
Verifying Compilers using
Multi-Language Semantics

Amal Ahmed (with James T. Perconti)
Northeastern University

Thursday, October 17, 13

Semantics-preserving compilation

s! t =⇒ s ≈ t

compiles to same meaning

Thursday, October 17, 13

Problem: Closed-World Assumption
Correct compilation guarantee only applies to
whole programs!

Ps

Pt

!
Thursday, October 17, 13

Problem: Closed-World Assumption
Correct compilation guarantee only applies to
whole programs!

Ps

Pt

!

et

es

!

low-level
libraries

Thursday, October 17, 13

Problem: Closed-World Assumption
Correct compilation guarantee only applies to
whole programs!

Ps

Pt

!

et

es

!
from

different
compiler &

source lang.

!

Thursday, October 17, 13

Why Whole Programs?

s! t =⇒ s ≈ t

expressed how?

Thursday, October 17, 13

CompCert

Ps ! Pt =⇒ Ps ≈ Pt

Why Whole Programs?

expressed how?

Pt !−→ . . . !−→ P j
t !−→∗ P j+n

t !−→ . . .

Ps !−→ . . . !−→ P i
s !−→ P i+1

s !−→ . . .

Thursday, October 17, 13

Correct Compilation of Components?

es

et

!

eS ≈ eT

expressed how?

Thursday, October 17, 13

Correct Compilation of Components?

es

et e′t

!

eS ≈ eT

expressed how?

Thursday, October 17, 13

Correct Compilation of Components?

es

et e′t

!

eS ≈ eT

expressed how?

e′t

Thursday, October 17, 13

ST et

Correct Compilation of Components?

es

et e′t

! e′t

Need a semantics
of source-target
interoperability:

T Ses

Thursday, October 17, 13

ST et

Correct Compilation of Components?

es

et e′t

!

Need a semantics
of source-target
interoperability:

T Ses
ST e′t

Thursday, October 17, 13

T S(es (ST e′t))
≈ctx et e′t

Correct Compilation of Components?

es

et e′t

! ST e′t

Thursday, October 17, 13

Correct Compilation of Components

es

et

! eS ≈ eT
eS ≈ctx ST eT

def
=

Thursday, October 17, 13

Our Approach (multi-pass compiler)

S

I

T

Thursday, October 17, 13

SIT

Our Approach (multi-pass compiler)

S

I

T

Thursday, October 17, 13

SIT

Our Approach (multi-pass compiler)

S

I

T

SIeIISeS

Thursday, October 17, 13

SIT

Our Approach (multi-pass compiler)

S

I

T

SIeIISeS

IT eTT IeI

Thursday, October 17, 13

SIT

Our Approach (multi-pass compiler)

S

I

T

SIeIISeS

IT eTT IeI

!
!

eT

eS

eI

eS ≈ctxSIeI

eI ≈ctxIT eT

Compiler Correctness

Thursday, October 17, 13

Our Approach

!
!

eT

eS

eI

eS ≈ctxSIeI

eI ≈ctxIT eT

Compiler Correctness

Thursday, October 17, 13

Our Approach

!
!

eT

eS

eI

eS ≈ctxSIeI

Compiler Correctness

SIeI ≈ctxSI(IT eT)

Thursday, October 17, 13

Our Approach

!
!

eT

eS

eI

eS ≈ctxSIeI

Compiler Correctness

SIeI ≈ctxSI(IT eT)
}eS ≈ctxSIT eT

Thursday, October 17, 13

Our Compiler: System F to TAL

!
!

!

Closure Conversion

Allocation

Code Generation

eF

eC

eA

eT

τC

τA

τT

Thursday, October 17, 13

Combined language FCAT

• Boundaries mediate between
- & & &

• Operational semantics

• Boundary cancellation

FCAT

F

C

A

T

τFCeCFτe

ACτe

T Aτe

τCAe

τAT e

τC τA τTτ τ τ

CFτe !−→∗ CFτv !−→ v
τFCe !−→∗ τFCv !−→ v

τFCCFτe ≈ctx e : τ

CFτ τFCe ≈ctx e : τC

Thursday, October 17, 13

Combined language FCAT

• Boundaries mediate between
- & & &

• Operational semantics

• Boundary cancellation

FCAT

F

C

A

T

τFCeCFτe

ACτe

T Aτe

τCAe

τAT e

τC τA τTτ τ τ

CFτe !−→∗ CFτv !−→ v
τFCe !−→∗ τFCv !−→ v

τFCCFτe ≈ctx e : τ

CFτ τFCe ≈ctx e : τC

Thursday, October 17, 13

Combined language FCAT

• Boundaries mediate between
- & & &

• Operational semantics

• Boundary cancellation

FCAT

F

C

A

T

τFCeCFτe

ACτe

T Aτe

τCAe

τAT e

τC τA τTτ τ τ

CFτe !−→∗ CFτv !−→ v
τFCe !−→∗ τFCv !−→ v

τFCCFτe ≈ctx e : τ

CFτ τFCe ≈ctx e : τC

Thursday, October 17, 13

Challenges / Roadmap for rest of talk
F+C: Interoperability semantics
with type abstraction in both
languages

C+A: Interoperability when
compiler pass allocates code &
tuples on heap

A+T: What is ? What is ?
How to define contextual
equiv. for TAL components?
How to define logical relation?

FCAT

F

C

A

T

τFCeCFτe

ACτe

T Aτe

τCAe

τAT e
e v

Thursday, October 17, 13

Challenges / Roadmap for rest of talk
F+C: Interoperability semantics
with type abstraction in both
languages

C+A: Interoperability when
compiler pass allocates code &
tuples on heap

A+T: What is ? What is ?
How to define contextual
equiv. for TAL components?
How to define logical relation?

FCAT

F

C

A

T

τFCeCFτe

ACτe

T Aτe

τCAe

τAT e
e v

Thursday, October 17, 13

Abstract Types & Interoperability

Requires novel admissibility relations in logical relation.

(draft paper: www.ccs.neu.edu/home/amal/voc.pdf)

 Add new type & new value form L〈τ 〉 L〈τ〉FCv

 Add new type & define!α" !α"[τ/α] = τ 〈C〉

Thursday, October 17, 13

Challenges / Roadmap
F+C: Interoperability semantics
with type abstraction in both
languages

C+A: Interoperability when
compiler pass allocates code &
tuples on heap

A+T: What is ? What is ?
How to define contextual
equiv. for TAL components?
How to define logical relation?

FCAT

F

C

A

T

τFCeCFτe

ACτe

T Aτe

τCAe

τAT e
e v

Thursday, October 17, 13

Challenges / Roadmap
F+C: Interoperability semantics
with type abstraction in both
languages

C+A: Interoperability when
compiler pass allocates code &
tuples on heap

A+T: What is ? What is ?
How to define contextual
equiv. for TAL components?
How to define logical relation?

FCAT

F

C

A

T

τFCeCFτe

ACτe

T Aτe

τCAe

τAT e
e v

Thursday, October 17, 13

A

⌧ ::= ↵ | unit | int | 9↵.⌧ | µ↵.⌧ | box

 ::= 8[↵].(⌧)! ⌧ | h⌧, . . . , ⌧i
e ::= (t,H) | t

t ::= x | () | n | t p t | if0 t t t | ` | t [] t | t[⌧]

| packh⌧,ti as 9↵.⌧ | unpack h↵, xi = t in t | foldµ↵.⌧ t

| unfold t | balloc hti | read[i] t

p ::= + | � | ⇤
v ::= () | n | packh⌧,vi as 9↵.⌧ | foldµ↵.⌧ v | ` | v[⌧]

E ::= (Et, ·)
Et ::= [·] | . . . | balloc hv, Et, ti | read[i] Et

H ::= · | H, ` 7! h

h ::= �[↵](x : ⌧).t | hv, . . . , vi
hH | ei 7�! hH0 | e0i Reduction Relation (selected cases)

hH | (t,H0)i 7�! h(H,H0) | ti dom(H) \ dom(H0
) = ;

hH | E[` [⌧ 0] v]i 7�! hH | E[t[⌧ 0/↵][v/x]]i H(`) = �[↵](x : ⌧).t

 ` h : where ::= · | , ` :

 ` H : 0 where dom() \ dom(0
) = ;

 ;�; � ` e : ⌧ where � ::= · | �,↵ and � ::= · | �, x : ⌧

 ` H : 0 (, 0);�; � ` t : ⌧

 ;�; � ` (t,H) : ⌧
. . .

 ;�; � ` t : ⌧

 ;�; � ` balloc hti : box h⌧i
 ;�; � ` t : box h⌧0, . . . ⌧i . . . , ⌧ni

 ;�; � ` read[i] t : ⌧i

⌧A Type Translation

↵A
= ↵ 8[↵].(⌧)! ⌧ 0A

= box 8[↵].(⌧A)! ⌧ 0A

unitA = unit 9↵.⌧A = 9↵.⌧A

intA = int µ↵.⌧A = µ↵.⌧A

h⌧1, . . . , ⌧niA = box h(⌧1A), . . . (⌧nA)i

�;�;` e : ⌧ (t,H :) where �;� ` e : ⌧ , · ` H : , and
·;�A

;�A ` (t,H) : ⌧A

Figure 3: A (top) & translation from C to A (bottom)

3. From C to A: Allocation
The second compiler pass makes allocation of tuples and closures
explicit. Figure 3 presents the syntax of types and terms in language
A, the target of our allocation pass. We use ⌧ for the types of values
that will fit into a register (after type erasure) and for types of
heap values h (i.e., functions and tuples) which may be of arbitrary
size. A includes immutable references of type box . The term
balloc hti allocates a new location ` in the heap H and initializes
it to the given tuple, while read[i] ` reads the i-th value in the tuple
(of length n) stored at `, assuming 0  i < n.

Components e in A always contain a term t, and may also
contain a heap fragment H. Heap fragments are assigned heap
types . A heap fragment may reference locations that are to be
linked in by another component, so the type judgment ` H : 0

includes an external heap type as an environment () as well as
the type assigned to a heap fragment (0). These two heap types
must map disjoint sets of locations to types ⌧ . Each heap value
within H must typecheck under the union of the two heap types
(, 0). The term part t of a component (t,H) that has a heap
fragment may also reference both external locations and locations
bound by H, as enforced by the first type rule shown in Figure 3
for the component judgment ;�;� ` e : ⌧ . Evaluation contexts
have two layers, matching the structure of components: contexts
E expect a component e, and term contexts Et expect a term t.
Terms are plugged into term contexts in the obvious way. The plug
function for a component-level evaluation context E = (Et, ·) is

⌧ ::= · · · | Lh⌧i
t ::= · · · | ⌧CAe

v ::= · · · | Lh⌧iCAv

E ::= · · · | ⌧CAE

⌧ ::= · · · | d↵e | d↵e
t ::= · · · | AC⌧ e
Et ::= · · · | AC⌧E

⌧ ::= · · · | ⌧
e ::= · · · | e

v ::= · · · | v

E ::= · · · | E

M ::= H

 ::=

� ::= · · · | �,↵

� ::= · · · | �, x : ⌧

⌧ hAi Operational Type Translation

8[↵].(⌧)! ⌧ 0hAi
= box 8[↵].(⌧ hAi[↵/d↵e])! ⌧ 0hAi[↵/d↵e]

↵hAi
= d↵e . . . Lh⌧ihAi

= ⌧ d↵ehAi
= d↵e

Type Substitution: d↵e[⌧/↵] = (⌧hCi)hAi d↵e[⌧/↵] = ⌧ hAi

 ;�;� ` e : ⌧ Include A rules and add to existing rules

 ;�;� ` e : ⌧ hAi

 ;�;� ` ⌧CAe : ⌧

 ;�;� ` e : ⌧

 ;�;� ` AC⌧ e : ⌧ hAi

AC⌧
(v,M) = (v,M 0

) Value Translation (selected cases)

ACunit
((),M) = ((),M)

AC8[↵].(⌧)! ⌧ 0
(v,M) = (`, (M, ` 7! h))

where h = �[↵](x : ⌧ hAi[↵/d↵e]).

AC⌧
0[Lh↵i/↵]v [Lh↵i] ⌧ [Lh↵i/↵]CAx

ACh⌧i
(hvi,M1) = (`, (Mn+1, ` 7! hvi))

where AC⌧i
(vi,Mi) = (vi,Mi+1)

⌧CA(v,M) = (v,M 0
) Value Translation (selected cases)

unitCA((),M) = ((),M)

8[↵].(⌧)! ⌧ 0
CA(v,M) = (�[↵](x : ⌧).⌧

0
CAv [d↵e]AC⌧x,M)

h⌧iCA(`,M1) = (hvi,Mn+1)

where M1(`) = hvi and ⌧iCA(vi,Mi) = (vi,Mi+1)

hM | ei 7�! hM 0 | e0i Lift FC rules to new config.; replace E with E

AC⌧
(v,M) = (v,M 0

)

hM |E[AC⌧v]i 7�! hM 0 |E[v]i

⌧CA(v,M) = (v,M 0
) ⌧ 6= Lh⌧i

hM |E[

⌧CAv]i 7�! hM 0 |E[v]i

Figure 4: FCA multi-language system (extends Figures 2 and 3)

defined as follows:
(Et, ·)[t] = Et[t] (Et, ·)[(t,H)] = (Et[t],H)

The reduction relation for A uses configurations hH | ei. If e
typechecks under a heap type , then the external heap H should
satisfy · ` H : . If e contains a heap fragment, the first step in
evaluating it is to “load” it by merging its internal heap fragment
with the external heap. Then the term component can be evaluated
using standard reduction rules.

