Verifying Compilers using
Multi-Language Semantics

Amal Ahmed (with James T. Perconti)
Northeastern University

Semantics-preserving compilation

S«?t —> S’&Tit

compiles to same meaning

Problem: Closed-World Assumption

Correct compilation guarantee only applies to
whole programs!

Ps
P

.
;
_

Thursday, October 17, 13

Problem: Closed-World Assumption

Correct compilation guarantee only applies to
whole programs!

Ps

low-level
libraries

Py

.
;
_

Thursday, October 17, 13

Problem: Closed-World Assumption

Correct compilation guarantee only applies to

whole programs!

Ps

Py

.
;
_

Thursday, October 17, 13

from
dlfferent

compiler &
.1 ’ ang

Why Whole Programs?

S ~> T > S =1

T

expressed how!

Why Whole Programs?

PSWPt >P3%Pt
T

expressed how!

CompCert

Pi— ...+— P+ P

l

Po— ...— P/ —* P

Correct Compilation of Components?

€g ~ €T

T

expressed how!

Correct Compilation of Components?

g ~ e
" KN
i expressed how!
€t ’
' j et

Correct Compilation of Components?

g =~ €
e; T
i expressed how!
€t ’
r j et

Correct Compilation of Components?

Need a semantics
e , of source-target
e, interoperability:
i S Tet TS €
€t ’
r j et

Correct Compilation of Components?

Need a semantics
e, r of source-target
interoperability:
STe P 4

/
t
S Tet TS Cq

€t ’
r jet

Correct Compilation of Components?
/
t

TS (es (STe)

STe
%ctx et et
€t ’
' j et

Correct Compilation of Components

Our Approach (multi-pass compiler)

Our Approach (multi-pass compiler)

‘@

Our Approach (multi-pass compiler)

Our Approach (multi-pass compiler)

Our Approach (multi-pass compiler)

Compiler Correctness

eS‘

€1

s ~ STe;,

i tha: TT et

Our Approach

Compiler Correctness

eS:

s ~ STe;,

€1

i o A ~ctx T et

Thursday, October

Our Approach

Compiler Correctness

eS:

i €g S SZGI

L

\f/ SIQI ~ClT SI(ITGT)

h

Thursday, October 17, 13

Our Approach

Compiler Correctness

es‘

i €g S SZGI

L

\f/ SIQI ~ClT SI(ITGT)

h

€g S SITGT

Thursday, October 17, 13

Our Compiler: System F to TAL

i Closure Conversion T

I
A

C

i Allocation T
S .
i Code Generation T

er

Thursday, October 17, 13

Combined language FCAT

e Boundaries mediate between

- 7&7° &t T&TT

Combined language FCAT

e Boundaries mediate between
A T
- T&T & T&T

* Operational semantics
CFe—*CFv+—

TFCe —* TFCv —— v

Combined language FCAT

Boundaries mediate between
A T
- T&T & T&T

Operational semantics
CFe—*CFv+—

TFCe —* TFCv —— v

Boundary cancellation

TFCCF e =T e : 1
CF "FCe =" & : T

Challenges / Roadmap for rest of talk

Thursday, October 17, 13

F+C: Interoperability semantics
with type abstraction in both
languages

C+A: Interoperability when
compiler pass allocates code &
tuples on heap

A+T: What is e? What is v!
How to define contextual
equiv. for TAL components!?
How to define logical relation?

Challenges / Roadmap for rest of talk

F+C: Interoperability semantics
with type abstraction in both
languages

C+A: Interoperability when
compiler pass allocates code &
tuples on heap

A+T: What is e? What is v!
How to define contextual
equiv. for TAL components!?
How to define logical relation?

Thursday, October 17, 13

Abstract Types & Interoperability

Add new type L(~) & new value form"{"'FC

Add new type || & define |al[r/a] =7

Requires novel admissibility relations in logical relation.

(draft paper: www.ccs.neu.edu/home/amal/voc.pdf)

Thursday, October 17, 13

Challenges / Roadmap

Thursday, October 17, 13

F+C: Interoperability semantics
with type abstraction in both
languages

C+A: Interoperability when
compiler pass allocates code &
tuples on heap

A+T: What is e? What is v!
How to define contextual
equiv. for TAL components!?
How to define logical relation?

Challenges / Roadmap

Thursday, October 17, 13

F+C: Interoperability semantics
with type abstraction in both
languages

C+A: Interoperability when
compiler pass allocates code &
tuples on heap

A+T: What is e? What is v!
How to define contextual
equiv. for TAL components!?
How to define logical relation?

