Linear Logic and Linear Algebra

Steve Zdancewic

November 9, 2012

(work in progress!)

(Intuitionistic) Linear Logic

```
A, B ::= 0 additive sum unit 1 multiplicative product unit
        T additive product unit
         ⊥ multiplicative sum unit
          A \oplus B additive sum
         A & B additive product
         A \otimes B multiplicative product
         A → B linear implication
              exponential
                  contexts
           \Gamma \vdash A judgments
```

Denotational (Categorical) Models

Basic idea:

- ▶ Interpret each type A as some structure [A]
- ▶ Interpret each judgement $\Gamma \vdash A$ as a "morphism"

$$\llbracket \Gamma \vdash A \rrbracket : \llbracket \Gamma \rrbracket \to \llbracket A \rrbracket$$

Interpret inference rules compositionally

Interpretations should "respect" proof equivalences, e.g.:

$$\left[\left[\frac{\overline{A \vdash A} \quad \overline{B \vdash B}}{A \otimes B \vdash A \otimes B} \right] = \left[\left[\overline{A \otimes B \vdash A \otimes B} \right] \right]$$

Many Models of Linear Logic

(Fairly?) Simple:

► Sets and Relations

(Fairly?) Complex:

► Coherence Spaces, Proof Nets, Game Semantics

Linear Logic and Linear Algebra

FINVECT:

- ► Interpret a type as a finite dimensional vector space (over a finite field)
- ► Interpret a judgment as a *linear transformation* (*i.e.*, a matrix)

Linear Logic and Linear Algebra

FINVECT:

- Interpret a type as a finite dimensional vector space (over a finite field)
- Interpret a judgment as a linear transformation (i.e., a matrix)

Why?

- ▶ Next simplest reasonable model (after SET).
- ▶ I haven't seen this worked out in detail anywhere before.
- ► There are lots of interesting things that live in the category FINVECT:
 - All of linear algebra: Matrix algebra, derivatives, eigenvectors, Fourier transforms, cryptography(?), etc.

Linear Algebra

Fields

A *field* $\mathbb{F} = (F, +, \cdot, 0, 1)$ is a structure such that:

- F is a set containing distinct elements 0 and 1.
- \blacktriangleright Addition: (F, +, 0) abelian group, identity 0
- ▶ Multiplication: $(F \{0\}, \cdot, 1)$: abelian group, identity 1
- ► The distributive law holds:

$$\forall a, b, c \in F. \ a \cdot (b+c) = a \cdot b + a \cdot c$$

► There are no zero divisors:

$$\forall a, b \in F. \ a \cdot b = 0 \implies a = 0 \lor b = 0$$

Vector Spaces

A vector space over \mathbb{F} is just a set V with addition and scalar multiplication:

$$\forall v, w \in V. (v + w) \in V$$

$$\forall \alpha \in \mathbb{F}. \ \forall v \in V. \ \alpha v \in V$$

Satisfying some laws:

- Commutativity, Associativity, Unit for +
- $(\alpha + \beta) \mathbf{v} = \alpha \mathbf{v} + \beta \mathbf{v}$

Coordinate Systems

Pick a *coordinate system* (i.e. a set X) and define [X], the "vector space with coordinates in X":

$$[X] \triangleq \{ v \mid v : X \to \mathbb{F} \}$$

- \blacktriangleright A vector is just a function that maps each coordinate to an element of $\mathbb F$
 - ▶ Example: In the plane, we might pick $X = \{ \text{"x", "y"} \}$
- Vector addition and scalar multiplication are defined pointwise
- ▶ The *dimension* of [X] is just the cardinality of X.