Compiling C to A is straightforward. The type translation only
inserts the box type constructor at function and tuple types. The
term translation generates heap values corresponding to functions
appearing in the C term, and replaces them with the locations
generated for these heap values.

C and A Interoperability The extensions to FC for interoperabil-
ity with A are given in Figure 4. They follow the same principles
discussed in the development of FC, with one major addition: since
functions and tuples in A are contained in the heap, we need access
to the program’s memory in the value translations. Thus, we pass

5 2012/11/7

⌧ ::= ↵ | unit | int | 9↵.⌧ | µ↵.⌧ | box

 ::= 8[↵].(⌧)! ⌧ | h⌧, . . . , ⌧i
e ::= (t,H) | t

t ::= x | () | n | t p t | if0 t t t | ` | t [] t | t[⌧]

| packh⌧,ti as 9↵.⌧ | unpack h↵, xi = t in t | foldµ↵.⌧ t

| unfold t | balloc hti | read[i] t

p ::= + | � | ⇤
v ::= () | n | packh⌧,vi as 9↵.⌧ | foldµ↵.⌧ v | ` | v[⌧]

E ::= (Et, ·)
Et ::= [·] | . . . | balloc hv, Et, ti | read[i] Et

H ::= · | H, ` 7! h

h ::= �[↵](x : ⌧).t | hv, . . . , vi
hH | ei 7�! hH0 | e0i Reduction Relation (selected cases)

hH | (t,H0)i 7�! h(H,H0) | ti dom(H) \ dom(H0
) = ;

hH | E[` [⌧ 0] v]i 7�! hH | E[t[⌧ 0/↵][v/x]]i H(`) = �[↵](x : ⌧).t

 ` h : where ::= · | , ` :

 ` H : 0 where dom() \ dom(0
) = ;

 ;�; � ` e : ⌧ where � ::= · | �,↵ and � ::= · | �, x : ⌧

 ` H : 0 (, 0);�; � ` t : ⌧

 ;�; � ` (t,H) : ⌧
. . .

 ;�; � ` t : ⌧

 ;�; � ` balloc hti : box h⌧i
 ;�; � ` t : box h⌧0, . . . ⌧i . . . , ⌧ni

 ;�; � ` read[i] t : ⌧i

⌧A Type Translation

↵A
= ↵ 8[↵].(⌧)! ⌧ 0A

= box 8[↵].(⌧A)! ⌧ 0A

unitA = unit 9↵.⌧A = 9↵.⌧A

intA = int µ↵.⌧A = µ↵.⌧A

h⌧1, . . . , ⌧niA = box h(⌧1A), . . . (⌧nA)i

�;�;` e : ⌧ (t,H :) where �;� ` e : ⌧ , · ` H : , and
·;�A

;�A ` (t,H) : ⌧A

Figure 3: A (top) & translation from C to A (bottom)

3. From C to A: Allocation
The second compiler pass makes allocation of tuples and closures
explicit. Figure 3 presents the syntax of types and terms in language
A, the target of our allocation pass. We use ⌧ for the types of values
that will fit into a register (after type erasure) and for types of
heap values h (i.e., functions and tuples) which may be of arbitrary
size. A includes immutable references of type box . The term
balloc hti allocates a new location ` in the heap H and initializes
it to the given tuple, while read[i] ` reads the i-th value in the tuple
(of length n) stored at `, assuming 0  i < n.

Components e in A always contain a term t, and may also
contain a heap fragment H. Heap fragments are assigned heap
types . A heap fragment may reference locations that are to be
linked in by another component, so the type judgment ` H : 0

includes an external heap type as an environment () as well as
the type assigned to a heap fragment (0). These two heap types
must map disjoint sets of locations to types ⌧ . Each heap value
within H must typecheck under the union of the two heap types
(, 0). The term part t of a component (t,H) that has a heap
fragment may also reference both external locations and locations
bound by H, as enforced by the first type rule shown in Figure 3
for the component judgment ;�;� ` e : ⌧ . Evaluation contexts
have two layers, matching the structure of components: contexts
E expect a component e, and term contexts Et expect a term t.
Terms are plugged into term contexts in the obvious way. The plug
function for a component-level evaluation context E = (Et, ·) is

⌧ ::= · · · | Lh⌧i
t ::= · · · | ⌧CAe

v ::= · · · | Lh⌧iCAv

E ::= · · · | ⌧CAE

⌧ ::= · · · | d↵e | d↵e
t ::= · · · | AC⌧ e
Et ::= · · · | AC⌧E

⌧ ::= · · · | ⌧
e ::= · · · | e

v ::= · · · | v

E ::= · · · | E

M ::= H

 ::=

� ::= · · · | �,↵

� ::= · · · | �, x : ⌧

⌧ hAi Operational Type Translation

8[↵].(⌧)! ⌧ 0hAi
= box 8[↵].(⌧ hAi[↵/d↵e])! ⌧ 0hAi[↵/d↵e]

↵hAi
= d↵e . . . Lh⌧ihAi

= ⌧ d↵ehAi
= d↵e

Type Substitution: d↵e[⌧/↵] = (⌧hCi)hAi d↵e[⌧/↵] = ⌧ hAi

 ;�;� ` e : ⌧ Include A rules and add to existing rules

 ;�;� ` e : ⌧ hAi

 ;�;� ` ⌧CAe : ⌧

 ;�;� ` e : ⌧

 ;�;� ` AC⌧ e : ⌧ hAi

AC⌧
(v,M) = (v,M 0

) Value Translation (selected cases)

ACunit
((),M) = ((),M)

AC8[↵].(⌧)! ⌧ 0
(v,M) = (`, (M, ` 7! h))

where h = �[↵](x : ⌧ hAi[↵/d↵e]).

AC⌧
0[Lh↵i/↵]v [Lh↵i] ⌧ [Lh↵i/↵]CAx

ACh⌧i
(hvi,M1) = (`, (Mn+1, ` 7! hvi))

where AC⌧i
(vi,Mi) = (vi,Mi+1)

⌧CA(v,M) = (v,M 0
) Value Translation (selected cases)

unitCA((),M) = ((),M)

8[↵].(⌧)! ⌧ 0
CA(v,M) = (�[↵](x : ⌧).⌧

0
CAv [d↵e]AC⌧x,M)

h⌧iCA(`,M1) = (hvi,Mn+1)

where M1(`) = hvi and ⌧iCA(vi,Mi) = (vi,Mi+1)

hM | ei 7�! hM 0 | e0i Lift FC rules to new config.; replace E with E

AC⌧
(v,M) = (v,M 0

)

hM |E[AC⌧v]i 7�! hM 0 |E[v]i

⌧CA(v,M) = (v,M 0
) ⌧ 6= Lh⌧i

hM |E[

⌧CAv]i 7�! hM 0 |E[v]i

Figure 4: FCA multi-language system (extends Figures 2 and 3)

defined as follows:
(Et, ·)[t] = Et[t] (Et, ·)[(t,H)] = (Et[t],H)

The reduction relation for A uses configurations hH | ei. If e
typechecks under a heap type , then the external heap H should
satisfy · ` H : . If e contains a heap fragment, the first step in
evaluating it is to “load” it by merging its internal heap fragment
with the external heap. Then the term component can be evaluated
using standard reduction rules.

Compiling C to A is straightforward. The type translation only
inserts the box type constructor at function and tuple types. The
term translation generates heap values corresponding to functions
appearing in the C term, and replaces them with the locations
generated for these heap values.

C and A Interoperability The extensions to FC for interoperabil-
ity with A are given in Figure 4. They follow the same principles
discussed in the development of FC, with one major addition: since
functions and tuples in A are contained in the heap, we need access
to the program’s memory in the value translations. Thus, we pass

5 2012/11/7

Thursday, October 17, 13

T
⌧ ::= ↵ | unit | int | 9↵.⌧ | µ↵.⌧ Type

| ref h⌧, . . . , ⌧i | box

 ::= 8[�].{�;�}q | h⌧, . . . , ⌧i Heap value type
� ::= · | �, r : ⌧ Register file type
� ::= ⇣ | • | ⌧ :: � Stack type
q ::= ✏ | r | i | end[⌧ ;�] Return marker
� ::= · | �,↵ | �, ⇣ | �, ✏ Type variable environment
! ::= ⌧ | � | q Instantiation of type variable
r ::= r1 | r2 | · · · | r7 | ra Register
h ::= code[�]{�;�}q.I | hw, . . . ,wi Heap value
w ::= () | n | ` | packh⌧,wi as 9↵.⌧ Word value

| foldµ↵.⌧ w | w[!]

u ::= w | r | packh⌧,ui as 9↵.⌧ Small value
| foldµ↵.⌧ u | u[!]

I ::= ◆; I | jmp u | ret q, r Instruction sequence
◆ ::= aop rd, rs, u | bnz r, u | mv rd, u Instruction

| ralloc rd, n | balloc rd, n | ld rd, rs[i] | st rd[i], rs
| unpack h↵, rdi u | unfold rd, u | salloc n | sfree n

| sld rd, i | sst i, rs
aop ::= add | sub | mult Arithmetic operation
e ::= (I,H) | I Component
v ::= ret q, r Term value
E ::= (EI, ·) Evaluation context
EI ::= [·] Instruction evaluation context
H ::= · | H, ` 7! h Heap or Heap fragment
R ::= · | R, r 7! w Register file
S ::= nil | w :: S Stack
M ::= (H,R, S:�) Memory
 ::= · | , ` : ⌫ Heap type
⌫ ::= ref | box Mutability flag

hM | ei 7�! hM0 | e0i Reduction Relation (selected cases)

h(H,R, S:�) | (I,H0)i 7�! h((H,H0),R, S:�) | Ii
dom(H) \ dom(H0

) = ;
h(H,R, S:�) | mv rd, u; Ii 7�! h(H,R[rd 7! R̂(u)], S:�) | Ii
h(H,R, S:�) | jmp ui 7�! h(H,R, S:�) | I[!/�]i

R̂(u) = `[!] and H(`) = code[�]{�;�}q.I

h(H,R, S:�) | ret r, r0i 7�! h(H,R, S:�) | I[!/�]i
R(r) = `[!] and H(`) = code[�]{�;�}q.I

Figure 5: Syntax and reduction relation for T

the current memory as an argument to the translation, and return
a memory that may have had additional locations allocated. Func-
tion and tuple values from C are translated into A by allocating
fresh memory each time, which is fine because our system does not
model space efficiency.

4. From A to T: Code Generation and TAL
Our target language T is a stack-based typed assembly language
whose design follows the work of Morrisett et al. [10, 11] in
many respects. However, in order to state the compiler correctness
theorem we want, it was necessary to augment this design with
several additional features, particularly in the type system.

The syntax of T is given in Figure 5. Like in A, we use ⌧ for the
types of word-sized values and for the types of heap values. T
has both mutable (ref) and immutable (box) tuples. The type of
a code block is 8[�].{�;�}q, and consists of a list of expected
type-level arguments �, a pair of preconditions in the form of a

register file type � and a stack type �, and a return marker q. The
return marker identifies which argument to a code block is its return
address: either the value in a particular register r or the value on the
stack at index i. A code block at the top level of a program, which
has no return address, will have a return marker of end[⌧ ;�],
indicating that if the program halts, then when it does, the stack
will have type � and a designated register will have type ⌧ . We
will show in our discussion of T’s type system how return markers
allow us to assign types to T components.

In addition to the usual type abstraction, a type in T can abstract
over the type of a stack tail using stack type variables ⇣, and over
the return marker of another code block using return marker type
variables ✏. It is convenient to define ! to range over the syntactic
categories ⌧ , �, q that can instantiate type variables ↵, ⇣, ✏,
respectively.

T has several classes of values: heap values h, like in A, are
code blocks and tuples stored in the heap. Word values w are those
values that can be stored in a register or an entry in a tuple. Small
values u are the values that can appear in most instructions: they
are like word values but can also reference registers.

Code in T consists of sequences I of instructions ◆ ending
with a jump. Our type system tracks calls and returns of semantic
“functions” (which can consist of any number of code blocks), and
so there are two flavors of jumps: the form jmp u is used to jump
to the next code block in the same function, or to call a subroutine.
The form ret q, r returns from a function: if the return marker q is
a register name r0, then we jump to the location contained in r0. If
q = end[⌧ ;�], then the machine halts. In both cases, the register
r holds the word value being returned.

Other instructions consist of arithmetic operations, a branch-
ing construct bnz r, u, a move instruction, operations to allocate
and initialize a mutable or immutable tuple (ralloc rd, n and
balloc rd, n, respectively), load and store instructions for tuples,
unpack and unfold instructions, and a set of instructions for man-
aging the stack.

T’s components e must contain an initial instruction sequence
I, and, like A components, may contain a heap fragment H, which
must only contain immutable heap values. Since assembly instruc-
tions fill the role held by terms in previous languages, we need a
notion of a “term value” v, for which we use the return instruction.
Evaluation contexts are tiered as in A, but are trivial until we later
add the contexts for language boundaries.

