
Validating LR(1) parsers

Jacques-Henri Jourdan François Pottier Xavier Leroy

INRIA Paris-Rocquencourt, projet Gallium

IFIP WG 2.8, Nov 2012



Parsing: recap

text
or

token stream

abstract
syntax

tree

1 + 2× 3 +

1 ×

2 3



Parsing: problem solved?

After 50 years of computer science:

Foundations: Context-Free Grammars, Backus-Naur Form,
LL(k), LR(k), Generalized LR, Parsing Expression Grammars, . . .

Libraries: parsing combinators, Packrat, . . .

Parser generators: Yacc, Bison, ANTLR, Menhir, Elkhound, . . .



The correctness issue

How can we make sure that a parser (generated or hand-written) is
correct?

Application areas where it matters:

• Formally-verified compilers, code generators, static analyzers.

• Security-sensitive applications: SQL queries, handling of
semi-structured documents (PDF, HTML, XML, . . . ).



CompCert: the formally verified part

CompCert C Clight C#minor

CminorCminorSelRTL

LTL LTLin Linear

MachAsm

side-effects out

of expressions

type elimination

loop simplifications

stack allocation

of “&” variables

instruction

selection

CFG construction

expr. decomp.

register allocation (IRC)

linearization

of the CFG

spilling, reloading

calling conventions

layout of stack frames

asm code

generation

Optimizations: constant prop., CSE, tail calls,

(LCM), (Software pipelining)

(Instruction scheduling)



CompCert: the whole compiler

AST C

AST Asm

C source

AssemblyExecutable

lexing, parsing, construction of an AST

type-checking, de-sugaring

V
erifi

ed
co

m
p

iler

printing of

asm syntax

assembling

linking

Type reconstruction

Graph coloring

Code linearization heuristics

Proved in Coq
(extracted to Caml)

Not proved
(hand-written in Caml)

Part of the TCB

Not part of the TCB



Correct with respect to what?

Specification of a parser: a context-free grammar with semantic
actions.

• Terminal symbols a

• Nonterminal symbols A

• Symbols X ::= a | A

• Start symbol S

• Productions A→ X1 . . .Xn {f }

f : T (X1)→ · · · → T (Xn)→ T (A) is a semantic action

T (X ) : Type is the type of semantic values for symbol X .



Lovely dependent types!

Variable symbol: Type.

Variable T: symbol -> Type.

Fixpoint type_of_sem_action

(lhs: symbol) (rhs: list symbol) : Type :=

match rhs with

| nil => T lhs

| s :: rhs’ => (T s -> type_of_sem_action lhs rhs’)

end.

If T (X ) = T (Y ) = nat, we do have that
plus : type of sem action X (Y :: Y :: nil)



Semantics of grammars

X → w/v (symbol X derives word w producing semantic value v)

a→ a

A→ X1 . . .Xn {f } is a production
Xi → wi/vi for i = 1, . . . , n

A→ w1 . . .wn/f (v1, . . . , vn)



Semantics of grammars

X → w/v (symbol X derives word w producing semantic value v)

a→ (a, v)/v

A→ X1 . . .Xn {f } is a production
Xi → wi/vi for i = 1, . . . , n

A→ w1 . . .wn/f (v1, . . . , vn)



Correctness of a parser

A parser = a function

token stream→ Reject | Accept(semantic value, token stream)

Soundness:
if Parser(W ) = Accept(v ,W ′), there exists a word w such that
W = w .W ′ and S → w/v .

Non-ambiguity:
if Parser(W ) = Accept(v ,W ′) and and S → w/v ′, then
W = w .W ′ and v ′ = v .

Completeness:
if S → w/v then Parser(w .W ′) = Accept(v ,W ′).

(Note: completeness + determinism ⇒ non-ambiguity.)



Verifying a parser, approach 1:
a posteriori validation at every parse

token stream

untrusted
parser

parse tree

verified
validator

Error | OK(semantic value)

: proved correct in Coq

: not verified, untrusted

Validator: trivially checks the
parse tree & computes
semantic value.

Soundness: guaranteed.
Nonambiguity: no guarantee.
Completeness: no guarantee.



Verifying a parser, approach 2:
deductive verification of the parser itself

Apply program proof to the parser itself, showing soundness and
completeness.

Drawbacks:

• Long and tedious proof,
especially if parser is generated as an automaton.

• Proof to be re-done every time the grammar changes.



