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Denotational (Categorical) Models

Basic idea:
» Interpret each type A as some structure [A]

» Interpret each judgement I = A as a “morphism”
[r=A]:[r] — [A]

» Interpret inference rules compositionally

Interpretations should “respect” proof equivalences, e.g.:

AFA BEB
AR BFA®B

ﬂ—{[/\@m/\@gﬂ



Many Models of Linear Logic

(Fairly?) Simple:

» Sets and Relations

[op = 0
[1] = {e}
[AeB] = [Alv[B]
[AFA]l = {(xx)|xelAl}
[AFA® B] = {(x,inlx) | x e [A]}

(Fairly?) Complex:

» Coherence Spaces, Proof Nets, Game Semantics
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Linear Logic and Linear Algebra

FINVECT:
» Interpret a type as a finite dimensional vector space
(over a finite field)
» Interpret a judgment as a l/inear transformation
(i.e., a matrix)
Why?
» Next simplest reasonable model (after SET).
» | haven't seen this worked out in detail anywhere before.

» There are lots of interesting things that live in the
category FINVECT:
» All of linear algebra: Matrix algebra, derivatives,
eigenvectors, Fourier transforms, cryptography(?), etc.



Linear Algebra



Fields

A field F = (F,+,-,0,1) is a structure such that:
» F is a set containing distinct elements 0 and 1.
» Addition: (F,+,0) abelian group, identity 0
» Multiplication: (F — {0}, -,1): abelian group, identity 1
» The distributive law holds:

Va,b,ce F.a-(b+c)=a-b+a-c

There are no zero divisors:

v

Va,beF.a-b=0 = a=0Vvb=0



Vector Spaces

A vector space over F is just a set V with addition and scalar
multiplication:

Vv,we V. (v+w)eV

VaoeF.Vwve V.aveV

Satisfying some laws:
» Commutativity, Associativity, Unit for +
» alv+w)=av+aw
» (a+ B)v=av+fv



Coordinate Systems

Pick a coordinate system (i.e. a set X) and define [X], the
“vector space with coordinates in X":

X]2{v]|v:X —TF}

» A vector is just a function that maps each coordinate to
an element of F

» Example: In the plane, we might pick X = {"x","y" }

» Vector addition and scalar multiplication are defined
pointwise

» The dimension of [X] is just the cardinality of X.



Canonical Basis

Canonical basis for [X]:

{6« | x € X}

» Here ¢ is Dirac’'s “delta” operator:
1 ify=x
0 ify #x

» Every vector in [X] can be written as a weighted sum of
basis elements.

0y = )\yEX.{

H}:&aﬁzx-@



Linear Maps

A linear transformation f : [X] — [Y] is a function such that:
f(av + Bw) = af(v) + Bf(w)

f is completely characterized by its behavior on the set of
basis vectors of [X].

F(dx) = >_ Mly, x]o,

yYey

Here: M¢[y, x] is a (matrix) of scalars in IF



Matrices

If [X] has n coordinates and [Y] has m coordinates, then any
linear map f : [X] — [Y] can be represented as a matrix:

f[}/1,X1] f[}/l,Xz] T f[ylaxn]
f[}/z,Xll f[)/za X2] T f[)/27 Xn] ‘
[ W] Flym] - Flyml

For example, the 3x3 identity map:

roo) o)

o] Tl



Linear Logic



Multiplicative Unit: 1

Interpret 1 as a vector space:



Multiplicative Unit: 1

Interpret 1 as a vector space:

» Coordinates: 17 = {e}
> 1] = [17] (={v|v:11 =T}

Interpret the “1 introduction” inference rule as the 1x1
identity matrix:

[1+1] =[1]



Multiplicative Product: A® B

Interpret A ® B as a vector space:
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Multiplicative Product:

Interpret A ® B as a vector space:
» Coordinates: (A® B) = AT x Bf
» [A® B] = [(A® B)T]

Interpret ® introduction:

HEA IL,EB
NHeoel,FA®B

A®B



Multiplicative Product: A® B

Interpret A ® B as a vector space:
» Coordinates: (A® B)' = AT x BT
» [A® B] = [(A® B)T]

Interpret ® introduction:

HEA IL,EB for]—1TA1 g:[r]—[8]

NMoel,FA®B fog:[Mhelh] —[AB]

(f ® g)l(a, b), (x,y)] = fla, x] - g[b, y]



Multiplicative Product: Examples



Multiplicative Product: Examples
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Multiplicative Product: Structural Rules