Canonical Basis

Canonical basis for [X]:

$$\{\delta_x \mid x \in X\}$$

▶ Here δ is Dirac's "delta" operator:

$$\delta_x = \lambda y \in X. \begin{cases} 1 & \text{if } y = x \\ 0 & \text{if } y \neq x \end{cases}$$

► Every vector in [X] can be written as a weighted sum of basis elements.

$$\begin{bmatrix} 3 \\ 4 \end{bmatrix} = 3 \cdot \delta_x + 4 \cdot \delta_y$$

Linear Maps

A linear transformation $f:[X] \rightarrow [Y]$ is a function such that:

$$f(\alpha \mathbf{v} + \beta \mathbf{w}) = \alpha f(\mathbf{v}) + \beta f(\mathbf{w})$$

f is completely characterized by its behavior on the set of basis vectors of [X].

$$f(\delta_x) = \sum_{y \in Y} M_f[y, x] \delta_y$$

Here: $M_f[y,x]$ is a (matrix) of scalars in $\mathbb F$

Matrices

If [X] has n coordinates and [Y] has m coordinates, then any linear map $f:[X] \to [Y]$ can be represented as a matrix:

$$\begin{bmatrix} f[y_1, x_1] & f[y_1, x_2] & \cdots & f[y_1, x_n] \\ f[y_2, x_1] & f[y_2, x_2] & \cdots & f[y_2, x_n] \\ \vdots & \vdots & \ddots & \vdots \\ f[y_m, x_1] & f[y_m, x_2] & \cdots & f[y_m, x_n] \end{bmatrix}$$

For example, the 3x3 identity map:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} \bullet & \cdot & \cdot \\ \cdot & \bullet & \cdot \\ \cdot & \cdot & \bullet \end{bmatrix}$$

Linear Logic

Multiplicative Unit: 1

Interpret 1 as a vector space:

Multiplicative Unit: 1

Interpret 1 as a vector space:

- ▶ Coordinates: $1^{\dagger} = \{ \bullet \}$

Interpret the "1 introduction" inference rule as the 1x1 identity matrix:

$$[1 \vdash 1] = [1]$$

Interpret $A \otimes B$ as a vector space:

Interpret $A \otimes B$ as a vector space:

- ▶ Coordinates: $(A \otimes B)^{\dagger} = A^{\dagger} \times B^{\dagger}$
- $\blacksquare A \otimes B = [(A \otimes B)^{\dagger}]$

Interpret $A \otimes B$ as a vector space:

- ▶ Coordinates: $(A \otimes B)^{\dagger} = A^{\dagger} \times B^{\dagger}$
- $[A \otimes B] = [(A \otimes B)^{\dagger}]$

Interpret \otimes introduction:

$$\frac{\Gamma_1 \vdash A \quad \Gamma_2 \vdash B}{\Gamma_1 \otimes \Gamma_2 \vdash A \otimes B}$$

Interpret $A \otimes B$ as a vector space:

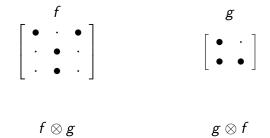
- ▶ Coordinates: $(A \otimes B)^{\dagger} = A^{\dagger} \times B^{\dagger}$
- $\blacktriangleright \ \llbracket A \otimes B \rrbracket = \llbracket (A \otimes B)^{\dagger} \rrbracket$

Interpret ⊗ introduction:

$$\frac{\Gamma_1 \vdash A \quad \Gamma_2 \vdash B}{\Gamma_1 \otimes \Gamma_2 \vdash A \otimes B} \qquad \frac{f : \llbracket \Gamma_1 \rrbracket \to \llbracket A \rrbracket \quad g : \llbracket \Gamma_2 \rrbracket \to \llbracket B \rrbracket}{f \otimes g : \llbracket \Gamma_1 \otimes \Gamma_2 \rrbracket \to \llbracket A \otimes B \rrbracket}$$

$$(f \otimes g)[(a,b),(x,y)] = f[a,x] \cdot g[b,y]$$

Multiplicative Product: Examples



Multiplicative Product: Examples

$$f \otimes g \qquad \qquad g \otimes f$$

$$\begin{bmatrix} \bullet & \cdot & \cdot & \cdot & \bullet & \cdot \\ \bullet & \bullet & \cdot & \cdot & \bullet & \bullet \\ \cdot & \cdot & \bullet & \cdot & \cdot & \cdot \\ \cdot & \cdot & \bullet & \cdot & \cdot & \cdot \\ \cdot & \cdot & \bullet & \cdot & \cdot & \cdot \\ \cdot & \cdot & \bullet & \cdot & \bullet & \cdot \\ \cdot & \cdot & \cdot & \cdot & \bullet & \cdot \end{bmatrix}$$

