ing to the following strategy. We reserve 2M × s0 words of cache
memory for the allocation area to accommodate at least 2M ob-
jects. Objects are allocated by maintaining a pointer into the nurs-
ery area, incrementing it on each allocation until 2M objects have
been allocated, at which point the nursery space is exhausted. When
this occurs, we perform a compacting garbage collection that pre-
serves the allocation order of objects, simultaneously evicting as
many blocks as necessary to obtain a live size of M objects in the
nursery. After compaction, allocation continues as before until the
nursery is again exhausted.

As long as there is sufficient space, allocation takes constant
time. When a garbage collection is required, the cost may be at-
tributed to the allocations of the live data in the nursery, so that
in an amortized sense garbage collection is cost-free [3]. It is easy
to see that no object is evicted to main memory using this imple-
mentation that would not have been evicted in the abstract sense.
However, the evictions will, in general, happen later than predicted
by the semantics. As a result, fewer objects may be live at the time
of eviction, and so fewer blocks overall may be moved to main
memory. As a result of this compression effect, two locations that
were neighbors in the evaluation semantics may be in two differ-
ent blocks in the implementation. To account for this, two blocks
must be loaded to ensure that neighboring objects in the semantics
are loaded into the read cache together. Thus we require 2M × s0
words of cache in the ideal cache model to account for the M ob-
jects in the read cache.

With regards to the eviction policy from the read cache we note
that an ideal cache will always choose an optimal policy (furtherst
in the future). It will therefore do at least as well as any policy
assumed by the abstract machine.

This completes the proof of the implementation bound stated in
Theorem 5.1.

6. I/O Efficient Algorithms
We now describe algorithms analyzed in the model and prove
bounds on their cache complexity. In particular we will consider
mergeSort, k-way mergeSort and a recursive block matrix-matrix
multiply. We will show that the k-way mergeSort and the matrix-
matrix multiply analyzed in our model match the best bounds for
the ideal-cache. Furthermore the implementations are completely
natural functional programs using lists and trees instead of arrays.

Preliminaries
Before describing these algorithms we discuss some general issues
and techniques that will be important in the analysis. For simplicity
the semantics described in Section 3 only defines natural numbers.
In the discussion in this section we assume the semantics have been
augmented with some basic types including base types that fit in a
machine word (machine integers, floats, and Boolean), sum types,
product types, and recursive types made from products and sums.
As with the RAM and I/O models, we assume that for an input
of size n that machine words can store O(logn) bits. Hence a
machine integer will be bounded by nk for some constant k.

Since sorting (and matrix multiply) can be defined as higher
order polymorphic functions we need to be careful about the size
of the element type and cache complexity of the element function
when analyzing overall cache complexity. For this purpose we
define the notion of a hereditarily finite (HF) values. At the base
any value of basic types that fit in words are HF. Inductively any
sums or products of HF values are HF. A value of function type
is HF iff for every HF argument of the domain type the function
yields a HF argument of the range type, using only constant space
in the process. In sorting we assume the elements themselves and
the comparison function are hereditarily finite. In matrix multiply
we assume the elements, addition, and multiplication functions are
hereditarily finite.

It is important that the data structures that are traversed by
our algorithms are laid out in an order that makes accessing them
efficient. In our model the only way to control the layout of data
structures is to allocate them in the desired order. We could try to
define the notion of a list being in a good order in terms of how the
list is represented in memory. This is cumbersome and low level.
We could also try to define it with respect to the specific code that
allocated the data. Again this is cumbersome. Instead we define it
directly in terms of the cache complexity of traversing the structure.
By traversing we mean going through the structure in a specific
order and touching (reading) all data in the structure. Since types
such as trees might have many traversal orders, the definition is
with respect to a particular order (e.g. pre-order). For this purpose
we define the notion of “compact”.

DEFINITION 6.1. A data structure of size n is compact with respect
to a given traversal order if traversing it in that order has cache
complexity O(n/B) in our cost semantics with M ≥ kB for some
constant k.

We can now argue that certain code will generate data structures
that are compact with respect to a particular order.