Finally, the memory M of a T program consists of a heap H, a
register file R, and a stack S. We also annotate S with its type �,
which will be convenient when we add embed T into FCAT.

The reduction relation, also shown in Figure 5, is defined on
configurations consisting of a memory and the current instruction
sequence being evaluated. It makes use of a metafunction R̂ that
traverses a small value u and replaces register names with the
contents of that register.

 ` H : 0 Well-Typed Heap Fragment
 ` R :� Well-Typed Register File
 ` S :� Well-Typed Stack
` M : (,�,�) Well-Typed Memory
 ;�;�;�;q ` e : ⌧ ;�0 Well-Typed Component
 ` h : Well-Typed Heap Value
 ;� ` w : ⌧ Well-Typed Word Value
 ;�;� ` u : ⌧ Well-Typed Small Value
 ;�;�;�;q ` I Well-Typed Instruction Sequence
 ;�;�;�;q ` ◆)�0

;�0
;�0

;q0 Well-Typed Instruction
Figure 6: Judgments in T type system (excludes well-formed types)

6 2012/11/7

Thursday, October 17, 13

T

⌧ ::= ↵ | unit | int | 9↵.⌧ | µ↵.⌧ Type
| ref h⌧, . . . , ⌧i | box

 ::= 8[�].{�;�}q | h⌧, . . . , ⌧i Heap value type
� ::= · | �, r : ⌧ Register file type
� ::= ⇣ | • | ⌧ :: � Stack type
q ::= ✏ | r | i | end[⌧ ;�] Return marker
� ::= · | �,↵ | �, ⇣ | �, ✏ Type variable environment
! ::= ⌧ | � | q Instantiation of type variable
r ::= r1 | r2 | · · · | r7 | ra Register
h ::= code[�]{�;�}q.I | hw, . . . ,wi Heap value
w ::= () | n | ` | packh⌧,wi as 9↵.⌧ Word value

| foldµ↵.⌧ w | w[!]

u ::= w | r | packh⌧,ui as 9↵.⌧ Small value
| foldµ↵.⌧ u | u[!]

I ::= ◆; I | jmp u | ret q, r Instruction sequence
◆ ::= aop rd, rs, u | bnz r, u | mv rd, u Instruction

| ralloc rd, n | balloc rd, n | ld rd, rs[i] | st rd[i], rs
| unpack h↵, rdi u | unfold rd, u | salloc n | sfree n

| sld rd, i | sst i, rs
aop ::= add | sub | mult Arithmetic operation
e ::= (I,H) | I Component
v ::= ret q, r Term value
E ::= (EI, ·) Evaluation context
EI ::= [·] Instruction evaluation context
H ::= · | H, ` 7! h Heap or Heap fragment
R ::= · | R, r 7! w Register file
S ::= nil | w :: S Stack
M ::= (H,R, S:�) Memory
 ::= · | , ` : ⌫ Heap type
⌫ ::= ref | box Mutability flag

hM | ei 7�! hM0 | e0i Reduction Relation (selected cases)

h(H,R, S:�) | (I,H0)i 7�! h((H,H0),R, S:�) | Ii
dom(H) \ dom(H0

) = ;
h(H,R, S:�) | mv rd, u; Ii 7�! h(H,R[rd 7! R̂(u)], S:�) | Ii
h(H,R, S:�) | jmp ui 7�! h(H,R, S:�) | I[!/�]i

R̂(u) = `[!] and H(`) = code[�]{�;�}q.I

h(H,R, S:�) | ret r, r0i 7�! h(H,R, S:�) | I[!/�]i
R(r) = `[!] and H(`) = code[�]{�;�}q.I

Figure 5: Syntax and reduction relation for T

the current memory as an argument to the translation, and return
a memory that may have had additional locations allocated. Func-
tion and tuple values from C are translated into A by allocating
fresh memory each time, which is fine because our system does not
model space efficiency.

4. From A to T: Code Generation and TAL
Our target language T is a stack-based typed assembly language
whose design follows the work of Morrisett et al. [10, 11] in
many respects. However, in order to state the compiler correctness
theorem we want, it was necessary to augment this design with
several additional features, particularly in the type system.

The syntax of T is given in Figure 5. Like in A, we use ⌧ for the
types of word-sized values and for the types of heap values. T
has both mutable (ref) and immutable (box) tuples. The type of
a code block is 8[�].{�;�}q, and consists of a list of expected
type-level arguments �, a pair of preconditions in the form of a

register file type � and a stack type �, and a return marker q. The
return marker identifies which argument to a code block is its return
address: either the value in a particular register r or the value on the
stack at index i. A code block at the top level of a program, which
has no return address, will have a return marker of end[⌧ ;�],
indicating that if the program halts, then when it does, the stack
will have type � and a designated register will have type ⌧ . We
will show in our discussion of T’s type system how return markers
allow us to assign types to T components.

In addition to the usual type abstraction, a type in T can abstract
over the type of a stack tail using stack type variables ⇣, and over
the return marker of another code block using return marker type
variables ✏. It is convenient to define ! to range over the syntactic
categories ⌧ , �, q that can instantiate type variables ↵, ⇣, ✏,
respectively.

T has several classes of values: heap values h, like in A, are
code blocks and tuples stored in the heap. Word values w are those
values that can be stored in a register or an entry in a tuple. Small
values u are the values that can appear in most instructions: they
are like word values but can also reference registers.

Code in T consists of sequences I of instructions ◆ ending
with a jump. Our type system tracks calls and returns of semantic
“functions” (which can consist of any number of code blocks), and
so there are two flavors of jumps: the form jmp u is used to jump
to the next code block in the same function, or to call a subroutine.
The form ret q, r returns from a function: if the return marker q is
a register name r0, then we jump to the location contained in r0. If
q = end[⌧ ;�], then the machine halts. In both cases, the register
r holds the word value being returned.

Other instructions consist of arithmetic operations, a branch-
ing construct bnz r, u, a move instruction, operations to allocate
and initialize a mutable or immutable tuple (ralloc rd, n and
balloc rd, n, respectively), load and store instructions for tuples,
unpack and unfold instructions, and a set of instructions for man-
aging the stack.

T’s components e must contain an initial instruction sequence
I, and, like A components, may contain a heap fragment H, which
must only contain immutable heap values. Since assembly instruc-
tions fill the role held by terms in previous languages, we need a
notion of a “term value” v, for which we use the return instruction.
Evaluation contexts are tiered as in A, but are trivial until we later
add the contexts for language boundaries.

Finally, the memory M of a T program consists of a heap H, a
register file R, and a stack S. We also annotate S with its type �,
which will be convenient when we add embed T into FCAT.

The reduction relation, also shown in Figure 5, is defined on
configurations consisting of a memory and the current instruction
sequence being evaluated. It makes use of a metafunction R̂ that
traverses a small value u and replaces register names with the
contents of that register.

 ` H : 0 Well-Typed Heap Fragment
 ` R :� Well-Typed Register File
 ` S :� Well-Typed Stack
` M : (,�,�) Well-Typed Memory
 ;�;�;�;q ` e : ⌧ ;�0 Well-Typed Component
 ` h : Well-Typed Heap Value
 ;� ` w : ⌧ Well-Typed Word Value
 ;�;� ` u : ⌧ Well-Typed Small Value
 ;�;�;�;q ` I Well-Typed Instruction Sequence
 ;�;�;�;q ` ◆)�0

;�0
;�0

;q0 Well-Typed Instruction
Figure 6: Judgments in T type system (excludes well-formed types)

6 2012/11/7

⌧ ::= ↵ | unit | int | 9↵.⌧ | µ↵.⌧ Type
| ref h⌧, . . . , ⌧i | box

 ::= 8[�].{�;�}q | h⌧, . . . , ⌧i Heap value type
� ::= · | �, r : ⌧ Register file type
� ::= ⇣ | • | ⌧ :: � Stack type
q ::= ✏ | r | i | end[⌧ ;�] Return marker
� ::= · | �,↵ | �, ⇣ | �, ✏ Type variable environment
! ::= ⌧ | � | q Instantiation of type variable
r ::= r1 | r2 | · · · | r7 | ra Register
h ::= code[�]{�;�}q.I | hw, . . . ,wi Heap value
w ::= () | n | ` | packh⌧,wi as 9↵.⌧ Word value

| foldµ↵.⌧ w | w[!]

u ::= w | r | packh⌧,ui as 9↵.⌧ Small value
| foldµ↵.⌧ u | u[!]

I ::= ◆; I | jmp u | ret q, r Instruction sequence
◆ ::= aop rd, rs, u | bnz r, u | mv rd, u Instruction

| ralloc rd, n | balloc rd, n | ld rd, rs[i] | st rd[i], rs
| unpack h↵, rdi u | unfold rd, u | salloc n | sfree n

| sld rd, i | sst i, rs
aop ::= add | sub | mult Arithmetic operation
e ::= (I,H) | I Component
v ::= ret q, r Term value
E ::= (EI, ·) Evaluation context
EI ::= [·] Instruction evaluation context
H ::= · | H, ` 7! h Heap or Heap fragment
R ::= · | R, r 7! w Register file
S ::= nil | w :: S Stack
M ::= (H,R, S:�) Memory
 ::= · | , ` : ⌫ Heap type
⌫ ::= ref | box Mutability flag

hM | ei 7�! hM0 | e0i Reduction Relation (selected cases)

h(H,R, S:�) | (I,H0)i 7�! h((H,H0),R, S:�) | Ii
dom(H) \ dom(H0

) = ;
h(H,R, S:�) | mv rd, u; Ii 7�! h(H,R[rd 7! R̂(u)], S:�) | Ii
h(H,R, S:�) | jmp ui 7�! h(H,R, S:�) | I[!/�]i

R̂(u) = `[!] and H(`) = code[�]{�;�}q.I

h(H,R, S:�) | ret r, r0i 7�! h(H,R, S:�) | I[!/�]i
R(r) = `[!] and H(`) = code[�]{�;�}q.I

Figure 5: Syntax and reduction relation for T

the current memory as an argument to the translation, and return
a memory that may have had additional locations allocated. Func-
tion and tuple values from C are translated into A by allocating
fresh memory each time, which is fine because our system does not
model space efficiency.

4. From A to T: Code Generation and TAL
Our target language T is a stack-based typed assembly language
whose design follows the work of Morrisett et al. [10, 11] in
many respects. However, in order to state the compiler correctness
theorem we want, it was necessary to augment this design with
several additional features, particularly in the type system.

The syntax of T is given in Figure 5. Like in A, we use ⌧ for the
types of word-sized values and for the types of heap values. T
has both mutable (ref) and immutable (box) tuples. The type of
a code block is 8[�].{�;�}q, and consists of a list of expected
type-level arguments �, a pair of preconditions in the form of a

register file type � and a stack type �, and a return marker q. The
return marker identifies which argument to a code block is its return
address: either the value in a particular register r or the value on the
stack at index i. A code block at the top level of a program, which
has no return address, will have a return marker of end[⌧ ;�],
indicating that if the program halts, then when it does, the stack
will have type � and a designated register will have type ⌧ . We
will show in our discussion of T’s type system how return markers
allow us to assign types to T components.

In addition to the usual type abstraction, a type in T can abstract
over the type of a stack tail using stack type variables ⇣, and over
the return marker of another code block using return marker type
variables ✏. It is convenient to define ! to range over the syntactic
categories ⌧ , �, q that can instantiate type variables ↵, ⇣, ✏,
respectively.

T has several classes of values: heap values h, like in A, are
code blocks and tuples stored in the heap. Word values w are those
values that can be stored in a register or an entry in a tuple. Small
values u are the values that can appear in most instructions: they
are like word values but can also reference registers.

Code in T consists of sequences I of instructions ◆ ending
with a jump. Our type system tracks calls and returns of semantic
“functions” (which can consist of any number of code blocks), and
so there are two flavors of jumps: the form jmp u is used to jump
to the next code block in the same function, or to call a subroutine.
The form ret q, r returns from a function: if the return marker q is
a register name r0, then we jump to the location contained in r0. If
q = end[⌧ ;�], then the machine halts. In both cases, the register
r holds the word value being returned.

Other instructions consist of arithmetic operations, a branch-
ing construct bnz r, u, a move instruction, operations to allocate
and initialize a mutable or immutable tuple (ralloc rd, n and
balloc rd, n, respectively), load and store instructions for tuples,
unpack and unfold instructions, and a set of instructions for man-
aging the stack.

T’s components e must contain an initial instruction sequence
I, and, like A components, may contain a heap fragment H, which
must only contain immutable heap values. Since assembly instruc-
tions fill the role held by terms in previous languages, we need a
notion of a “term value” v, for which we use the return instruction.
Evaluation contexts are tiered as in A, but are trivial until we later
add the contexts for language boundaries.

Finally, the memory M of a T program consists of a heap H, a
register file R, and a stack S. We also annotate S with its type �,
which will be convenient when we add embed T into FCAT.

The reduction relation, also shown in Figure 5, is defined on
configurations consisting of a memory and the current instruction
sequence being evaluated. It makes use of a metafunction R̂ that
traverses a small value u and replaces register names with the
contents of that register.