Multiplicative Product: Structural Rules

Contexts:

$$\Gamma ::= A \mid \Gamma \otimes \Gamma$$

Structural Rule:

$$\frac{\Gamma_1 \vdash A \quad \Gamma_1 \equiv \Gamma_2}{\Gamma_2 \vdash A}$$

 $\Gamma_1 \equiv \Gamma_2$

- reflexivity, symmetry, transitivity
- ▶ associativity: $(\Gamma_1 \otimes \Gamma_2) \otimes \Gamma_3 \equiv \Gamma_1 \otimes (\Gamma_2 \otimes \Gamma_3)$
- ▶ unit law: $\Gamma \equiv \Gamma \otimes 1$
- commutativity: $\Gamma_1 \otimes \Gamma_2 \equiv \Gamma_2 \otimes \Gamma_1$
- $\llbracket \Gamma_1 \equiv \Gamma_2 \rrbracket$ is an isomorphism

Function Composition

Function Composition

Given $f:[X] \rightarrow [Z]$ and $g:[Z] \rightarrow [Y]$, define

$$(f;g)[y,x] = \sum_{z \in Z} g[y,z] \cdot f[z,x]$$

(a.k.a. matrix multiplication)

Function Composition

Function Composition

Given $f:[X] \rightarrow [Z]$ and $g:[Z] \rightarrow [Y]$, define

$$(f;g)[y,x] = \sum_{z \in Z} g[y,z] \cdot f[z,x]$$

(a.k.a. matrix multiplication)

Note: We sum over all elements of Z, so this is not necessarily defined if Z is infinite!

- ▶ Option 1: Allow infinite matrices but only those with "finite support" (zero almost everywhere)
- ▶ Option 2: Work with only finite matrices.

Identity and Cut

Identity:

$$\overline{A \vdash A}$$

$$\mathrm{id}_A[y,x] \ = \ \left\{ \begin{array}{ll} 1 & \mathrm{if} \ x=y \\ 0 & \mathrm{if} \ x\neq y \end{array} \right.$$

Identity and Cut

Identity:

$$\overline{A \vdash A}$$

$$id_{\mathcal{A}}[y,x] = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{if } x \neq y \end{cases}$$

Cut:

$$\frac{\Gamma_1 \vdash A \quad A \otimes \Gamma_2 \vdash B}{\Gamma_1 \otimes \Gamma_2 \vdash B}$$

$$\frac{f: \llbracket \Gamma_1 \rrbracket \to \llbracket A \rrbracket \quad g: \llbracket A \otimes \Gamma_2 \rrbracket \to \llbracket B \rrbracket}{(f \otimes \mathrm{id}_{\Gamma_2}); g: \llbracket \Gamma_1 \otimes \Gamma_2 \rrbracket \to \llbracket A \otimes B \rrbracket}$$

Interpret $A \oplus B$ as a vector space:

Interpret $A \oplus B$ as a vector space:

- ► Coordinates: $(A \oplus B)^{\dagger} = A^{\dagger} \uplus B^{\dagger}$
- $\blacksquare A \oplus B \blacksquare = [(A \oplus B)^{\dagger}]$

Interpret $A \oplus B$ as a vector space:

- ► Coordinates: $(A \oplus B)^{\dagger} = A^{\dagger} \uplus B^{\dagger}$
- $\blacksquare A \oplus B = [(A \oplus B)^{\dagger}]$

Interpret ⊕ introduction:

$$\frac{\Gamma \vdash A}{\Gamma \vdash A \oplus B} \qquad \frac{\Gamma \vdash B}{\Gamma \vdash A \oplus B}$$

$$\text{inl }_{A,B}[y,x] = \begin{cases} 1 & \text{if } y = \text{inl } x \\ 0 & \text{otherwise} \end{cases}$$