To keep data structures compact not only do the top level links
need to be accessed in approximately the order they were allocated,
but anything that is touched by the algorithm during traversal also
needs to be accessed in a similar order. For example, if we are
sorting a list it is important that in addition to the “cons cells”,
the keys are allocated in the list order (or, as we will argue shortly,
reverse order is fine). To ensure that the keys are allocated in the
appropriate order they need to be copied whenever placing them
in a new list. This copy needs to be a deep copy that copies all
components. If the keys are machine words then in practice these
might be inlined into the cons cells anyway by a compiler—in fact

fun traverseL [] = []
| traverseL h::R = let val _ = touch h

in traverseL R end

fun traverseR [] = []
| traverseR h::R = let val R’ = traverseR R

val _ = touch h
in R’ end

fun map f [] = []
| map f h::R = f(h)::map R

fun map f [] = []
| map f h::R = let val R’ = map R

in f(h)::R’ end

Figure 4. Traversing a list in two orders, and examples of map that
use each of the orders.

fun mergeSort less [] = []
| mergeSort less [a] = [a]
| mergeSort less A =

let
fun merge(A,B) =

case (A,B) of
([],B) => B

| (A,[]) => A
| (Ah::At, Bh::Bt) =>

if (less(Ah,Bh))
then !Ah::merge(At,B)
else !Bh::merge(A,Bt)

val (L,H) = split A
in

merge(mergeSort(L),mergeSort(H))
end

Figure 5. Code for mergeSort.

optimizing compilers such as MLton can even inline product and
sum types. However, to ensure that objects are copied we will use
the copy operation described in Section 3, writing !a to indicate
copying of a.

Although it might seem that there is only one “canonical” way
to traverse a list, there are actually two. In the first all the elements
of the list are visited on the way down the recursion, and in the
second the elements are visited on the way back up. The order in
which the elements are visited is reversed. The two versions are
illustrated by the code in Figure 4. Fortunately if an algorithm is
compact for one traversal it is compact for the other. This is because
to be compact under either traversal requires that adjacent elements
are allocated in the same block (neighborhoods in memory), and
hence will be efficient in both directions. The fact that the orders
are effectively equivalent is important since it means the model is
quite robust relative to programming styles. For example the two
implementations of the map function shown in Figure 4 will both
be efficient if the list is compact with respect to either traversal.
Furthermore the output is compact with respect to either traversal.
This is true even though in the first case all elements are allocated
first and then all cons cells, while in the second case they are
interleaved.

Sorting
We now consider analyzing sorting in our cost model. We first
consider mergeSort. We assume a vanilla purely functional version
of mergeSort on lists as shown in Figure 5. We will not cover
the definition of split since it is similar to merge. Note the only
difference from a standard mergeSort is the use of the copy (!)

before the Ah and Bh. As discussed earlier this is important to
ensure the result of the merge is compact. We note that for a list to
be compact all its elements must be constant size. The interesting
aspect of the code is that the cache complexity of this code in
our model and hence when mapped onto the ideal cache using
the implementation in section 5 matches the bounds for the array
version discussed in Section 2.

To analyze the mergeSort we first analyze the merge.

THEOREM 6.2. For a HF function less, and compact lists A and
B, the evaluation of (merge less A B) starting with any cache
state will have cache complexity O

(
n
B

)
(n = |A| + |B|) and will

return a compact list as a result.

Proof. We consider the cache complexity of going down the recur-
sion and then coming back up. SinceA andB are both compact we
need only put aside a constant number of cache blocks to traverse
each one (by definition). Recall that in the cost model we have a
nursery ν that maintains both live allocated values and place hold-
ers for stack frames in the order they are created. In merge nothing
is allocated from one recursive call to the next (the cons cells are
created on the way back up the recursion) so only the stack frames
are placed in the nursery. After M recursive calls the nursery will
fill and blocks will have to be flushed to the memory µ (rule 5b
in Figure 2). The merge will invoke at most O(n/B) such flushes
since only n frames are created. On the way back up the recursion
we will generate the cons cells for the list and copy each of the
keys (using the !). Note that copying the keys is important so that
the result remains compact. The cons cells and copies of the keys
will be interleaved in the allocation order in the nursery and flushed
to memory once the nursery fills. Once again these will be flushed
in blocks of size B and hence there will be at most O(n/B) such
flushes. Furthermore the resulting list will be compact since adja-
cent elements of the list will be in the same block (neighborhood).

ut

We now consider mergeSort as a whole.

THEOREM 6.3. For a HF function less, and compact list A, the
evaluation of (mergeSort less A) starting with any cache state
will have cache complexityO

(
n
B

log n
M

)
(n = |A|) and will return

a compact list as a result.