 ` H : 0 Well-Typed Heap Fragment
 ` R :� Well-Typed Register File
 ` S :� Well-Typed Stack
` M : (,�,�) Well-Typed Memory
 ;�;�;�;q ` e : ⌧ ;�0 Well-Typed Component
 ` h : Well-Typed Heap Value
 ;� ` w : ⌧ Well-Typed Word Value
 ;�;� ` u : ⌧ Well-Typed Small Value
 ;�;�;�;q ` I Well-Typed Instruction Sequence
 ;�;�;�;q ` ◆)�0

;�0
;�0

;q0 Well-Typed Instruction
Figure 6: Judgments in T type system (excludes well-formed types)

6 2012/11/7

Thursday, October 17, 13

Typing TAL Components

ret-type(r,�,�) = ⌧ ;�0 if �(r) = box 8[].{r0 : ⌧ ;�0}q

ret-type(i,�,�) = ⌧ ;�0 if �(i) = box 8[].{r0 : ⌧ ;�0}q

ret-type(end[⌧ ;�0],�,�) = ⌧ ;�0

` M : (,�,�)
· ` H : ` R :� ` S :�

` (H,R, S:�) : (,�,�)

 ;�;�;�;q ` e : ⌧ ;�0

 ;�;�;�;q ` I
ret-type(q,�,�) = ⌧ ;�0

 ;�;�;�;q ` I : ⌧ ;�0

 ` H : e boxheap(e)

ret-type(q,�,�) = ⌧ ;�0 (, e);�;�;�;q ` I

 ;�;�;�;q ` (I,H) : ⌧ ;�0

 ;�;�;�;q ` I
�(r) = box 8[].{r0 : ⌧ ;�}q0

�(r0) = ⌧

 ;�;�;�; r ` ret r, r0

�(r) = ⌧

 ;�;�;�; end[⌧ ;�] ` ret end[⌧ ;�], r
· · ·

 ;�;�;�;q ` ◆)�0
;�0

;�0
;q0 where q, q0 6= ✏

 ;�;� ` u : ⌧ q 6= rd

 ;�;�;�;q ` mv rd, u)�;�[rd : ⌧];�;q

 ;�;� ` u : ⌧

 ;�;�;�; rs ` mv rd, rs)�;�[rd : ⌧];�; rd
. . .

Figure 7: Selected portions of T type system

Type System Our type system for T consists of several judg-
ments, shown in Figure 6. For those judgments with a return marker
q, we require q to be some r, i, or end[⌧ ;�], not ✏: code is not
allowed to abstract over its own return marker. TODO: what else is
important to say about the judgments?

Some of the inference rules in the type system are given in
Figure 7.

TODO: explain how ret-type meta-function gives us the return
type of a component

TODO: Explain how instruction judgment tracks movement of
return marker, prevents it from being discarded

TODO: say something about ret rules and jump rules

⌧T Type translation

↵T
= ↵

unitT = unit

intT = int

9↵.⌧T
= 9↵.⌧T

µ↵.⌧T
= µ↵.⌧T

box h⌧iT = box h⌧T i

box 8[↵].(⌧1, . . . , ⌧n)! ⌧ 0T

= box 8[↵, ⇣, ✏].

{ra : box 8[].{r1 : ⌧ 0T ; ⇣}✏;

⌧nT :: · · · :: ⌧1T :: ⇣}ra

 ;�; � ` e : ⌧ e where T
; (�T , ⇣, ✏);�;�; ra ` e : ⌧T

;�

for � = ra : 8[].{r1 : ⌧T ;�}✏ and � = order(�, ⇣)T
Figure 8: Compiler from A to T

Compiling A To T The type translation from A to T is only in-
teresting in the function case The result of compiling an A func-
tion expects two additional type-level arguments: the stack type ex-
pected at return time, and the return marker of this code’s contin-
uation. The only register argument is the return address, passed in
register ra. Arguments corresponding to the original A function’s

arguments are received on the stack, and must be popped off the
stack before returning.

The term translation operates on A components e, and builds a
T component e = (I,H) by translating the term component of e
as well as any heap values contained in e. The initial code block I
comes from the term component of e, but any part of e could gen-
erate multiple code blocks in H. The translation is parameterized
by a meta-function order(�,�)T that takes an unordered type en-
vironment � and produces a stack type with entries corresponding
to the entries in � on top of a tail �.

5. FCAT
The full multi-language system, shown in Figure 9, adds boundary
forms for interoperation between A and T. Since T has no terms,
we add the form for embedding an A component into T as an in-
struction import rd,

�T A⌧ e. After reducing e to a value, FCAT
saves the result of the value translation in a register rd. The extra
type annotation � on this instruction indicates a tail of the stack
which must be treated abstractly by e.

Since word values are not components, lumps Lh⌧iAT w are a
separate term form added to A in addition to the usual component
form ⌧AT e. The value translations between A and T deal with
word values on the T side, but otherwise follow the same principles
as the previous language pairs.

The other major addition needed in the full FCAT language is
that functions in F, C, and A need the ability to abstract over the
type of the stack. TODO: finish zetas discussion. do we explain in
more detail why we need this change? doing so could be painful
without giving the big ugly value translation case that uses it.
mention that we give the updated type and reduction rules for F
functions.

The type judgment for FCAT components needs to be aug-
mented with T’s environments. Add to the type rules of FCA a
register type �, which can be arbitray, a pair of stack types � and
�0 which serve as pre- and postconditions, and a return marker q,
which must have the new value out for everything outside of T.
To the T type rules for components, instructions, and instruction
sequences, add a type environment �. Additionally, wrap the code
in T reductions with evaluation contexts E.

5.1 FCAT Contextual Equivalence
5.2 FCAT Logical Relation

6. Compiler Correctness
7. Discussion and Related Work
8. Outline
Sec 1: Introduction [2] – looks like HOPE paper + list of contribu-
tions

- Discuss CompCert and need to link with libraries. Coughing
up source term is bad!

- A (small) example? Compile a component; link with TAL
component that implements something in an imperative fashion
(have refs in TAL); don’t need to cough up a related F component.
Or maybe mention example but show details in TR.

Sec 2: F-to-C [1] - Start out by giving F and C. - Then show
clos-conv translation and interop semantics for int and tau1-¿tau2
only - Then say: what happens when we consider forall [alpha]...
Typed operational translation and basic idea of going between types
of two languages

Sec 3: C-to-A [1] - Basic setup same as F-to-C (just give type
trans, operational type trans, translation) - Then discuss that interop
semantics allocates memory and looks up memory Leaky (space),
but only need it as a specification

7 2012/11/7

heap
typing

type
environ

reg-file
typing

return
marker

result
typestack

type
stack type
on return

Thursday, October 17, 13

Well-typed Components in T

ret-type(r,�,�) = ⌧ ;�0 if �(r) = box 8[].{r0 : ⌧ ;�0}q

ret-type(i,�,�) = ⌧ ;�0 if �(i) = box 8[].{r0 : ⌧ ;�0}q

ret-type(end[⌧ ;�0],�,�) = ⌧ ;�0

` M : (,�,�)
· ` H : ` R :� ` S :�

` (H,R, S:�) : (,�,�)

 ;�;�;�;q ` e : ⌧ ;�0

 ;�;�;�;q ` I
ret-type(q,�,�) = ⌧ ;�0

 ;�;�;�;q ` I : ⌧ ;�0

 ` H : e boxheap(e)

ret-type(q,�,�) = ⌧ ;�0 (, e);�;�;�;q ` I

 ;�;�;�;q ` (I,H) : ⌧ ;�0

 ;�;�;�;q ` I
�(r) = box 8[].{r0 : ⌧ ;�}q0

�(r0) = ⌧

 ;�;�;�; r ` ret r, r0

�(r) = ⌧

 ;�;�;�; end[⌧ ;�] ` ret end[⌧ ;�], r
· · ·

 ;�;�;�;q ` ◆)�0
;�0

;�0
;q0 where q, q0 6= ✏

 ;�;� ` u : ⌧ q 6= rd

 ;�;�;�;q ` mv rd, u)�;�[rd : ⌧];�;q

 ;�;� ` u : ⌧

 ;�;�;�; rs ` mv rd, rs)�;�[rd : ⌧];�; rd
. . .

Figure 7: Selected portions of T type system

Type System Our type system for T consists of several judg-
ments, shown in Figure 6. For those judgments with a return marker
q, we require q to be some r, i, or end[⌧ ;�], not ✏: code is not
allowed to abstract over its own return marker. TODO: what else is
important to say about the judgments?

Some of the inference rules in the type system are given in
Figure 7.

TODO: explain how ret-type meta-function gives us the return
type of a component

TODO: Explain how instruction judgment tracks movement of
return marker, prevents it from being discarded

TODO: say something about ret rules and jump rules

⌧T Type translation

↵T
= ↵

unitT = unit

intT = int

9↵.⌧T
= 9↵.⌧T

µ↵.⌧T
= µ↵.⌧T

box h⌧iT = box h⌧T i

box 8[↵].(⌧1, . . . , ⌧n)! ⌧ 0T

= box 8[↵, ⇣, ✏].

{ra : box 8[].{r1 : ⌧ 0T ; ⇣}✏;

⌧nT :: · · · :: ⌧1T :: ⇣}ra

 ;�; � ` e : ⌧ e where T
; (�T , ⇣, ✏);�;�; ra ` e : ⌧T

;�

for � = ra : 8[].{r1 : ⌧T ;�}✏ and � = order(�, ⇣)T
Figure 8: Compiler from A to T

Compiling A To T The type translation from A to T is only in-
teresting in the function case The result of compiling an A func-
tion expects two additional type-level arguments: the stack type ex-
pected at return time, and the return marker of this code’s contin-
uation. The only register argument is the return address, passed in
register ra. Arguments corresponding to the original A function’s

arguments are received on the stack, and must be popped off the
stack before returning.

The term translation operates on A components e, and builds a
T component e = (I,H) by translating the term component of e
as well as any heap values contained in e. The initial code block I
comes from the term component of e, but any part of e could gen-
erate multiple code blocks in H. The translation is parameterized
by a meta-function order(�,�)T that takes an unordered type en-
vironment � and produces a stack type with entries corresponding
to the entries in � on top of a tail �.

5. FCAT
The full multi-language system, shown in Figure 9, adds boundary
forms for interoperation between A and T. Since T has no terms,
we add the form for embedding an A component into T as an in-
struction import rd,

�T A⌧ e. After reducing e to a value, FCAT
saves the result of the value translation in a register rd. The extra
type annotation � on this instruction indicates a tail of the stack
which must be treated abstractly by e.

Since word values are not components, lumps Lh⌧iAT w are a
separate term form added to A in addition to the usual component
form ⌧AT e. The value translations between A and T deal with
word values on the T side, but otherwise follow the same principles
as the previous language pairs.

The other major addition needed in the full FCAT language is
that functions in F, C, and A need the ability to abstract over the
type of the stack. TODO: finish zetas discussion. do we explain in
more detail why we need this change? doing so could be painful
without giving the big ugly value translation case that uses it.
mention that we give the updated type and reduction rules for F
functions.

The type judgment for FCAT components needs to be aug-
mented with T’s environments. Add to the type rules of FCA a
register type �, which can be arbitray, a pair of stack types � and
�0 which serve as pre- and postconditions, and a return marker q,
which must have the new value out for everything outside of T.
To the T type rules for components, instructions, and instruction
sequences, add a type environment �. Additionally, wrap the code
in T reductions with evaluation contexts E.

5.1 FCAT Contextual Equivalence
5.2 FCAT Logical Relation

6. Compiler Correctness
7. Discussion and Related Work
8. Outline
Sec 1: Introduction [2] – looks like HOPE paper + list of contribu-
tions

- Discuss CompCert and need to link with libraries. Coughing
up source term is bad!

- A (small) example? Compile a component; link with TAL
component that implements something in an imperative fashion
(have refs in TAL); don’t need to cough up a related F component.
Or maybe mention example but show details in TR.

Sec 2: F-to-C [1] - Start out by giving F and C. - Then show
clos-conv translation and interop semantics for int and tau1-¿tau2
only - Then say: what happens when we consider forall [alpha]...
Typed operational translation and basic idea of going between types
of two languages

Sec 3: C-to-A [1] - Basic setup same as F-to-C (just give type
trans, operational type trans, translation) - Then discuss that interop
semantics allocates memory and looks up memory Leaky (space),
but only need it as a specification

7 2012/11/7

ret-type(r,�,�) = ⌧ ;�0 if �(r) = box 8[].{r0 : ⌧ ;�0}q

ret-type(i,�,�) = ⌧ ;�0 if �(i) = box 8[].{r0 : ⌧ ;�0}q

ret-type(end[⌧ ;�0],�,�) = ⌧ ;�0

` M : (,�,�)
· ` H : ` R :� ` S :�

` (H,R, S:�) : (,�,�)

 ;�;�;�;q ` e : ⌧ ;�0

 ;�;�;�;q ` I
ret-type(q,�,�) = ⌧ ;�0

 ;�;�;�;q ` I : ⌧ ;�0

 ` H : e boxheap(e)

ret-type(q,�,�) = ⌧ ;�0 (, e);�;�;�;q ` I

 ;�;�;�;q ` (I,H) : ⌧ ;�0

 ;�;�;�;q ` I
�(r) = box 8[].{r0 : ⌧ ;�}q0

�(r0) = ⌧

 ;�;�;�; r ` ret r, r0

�(r) = ⌧

 ;�;�;�; end[⌧ ;�] ` ret end[⌧ ;�], r
· · ·

 ;�;�;�;q ` ◆)�0
;�0

;�0
;q0 where q, q0 6= ✏

 ;�;� ` u : ⌧ q 6= rd

 ;�;�;�;q ` mv rd, u)�;�[rd : ⌧];�;q

 ;�;� ` u : ⌧

 ;�;�;�; rs ` mv rd, rs)�;�[rd : ⌧];�; rd
. . .