Verifying a parser, approach 3:
deductive verification of a parser generator

(A. Barthwal and M. Norrish, Verified Executable Parsing, ESOP 2009)

grammar SLR(1) parser
generator

LR(1)

automaton
Pushdown
interpreter

token stream

Reject | Accept(v)

Barthwal & Norrish proved (in HOL) soundness and completeness
for every parser successfully generated by their generator.

Limitation: their generator only accepts SLR(1) grammars;
the ISO C99 grammar is not SLR(1).



Our approach:
verified validation of a parser generator

Given a grammar G and an LR(1) automaton A, check that A is
sound and complete w.r.t. G .

Instrumented
parser generatorGrammar

LR(1) automaton

Grammar

Certificate

ValidatorOK / error

Pushdown
interpreter

Token stream

Reject | Accept(v)

Parser generation time / Compile-compile time Parse time

The validator supports all flavors of LR(1) parsing: canonical
LR(1), SLR(1), LALR(1), Pager’s method, . . .



Refresher: LR automata

A stack machine with 4
kinds of actions:
accept, reject, shift
(push the next token),
and reduce (by a
production) + goto
another state.



Interpreting LR(1) automata in Coq

Module Parser(G: Grammar) (A: Automaton).

Inductive parse_result :=

| Accept (v: G.semantic_type G.start_symbol)

(rem: Stream token)

| Reject

| Internal_Error

| Timeout.

Definition parse (input: Stream token) (fuel: nat)

: parse_result := ...

Note fuel parameter to guarantee termination
(we can have infinite sequences of reduce actions).

Note Internal_Error result caused by e.g. popping from an
empty stack.



Soundness

Theorem (Soundness)

If parse W N = Accept v W ′, there exists a word w such that
W = w .W ′ and S → w/v.

Note that this theorem holds unconditionally for all automata:
the parse function performs some dynamic checks and fails with
Internal_Error in all cases where soundness would be
compromised.

Easy Coq proof (200 lines) using an invariant relating the current
stack of the automaton with the word read so far.



Safety

Theorem (Safety)

If safety validator G A = true, then
parse W N 6= Internal error

for every input stream W and fuel N.

safety_validator (200 Coq lines) decides a number of
properties (next slide) with the help of annotations produced by
the parser generator.

Proof of the theorem: 500 Coq lines.



The safety validator

1 For every transition, labeled X , of a state σ to a new state σ′,
• pastSymbols(σ′) is a suffix of pastSymbols(σ)incoming(σ),
• pastStates(σ′) is a suffix of pastStates(σ){σ}.

2 For every state σ that has an action of the form
reduce A −→ α {f },
• α is a suffix of pastSymbols(σ)incoming(σ),
• If pastStates(σ){σ} is Σn . . .Σ0 and if the length of α is k,

then for every state σ′ ∈ Σk , the goto table is defined at
(σ′,A). (If k is greater than n, take Σk to be the set of all
states.)

3 For every state σ that has an accept action,
• σ 6= init,
• incoming(σ) = S ,
• pastStates(σ) = {init}.



Completeness

Theorem (Completeness)

If completeness validator G A = true and S → w/v,
then there exists a fuel N0 such that for all N ≥ N0,
parse (w .W ) N ∈ {Accept(v ,W ), Internal Error}.

The proof amounts to taking N0 = the height of the derivation of
S → w/v , and showing that the automaton performs a depth-first
traversal of the parse tree S → w/v .

completeness_validator (next slide): 200 Coq lines.
Proof: 700 Coq lines.



The completeness validator

1 For every state σ, the set items(σ) is closed, that is, the
following implication holds:

A −→ α1 • A′α2 [a] ∈ items(σ)
A′ −→ α′ {f ′} is a production

a′ ∈ first(α2a)

A′ −→ • α′ [a′] ∈ items(σ)

2 For every state σ, if A −→ α • [a] ∈ items(σ), where A 6= S ′,
then the action table maps (σ, a) to reduce A −→ α {f }.

3 For every state σ, if A −→ α1 • aα2 [a′] ∈ items(σ), then the
action table maps (σ, a) to shift σ′, for some state σ′ such
that:

A −→ α1a • α2 [a′] ∈ items(σ′)



The completeness validator

1 For every state σ, if A −→ α1 • A′α2 [a′] ∈ items(σ), then the
goto table either is undefined at (σ,A′) or maps (σ,A′) to
some state σ′ such that:

A −→ α1A′ • α2 [a′] ∈ items(σ′)

2 For every terminal symbol a, we have
S ′ −→ • S [a] ∈ items(init).

3 For every state σ, if S ′ −→ S • [a] ∈ items(σ), then σ has a
default accept action.

4 “first” and “nullable” are fixed points of the standard defining
equations.