Booleans (over \mathbb{F}_2):

$$\mathbb{B}=1\oplus 1$$

$$\left[\begin{array}{c} \cdot \\ \cdot \end{array}\right] \quad \left[\begin{array}{c} \bullet \\ \cdot \end{array}\right] \quad \left[\begin{array}{c} \bullet \\ \bullet \end{array}\right]$$

$$\operatorname{inl}_{\,\mathbb{B},\mathbb{B}}: \llbracket \mathbb{B} \rrbracket \to \llbracket \mathbb{B} \rrbracket \oplus \llbracket \mathbb{B} \rrbracket \qquad \operatorname{inr}_{\,\mathbb{B},\mathbb{B}}: \llbracket \mathbb{B} \rrbracket \to \llbracket \mathbb{B} \rrbracket \oplus \llbracket \mathbb{B} \rrbracket$$

Exponential Types

Linear Logic: Exponentials

Dereliction

$$\frac{\Gamma \otimes A \vdash B}{\Gamma \otimes !A \vdash B}$$

Weakening

$$\frac{\Gamma \otimes 1 \vdash B}{\Gamma \otimes !A \vdash B}$$

Contraction

$$\frac{\Gamma \otimes (!A \otimes !A) \vdash B}{\Gamma \otimes !A \vdash B}$$

Introduction

$$\frac{!\Gamma \vdash A}{!\Gamma \vdash !A}$$

! is a Comonad

- ▶ ! is a functor:
 - ▶ On types: for vector space [A], need a vector space ![A]
 - ▶ On functions: For $f : \llbracket A \rrbracket \to \llbracket B \rrbracket$, need $!f : !\llbracket A \rrbracket \to !\llbracket B \rrbracket$

```
\begin{aligned} \operatorname{coreturn}_A : ! \llbracket A \rrbracket \to \llbracket A \rrbracket \\ \operatorname{comultiply}_A : ! \llbracket A \rrbracket \to ! ! \llbracket A \rrbracket \end{aligned}
```

- Satisfying the comonad laws.
- ▶ Plus some other operations: $m: !A \otimes !B \rightarrow !(A \otimes B)$

Exponentiating a Vector Space

Morally, we would like:

$$!A \approx 1 \oplus A \oplus A^2 \oplus A^3 \oplus \dots$$

Exponentiating a Vector Space

Morally, we would like:

$$!A \approx 1 \oplus A \oplus A^2 \oplus A^3 \oplus \dots$$

Analogy: In SET $[\![!A]\!]$ is the set of all finite multisets whose elements are drawn from $[\![A]\!]$.

- ► So the *coordinates* of the vector space corresponding to !A should (morally) be finite multisets drawn from A.
- ▶ Example: Write $\mathbb{B}^{\dagger} = \{ \text{inl} \bullet, \text{inr} \bullet \}$ as $\{0, 1\}$

$$(!\mathbb{B})^{\dagger} = \{\emptyset, \{0\}, \{1\}, \{0, 0\}, \{0, 1\}, \{1, 1\}, \{0, 0, 0\}, \ldots\}$$

Exponentiating a Vector Space

Morally, we would like:

$$!A \approx 1 \oplus A \oplus A^2 \oplus A^3 \oplus \dots$$

Analogy: In SET $[\![!A]\!]$ is the set of all finite multisets whose elements are drawn from $[\![A]\!]$.

- ► So the *coordinates* of the vector space corresponding to !A should (morally) be finite multisets drawn from A.
- ▶ Example: Write $\mathbb{B}^{\dagger} = \{ \text{inl} \bullet, \text{inr} \bullet \}$ as $\{0, 1\}$

$$(!\mathbb{B})^{\dagger} = \{\emptyset, \{0\}, \{1\}, \{0, 0\}, \{0, 1\}, \{1, 1\}, \{0, 0, 0\}, \ldots\}$$

Problem: This isn't finite! (But we persevere anyway...)