Proof. As with the array version, we consider the two cases when
the input fits in cache and when it does not. The mergeSort routine
never requires more than O(n) live allocated data. Therefore when
kn ≤ M for some (small) constant k all allocated data fits in the
nursery. Furthermore since the input list is compact, for k′n ≤ M
the input fits in the read cache (for some constant k′). Therefore
the cache complexity for mergeSort is at most the time to flush
O(n) items out of the allocation cache that it might have contained
at the start, and to load the read cache with the input. This cache
complexity is bounded by O(n/B). When the input does not fit
in cache we have to pay for the merge as analyzed above plus
the recursive calls. This gives the same recurrence as for the array
version (Section 2, equation 1) and hence solves to the claimed
result. ut

We now consider a k-way mergeSort using lists and a tree based
heap for the k-way merging. The code is shown in Figure 6. The
sort partitions the list into k parts, sorts each part recursively, builds
a priority queue (PQ) out of the resulting parts, and pulls keys one
by one out of the PQ adding them to the output list. The only
slightly tricky part is maintaining the priority queue. The idea is
each of the sorted lists is placed at a leaf. When pulling elements
from the root of the PQ, the value is removed from the root and the

datatype ’a pq = Leaf of ’a list
| Node of ’a * ’a pq * ’a pq

fun kWayMergeSort _ _ [] = []
| kWayMergeSort _ _ [a] = [a]
| kWayMergeSort less k L =

let
fun getMin Leaf [] = NONE

| getMin Leaf (a::_) = SOME(a)
| getMin Node (a,_,_) = SOME(a)

fun join(L,R) =
case (getMin(L),getMin(R)) of

(NONE,_) => R
| (_,NONE) => L
| (la,ra) =>

if less(la,ra)
then Node(la,delMin(L),R)
else Node(lb,L,delMin(R))

and delMin (Leaf (_::R)) = Leaf(R)
| delMin (Node (_,L,R)) = join(L,R)

fun merge H =
case getMin(H) of

NONE => []
| SOME(a) => let val r = merge(delMin(H))

in !a::r
end

fun buildPQ [a] = Leaf(a)
buildPQ A =

let val (L,H) = partition 2 A
in join(buildPQ(L),buildPQ(R))
end

val LL = partition k L
val SL = map (kWayMergeSort less k) LL
val HL = buildPQ SL

in
merge HL

end

Figure 6. K-way Merge Sort.

two children are joined, which recursively pulls the value from the
child with the smaller root. We don’t show the code for partition,
which simply partitions a list into k equal length parts (within 1).
Although the code is somewhat involved the analysis of the cache
complexity is relatively simple since most of the data allocated for
the tree-based priority queue becomes unreachable before it needs
to be flushed to memory.

THEOREM 6.4. For a HF function less, and compact list A, the
evaluation of (kWayMergeSort less k A) starting with any
cache state and with an appropriate k (≈ M/B) will have cache
complexity O

(
n
B

logM/B
n
B

)
(n = |A|) and will return a com-

pact list as a result.

Proof. As usual once the input size is less than n/c for some
constant, the whole problem fits in cache and we just pay to load
the input and write the output, which will have O(n/B) cache
complexity if the input and output are compact. When the problem
size does not fit in cache we note that with k = 1

c
M/B for some

constant c we can fit the head of each recursively solved list in the
read cache, assuming each is compact. Therefore traversing all lists
will use O(n/B) cache complexity. Furthermore the size of the
priority queue is proportional to k so the live part easily fits within
the allocation cache. We have to be careful, however, since the

datatype ’a M = Leaf of ’a
| Node of ’a M * ’a M * ’a M * ’a M

fun mmult + * (Leaf a) (Leaf b) = Leaf(*(a,b))
| mmult + * (Node(a1,a2,a3,a4)) (Node(b1,b2,b3,b4)) =

let
fun madd (Leaf a) (Leaf b) = Leaf(+(a,b))

| madd (Node(a1,a2,a3,a4)) (Node(b1,b2,b3,b4))
Node(madd(a1,b1),madd(a2,b2),

madd(a3,b3),madd(a4,b4))

val mm = mmult + *
in

Node(madd(mm(a1,b1),mm(a2,b3)),
madd(mm(a1,b2),mm(a2,b4)),
madd(mm(a3,b1),mm(a4,b3)),
madd(mm(a3,b2),mm(a4,b4)))

end

Figure 7. Matrix Multiply.

allocation cache is shared with the stack frames, which could eject
some of the data allocated by the PQ. But since at any given time
much less than half of the allocation cache (only k = O(M/B) of
it) is used by the PQ, we can charge all such ejections against the
ejected cache frames (we charge for every cache frame). We can
also charge reading them back into read cache against the cache
frames.