Figure 7: Selected portions of T type system

Type System Our type system for T consists of several judg-
ments, shown in Figure 6. For those judgments with a return marker
q, we require q to be some r, i, or end[⌧ ;�], not ✏: code is not
allowed to abstract over its own return marker. TODO: what else is
important to say about the judgments?

Some of the inference rules in the type system are given in
Figure 7.

TODO: explain how ret-type meta-function gives us the return
type of a component

TODO: Explain how instruction judgment tracks movement of
return marker, prevents it from being discarded

TODO: say something about ret rules and jump rules

⌧T Type translation

↵T
= ↵

unitT = unit

intT = int

9↵.⌧T
= 9↵.⌧T

µ↵.⌧T
= µ↵.⌧T

box h⌧iT = box h⌧T i

box 8[↵].(⌧1, . . . , ⌧n)! ⌧ 0T

= box 8[↵, ⇣, ✏].

{ra : box 8[].{r1 : ⌧ 0T ; ⇣}✏;

⌧nT :: · · · :: ⌧1T :: ⇣}ra

 ;�; � ` e : ⌧ e where T
; (�T , ⇣, ✏);�;�; ra ` e : ⌧T

;�

for � = ra : 8[].{r1 : ⌧T ;�}✏ and � = order(�, ⇣)T
Figure 8: Compiler from A to T

Compiling A To T The type translation from A to T is only in-
teresting in the function case The result of compiling an A func-
tion expects two additional type-level arguments: the stack type ex-
pected at return time, and the return marker of this code’s contin-
uation. The only register argument is the return address, passed in
register ra. Arguments corresponding to the original A function’s

arguments are received on the stack, and must be popped off the
stack before returning.

The term translation operates on A components e, and builds a
T component e = (I,H) by translating the term component of e
as well as any heap values contained in e. The initial code block I
comes from the term component of e, but any part of e could gen-
erate multiple code blocks in H. The translation is parameterized
by a meta-function order(�,�)T that takes an unordered type en-
vironment � and produces a stack type with entries corresponding
to the entries in � on top of a tail �.

5. FCAT
The full multi-language system, shown in Figure 9, adds boundary
forms for interoperation between A and T. Since T has no terms,
we add the form for embedding an A component into T as an in-
struction import rd,

�T A⌧ e. After reducing e to a value, FCAT
saves the result of the value translation in a register rd. The extra
type annotation � on this instruction indicates a tail of the stack
which must be treated abstractly by e.

Since word values are not components, lumps Lh⌧iAT w are a
separate term form added to A in addition to the usual component
form ⌧AT e. The value translations between A and T deal with
word values on the T side, but otherwise follow the same principles
as the previous language pairs.

The other major addition needed in the full FCAT language is
that functions in F, C, and A need the ability to abstract over the
type of the stack. TODO: finish zetas discussion. do we explain in
more detail why we need this change? doing so could be painful
without giving the big ugly value translation case that uses it.
mention that we give the updated type and reduction rules for F
functions.

The type judgment for FCAT components needs to be aug-
mented with T’s environments. Add to the type rules of FCA a
register type �, which can be arbitray, a pair of stack types � and
�0 which serve as pre- and postconditions, and a return marker q,
which must have the new value out for everything outside of T.
To the T type rules for components, instructions, and instruction
sequences, add a type environment �. Additionally, wrap the code
in T reductions with evaluation contexts E.

5.1 FCAT Contextual Equivalence
5.2 FCAT Logical Relation

6. Compiler Correctness
7. Discussion and Related Work
8. Outline
Sec 1: Introduction [2] – looks like HOPE paper + list of contribu-
tions

- Discuss CompCert and need to link with libraries. Coughing
up source term is bad!

- A (small) example? Compile a component; link with TAL
component that implements something in an imperative fashion
(have refs in TAL); don’t need to cough up a related F component.
Or maybe mention example but show details in TR.

Sec 2: F-to-C [1] - Start out by giving F and C. - Then show
clos-conv translation and interop semantics for int and tau1-¿tau2
only - Then say: what happens when we consider forall [alpha]...
Typed operational translation and basic idea of going between types
of two languages

Sec 3: C-to-A [1] - Basic setup same as F-to-C (just give type
trans, operational type trans, translation) - Then discuss that interop
semantics allocates memory and looks up memory Leaky (space),
but only need it as a specification

7 2012/11/7

Thursday, October 17, 13

Well-typed Instruction Sequence

Ψ;∆;χ;σ;q ! I where q != ε

6.14 Well-Typed Word Value ;� ` w : ⌧

 ;� ` () :unit ;� ` n : int

` : ref 2
 ;� ` ` : ref

` : box 2
 ;� ` ` :box

 ;� ` w : ⌧ [⌧ 0/↵]

 ;� ` packh⌧ 0,wi as 9↵.⌧ :9↵.⌧
 ;� ` w : ⌧ [µ↵.⌧/↵]

 ;� ` foldµ↵.⌧ w :µ↵.⌧

 ;� ` w :box 8[↵,�0].{�;�}q � ` ⌧
 ;� ` w[⌧] :box 8[�0].{�[⌧/↵];�[⌧/↵]}q

 ;� ` w :box 8[⇣,�0].{�;�}q � ` �00

 ;� ` w[�00] :box 8[�0].{�[�00/⇣];�[�00/⇣]}q

 ;� ` w :box 8[✏,�0].{�;�}q � ` 8[�0].{�[q0/✏];�[q0/✏]}q

 ;� ` w[q0] :box 8[�0].{�[q0/✏];�[q0/✏]}q

6.15 Well-Typed Immediate Value ;�;� ` u : ⌧

 ;� ` w : ⌧

 ;�;� ` w : ⌧

r : ⌧ 2 �
 ;�;� ` r : ⌧

 ;�;� ` u : ⌧ [⌧ 0/↵]

 ;�;� ` packh⌧ 0,ui as 9↵.⌧ :9↵.⌧

 ;�;� ` u : ⌧ [µ↵.⌧/↵]

 ;�;� ` foldµ↵.⌧ u :µ↵.⌧

 ;�;� ` u :box 8[↵,�0].{�;�}q � ` ⌧
 ;�;� ` u[⌧] :box 8[�0].{�[⌧/↵];�[⌧/↵]}q

 ;�;� ` u :box 8[⇣,�0].{�0;�}q � ` �00

 ;�;� ` u[�00] :box 8[�0].{�0[�00/⇣];�[�00/⇣]}q

 ;�;� ` u :box 8[✏,�0].{�0;�}q

� ` 8[�0].{�0[q0/✏];�[q0/✏]}q

 ;�;� ` u[q0] :box 8[�0].{�0[q0/✏];�[q0/✏]}q

6.16 Well-Typed Instruction Sequence ;�;�;�;q ` I

As a side-condition on this judgment, the environment q must not be ✏. This argument gives the position
of the return address, and a component never abstracts over its own return address.

The rule for sequencing instructions is straightforward: we use the postconditions of the initial instruction
◆ as preconditions to type check the remaining instructions.

 ;�;�;�;q ` ◆)�0;�0;�0;q0 ;�0;�0;�0;q0 ` I

 ;�;�;�;q ` ◆; I

The return instruction typechecks if the indicated point to return to matches the return marker in the
environment, and if the register containing the result has the right type. Note that our type system does
not permit returns to an address stored on the stack.

�(r) = box 8[].{r0 : ⌧ ;�}q0
�(r0) = ⌧

 ;�;�;�; r ` ret r, r0
�(r) = ⌧

 ;�;�;�; end[⌧ ;�] ` ret end[⌧ ;�], r

The jump instruction is used for two purposes: to continue to the next code block within a component,
and to call a subroutine. The former requires only that the code block we jump to share the current return
marker, and that its preconditions are consistent with the current types of the register file and stack.

To call a subroutine, we are required to protect the current return address by storing it in the tail of
the stack that is parametrically hidden from the subroutine. The type rule compares the caller’s view of the
stack at the time the call is made, �, to the subroutine’s view at the time of the call, �̂. It also looks at the
subroutine’s view at return time, �̂0. At both points, the subroutine’s view contains an abstract stack tail ⇣
that must be instantiated by the caller’s stack tail type �0. The return marker of the caller must be some
i that points far enough into � that the return address is in �0. At return time, the part of the stack that

17

6.14 Well-Typed Word Value ;� ` w : ⌧

 ;� ` () :unit ;� ` n : int

` : ref 2
 ;� ` ` : ref

` : box 2
 ;� ` ` :box

 ;� ` w : ⌧ [⌧ 0/↵]

 ;� ` packh⌧ 0,wi as 9↵.⌧ :9↵.⌧
 ;� ` w : ⌧ [µ↵.⌧/↵]

 ;� ` foldµ↵.⌧ w :µ↵.⌧

 ;� ` w :box 8[↵,�0].{�;�}q � ` ⌧
 ;� ` w[⌧] :box 8[�0].{�[⌧/↵];�[⌧/↵]}q

 ;� ` w :box 8[⇣,�0].{�;�}q � ` �00

 ;� ` w[�00] :box 8[�0].{�[�00/⇣];�[�00/⇣]}q

 ;� ` w :box 8[✏,�0].{�;�}q � ` 8[�0].{�[q0/✏];�[q0/✏]}q

 ;� ` w[q0] :box 8[�0].{�[q0/✏];�[q0/✏]}q

6.15 Well-Typed Immediate Value ;�;� ` u : ⌧

 ;� ` w : ⌧

 ;�;� ` w : ⌧

r : ⌧ 2 �
 ;�;� ` r : ⌧

 ;�;� ` u : ⌧ [⌧ 0/↵]

 ;�;� ` packh⌧ 0,ui as 9↵.⌧ :9↵.⌧

 ;�;� ` u : ⌧ [µ↵.⌧/↵]

 ;�;� ` foldµ↵.⌧ u :µ↵.⌧

 ;�;� ` u :box 8[↵,�0].{�;�}q � ` ⌧
 ;�;� ` u[⌧] :box 8[�0].{�[⌧/↵];�[⌧/↵]}q

 ;�;� ` u :box 8[⇣,�0].{�0;�}q � ` �00

 ;�;� ` u[�00] :box 8[�0].{�0[�00/⇣];�[�00/⇣]}q

 ;�;� ` u :box 8[✏,�0].{�0;�}q

� ` 8[�0].{�0[q0/✏];�[q0/✏]}q

 ;�;� ` u[q0] :box 8[�0].{�0[q0/✏];�[q0/✏]}q

6.16 Well-Typed Instruction Sequence ;�;�;�;q ` I

As a side-condition on this judgment, the environment q must not be ✏. This argument gives the position
of the return address, and a component never abstracts over its own return address.

The rule for sequencing instructions is straightforward: we use the postconditions of the initial instruction
◆ as preconditions to type check the remaining instructions.

 ;�;�;�;q ` ◆)�0;�0;�0;q0 ;�0;�0;�0;q0 ` I

 ;�;�;�;q ` ◆; I

The return instruction typechecks if the indicated point to return to matches the return marker in the
environment, and if the register containing the result has the right type. Note that our type system does
not permit returns to an address stored on the stack.

�(r) = box 8[].{r0 : ⌧ ;�}q0
�(r0) = ⌧

 ;�;�;�; r ` ret r, r0
�(r) = ⌧

 ;�;�;�; end[⌧ ;�] ` ret end[⌧ ;�], r

The jump instruction is used for two purposes: to continue to the next code block within a component,
and to call a subroutine. The former requires only that the code block we jump to share the current return
marker, and that its preconditions are consistent with the current types of the register file and stack.