Vectors With Multisets as Coords

$$(!\mathbb{B})^{\dagger} = \{\emptyset, \{0\}, \{1\}, \{0, 0\}, \{0, 1\}, \{1, 1\}, \{0, 0, 0\}, \ldots\}$$

One more observation: What would a vector with coordinates as above look like?

$$\begin{array}{rcl} \mathbf{v} & = & \alpha_{\emptyset} \cdot \delta_{\emptyset} \\ & + & \alpha_{\{0\}} \cdot \delta_{\{0\}} \\ & + & \alpha_{\{1\}} \cdot \delta_{\{1\}} \\ & + & \alpha_{\{0,0\}} \cdot \delta_{\{0,0\}} \\ & + & \alpha_{\{0,1\}} \cdot \delta_{\{0,1\}} \\ & + & \alpha_{\{1,1\}} \cdot \delta_{\{1,1\}} \\ & + & \alpha_{\{0,0,0\}} \cdot \delta_{\{0,0,0\}} \\ & \vdots & & \ddots \end{array}$$

Suppose we knew that we would only ever need multisets with at most two of each element?

```
(!\mathbb{B})^{\dagger} = \begin{cases} \emptyset, \{0\}, \{1\}, \{0, 0\}, \{0, 1\}, \\ \{1, 1\}, \{1, 1, 0\}, \{1, 0, 0\}, \{1, 1, 0, 0\} \end{cases} \}
V = \alpha_{\emptyset} \cdot \delta_{\emptyset} \\ + \alpha_{\{0\}} \cdot \delta_{\{0\}} \\ + \alpha_{\{1\}} \cdot \delta_{\{1\}} \\ + \alpha_{\{0, 0\}} \cdot \delta_{\{0, 0\}} \\ + \alpha_{\{0, 1\}} \cdot \delta_{\{0, 1\}} \\ + \alpha_{\{1, 1, 0\}} \cdot \delta_{\{1, 1, 0\}} \\ + \alpha_{\{1, 1, 0\}} \cdot \delta_{\{1, 1, 0\}} \\ + \alpha_{\{1, 1, 0, 0\}} \cdot \delta_{\{1, 1, 0, 0\}} \\ + \alpha_{\{1, 1, 0, 0\}} \cdot \delta_{\{1, 1, 0, 0\}} \end{cases}
```

Suppose we knew that we would only ever need multisets with at most two of each element?

$$(!\mathbb{B})^{\dagger} = \left\{ egin{array}{ll} \emptyset, \{0\}, \{1\}, \{0,0\}, \{0,1\}, \\ \{1,1\}, \{1,1,0\}, \{1,0,0\}, \{1,1,0,0\} \end{array}
ight\} \\ \gamma &= lpha_{\emptyset} \cdot \delta_{\emptyset} & v &= lpha_{00} \cdot \mathbf{x}_{0}^{0} \mathbf{x}_{0}^{0} \\ + & lpha_{\{0\}} \cdot \delta_{\{0\}} & + & lpha_{10} \cdot \mathbf{x}_{0}^{1} \mathbf{x}_{0}^{0} \\ + & lpha_{\{1\}} \cdot \delta_{\{1\}} & + & lpha_{10} \cdot \mathbf{x}_{0}^{1} \mathbf{x}_{0}^{1} \\ + & lpha_{\{0,0\}} \cdot \delta_{\{0,0\}} & + & lpha_{20} \cdot \mathbf{x}_{0}^{2} \mathbf{x}_{0}^{1} \\ + & lpha_{\{0,1\}} \cdot \delta_{\{0,1\}} & \Rightarrow & + & lpha_{11} \cdot \mathbf{x}_{0}^{2} \mathbf{x}_{0}^{1} \\ + & lpha_{\{1,1\}} \cdot \delta_{\{1,1\}} & + & lpha_{20} \cdot \mathbf{x}_{0}^{2} \mathbf{x}_{1}^{1} \\ + & lpha_{\{1,0,0\}} \cdot \delta_{\{1,0,0\}} & + & lpha_{12} \cdot \mathbf{x}_{0}^{2} \mathbf{x}_{1}^{2} \\ + & lpha_{\{1,1,0,0\}} \cdot \delta_{\{1,1,0,0\}} & + & lpha_{22} \cdot \mathbf{x}_{0}^{2} \mathbf{x}_{1}^{2} \end{array}$$