Contexts:
Fre=A|Irerl
Structural Rule:
r1 I_ A r1 = r2
LEA

=1,
» reflexivity, symmetry, transitivity
» associativity: (I @) @M =T @ (M ®7T3)
» unitlaw: =T ® 1
» commutativity: T, @, =T, ® M
» [I1 =TI is an isomorphism



Function Composition

Function Composition

Given f : [X] — [Z] and g : [Z] — [Y], define

(f:e)ly,x] = >_ gly, 2] - flz,x]

zeZ

(a.k.a. matrix multiplication)



Function Composition

Function Composition

Given f : [X] — [Z] and g : [Z] — [Y], define

(f:8)ly,x] =>_¢gly,2] - flz,x]

zeZ

(a.k.a. matrix multiplication)

Note: We sum over all elements of Z, so this is not necessarily
defined if Z is infinite!

» Option 1: Allow infinite matrices but only those with
“finite support” (zero almost everywhere)

» Option 2: Work with only finite matrices.



Identity:

|dentity and Cut

1 ifx=y

idaly,x] = 0 ifx#y

—— T



|dentity and Cut

Identity:

|_

if x=y

1dA[YaX] { if x £y
Cut:

A Al EB
MHelFB

FrL]—TAl g:[A®T,] — [B]

(f@idr,); g [Melh] — [A® B]



Additive Sums

Interpret A@® B as a vector space:



Additive Sums

Interpret A@® B as a vector space:

» Coordinates: (A® B) = ATw BT
» [A@ Bl = [(A® BY]



Additive Sums

Interpret A @ B as a vector space:
» Coordinates: (A® B) = ATw BT
> [Ae B] = [(A® B)]

Interpret & introduction:

r=A =B
rN-Ae B rN-AeB

1 if y =inl x

inl agly,x] = {O otherwise



Additive Sums

Booleans (over IFy):

B=1&®1
SEBENEN
inlgp: [B] — [B] ©[B] inrgg: [B] — [B] © [B]

-] BN



Exponential Types



Linear Logic: Exponentials

Dereliction
fr® ArFB
®!IAFB
Weakening
f®1FB
r®!AFB

Contraction
re (lA1A) - B

r®!AFB

Introduction
T A

Ir=1A




| is a Comonad

» Iis a functor:
» On types: for vector space [A], need a vector space ![A]

» On functions: For f : [A] — [B]. need !f :![A] —![B]
coreturnp : [A] — [A]
comultiply 4 : [A] —=""[A]
» Satisfying the comonad laws.
» Plus some other operations: m : |A© B — I[(A® B)
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Exponentiating a Vector Space

Morally, we would like:

A~1DAPA DA D ...

Analogy: In SET [!A] is the set of all finite multisets whose
elements are drawn from [A].

» So the coordinates of the vector space corresponding to
lA should (morally) be finite multisets drawn from A.

» Example: Write BT = {inl e,inr o} as {0, 1}

(B)f = {0, {0}, {1},{0,0},{0,1},{1,1},{0,0,0},.. .}

Problem: This isn't finite! (But we persevere anyway. . .)



Vectors With Multisets as Coords

(B)" = {0, {0}, {1},{0,0},{0,1},{1,1},{0,0,0},...}

One more observation: What would a vector with coordinates
as above look like?

-0
fo}-0o}
g1} 041y

{0,0}*0{0,0}
f0,1}-0¢0,1}
of1,13-0¢1,1)

({0,0,0} ‘5{0,0,0}

S+t



Multinomials

Suppose we knew that we would only ever need multisets with
at most two of each element?

IB) — { 0.{0},{1},{0,0},{0,1},
{1,1},{1,1,0},{1,0,0},{1,1,0,0} }

agp-dg
ORI
aq13-071)
@{0,0}'9{0,0}
@{0,1}'070,1}
1,1y 01,1}
a{1,1,o}'5{1,1,0}
Q1,0,0} '5{1,0,0}
@f11,0,0}°9{1,1,0,0}

-

e



Multinomials

Suppose we knew that we would only ever need multisets with
at most two of each element?

IB) — { 0.{0},{1},{0,0},{0,1},
{1,1},{1,1,0},{1,0,0},{1,1,0,0} }

-

v ap-dp v aoo-xgxg
0} -0{0} a0 xp)
1}-041y c01-xgxy

Oé{o,o}"s{o,o} @20-X x%
@{0,1}0{0,1} = X

(1,1} 0(1,1}
CY{1,1,o}'5{1,1,0}
Q1,0,0} '5{1,0,0}

@f11,0,0}°9{1,1,0,0}

e
e o S |
8
*

x



Multinomials

Suppose we knew that we would only ever need multisets with
at most two of each element?