7 2= «a | unit | int | da.7 | pa.T | box

Y =Vieaol.(T)—> 7| (Ty...,T)

e = (t,H) | t

t i=x| (O |n|tpt|if0ttt | £ | t[]t | t[T]
| pack(T,t) as Ja.7 | unpack (o, x) = tint | fold,o.+t
| unfoldt | balloc (t) | read[i] t

p =+ | — |

v == () | n | pack(T,v) asJa.7 | foldya.+v | £ | v[T]

H:=.|HZ£—h

h == A[la](xz7).t | (vy...,Vv)

(H | e) — (H’ | €’) |Reduction Relation (selected cases)

(H](t,H)) > ((H,H) | 1) dom(H) N dom(H’) = ¢
(HE[E[r/]v]) — (H | E[t[7’/a][v/X]]) H(£) = Ala](x:7).t

Thursday, October 17, 13

T = o | unit | int | Ja.7 | pa.T Type
| ref (7,...,7) | box

P = V[A]l{x;0} | (7,...,T) Heap value type

X = -| x,r:T Register file type

o =(|e|T:o Stack type

q == ¢€|r|i]| end[T;0o] Return marker

A = .| A,a| A, | A,e Type variable environment

w =T |0o|q Instantiation of type variable

r uw=1rl|r2| -+ | 7| ra Register

h := code[Al{x;0}eI | (w,...,w) Heap value

w = () | n| €| pack{(T,w) as da.T Word value
| foldpa.r w | wlw]

u == w | r | pack(r,u) as Ja.T Small value
| foldpa.-u | u|w]

I = ;1| jmpu | retq,r Instruction sequence

Thursday, October 17, 13

aop ::

@

aoprg,rs,u | bnzr,u | mvrg,u Instruction
rallocrg,n | ballocrg,n | ldrg,rsfi] | strqli], rs
unpack (,rq) u | unfoldrg,u | sallocn | sfreen

sldrg,i | ssti,rs

add | sub | mult Arithmetic operation
(I,H) | I Component
retq,r Term value
(Eg,) Evaluation context
[-] Instruction evaluation context
- | H, £ — h Heap or Heap fragment
- | Ryr — w Register file
nil | w:: S Stack
(H,R,S:0) Memory

Thursday, October 17, 13

Typing TAL Components

reg-file return
typing marker

P:A:x;o;:qFe:T;0’

type
heap €nviron stack
typing type

Thursday, October 17, 13

result
type

stack type
on return

Well-typed Components in T

U A;x;o;qFe: ;0

v HH: ¥, boxheap(We)
ret-type(q, x, o) = ;0" (P, We); A;x;o;q k1

¥;A;x;0;9- (IL,H): 7507

Thursday, October 17, 13

Well-typed Instruction Sequence

W:A:x;o;qF 1| whereq # €

¥;Asx;osqb e = ASxe’iql U A Y 0’ q
ViAo gl

x(r) = box V[].{r": 7; O'}q, x(') =71
U:A:x;o;rFretr,r’

x(r) =7
U:A;x;o;end|T;0| Fretend|T; 0], 1

Thursday, October 17, 13

Jmp

To next code block within component:

W A;x Fu:box V[].{x'; 01} AFx <X
W, A;x;0;qF jmpu

Call subroutine:
- must protect current return addr, by storing it in tail part

of stack that is parametrically hidden from subroutine

U A;x Fu:box V[, €].{x; 5} ret-addr-type(q, x,0) = V|| {r: 7; 6"}
Aboo AFV]{xloo/li+k—i/clsoloo/Clli+k—i/d}0 Ak x < xloo/Cli+k—i/e

° ° A~/ / /
O =Tg -+ Tji O G=Tp:-rTyi(j<i ' =TTy i

W A;x;0;iF jmpufog, itk—j]

Thursday, October 17, 13

Instruction Typing

Instructions must not clobber return address:

U A;xkFu:r q # rq
U:A;x;o;qFnvrg,u= A;x[rq: 7];0;q

Can move return address elsewhere:

U A:xFu:t

U A;x;0;rs Fmvrg,rs = A;x[rq: T];0;rg

Thursday, October 17, 13

Equivalence of T Components: Tricky!

Logical relations: related inputs to related outputs
V[[Tl — 7'2]] — {(W,)\x.el,)\x.el) ‘ . }

HV[V[A].{x; 0} = {(W,code[A]{x;0}911,code[A]l{x;0}13)]| ...}

Thursday, October 17, 13

Equivalence of T Components: Tricky!

Logical relations: related inputs to related outputs
V[[Tl — 7'2]] — {(W,)\x.el,)\x.el) ‘ . }

HV[V[A].{x; 0} = {(W,code[A]{x;0}911,code[A]l{x;0}13)]| ...}

Thursday, October 17, 13

Equivalence of T Components: Tricky!

Logical relations: related inputs to related outputs
V|m — m] ={(W, Ax.e1, \x.e1) | ...}

HV[V[A]{x;0}9] = {(W,code[A]{x; 0}9.11,code[A]{x;0}9.12)] ...}

related inputs —

| |
related outputs— —>

B - code[A]{x;o}9.I

Thursday, October 17, 13

Equivalence of T Components: Tricky!

Logical relations: related inputs to related outputs
V|m — m] = {(W, Ax.e1, Ax.e1) | ...}

HV[V[A]{x;0}9] = {(W,code[A]{x; 0}9.11,code[A]{x;0}9.12)] ...}

€2

€1
related inputs — - — -

Thursday, October 17, 13

Equivalence of T Components: Tricky!