Suppose we knew that we would only ever need multisets with at most two of each element?

$$\begin{split} (!\mathbb{B})^{\dagger} &= \begin{array}{c} \left\{ \begin{array}{cccc} \emptyset, \{0\}, \{1\}, \{0,0\}, \{0,1\}, \\ \{1,1\}, \{1,1,0\}, \{1,0,0\}, \{1,1,0,0\} \end{array} \right\} \\ &= \begin{array}{cccc} \alpha_{\emptyset} \cdot \delta_{\emptyset} & v &= \alpha_{00} \cdot \mathbf{x}_{0}^{0} \mathbf{x}_{1}^{0} & v &= \alpha_{00} \cdot \mathbf{1} \\ + & \alpha_{\{0\}} \cdot \delta_{\{0\}} & + \alpha_{10} \cdot \mathbf{x}_{0}^{1} \mathbf{x}_{1}^{0} & + \alpha_{10} \cdot \mathbf{x}_{0} \\ + & \alpha_{\{1\}} \cdot \delta_{\{1\}} & + \alpha_{01} \cdot \mathbf{x}_{0}^{1} \mathbf{x}_{1}^{1} & + \alpha_{01} \cdot \mathbf{x}_{1} \\ + & \alpha_{\{0,0\}} \cdot \delta_{\{0,0\}} & + \alpha_{20} \cdot \mathbf{x}_{0}^{2} \mathbf{x}_{1}^{1} & + \alpha_{20} \cdot \mathbf{x}_{0}^{2} \\ + & \alpha_{\{0,1\}} \cdot \delta_{\{0,1\}} & \Rightarrow & + \alpha_{11} \cdot \mathbf{x}_{0}^{1} \mathbf{x}_{1}^{1} & \Rightarrow & + \alpha_{11} \cdot \mathbf{x}_{0}^{1} \mathbf{x}_{1} \\ + & \alpha_{\{1,1\}} \cdot \delta_{\{1,1\}} & + \alpha_{02} \cdot \mathbf{x}_{0}^{2} \mathbf{x}_{1}^{2} & + \alpha_{02} \cdot \mathbf{x}_{0}^{2} \mathbf{x}_{1}^{2} \\ + & \alpha_{\{1,1,0\}} \cdot \delta_{\{1,1,0\}} & + \alpha_{21} \cdot \mathbf{x}_{0}^{2} \mathbf{x}_{1}^{2} & + \alpha_{21} \cdot \mathbf{x}_{0}^{2} \mathbf{x}_{1}^{2} \end{array}$$

 $\alpha_{12} \cdot \mathbf{x}_0^{\mathsf{I}} \mathbf{x}_1^{\mathsf{I}}$

 $\alpha_{22} \cdot \mathbf{x}_0^2 \mathbf{x}_1^2$

+ $\alpha_{\{1,0,0\}} \cdot \delta_{\{1,0,0\}}$

+ $\alpha_{\{1,1,0,0\}} \cdot \delta_{\{1,1,0,0\}}$

+ $\alpha_{21} \cdot \mathbf{x}_0^{\frac{1}{2}} \mathbf{x}_1$ + $\alpha_{12} \cdot \mathbf{x}_0 \mathbf{x}_1^2$

 $\alpha_{22} \cdot \mathbf{x}_0^2 \mathbf{x}_1^2$

Suppose we knew that we would only ever need multisets with at most two of each element?