Going down the recursion of the merge therefore requires
O(n/B) cache complexity to account for loading the k recursively
solved lists, and ejecting the n cache frames. Coming back up the
recursion again requires O(n/B) cache complexity for ejecting
the list and the copied keys. The resulting list is compact for list
traversal since it is allocated in list traversal order (tail of the list
first). This gives us the recurrence in equation 2 from Section 2
which solves to the desired result. ut

Matrix Multiply
Our final example is matrix multiply. The code is shown in figure 7
(we have left out checks for matching sizes). This is a block recur-
sive matrix multiply with the matrix laid out in a tree. It is therefore
an interesting example of a tree data structure. We define compact-
ness with respect to a preorder traversal of this tree. We therefore
say the matrix is compact if traversing in this order can be done
with cache complexity O(n2/B) for an n × n matrix (n2 leaves).
We note that if we generate a matrix in a preorder traversal allocat-
ing the leaves along the way, the resulting array will be compact.

THEOREM 6.5. For HF functions * and +, and compact n × n
matrices A and B, the evaluation of (mmult + * A B) starting
with any cache state will have cache complexity O

(
n3

B
√
M

)
and

will return a compact matrix as a result.

Proof. Matrix addition has cache complexity O(n2/B) and gen-
erates a compact result since we traverse the two input matrices
in preorder traversal and we generate the output in the same order.
Since the live data is never larger thanO(n2) the problem will fit in
cache for n2 ≤ M/c for some constant c. Once it fits in cache the
cost isO(n2/B) needed to the load the input matrices and write out
the result. When it does not fit in cache we have to do 8 recursive
calls and four calls to matrix addition. This gives the recurrence.

Q(n) =

{
8Q(n

2
) +O(n

2

B
) n2 > M/c

O(n
2

B
) otherwise

This solves to O
(

n3

B
√
M

)
. The output is compact since each of

the four calls to madd in mmult allocate new results in preorder
with respect to the submatrices they generate, and the four calls are
made in preorder. Therefore the overall matrix returned is allocated
in preorder. ut

7. Conclusion
The idea of distinguishing the abstract cost semantics of language
from its concrete implementation originates with Blelloch and
Greiner’s work on parallel programming [5, 11]. The chief ben-
efit of their approach is that it provides a useful abstraction to the
programmer that accounts for the complexity of a program, while
simultaneously providing a guide to the implementor for how to
achieve the complexity bound (with stated overhead). This work
extends that methodology to account for the I/O complexity of a
program in terms of two parameters, the cache block size (mea-
sured in objects) and the number of cache blocks. The programmer
reasons at the level of the evaluation semantics, the implementor
makes use of the provable implementation strategy to realize the
predicted complexity. In the present case the essence of the proof is
to argue that conventional implementation techniques, which rely
on a run-time control stack and copying garbage collection, can
be deployed to meet the abstract bounds given by the semantics of
a functional language. The separation between the semantics and
its implementations allows the programmer to work at the level of
the code itself, and avoids having to reason in terms of the details
of the compiler and run-time system (or, even worse, to be forced
to drop down to a C-like level in which the programmer explicit
manages storage allocation for each application).

Using the approach we are able to express algorithms in a
standard high-level functional style using recursive data types (lists
and trees), analyze them using a model that captures the idea of
a fixed size read and allocation stack, but no details of the run
time system, and yet match the asymptotic bounds for the ideal
cache achieved by designing them using arrays and explicit and
careful memory management in the imperative setting. For sorting
the bounds are optimal.

One direction for further research is to integrate (deterministic)
parallelism with the present work. Based on previous work we ex-
pect that the evaluation semantics given here will provide a good
foundation for specifying parallel as well as sequential complex-
ity. One complication is that the explicit consideration of storage
considerations in the cost model given here would have to take ac-
count of the interaction among parallel threads. The amortization
arguments would also have to be reconsidered to account for paral-
lelism.

Another direction is suggested by the special treatment of the
run-time stack described in Section 4. The stack is, after all, a
particular data structure that is used implicitly by each program.
This use could be made explicit, in which case it would be useful
to understand more generally what properties of it allow for its
efficient (in terms of cache complexity) implementation. These
might well generalize to other data structures, and we it may be
useful to develop a type system to capture these special properties.

Finally, although we are able to generate an optimal cache-
aware sorting algorithm it is unclear whether it is possible to gen-
erate an optimal cache-oblivious sorting algorithm in our model.

Acknowledgments. This work is partially supported by the Na-
tional Science Foundation under grant number CCF-1018188, and
by Intel Labs Academic Research Office for the Parallel Algorithms
for Non-Numeric Computing Program.

