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Semantics-preserving compilation
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Problem: Closed-World Assumption

Correct compilation guarantee only applies to
whole programs!
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Why Whole Programs?
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Our Compiler: System F to TAL

i Closure Conversion T
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Operational semantics
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Boundary cancellation

TFCCF e =T e : 1
CF "FCe =" & : T



Challenges / Roadmap for rest of talk
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F+C: Interoperability semantics
with type abstraction in both
languages

C+A: Interoperability when
compiler pass allocates code &
tuples on heap

A+T: What is e? What is v!
How to define contextual
equiv. for TAL components!?
How to define logical relation?
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Abstract Types & Interoperability

Add new type L(~) & new value form"{"'FC

Add new type || & define |al[r/a] =7

Requires novel admissibility relations in logical relation.

(draft paper: www.ccs.neu.edu/home/amal/voc.pdf)
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C+A: Interoperability when
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7 2= «a | unit | int | da.7 | pa.T | box

Y =Vieaol.(T)—> 7| (Ty...,T)

e = (t,H) | t

t i=x| (O |n|tpt|if0ttt | £ | t[]t | t[T]
| pack(T,t) as Ja.7 | unpack (o, x) = tint | fold,o.+t
| unfoldt | balloc (t) | read[i] t

p =+ | — |

v == () | n | pack(T,v) asJa.7 | foldya.+v | £ | v[T]

H:=.|HZ£—h

h == A[la](xz7).t | (vy...,Vv)

(H | e) — (H’ | €’) |Reduction Relation (selected cases)

(H](t,H)) > ((H,H) | 1) dom(H) N dom(H’) = ¢
(HE[E[r/]v]) — (H | E[t[7’/a][v/X]]) H(£) = Ala](x:7).t
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T = o | unit | int | Ja.7 | pa.T Type
| ref (7,...,7) | box

P = V[A]l{x;0} | (7,...,T) Heap value type

X = -| x,r:T Register file type

o =(|e|T:o Stack type

q == ¢€|r|i]| end[T;0o] Return marker

A = .| A,a| A, | A,e Type variable environment

w =T |0o|q Instantiation of type variable

r uw=1rl|r2| -+ | 7| ra Register

h := code[Al{x;0}eI | (w,...,w) Heap value

w = () | n| €| pack{(T,w) as da.T Word value
| foldpa.r w | wlw]

u == w | r | pack(r,u) as Ja.T Small value
| foldpa.-u | u|w]

I = ;1| jmpu | retq,r Instruction sequence
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aop ::

@

aoprg,rs,u | bnzr,u | mvrg,u Instruction
rallocrg,n | ballocrg,n | ldrg,rsfi] | strqli], rs
unpack (,rq) u | unfoldrg,u | sallocn | sfreen

sldrg,i | ssti,rs

add | sub | mult Arithmetic operation
(I,H) | I Component
retq,r Term value
(Eg, ) Evaluation context
[-] Instruction evaluation context
- | H, £ — h Heap or Heap fragment
- | Ryr — w Register file
nil | w:: S Stack
(H,R,S:0) Memory
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Typing TAL Components

reg-file  return
typing  marker

P:A:x;o;:qFe:T;0’

type
heap €nviron stack
typing type
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result
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Well-typed Components in T

U A;x;o;qFe: ;0

v HH: ¥, boxheap(We)
ret-type(q, x, o) = ;0" (P, We); A;x;o;q k1

¥;A;x;0;9- (IL,H): 7507

Thursday, October 17, 13



Well-typed Instruction Sequence

W:A:x;o;qF 1| whereq # €

¥;Asx;osqb e = ASxe’iql U A Y 0’ q
ViAo gl

x(r) = box V[].{r": 7; O'}q, x(') =71
U:A:x;o;rFretr,r’

x(r) =7
U:A;x;o;end|T;0| Fretend|T; 0], 1
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Jmp

To next code block within component:

W A;x Fu:box V[].{x'; 01} AFx <X
W, A;x;0;qF jmpu

Call subroutine:
- must protect current return addr, by storing it in tail part

of stack that is parametrically hidden from subroutine

U A;x Fu:box V[, €].{x; 5} ret-addr-type(q, x,0) = V|| {r: 7; 6"}
Aboo  AFV]{xloo/li+k—i/clsoloo/Clli+k—i/d}0 Ak x < xloo/Cli+k—i/e

° ° A~/ / /
O =Tg -+ Tji O G=Tp:-rTyi( j<i ' =TTy i

W A;x;0;iF jmpufog, itk—j]
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Instruction Typing

Instructions must not clobber return address:

U A;xkFu:r q # rq
U:A;x;o;qFnvrg,u= A;x[rq: 7];0;q

Can move return address elsewhere:

U A:xFu:t

U A;x;0;rs Fmvrg,rs = A;x[rq: T];0;rg
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Equivalence of T Components: Tricky!