$$(!\mathbb{B})^{\dagger} = \begin{cases} \emptyset, \{0\}, \{1\}, \{0,0\}, \{0,1\}, \\ \{1,1\}, \{1,1,0\}, \{1,0,0\}, \{1,1,0,0\} \end{cases} \}$$

$$v = \alpha_{0} \cdot \delta_{0} \qquad v = \alpha_{00} \cdot \mathbf{x}_{0}^{0} \mathbf{x}_{0}^{0} \qquad v = \alpha_{00} \cdot \mathbf{1} \\ + \alpha_{\{0\}} \cdot \delta_{\{0\}} \qquad + \alpha_{10} \cdot \mathbf{x}_{0}^{1} \mathbf{x}_{0}^{1} \qquad + \alpha_{10} \cdot \mathbf{x}_{0} \\ + \alpha_{\{1\}} \cdot \delta_{\{1\}} \qquad + \alpha_{01} \cdot \mathbf{x}_{0}^{1} \mathbf{x}_{1}^{1} \qquad + \alpha_{01} \cdot \mathbf{x}_{1} \\ + \alpha_{\{0,0\}} \cdot \delta_{\{0,0\}} \qquad + \alpha_{20} \cdot \mathbf{x}_{0}^{2} \mathbf{x}_{1}^{1} \qquad + \alpha_{20} \cdot \mathbf{x}_{0}^{2} \\ + \alpha_{\{0,1\}} \cdot \delta_{\{0,1\}} \qquad \Rightarrow \qquad + \alpha_{11} \cdot \mathbf{x}_{0}^{2} \mathbf{x}_{1}^{1} \qquad \Rightarrow \qquad + \alpha_{11} \cdot \mathbf{x}_{0}^{2} \mathbf{x}_{1}^{1} \\ + \alpha_{\{1,1\}} \cdot \delta_{\{1,1\}} \qquad + \alpha_{22} \cdot \mathbf{x}_{0}^{2} \mathbf{x}_{1}^{1} \qquad + \alpha_{22} \cdot \mathbf{x}_{0}^{2} \mathbf{x}_{1}^{1} \\ + \alpha_{\{1,1,0,0\}} \cdot \delta_{\{1,1,0,0\}} \qquad + \alpha_{12} \cdot \mathbf{x}_{0}^{2} \mathbf{x}_{1}^{2} \qquad + \alpha_{12} \cdot \mathbf{x}_{0}^{2} \mathbf{x}_{1}^{2} \\ + \alpha_{\{1,1,0,0\}} \cdot \delta_{\{1,1,0,0\}} \qquad + \alpha_{22} \cdot \mathbf{x}_{0}^{2} \mathbf{x}_{1}^{2} \qquad + \alpha_{22} \cdot \mathbf{x}_{0}^{2} \mathbf{x}_{1}^{2} \qquad + \alpha_{22} \cdot \mathbf{x}_{0}^{2} \mathbf{x}_{1}^{2} \\ + \alpha_{\{1,1,0,0\}} \cdot \delta_{\{1,1,0,0\}} \qquad + \alpha_{22} \cdot \mathbf{x}_{0}^{2} \mathbf{x}_{1}^{2} \qquad + \alpha_{22} \cdot \mathbf{x}_{0}^{2} \mathbf{x}_{1}^{2} \qquad + \alpha_{22} \cdot \mathbf{x}_{0}^{2} \mathbf{x}_{1}^{2} \end{cases}$$

Upshot: A vector whose coordinates are multisets over *A* can be thought of as a *multinomial* with one variable for each element of *A*.

Finite Fields

A field \mathbb{F} is finite if |F| is finite.

Some beautiful theorems:

- ▶ Every finite field \mathbb{F}_q with q elements has $q = p^k$, where p is a prime.
- ▶ For every element $\alpha \in \mathbb{F}_q$ we have:

$$\underbrace{\alpha + \alpha + \ldots + \alpha}_{\text{p times}} = 0$$

Finite Fields

A field \mathbb{F} is finite if |F| is finite.

Some beautiful theorems:

- ▶ Every finite field \mathbb{F}_q with q elements has $q = p^k$, where p is a prime.
- ▶ For every element $\alpha \in \mathbb{F}_q$ we have:

$$\underbrace{\alpha + \alpha + \ldots + \alpha}_{\text{p times}} = 0$$

$$\alpha^q = \alpha$$

Consequence:

When working with multinomials whose variables range over elements of \mathbb{F} , we have $\mathbf{x}^q = \mathbf{x}$.

For example, in \mathbb{F}_2 :

$$(x+1)^2$$
 = $x^2 + 2x + 1$ = $x^2 + 1$ = $x + 1$

Definition of !