Logical relations: related inputs to related outputs
V|m — m] = {(W, Ax.e1, Ax.e1) | ...}

HV[V[A]{x;0}9] = {(W,code[A]{x; 0}9.11,code[A]{x;0}9.12)] ...}

related inputs —

related outputs— -

Thursday, October 17, 13

Equivalence of T Components: Tricky!

Logical relations: related inputs to related outputs
V|m — m] = {(W, Ax.e1, Ax.e1) | ...}

HV[V[A]{x;0}9] = {(W,code[A]{x; 0}9.11,code[A]{x;0}9.12)] ...}

€1
related inputs — -

related outputs— -

Thursday, October 17, 13

Code Generation: Ato T

7 Type translation

box V[a].(T1,..., ™) — 7T
= box V[a, ¢, €].
{ra:box V[].{r1: 7T ; ¢}s;
TnT SEIIEEY TlT 2 C R

Thursday, October 17, 13

Code Generation: Ato T

-+

T

Type translation

box V[a].(T1,..., ™) — 7T

= box V[a, ¢, €].
{ra:box V[].{r1: 7T ; ¢}s;

’TnT TERERT TlT 2 C R

V. A:THe:Tm~ e

W7 AT o7 s esend[T75T7

Thursday, October 17, 13

ol e:T

T; rT

Interoperabllity: A and T

\IJ;A;F;-;O';end[T<T>;a" I—e:T<T>;o"
U A I x; o;out ;o"

Thursday, October 17, 13

Interoperabllity: A and T

AT 0o; end[T<T>; o'+ e: T<T>;o"

U:A:T:v:o;out - "ATe: ;0

Thursday, October 17, 13

Interoperabllity: A and T

Thursday, October 17, 13

AT o end[T<T>; o'l F e: T<T>;0',
U:A:T:v:o;out - "ATe: ;0

TAT(M.MLR(r), M) = (v, M)

(M |

e

ATret end[T<T>;0'],r — (M | E]v])

Interoperabllity: A and T

AT o end[T<T>; o'l F e: T<T>;O',
U:A:T:v:o;out - "ATe: ;0

TAT(M.M.R(r), M) = (v, M)

(M | E[TATret end [T o], r]) — (M’ | E[v])

Thursday, October 17, 13

Interoperabllity: A and T

Lt = ---| import rd,

TA" (v, M) = (w, M")
(M | Elimport rq, 7T AT v; I) — (M’ | Elnvrg, w;I])

/ / /
O =T+ Tj:i0p o =T, i T 3t 00

UA G x; (o e --- iy Q)sout e (g i i1y 22 () gq=1i>jorq:-

U As T s 05q - dimport rg, 7°T A" e = A; (rg: TT); o’;inc(q, k—j)

Thursday, October 17, 13

Interoperabllity: A and T

t = ---| importrq,? T ATe

TA" (v, M) = (w, M")
(M | Elimport rq, 7T AT v; I) — (M’ | Elnvrg, w;I])

/ / /
O =T+ Tj:i0p o =T, i T 3t 00

UA G x; (o e --- iy Q)sout e (g i i1y 22 () gq=1i>jorq:-

U As T s 05q - dimport rg, 7°T A" e = A; (rg: TT); o’;inc(q, k—j)

Thursday, October 17, 13

Other Issues

Contexts of FCAT

* plugging T context with a component is subtle

C = (CI,H) ‘ (I, CH)
Cy =[] | ¢;Cy | import rq,7TA™ C;1
Cy :=Cyg,2+— h | H, £ — code[A]{x;0}9.C;

Logical Relation for FCAT nontrivial!

Thursday, October 17, 13

Stepping Back... where’s this going?

ML F* C

Stepping Back... where’s this going?

ML F* C

E—

Stepping Back... where’s this going?

ML F* C

simply ™, .
typed dependently typed ; untyped

Dependent
TAL with

gradual typing

Stepping Back... where’s this going?

ML F* C

preserve
barametricity?

simply ™,

. dependently typed * tybed
typed %, 9P rop §unpe Dependent

L)

TAL with
gradual typing

Thursday, October 17, 13

Stepping Back... where’s this going?

ML F* C

preserve all
equivalences

preserve
barametricity?

simply ™,

. dependently typed * tybed
typed %, 9P rop §unpe Dependent

L)

TAL with
gradual typing

Thursday, October 17, 13

Stepping Back... where’s this going?

ML F* C

breserve preserve all nothing to
barametricity? equivalences preserve?

simply pendently typed d
“ €pEnden 7 tvbe
typed -, e Funp Dependent

| TAL with
gradual typing

Thursday, October 17, 13

Stepping Back... where’s this going?

ML F* C

breserve preserve all nothing to
barametricity? equivalences preserve?

simply ™,

typed \‘\dependently typed :.' untyped Dependent
TAL with
gradual typing

It’s about principled language interoperability!

Thursday, October 17, 13

Conclusions

Correct compilation of components, not just whole programs

* it’s a language interoperability problem!

Multi-language approach:

* works for multi-pass compilers

* supports linking with target code of arbitrary provenance
* an opportunity to study principled interoperability

* interoperability semantics provides a specification of when
source and target are related

* but have to get all the languages to fit together!

Thursday, October 17, 13

Questions?