To call a subroutine, we are required to protect the current return address by storing it in the tail of
the stack that is parametrically hidden from the subroutine. The type rule compares the caller’s view of the
stack at the time the call is made, �, to the subroutine’s view at the time of the call, �̂. It also looks at the
subroutine’s view at return time, �̂0. At both points, the subroutine’s view contains an abstract stack tail ⇣
that must be instantiated by the caller’s stack tail type �0. The return marker of the caller must be some
i that points far enough into � that the return address is in �0. At return time, the part of the stack that

17

6.14 Well-Typed Word Value ;� ` w : ⌧

 ;� ` () :unit ;� ` n : int

` : ref 2
 ;� ` ` : ref

` : box 2
 ;� ` ` :box

 ;� ` w : ⌧ [⌧ 0/↵]

 ;� ` packh⌧ 0,wi as 9↵.⌧ :9↵.⌧
 ;� ` w : ⌧ [µ↵.⌧/↵]

 ;� ` foldµ↵.⌧ w :µ↵.⌧

 ;� ` w :box 8[↵,�0].{�;�}q � ` ⌧
 ;� ` w[⌧] :box 8[�0].{�[⌧/↵];�[⌧/↵]}q

 ;� ` w :box 8[⇣,�0].{�;�}q � ` �00

 ;� ` w[�00] :box 8[�0].{�[�00/⇣];�[�00/⇣]}q

 ;� ` w :box 8[✏,�0].{�;�}q � ` 8[�0].{�[q0/✏];�[q0/✏]}q

 ;� ` w[q0] :box 8[�0].{�[q0/✏];�[q0/✏]}q

6.15 Well-Typed Immediate Value ;�;� ` u : ⌧

 ;� ` w : ⌧

 ;�;� ` w : ⌧

r : ⌧ 2 �
 ;�;� ` r : ⌧

 ;�;� ` u : ⌧ [⌧ 0/↵]

 ;�;� ` packh⌧ 0,ui as 9↵.⌧ :9↵.⌧

 ;�;� ` u : ⌧ [µ↵.⌧/↵]

 ;�;� ` foldµ↵.⌧ u :µ↵.⌧

 ;�;� ` u :box 8[↵,�0].{�;�}q � ` ⌧
 ;�;� ` u[⌧] :box 8[�0].{�[⌧/↵];�[⌧/↵]}q

 ;�;� ` u :box 8[⇣,�0].{�0;�}q � ` �00

 ;�;� ` u[�00] :box 8[�0].{�0[�00/⇣];�[�00/⇣]}q

 ;�;� ` u :box 8[✏,�0].{�0;�}q

� ` 8[�0].{�0[q0/✏];�[q0/✏]}q

 ;�;� ` u[q0] :box 8[�0].{�0[q0/✏];�[q0/✏]}q

6.16 Well-Typed Instruction Sequence ;�;�;�;q ` I

As a side-condition on this judgment, the environment q must not be ✏. This argument gives the position
of the return address, and a component never abstracts over its own return address.

The rule for sequencing instructions is straightforward: we use the postconditions of the initial instruction
◆ as preconditions to type check the remaining instructions.

 ;�;�;�;q ` ◆)�0;�0;�0;q0 ;�0;�0;�0;q0 ` I

 ;�;�;�;q ` ◆; I

The return instruction typechecks if the indicated point to return to matches the return marker in the
environment, and if the register containing the result has the right type. Note that our type system does
not permit returns to an address stored on the stack.

�(r) = box 8[].{r0 : ⌧ ;�}q0
�(r0) = ⌧

 ;�;�;�; r ` ret r, r0
�(r) = ⌧

 ;�;�;�; end[⌧ ;�] ` ret end[⌧ ;�], r

The jump instruction is used for two purposes: to continue to the next code block within a component,
and to call a subroutine. The former requires only that the code block we jump to share the current return
marker, and that its preconditions are consistent with the current types of the register file and stack.

To call a subroutine, we are required to protect the current return address by storing it in the tail of
the stack that is parametrically hidden from the subroutine. The type rule compares the caller’s view of the
stack at the time the call is made, �, to the subroutine’s view at the time of the call, �̂. It also looks at the
subroutine’s view at return time, �̂0. At both points, the subroutine’s view contains an abstract stack tail ⇣
that must be instantiated by the caller’s stack tail type �0. The return marker of the caller must be some
i that points far enough into � that the return address is in �0. At return time, the part of the stack that

17

Thursday, October 17, 13

Jmp
To next code block within component:

was not hidden from the subroutine could have changed length, so the return marker after the subroutine,
which instantiates the subroutine’s type variable ✏, must accordingly change.

We also have a type rule for the case of calling a subroutine from the top level, when there is no return
address and the return marker is end[⌧ ;�⇤]. This case works the same way, except that there is no need to
worry about lengths of stacks.

 ;�;� ` u :box 8[].{�0;�}q � ` �  �0

 ;�;�;�;q ` jmp u

 ;�;� ` u :box 8[⇣, ✏].{�̂; �̂}q̂ ret-addr-type(q̂, �̂, �̂) = 8[].{r : ⌧ ; �̂0}✏

� ` �0 � ` 8[].{�̂[�0/⇣][i+k�j/✏]; �̂[�0/⇣][i+k�j/✏]}q̂ � ` �  �̂[�0/⇣][i+k�j/✏]
� = ⌧0 :: · · · :: ⌧j :: �0 �̂ = ⌧0 :: · · · :: ⌧j :: ⇣ j < i �̂0 = ⌧ 0

0 :: · · · :: ⌧ 0
k :: ⇣

 ;�;�;�; i ` jmp u[�0, i+k�j]

 ;�;� ` u :box 8[⇣, ✏].{�̂; �̂}q̂ ret-addr-type(q̂, �̂, �̂) = box 8[].{r : ⌧ ; �̂0}✏ � ` �0

� ` 8[].{�̂[�0/⇣][end[⌧ ;�
⇤]/✏]; �̂[�0/⇣][end[⌧ ;�

⇤]/✏]}q̂ � ` �  �̂[�0/⇣][end[⌧ ;�
⇤]/✏]

� = ⌧ :: �0 �̂ = ⌧ :: ⇣ �̂0 = ⌧ 0 :: ⇣

 ;�;�;�; end[⌧ ;�⇤] ` jmp u[�0, end[⌧ ;�
⇤]]

18

was not hidden from the subroutine could have changed length, so the return marker after the subroutine,
which instantiates the subroutine’s type variable ✏, must accordingly change.

We also have a type rule for the case of calling a subroutine from the top level, when there is no return
address and the return marker is end[⌧ ;�⇤]. This case works the same way, except that there is no need to
worry about lengths of stacks.

 ;�;� ` u :box 8[].{�0;�}q � ` �  �0

 ;�;�;�;q ` jmp u

 ;�;� ` u :box 8[⇣, ✏].{�̂; �̂}q̂ ret-addr-type(q̂, �̂, �̂) = 8[].{r : ⌧ ; �̂0}✏

� ` �0 � ` 8[].{�̂[�0/⇣][i+k�j/✏]; �̂[�0/⇣][i+k�j/✏]}q̂ � ` �  �̂[�0/⇣][i+k�j/✏]
� = ⌧0 :: · · · :: ⌧j :: �0 �̂ = ⌧0 :: · · · :: ⌧j :: ⇣ j < i �̂0 = ⌧ 0

0 :: · · · :: ⌧ 0
k :: ⇣

 ;�;�;�; i ` jmp u[�0, i+k�j]

 ;�;� ` u :box 8[⇣, ✏].{�̂; �̂}q̂ ret-addr-type(q̂, �̂, �̂) = box 8[].{r : ⌧ ; �̂0}✏ � ` �0

� ` 8[].{�̂[�0/⇣][end[⌧ ;�
⇤]/✏]; �̂[�0/⇣][end[⌧ ;�

⇤]/✏]}q̂ � ` �  �̂[�0/⇣][end[⌧ ;�
⇤]/✏]

� = ⌧ :: �0 �̂ = ⌧ :: ⇣ �̂0 = ⌧ 0 :: ⇣

 ;�;�;�; end[⌧ ;�⇤] ` jmp u[�0, end[⌧ ;�
⇤]]

18

Call subroutine:
- must protect current return addr, by storing it in tail part

 of stack that is parametrically hidden from subroutine

Thursday, October 17, 13

Instruction Typing
Instructions must not clobber return address:

Can move return address elsewhere:

6.17 Well-Typed Instruction ;�;�;�;q ` ◆)�0;�0;�0;q0

As a side-condition on this judgment, the environment q must not be ✏.
This judgment uses the following two metafunctions:

inc(q,n) =

(
i + n q = i

q otherwise
dec(q,n) =

8
><

>:

i � n q = i � n

undefined q = i < n

q otherwise

 ;�;� ` rs : int ;�;� ` u : int q 6= rd
 ;�;�;�;q ` aop rd, rs, u)�;�[rd : int];�;q

 ;�;� ` rtest : int
 ;�;� ` u :box 8[].{�0;�}q � ` �  �0

 ;�;�;�;q ` bnz rtest, u)�;�;�;q

 ;�;� ` rtest : int
 ;�;� ` u :box 8[⇣, ✏].{�̂; �̂}q̂ ret-addr-type(q̂, �̂, �̂) = box 8[].{r : ⌧ ; �̂0}✏

� ` �0 � ` 8[].{�̂[�0/⇣][k+i�j/✏]; �̂[�0/⇣][k+i�j/✏]}q̂ � ` �  �̂[�0/⇣][k+i�j/✏]
� = ⌧0 :: · · · :: ⌧i :: �0 �0 = ⌧j+1 :: · · · :: ⌧i :: �0

�̂ = ⌧0 :: · · · :: ⌧j :: ⇣ j < i �̂0 = ⌧ 0
0 :: · · · :: ⌧ 0

k :: ⇣

 ;�;�;�; i ` bnz rtest, u[�
0, k+i�j])�;�;�; i

 ;�;� ` rs : ref h⌧0, . . . , ⌧ni
0  i  n q 6= rd

 ;�;�;�;q ` ld rd, rs[i])�;�[rd : ⌧i];�;q

 ;�;� ` rs :box h⌧0, . . . , ⌧ni
0  i  n q 6= rd

 ;�;�;�;q ` ld rd, rs[i])�;�[rd : ⌧i];�;q

 ;�;� ` rd : ref h⌧0, . . . , ⌧ni 0  i  n ;�;� ` rs : ⌧i
 ;�;�;�;q ` st rd[i], rs)�;�[rd : ref h⌧0, . . . , ⌧ni];�;q

len(⌧) = n q 6= rd
�0 = �[rd : ref h⌧ i] q0 = dec(q,n)

 ;�;�; ⌧ :: �;q ` ralloc rd n)�;�0;�;q0

len(⌧) = n q 6= rd
�0 = �[rd : box h⌧ i] q0 = dec(q,n)

 ;�;�; ⌧ :: �;q ` balloc rd n)�;�0;�;q0

 ;�;� ` u : ⌧ q 6= rd
 ;�;�;�;q ` mv rd, u)�;�[rd : ⌧];�;q

 ;�;� ` u : ⌧

 ;�;�;�; rs ` mv rd, rs)�;�[rd : ⌧];�; rd

 ;�;� ` u :9↵.⌧ q 6= rd
 ;�;�;�;q ` unpack h↵, rdi u)�,↵;�[rd : ⌧];�;q

 ;�;� ` u :µ↵.⌧ q 6= rd
 ;�;�;�;q ` unfold rd, u)�;�[rd : ⌧ [µ↵.⌧/↵]];�;q

�0 = unit :: · · ·n :: unit :: � q0 = inc(q,n)

 ;�;�;�;q ` salloc n)�;�;�0;q0
� = ⌧0 :: · · · :: ⌧n�1 :: �0 q0 = dec(q,n)

 ;�;�;�;q ` sfree n)�;�;�0;q0

� = ⌧0 :: · · · :: ⌧i :: �0 q 6= rd
 ;�;�;�;q ` sld rd, i)�;�[rd : ⌧i];�;q

� = ⌧0 :: · · · :: ⌧i :: �0

 ;�;�;�; i ` sld rd, i)�;�[rd : ⌧i];�; rd

 ;�;� ` rs : ⌧
0 � = ⌧0 :: · · · :: ⌧i :: �0

�0 = ⌧0 :: · · · :: ⌧i�1 :: ⌧ 0 :: �0 q 6= i

 ;�;�;�;q ` sst i, rs)�;�[rd : ⌧i];�
0;q

 ;�;� ` rs : ⌧
0 � = ⌧0 :: · · · :: ⌧i :: �0

�0 = ⌧0 :: · · · :: ⌧i�1 :: ⌧ 0 :: �0

 ;�;�;�; rs ` sst i, rs)�;�[rd : ⌧i];�
0; i

19

6.17 Well-Typed Instruction ;�;�;�;q ` ◆)�0;�0;�0;q0

As a side-condition on this judgment, the environment q must not be ✏.
This judgment uses the following two metafunctions:

inc(q,n) =

(
i + n q = i

q otherwise
dec(q,n) =

8
><

>:

i � n q = i � n

undefined q = i < n

q otherwise

 ;�;� ` rs : int ;�;� ` u : int q 6= rd
 ;�;�;�;q ` aop rd, rs, u)�;�[rd : int];�;q

 ;�;� ` rtest : int
 ;�;� ` u :box 8[].{�0;�}q � ` �  �0

 ;�;�;�;q ` bnz rtest, u)�;�;�;q

 ;�;� ` rtest : int
 ;�;� ` u :box 8[⇣, ✏].{�̂; �̂}q̂ ret-addr-type(q̂, �̂, �̂) = box 8[].{r : ⌧ ; �̂0}✏

� ` �0 � ` 8[].{�̂[�0/⇣][k+i�j/✏]; �̂[�0/⇣][k+i�j/✏]}q̂ � ` �  �̂[�0/⇣][k+i�j/✏]
� = ⌧0 :: · · · :: ⌧i :: �0 �0 = ⌧j+1 :: · · · :: ⌧i :: �0