('B)

e

agp-dg
ORI
aq13-071)
@{0,0}'9{0,0}
@{0,1}'070,1}
1,1y 01,1}
CY{1,1,o}'5{1,1,0}
Q1,0,0} '5{1,0,0}
@f11,0,0}°9{1,1,0,0}

\
i o ot A SR

_ { 0.{o},{1},{0,0},{0, 1},
{1,1},{1,1,0},{1,0,0},{1,1,0,0} }

At

ago-1
«10°X0
Qo1°X1
0420~X%
11°X0X1
aoz-x2
a21-XOX1
0412'X0X2
QQQ‘X%X%



Multinomials

Suppose we knew that we would only ever need multisets with
at most two of each element?

(IB)T: { 07{0}7{1}7{070}7{071}7
. {1,1},{1,1,0},{1,0,0},{1,1,0,0} }

v = agp-dg v = agxx? v = apol
+ ORI + 0410'X9XEj +  ai0Xo
+ aq1y041y + ozorxgxi 4+ aprxy
+ 40,0} 0{0,0} + a0 xpxy + X3
+ a{0,1}°040,1} = + 0111-X8X% = +  o11-XpX1
+ aq1,13:071,13 + Oéoz'xgx% +  opx?
+ a1,1,010{1,1,0} + 0421'X9X% +  az1-xgxy
+ a{l,O,O}'(S{l,O,O} + 0412~X8X£ + Oéu‘XoXi
+  041,1,0,0}°0{1,1,0,0} + a2 XpX] +  axxgx]

Upshot: A vector whose coordinates are multisets over A can
be thought of as a multinomial with one variable for each
element of A.



Finite Fields
A field F is finite if |F| is finite.

Some beautiful theorems:

» Every finite field F, with g elements has g = p¥, where p
is a prime.
» For every element a € F; we have:
»at+a+...+a=0
p times

» o9 =«



Finite Fields
A field F is finite if |F| is finite.

Some beautiful theorems:

» Every finite field F, with g elements has g = p¥, where p
is a prime.
» For every element a € F; we have:
»at+a+...+a=0
p times
» ol =«
Consequence:
When working with multinomials whose variables range over
elements of F, we have x9 = x.
For example, in F5:

(x+1)? = x*+2x+1 = xX*+1 = x+1



Definition of |

» A multiset {0,0,1} corresponds to a term x3x; of the
multinomial.

» The set of these terms form a basis.
f : [A] — [B] acts on each x, by:

xa}LZf[bva]'yb

beB



Definition of |

» A multiset {0,0,1} corresponds to a term x3x; of the
multinomial.

» The set of these terms form a basis.
f : [A] — [B] acts on each x, by:

xaézf[bva]'yb

beB

So If acts on a term like x3x; by:

X3X1 s (Z f[b,0] - yb) x (Z f[b,0] - yp) x (Z f[b,1] - ys)

beB beB beB

This is multinomial multiplication, modulo y? =y.



Example in [
Let f:[1@1@1] — [1®1a1] be:

]

Then If Ml l1l] -[lelel]is:




Theorem (Functoriality of !)
For any f : [A] — [B] and g : [B] — [C]:

I(f; &) = (1f): ('g) - Al =[]



Back to the Comonad: Coreturn

Let M(a) be the multiplicity of a in the multiset M.

coreturng : [A] — [A]
coreturnas[a, M| = M(a)

Example: coreturng :![B] — B over I,

B

More generally: The n®" column of the matrix is just n written
in base g



Comultiply

comultiplyp : '[B] —![B]




Dimensionality

dim [0]
dim[T]

dim [1]
dim[1]
dim[A @ B]
dim [A & B]
dim[A® B]
dim [A — B]
dim [!A]

= O O

1

dim [A] + dim [B]
dim [A] 4 dim [B]
dim [A] x dim [B]
dim [A] x dim [B]
7



Dimensionality

dim [0]
dim[T]

dim [1]
dim[1]
dim[A @ B]
dim [A & B]
dim[A® B]
dim [A — B]
dim [!A]

= O O

1

dim [A] + dim [B]
dim [A] 4 dim [B]
dim [A] x dim [B]
dim [A] x dim [B]

gdim [A]



Conclusions

The category of finite dimensional vector spaces over finite
fields is a model of linear logic.
» Very pretty mathematics!
» Connects lambda calculus and linear algebra!
» What are the implications of picking a particular [F?
» |I'm working on an implementation. . .
| 4

Applications?