References
[1] J. Abello, A. L. Buchsbaum, and J. Westbrook. A functional approach

to external graph algorithms. Algorithmica, 32(3):437–458, 2002.

[2] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting
and related problems. Commun. ACM, 31(9):1116–1127, 1988.

[3] A. W. Appel. Garbage collection can be faster than stack allocation.
Inf. Process. Lett., 25(4):275–279, 1987.

[4] L. Arge, M. A. Bender, E. D. Demaine, C. E. Leiserson, and
K. Mehlhorn, editors. Cache-Oblivious and Cache-Aware Algorithms,
18.07. - 23.07.2004, volume 04301 of Dagstuhl Seminar Proceedings,
2005. IBFI, Schloss Dagstuhl, Germany.

[5] G. E. Blelloch and J. Greiner. Parallelism in sequential functional
languages. In FPCA, pages 226–237, 1995.

[6] Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamassia, D. E. Ven-
groff, and J. S. Vitter. External-memory graph algorithms. In K. L.
Clarkson, editor, SODA, pages 139–149. ACM/SIAM, 1995. ISBN
0-89871-349-8.

[7] T. M. Chilimbi and J. R. Larus. Using generational garbage collection
to implement cache-conscious data placement. In S. L. P. Jones and
R. E. Jones, editors, ISMM, pages 37–48. ACM, 1998. ISBN 1-58113-
114-3.

[8] R. Courts. Improving locality of reference in a garbage-collecting
memory management system. Commun. ACM, 31(9):1128–1138,
1988.

[9] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-
oblivious algorithms. In FOCS, pages 285–298. IEEE Computer
Society, 1999.

[10] M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and J. S. Vitter. External-
memory computational geometry (preliminary version). In FOCS,
pages 714–723. IEEE Computer Society, 1993.

[11] J. Greiner and G. E. Blelloch. A provably time-efficient parallel
implementation of full speculation. ACM Trans. Program. Lang. Syst.,
21(2):240–285, 1999.

[12] D. Grunwald, B. G. Zorn, and R. Henderson. Improving the cache
locality of memory allocation. In R. Cartwright, editor, PLDI, pages
177–186. ACM, 1993. ISBN 0-89791-598-4.

[13] R. Harper. Practical Foundations for Programming Languages. Cam-
bridge University Press, 2013. (Draft available at http://www.cs.
cmu.edu/~rwh/plbook/book.pdf.).

[14] R. Jones and R. Lins. Garbage Collection: Algorithms for Automatic
Dynamic Memory Management. Wiley, 1996.

[15] U. Meyer, P. Sanders, and J. F. Sibeyn, editors. Algorithms for Memory
Hierarchies, Advanced Lectures [Dagstuhl Research Seminar, March
10-14, 2002], volume 2625 of Lecture Notes in Computer Science,
2003. Springer. ISBN 3-540-00883-7.

[16] J. G. Morrisett, M. Felleisen, and R. Harper. Abstract models of
memory management. In FPCA, pages 66–77, 1995.

[17] K. Munagala and A. G. Ranade. I/o-complexity of graph algo-
rithms. In R. E. Tarjan and T. Warnow, editors, SODA, pages 687–694.
ACM/SIAM, 1999. ISBN 0-89871-434-6.

[18] G. D. Plotkin. LCF considered as a programming language. Theor.
Comput. Sci., 5(3):223–255, 1977.

[19] M. Rahn, P. Sanders, and J. Singler. Scalable distributed-memory
external sorting. In F. Li, M. M. Moro, S. Ghandeharizadeh, J. R.
Haritsa, G. Weikum, M. J. Carey, F. Casati, E. Y. Chang, I. Manolescu,
S. Mehrotra, U. Dayal, and V. J. Tsotras, editors, ICDE, pages 685–
688. IEEE, 2010. ISBN 978-1-4244-5444-0.

[20] D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and
paging rules. Commun. ACM, 28(2):202–208, 1985.

[21] D. Spoonhower, G. E. Blelloch, R. Harper, and P. B. Gibbons. Space
profiling for parallel functional programs. In J. Hook and P. Thiemann,
editors, ICFP, pages 253–264. ACM, 2008. ISBN 978-1-59593-919-
7.

[22] J. S. Vitter. Algorithms and data structures for external memory.
Foundations and Trends in Theoretical Computer Science, 2(4):305–
474, 2006.

[23] P. R. Wilson, M. S. Lam, and T. G. Moher. Caching considerations
for generational garbage collection. In LISP and Functional Program-
ming, pages 32–42, 1992.