�̂ = ⌧0 :: · · · :: ⌧j :: ⇣ j < i �̂0 = ⌧ 0
0 :: · · · :: ⌧ 0

k :: ⇣

 ;�;�;�; i ` bnz rtest, u[�
0, k+i�j])�;�;�; i

 ;�;� ` rs : ref h⌧0, . . . , ⌧ni
0  i  n q 6= rd

 ;�;�;�;q ` ld rd, rs[i])�;�[rd : ⌧i];�;q

 ;�;� ` rs :box h⌧0, . . . , ⌧ni
0  i  n q 6= rd

 ;�;�;�;q ` ld rd, rs[i])�;�[rd : ⌧i];�;q

 ;�;� ` rd : ref h⌧0, . . . , ⌧ni 0  i  n ;�;� ` rs : ⌧i
 ;�;�;�;q ` st rd[i], rs)�;�[rd : ref h⌧0, . . . , ⌧ni];�;q

len(⌧) = n q 6= rd
�0 = �[rd : ref h⌧ i] q0 = dec(q,n)

 ;�;�; ⌧ :: �;q ` ralloc rd n)�;�0;�;q0

len(⌧) = n q 6= rd
�0 = �[rd : box h⌧ i] q0 = dec(q,n)

 ;�;�; ⌧ :: �;q ` balloc rd n)�;�0;�;q0

 ;�;� ` u : ⌧ q 6= rd
 ;�;�;�;q ` mv rd, u)�;�[rd : ⌧];�;q

 ;�;� ` u : ⌧

 ;�;�;�; rs ` mv rd, rs)�;�[rd : ⌧];�; rd

 ;�;� ` u :9↵.⌧ q 6= rd
 ;�;�;�;q ` unpack h↵, rdi u)�,↵;�[rd : ⌧];�;q

 ;�;� ` u :µ↵.⌧ q 6= rd
 ;�;�;�;q ` unfold rd, u)�;�[rd : ⌧ [µ↵.⌧/↵]];�;q

�0 = unit :: · · ·n :: unit :: � q0 = inc(q,n)

 ;�;�;�;q ` salloc n)�;�;�0;q0
� = ⌧0 :: · · · :: ⌧n�1 :: �0 q0 = dec(q,n)

 ;�;�;�;q ` sfree n)�;�;�0;q0

� = ⌧0 :: · · · :: ⌧i :: �0 q 6= rd
 ;�;�;�;q ` sld rd, i)�;�[rd : ⌧i];�;q

� = ⌧0 :: · · · :: ⌧i :: �0

 ;�;�;�; i ` sld rd, i)�;�[rd : ⌧i];�; rd

 ;�;� ` rs : ⌧
0 � = ⌧0 :: · · · :: ⌧i :: �0

�0 = ⌧0 :: · · · :: ⌧i�1 :: ⌧ 0 :: �0 q 6= i

 ;�;�;�;q ` sst i, rs)�;�[rd : ⌧i];�
0;q

 ;�;� ` rs : ⌧
0 � = ⌧0 :: · · · :: ⌧i :: �0

�0 = ⌧0 :: · · · :: ⌧i�1 :: ⌧ 0 :: �0

 ;�;�;�; rs ` sst i, rs)�;�[rd : ⌧i];�
0; i

19

Thursday, October 17, 13

Logical relations: related inputs to related outputs

Equivalence of T Components: Tricky!

related inputs

V!τ1 → τ2" = {(W,λx.e1,λx.e1) | . . .}

HV!∀[∆].{χ;σ}q" = {(W, code[∆]{χ;σ}q.I1, code[∆]{χ;σ}q.I2) | . . .}
⌧ ::= ↵ | unit | int | 9↵.⌧ | µ↵.⌧ Type

| ref h⌧, . . . , ⌧i | box

 ::= 8[�].{�;�}q | h⌧, . . . , ⌧i Heap value type
� ::= · | �, r : ⌧ Register file type
� ::= ⇣ | • | ⌧ :: � Stack type
q ::= ✏ | r | i | end[⌧ ;�] Return marker
� ::= · | �,↵ | �, ⇣ | �, ✏ Type variable environment
! ::= ⌧ | � | q Instantiation of type variable
r ::= r1 | r2 | · · · | r7 | ra Register
h ::= code[�]{�;�}q.I | hw, . . . ,wi Heap value
w ::= () | n | ` | packh⌧,wi as 9↵.⌧ Word value

| foldµ↵.⌧ w | w[!]

u ::= w | r | packh⌧,ui as 9↵.⌧ Small value
| foldµ↵.⌧ u | u[!]

I ::= ◆; I | jmp u | ret q, r Instruction sequence
◆ ::= aop rd, rs, u | bnz r, u | mv rd, u Instruction

| ralloc rd, n | balloc rd, n | ld rd, rs[i] | st rd[i], rs
| unpack h↵, rdi u | unfold rd, u | salloc n | sfree n

| sld rd, i | sst i, rs
aop ::= add | sub | mult Arithmetic operation
e ::= (I,H) | I Component
v ::= ret q, r Term value
E ::= (EI, ·) Evaluation context
EI ::= [·] Instruction evaluation context
H ::= · | H, ` 7! h Heap or Heap fragment
R ::= · | R, r 7! w Register file
S ::= nil | w :: S Stack
M ::= (H,R, S:�) Memory
 ::= · | , ` : ⌫ Heap type
⌫ ::= ref | box Mutability flag

hM | ei 7�! hM0 | e0i Reduction Relation (selected cases)

h(H,R, S:�) | (I,H0)i 7�! h((H,H0),R, S:�) | Ii
dom(H) \ dom(H0

) = ;
h(H,R, S:�) | mv rd, u; Ii 7�! h(H,R[rd 7! R̂(u)], S:�) | Ii
h(H,R, S:�) | jmp ui 7�! h(H,R, S:�) | I[!/�]i

R̂(u) = `[!] and H(`) = code[�]{�;�}q.I

h(H,R, S:�) | ret r, r0i 7�! h(H,R, S:�) | I[!/�]i
R(r) = `[!] and H(`) = code[�]{�;�}q.I

Figure 5: Syntax and reduction relation for T

the current memory as an argument to the translation, and return
a memory that may have had additional locations allocated. Func-
tion and tuple values from C are translated into A by allocating
fresh memory each time, which is fine because our system does not
model space efficiency.

4. From A to T: Code Generation and TAL
Our target language T is a stack-based typed assembly language
whose design follows the work of Morrisett et al. [10, 11] in
many respects. However, in order to state the compiler correctness
theorem we want, it was necessary to augment this design with
several additional features, particularly in the type system.

The syntax of T is given in Figure 5. Like in A, we use ⌧ for the
types of word-sized values and for the types of heap values. T
has both mutable (ref) and immutable (box) tuples. The type of
a code block is 8[�].{�;�}q, and consists of a list of expected
type-level arguments �, a pair of preconditions in the form of a

register file type � and a stack type �, and a return marker q. The
return marker identifies which argument to a code block is its return
address: either the value in a particular register r or the value on the
stack at index i. A code block at the top level of a program, which
has no return address, will have a return marker of end[⌧ ;�],
indicating that if the program halts, then when it does, the stack
will have type � and a designated register will have type ⌧ . We
will show in our discussion of T’s type system how return markers
allow us to assign types to T components.

In addition to the usual type abstraction, a type in T can abstract
over the type of a stack tail using stack type variables ⇣, and over
the return marker of another code block using return marker type
variables ✏. It is convenient to define ! to range over the syntactic
categories ⌧ , �, q that can instantiate type variables ↵, ⇣, ✏,
respectively.

T has several classes of values: heap values h, like in A, are
code blocks and tuples stored in the heap. Word values w are those
values that can be stored in a register or an entry in a tuple. Small
values u are the values that can appear in most instructions: they
are like word values but can also reference registers.

Code in T consists of sequences I of instructions ◆ ending
with a jump. Our type system tracks calls and returns of semantic
“functions” (which can consist of any number of code blocks), and
so there are two flavors of jumps: the form jmp u is used to jump
to the next code block in the same function, or to call a subroutine.
The form ret q, r returns from a function: if the return marker q is
a register name r0, then we jump to the location contained in r0. If
q = end[⌧ ;�], then the machine halts. In both cases, the register
r holds the word value being returned.

Other instructions consist of arithmetic operations, a branch-
ing construct bnz r, u, a move instruction, operations to allocate
and initialize a mutable or immutable tuple (ralloc rd, n and
balloc rd, n, respectively), load and store instructions for tuples,
unpack and unfold instructions, and a set of instructions for man-
aging the stack.

T’s components e must contain an initial instruction sequence
I, and, like A components, may contain a heap fragment H, which
must only contain immutable heap values. Since assembly instruc-
tions fill the role held by terms in previous languages, we need a
notion of a “term value” v, for which we use the return instruction.
Evaluation contexts are tiered as in A, but are trivial until we later
add the contexts for language boundaries.

Finally, the memory M of a T program consists of a heap H, a
register file R, and a stack S. We also annotate S with its type �,
which will be convenient when we add embed T into FCAT.

The reduction relation, also shown in Figure 5, is defined on
configurations consisting of a memory and the current instruction
sequence being evaluated. It makes use of a metafunction R̂ that
traverses a small value u and replaces register names with the
contents of that register.

 ` H : 0 Well-Typed Heap Fragment
 ` R :� Well-Typed Register File
 ` S :� Well-Typed Stack
` M : (,�,�) Well-Typed Memory
 ;�;�;�;q ` e : ⌧ ;�0 Well-Typed Component
 ` h : Well-Typed Heap Value
 ;� ` w : ⌧ Well-Typed Word Value
 ;�;� ` u : ⌧ Well-Typed Small Value
 ;�;�;�;q ` I Well-Typed Instruction Sequence
 ;�;�;�;q ` ◆)�0

;�0
;�0

;q0 Well-Typed Instruction
Figure 6: Judgments in T type system (excludes well-formed types)

6 2012/11/7

=

Thursday, October 17, 13

Logical relations: related inputs to related outputs

Equivalence of T Components: Tricky!

related inputs

related outputs

V!τ1 → τ2" = {(W,λx.e1,λx.e1) | . . .}

HV!∀[∆].{χ;σ}q" = {(W, code[∆]{χ;σ}q.I1, code[∆]{χ;σ}q.I2) | . . .}
⌧ ::= ↵ | unit | int | 9↵.⌧ | µ↵.⌧ Type

| ref h⌧, . . . , ⌧i | box

 ::= 8[�].{�;�}q | h⌧, . . . , ⌧i Heap value type
� ::= · | �, r : ⌧ Register file type
� ::= ⇣ | • | ⌧ :: � Stack type
q ::= ✏ | r | i | end[⌧ ;�] Return marker
� ::= · | �,↵ | �, ⇣ | �, ✏ Type variable environment
! ::= ⌧ | � | q Instantiation of type variable
r ::= r1 | r2 | · · · | r7 | ra Register
h ::= code[�]{�;�}q.I | hw, . . . ,wi Heap value
w ::= () | n | ` | packh⌧,wi as 9↵.⌧ Word value

| foldµ↵.⌧ w | w[!]

u ::= w | r | packh⌧,ui as 9↵.⌧ Small value
| foldµ↵.⌧ u | u[!]

I ::= ◆; I | jmp u | ret q, r Instruction sequence
◆ ::= aop rd, rs, u | bnz r, u | mv rd, u Instruction

| ralloc rd, n | balloc rd, n | ld rd, rs[i] | st rd[i], rs
| unpack h↵, rdi u | unfold rd, u | salloc n | sfree n

| sld rd, i | sst i, rs
aop ::= add | sub | mult Arithmetic operation
e ::= (I,H) | I Component
v ::= ret q, r Term value
E ::= (EI, ·) Evaluation context
EI ::= [·] Instruction evaluation context
H ::= · | H, ` 7! h Heap or Heap fragment
R ::= · | R, r 7! w Register file
S ::= nil | w :: S Stack
M ::= (H,R, S:�) Memory
 ::= · | , ` : ⌫ Heap type
⌫ ::= ref | box Mutability flag

hM | ei 7�! hM0 | e0i Reduction Relation (selected cases)

h(H,R, S:�) | (I,H0)i 7�! h((H,H0),R, S:�) | Ii
dom(H) \ dom(H0

) = ;
h(H,R, S:�) | mv rd, u; Ii 7�! h(H,R[rd 7! R̂(u)], S:�) | Ii
h(H,R, S:�) | jmp ui 7�! h(H,R, S:�) | I[!/�]i

R̂(u) = `[!] and H(`) = code[�]{�;�}q.I

h(H,R, S:�) | ret r, r0i 7�! h(H,R, S:�) | I[!/�]i
R(r) = `[!] and H(`) = code[�]{�;�}q.I

Figure 5: Syntax and reduction relation for T

the current memory as an argument to the translation, and return
a memory that may have had additional locations allocated. Func-
tion and tuple values from C are translated into A by allocating
fresh memory each time, which is fine because our system does not
model space efficiency.

4. From A to T: Code Generation and TAL
Our target language T is a stack-based typed assembly language
whose design follows the work of Morrisett et al. [10, 11] in
many respects. However, in order to state the compiler correctness
theorem we want, it was necessary to augment this design with
several additional features, particularly in the type system.