Towards termination

Completeness shows termination for valid inputs, but what about
invalid inputs? (We have examples of non-termination for
automata that pass the safety and completeness validators.)

Conjecture (Termination)

Assuming some to-be-determined validation conditions hold, for
every finite input W there exists a fuel N0 such that
parse W N 6= Timeout for all N ≥ N0.

A proof sketch in Aho and Ullman, but only for canonical LR(1)
automata (which have a peculiar “early failure” property).



Experimental validation: ISO C 1999

Starting point: grammar from Appendix A of ISO C 99 standard.

Removed “old-style” function declarations (unsupported by CompCert).

Fixed / worked around several ambiguities (next slides).

→ Grammar with 87 terminals, 72 nonterminals, 263 productions.

Modified the Menhir parser generator to produce Coq output +
certificates (500 lines of Caml).

→ Pager’s LR(1) automaton with 505 states.
→ Plus 4.2 Mbytes of certificates (mostly, item sets).



Experimental validation: ISO C 1999

Running the validators on Menhir’s Coq output:

• Executed within Coq (Eval vm_compute).

• Reading and type-checking Menhir’s output: 32 s.

• Safety validator: 4 s.

• Completeness validator: 15 s.

Replacing CompCert’s unproved parser with our new parser:

• Parsing: 5 times slower.

• Total compilation time: +20%



Ambiguities in the C grammar
1- Dangling else

if (cond1)

if (cond2)

x = 1;

else

x = 2;

A classic problem: which if matches the else?

ISO standard says “the second if”, but not reflected in grammar.

A simple solution: rewrite the grammar to have two statement
nonterminals, one for statements that can be followed by else, the
other for statements that cannot.



Ambiguities in the C grammar
2- Type names

a * b;

In the scope of a typedef ... a; declaration, this means

“Declare a variable b of type pointer to a.”

Otherwise, this means

“Compute a times b and throw result away.”

→ Must have two different terminals for type names and variable
names. The lexer must classify identifiers into type names or
variable names taking typedef declarations and block scopes into
account.



Ambiguities in the C grammar
2- Type names

Classic solution: the lexer hack.

Semantic actions of the parser update a symbol table.
The lexer consults this table to classify identifiers.

Our approach: a pre-parser.

The pre-parser keeps track of
typedefs that are in scope,
and adjusts the stream of
tokens accordingly.

In our implementation, the
pre-parser is a full,
non-verified C parser using
the lexer hack.

Lexer

. . . ident . . . ident . . .

Pre-parser

. . . typename . . . varname . . .

Parser



Ambiguities in the C grammar
3- Binding occurrences

typedef double a;

a a;

First a is a type name, second a is a variable name in binding
position, subsequent a’s are variable names.

Here, no other possible interpretation; but . . .



Ambiguities in the C grammar
3- Binding occurrences

typedef double a;

int f(int (a));

Could mean either: (in civilized Coq syntax)

1 f : forall (a: int), int

2 f : (a -> int) -> int

Original ISO C99 standard leaves this ambiguity open.
Technical Corrigendum 2 says interpretation #2 is correct.

Again, we rely on the pre-parser for correct classification.



Conclusions

Once more, the “verified validator” approach is a win:

• Reduced proof effort
(2 500 lines versus Barthwal and Norrish’s 20 000).

• Reusable with all known LR(1) constructions
(from canonical to Pager’s).

• Can also reuse existing, mature parser generator
(e.g. Menhir and its excellent diagnostics).



Possible improvements

Prove termination?

Prove that the parser does not read more tokens than necessary.
(Important for interactive applications, e.g. toplevel loops.)

Speed up the pushdown interpreter by removing dynamic checks.
(→ much more dependent types?)

Take precedences and associativity declarations into account.



Perspectives for CompCert

A similar validation approach should work for the lexer as well.
(Perhaps using Brozowski’s derivatives.)

Simplify the pre-parser by restricting typedef to global scope.
(Very few C codes use local typedef.)

The elaboration passes (between the parser and the input to the
first Coq-proved pass) need work.