- A multiset $\{0,0,1\}$ corresponds to a *term* $\mathbf{x}_0^2\mathbf{x}_1$ of the multinomial.
- ► The set of these terms form a basis.

$$f: [A] \rightarrow [B]$$
 acts on each \mathbf{x}_a by:

$$\mathbf{x}_a \stackrel{f}{\longmapsto} \sum_{b \in B} f[b, a] \cdot \mathbf{y}_b$$

Definition of !

- A multiset $\{0,0,1\}$ corresponds to a *term* $\mathbf{x}_0^2\mathbf{x}_1$ of the multinomial.
- ▶ The set of these terms form a basis. $f: [A] \rightarrow [B]$ acts on each \mathbf{x}_a by:

$$\mathbf{x}_a \stackrel{f}{\longmapsto} \sum_{b \in B} f[b, a] \cdot \mathbf{y}_b$$

So ! f acts on a term like $\mathbf{x}_0^2\mathbf{x}_1$ by:

$$\mathbf{x}_0^2 \mathbf{x}_1 \stackrel{!f}{\longmapsto} \left(\sum_{b \in B} f[b, 0] \cdot \mathbf{y}_b\right) \times \left(\sum_{b \in B} f[b, 0] \cdot \mathbf{y}_b\right) \times \left(\sum_{b \in B} f[b, 1] \cdot \mathbf{y}_b\right)$$

This is multinomial multiplication, modulo $\mathbf{y}^q = \mathbf{y}$.

Example in \mathbb{F}_2

Let $f : \llbracket 1 \oplus 1 \oplus 1 \rrbracket \rightarrow \llbracket 1 \oplus 1 \oplus 1 \rrbracket$ be:

Then $!f : !\llbracket 1 \oplus 1 \oplus 1 \rrbracket \rightarrow !\llbracket 1 \oplus 1 \oplus 1 \rrbracket$ is:

Theorem (Functoriality of !)

For any $f : [A] \rightarrow [B]$ and $g : [B] \rightarrow [C]$:

$$!(f;g) = (!f); (!g) : ![A] \rightarrow ![C]$$

Back to the Comonad: Coreturn

Let M(a) be the multiplicity of a in the multiset M.

$$\operatorname{coreturn}_A : ! \llbracket A \rrbracket \to \llbracket A \rrbracket$$
 $\operatorname{coreturn}_A [a, M] = M(a)$

Example: $\operatorname{coreturn}_{\mathbb{B}} : [\![\mathbb{B}]\!] \to \mathbb{B} \text{ over } \mathbb{F}_2$

More generally: The n^{th} column of the matrix is just n written in base q

Comultiply

 $\operatorname{comultiply}_{\mathbb{B}}: !\llbracket \mathbb{B} \rrbracket \to !! \llbracket \mathbb{B} \rrbracket$

Dimensionality

```
\dim [0] = 0
      \dim [\top] = 0
      \dim [1] = 1
      \dim [\bot] = 1
 \dim [A \oplus B] = \dim [A] + \dim [B]
 \dim [A \& B] = \dim [A] + \dim [B]
 \dim [A \otimes B] = \dim [A] \times \dim [B]
\dim [A \multimap B] = \dim [A] \times \dim [B]
     \dim [!A] = ??
```

Dimensionality

```
\dim [0] = 0
      \dim [\top] = 0
      \dim [1] = 1
      \dim [\bot] = 1
 \dim [A \oplus B] = \dim [A] + \dim [B]
 \dim [A \& B] = \dim [A] + \dim [B]
 \dim [A \otimes B] = \dim [A] \times \dim [B]
\dim [A \multimap B] = \dim [A] \times \dim [B]
     \dim [!A] = q^{\dim [A]}
```

Conclusions

The category of finite dimensional vector spaces over finite fields is a model of linear logic.

- Very pretty mathematics!
- Connects lambda calculus and linear algebra!
- ▶ What are the implications of picking a particular \mathbb{F}_q ?
- ▶ I'm working on an implementation...
- Applications?