Logical relations: related inputs to related outputs
V[[Tl — 7'2]] — {(W, )\x.el, )\x.el) ‘ . }

HV[V[A].{x; 0} = {(W,code[A]{x;0}911,code[A]l{x;0}13)]| ...}
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Code Generation: Ato T

7 Type translation

box V[a].(T1,..., ™) — 7T
= box V[a, ¢, €].
{ra:box V[].{r1: 7T ; ¢}s;
TnT SEIIEEY TlT 2 C R
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Code Generation: Ato T

-+

T

Type translation

box V[a].(T1,..., ™) — 7T

= box V[a, ¢, €].
{ra:box V[].{r1: 7T ; ¢}s;

’TnT TERERT TlT 2 C R

V. A:THe:Tm~ e

W7 AT o7 s esend[T75T7
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Interoperabllity: A and T

\IJ;A;F;-;O';end[T<T>;a" I—e:T<T>;o"
U A I x; o;out ;o"
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Interoperabllity: A and T

AT 0o; end[T<T>; o'+ e: T<T>;o"

U:A:T:v:o;out - "ATe: ;0
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Interoperabllity: A and T

Thursday, October 17, 13

AT o end[T<T>; o'l F e: T<T>;0',
U:A:T:v:o;out - "ATe: ;0

TAT(M.MLR(r), M) = (v, M)

(M |

e

ATret end[T<T>;0'],r — (M | E]v])



Interoperabllity: A and T

AT o end[T<T>; o'l F e: T<T>;O',
U:A:T:v:o;out - "ATe: ;0

TAT(M.M.R(r), M) = (v, M)

(M | E[TATret end [T o], r]) — (M’ | E[v])
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Interoperabllity: A and T

Lt = ---| import rd,

TA" (v, M) = (w, M")
(M | Elimport rq, 7T AT v; I) — (M’ | Elnvrg, w;I])

/ / /
O =T+ Tj:i0p o =T, i T 3t 00

UA G x; (o e --- iy Q)sout e (g i i1y 22 () gq=1i>jorq:-

U As T s 05q - dimport rg, 7°T A" e = A; (rg: TT); o’;inc(q, k—j)
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Interoperabllity: A and T

t = ---| importrq,? T ATe

TA" (v, M) = (w, M")
(M | Elimport rq, 7T AT v; I) — (M’ | Elnvrg, w;I])

/ / /
O =T+ Tj:i0p o =T, i T 3t 00

UA G x; (o e --- iy Q)sout e (g i i1y 22 () gq=1i>jorq:-

U As T s 05q - dimport rg, 7°T A" e = A; (rg: TT); o’;inc(q, k—j)
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Other Issues

Contexts of FCAT

* plugging T context with a component is subtle

C = (CI,H) ‘ (I, CH)
Cy =[] | ¢;Cy | import rq,7TA™ C;1
Cy :=Cyg,2+— h | H, £ — code[A]{x;0}9.C;

Logical Relation for FCAT .... nontrivial!
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Stepping Back... where’s this going?

ML F* C
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Stepping Back... where’s this going?
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Stepping Back... where’s this going?

ML F* C

breserve preserve all nothing to
barametricity? equivalences preserve?

simply ™,

typed \‘\dependently typed :.' untyped Dependent
TAL with
gradual typing

It’s about principled language interoperability!
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Conclusions

Correct compilation of components, not just whole programs

* it’s a language interoperability problem!

Multi-language approach:

* works for multi-pass compilers

* supports linking with target code of arbitrary provenance
* an opportunity to study principled interoperability

* interoperability semantics provides a specification of when
source and target are related

* but have to get all the languages to fit together!
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Questions?