The syntax of T is given in Figure 5. Like in A, we use ⌧ for the
types of word-sized values and for the types of heap values. T
has both mutable (ref) and immutable (box) tuples. The type of
a code block is 8[�].{�;�}q, and consists of a list of expected
type-level arguments �, a pair of preconditions in the form of a

register file type � and a stack type �, and a return marker q. The
return marker identifies which argument to a code block is its return
address: either the value in a particular register r or the value on the
stack at index i. A code block at the top level of a program, which
has no return address, will have a return marker of end[⌧ ;�],
indicating that if the program halts, then when it does, the stack
will have type � and a designated register will have type ⌧ . We
will show in our discussion of T’s type system how return markers
allow us to assign types to T components.

In addition to the usual type abstraction, a type in T can abstract
over the type of a stack tail using stack type variables ⇣, and over
the return marker of another code block using return marker type
variables ✏. It is convenient to define ! to range over the syntactic
categories ⌧ , �, q that can instantiate type variables ↵, ⇣, ✏,
respectively.

T has several classes of values: heap values h, like in A, are
code blocks and tuples stored in the heap. Word values w are those
values that can be stored in a register or an entry in a tuple. Small
values u are the values that can appear in most instructions: they
are like word values but can also reference registers.

Code in T consists of sequences I of instructions ◆ ending
with a jump. Our type system tracks calls and returns of semantic
“functions” (which can consist of any number of code blocks), and
so there are two flavors of jumps: the form jmp u is used to jump
to the next code block in the same function, or to call a subroutine.
The form ret q, r returns from a function: if the return marker q is
a register name r0, then we jump to the location contained in r0. If
q = end[⌧ ;�], then the machine halts. In both cases, the register
r holds the word value being returned.

Other instructions consist of arithmetic operations, a branch-
ing construct bnz r, u, a move instruction, operations to allocate
and initialize a mutable or immutable tuple (ralloc rd, n and
balloc rd, n, respectively), load and store instructions for tuples,
unpack and unfold instructions, and a set of instructions for man-
aging the stack.

T’s components e must contain an initial instruction sequence
I, and, like A components, may contain a heap fragment H, which
must only contain immutable heap values. Since assembly instruc-
tions fill the role held by terms in previous languages, we need a
notion of a “term value” v, for which we use the return instruction.
Evaluation contexts are tiered as in A, but are trivial until we later
add the contexts for language boundaries.

Finally, the memory M of a T program consists of a heap H, a
register file R, and a stack S. We also annotate S with its type �,
which will be convenient when we add embed T into FCAT.

The reduction relation, also shown in Figure 5, is defined on
configurations consisting of a memory and the current instruction
sequence being evaluated. It makes use of a metafunction R̂ that
traverses a small value u and replaces register names with the
contents of that register.

 ` H : 0 Well-Typed Heap Fragment
 ` R :� Well-Typed Register File
 ` S :� Well-Typed Stack
` M : (,�,�) Well-Typed Memory
 ;�;�;�;q ` e : ⌧ ;�0 Well-Typed Component
 ` h : Well-Typed Heap Value
 ;� ` w : ⌧ Well-Typed Word Value
 ;�;� ` u : ⌧ Well-Typed Small Value
 ;�;�;�;q ` I Well-Typed Instruction Sequence
 ;�;�;�;q ` ◆)�0

;�0
;�0

;q0 Well-Typed Instruction
Figure 6: Judgments in T type system (excludes well-formed types)

6 2012/11/7

=

Thursday, October 17, 13

Logical relations: related inputs to related outputs

Equivalence of T Components: Tricky!

related inputs

related outputs

V!τ1 → τ2" = {(W,λx.e1,λx.e1) | . . .}

HV!∀[∆].{χ;σ}q" = {(W, code[∆]{χ;σ}q.I1, code[∆]{χ;σ}q.I2) | . . .}
⌧ ::= ↵ | unit | int | 9↵.⌧ | µ↵.⌧ Type

| ref h⌧, . . . , ⌧i | box

 ::= 8[�].{�;�}q | h⌧, . . . , ⌧i Heap value type
� ::= · | �, r : ⌧ Register file type
� ::= ⇣ | • | ⌧ :: � Stack type
q ::= ✏ | r | i | end[⌧ ;�] Return marker
� ::= · | �,↵ | �, ⇣ | �, ✏ Type variable environment
! ::= ⌧ | � | q Instantiation of type variable
r ::= r1 | r2 | · · · | r7 | ra Register
h ::= code[�]{�;�}q.I | hw, . . . ,wi Heap value
w ::= () | n | ` | packh⌧,wi as 9↵.⌧ Word value

| foldµ↵.⌧ w | w[!]

u ::= w | r | packh⌧,ui as 9↵.⌧ Small value
| foldµ↵.⌧ u | u[!]

I ::= ◆; I | jmp u | ret q, r Instruction sequence
◆ ::= aop rd, rs, u | bnz r, u | mv rd, u Instruction

| ralloc rd, n | balloc rd, n | ld rd, rs[i] | st rd[i], rs
| unpack h↵, rdi u | unfold rd, u | salloc n | sfree n

| sld rd, i | sst i, rs
aop ::= add | sub | mult Arithmetic operation
e ::= (I,H) | I Component
v ::= ret q, r Term value
E ::= (EI, ·) Evaluation context
EI ::= [·] Instruction evaluation context
H ::= · | H, ` 7! h Heap or Heap fragment
R ::= · | R, r 7! w Register file
S ::= nil | w :: S Stack
M ::= (H,R, S:�) Memory
 ::= · | , ` : ⌫ Heap type
⌫ ::= ref | box Mutability flag

hM | ei 7�! hM0 | e0i Reduction Relation (selected cases)

h(H,R, S:�) | (I,H0)i 7�! h((H,H0),R, S:�) | Ii
dom(H) \ dom(H0

) = ;
h(H,R, S:�) | mv rd, u; Ii 7�! h(H,R[rd 7! R̂(u)], S:�) | Ii
h(H,R, S:�) | jmp ui 7�! h(H,R, S:�) | I[!/�]i

R̂(u) = `[!] and H(`) = code[�]{�;�}q.I

h(H,R, S:�) | ret r, r0i 7�! h(H,R, S:�) | I[!/�]i
R(r) = `[!] and H(`) = code[�]{�;�}q.I

Figure 5: Syntax and reduction relation for T

the current memory as an argument to the translation, and return
a memory that may have had additional locations allocated. Func-
tion and tuple values from C are translated into A by allocating
fresh memory each time, which is fine because our system does not
model space efficiency.

4. From A to T: Code Generation and TAL
Our target language T is a stack-based typed assembly language
whose design follows the work of Morrisett et al. [10, 11] in
many respects. However, in order to state the compiler correctness
theorem we want, it was necessary to augment this design with
several additional features, particularly in the type system.

The syntax of T is given in Figure 5. Like in A, we use ⌧ for the
types of word-sized values and for the types of heap values. T
has both mutable (ref) and immutable (box) tuples. The type of
a code block is 8[�].{�;�}q, and consists of a list of expected
type-level arguments �, a pair of preconditions in the form of a

register file type � and a stack type �, and a return marker q. The
return marker identifies which argument to a code block is its return
address: either the value in a particular register r or the value on the
stack at index i. A code block at the top level of a program, which
has no return address, will have a return marker of end[⌧ ;�],
indicating that if the program halts, then when it does, the stack
will have type � and a designated register will have type ⌧ . We
will show in our discussion of T’s type system how return markers
allow us to assign types to T components.

In addition to the usual type abstraction, a type in T can abstract
over the type of a stack tail using stack type variables ⇣, and over
the return marker of another code block using return marker type
variables ✏. It is convenient to define ! to range over the syntactic
categories ⌧ , �, q that can instantiate type variables ↵, ⇣, ✏,
respectively.

T has several classes of values: heap values h, like in A, are
code blocks and tuples stored in the heap. Word values w are those
values that can be stored in a register or an entry in a tuple. Small
values u are the values that can appear in most instructions: they
are like word values but can also reference registers.

Code in T consists of sequences I of instructions ◆ ending
with a jump. Our type system tracks calls and returns of semantic
“functions” (which can consist of any number of code blocks), and
so there are two flavors of jumps: the form jmp u is used to jump
to the next code block in the same function, or to call a subroutine.
The form ret q, r returns from a function: if the return marker q is
a register name r0, then we jump to the location contained in r0. If
q = end[⌧ ;�], then the machine halts. In both cases, the register
r holds the word value being returned.

Other instructions consist of arithmetic operations, a branch-
ing construct bnz r, u, a move instruction, operations to allocate
and initialize a mutable or immutable tuple (ralloc rd, n and
balloc rd, n, respectively), load and store instructions for tuples,
unpack and unfold instructions, and a set of instructions for man-
aging the stack.

T’s components e must contain an initial instruction sequence
I, and, like A components, may contain a heap fragment H, which
must only contain immutable heap values. Since assembly instruc-
tions fill the role held by terms in previous languages, we need a
notion of a “term value” v, for which we use the return instruction.
Evaluation contexts are tiered as in A, but are trivial until we later
add the contexts for language boundaries.

Finally, the memory M of a T program consists of a heap H, a
register file R, and a stack S. We also annotate S with its type �,
which will be convenient when we add embed T into FCAT.

The reduction relation, also shown in Figure 5, is defined on
configurations consisting of a memory and the current instruction
sequence being evaluated. It makes use of a metafunction R̂ that
traverses a small value u and replaces register names with the
contents of that register.

 ` H : 0 Well-Typed Heap Fragment
 ` R :� Well-Typed Register File
 ` S :� Well-Typed Stack
` M : (,�,�) Well-Typed Memory
 ;�;�;�;q ` e : ⌧ ;�0 Well-Typed Component
 ` h : Well-Typed Heap Value
 ;� ` w : ⌧ Well-Typed Word Value
 ;�;� ` u : ⌧ Well-Typed Small Value
 ;�;�;�;q ` I Well-Typed Instruction Sequence
 ;�;�;�;q ` ◆)�0

;�0
;�0

;q0 Well-Typed Instruction
Figure 6: Judgments in T type system (excludes well-formed types)

6 2012/11/7

=

Thursday, October 17, 13

Equivalence of T Components: Tricky!

e1 e2
related inputs

Logical relations: related inputs to related outputs

 V!τ1 → τ2" = {(W,λx.e1,λx.e1) | . . .}

HV!∀[∆].{χ;σ}q" = {(W, code[∆]{χ;σ}q.I1, code[∆]{χ;σ}q.I2) | . . .}

Thursday, October 17, 13

Equivalence of T Components: Tricky!

e1 e2
related inputs

related outputs

Logical relations: related inputs to related outputs

 V!τ1 → τ2" = {(W,λx.e1,λx.e1) | . . .}

HV!∀[∆].{χ;σ}q" = {(W, code[∆]{χ;σ}q.I1, code[∆]{χ;σ}q.I2) | . . .}

Thursday, October 17, 13

Equivalence of T Components: Tricky!

e1 e2
related inputs

related outputs

Logical relations: related inputs to related outputs

 V!τ1 → τ2" = {(W,λx.e1,λx.e1) | . . .}

HV!∀[∆].{χ;σ}q" = {(W, code[∆]{χ;σ}q.I1, code[∆]{χ;σ}q.I2) | . . .}

Thursday, October 17, 13

Code Generation: A to T

ret-type(r,�,�) = ⌧ ;�0 if �(r) = box 8[].{r0 : ⌧ ;�0}q

ret-type(i,�,�) = ⌧ ;�0 if �(i) = box 8[].{r0 : ⌧ ;�0}q

ret-type(end[⌧ ;�0],�,�) = ⌧ ;�0

` M : (,�,�)
· ` H : ` R :� ` S :�

` (H,R, S:�) : (,�,�)

 ;�;�;�;q ` e : ⌧ ;�0

 ;�;�;�;q ` I
ret-type(q,�,�) = ⌧ ;�0

 ;�;�;�;q ` I : ⌧ ;�0

 ` H : e boxheap(e)

ret-type(q,�,�) = ⌧ ;�0 (, e);�;�;�;q ` I

 ;�;�;�;q ` (I,H) : ⌧ ;�0

 ;�;�;�;q ` I
�(r) = box 8[].{r0 : ⌧ ;�}q0

�(r0) = ⌧

 ;�;�;�; r ` ret r, r0

�(r) = ⌧

 ;�;�;�; end[⌧ ;�] ` ret end[⌧ ;�], r
· · ·

 ;�;�;�;q ` ◆)�0
;�0

;�0
;q0 where q, q0 6= ✏

 ;�;� ` u : ⌧ q 6= rd

 ;�;�;�;q ` mv rd, u)�;�[rd : ⌧];�;q

 ;�;� ` u : ⌧

 ;�;�;�; rs ` mv rd, rs)�;�[rd : ⌧];�; rd
. . .

Figure 7: Selected portions of T type system

Type System Our type system for T consists of several judg-
ments, shown in Figure 6. For those judgments with a return marker
q, we require q to be some r, i, or end[⌧ ;�], not ✏: code is not
allowed to abstract over its own return marker. TODO: what else is
important to say about the judgments?

Some of the inference rules in the type system are given in
Figure 7.

TODO: explain how ret-type meta-function gives us the return
type of a component

TODO: Explain how instruction judgment tracks movement of
return marker, prevents it from being discarded

TODO: say something about ret rules and jump rules

⌧T Type translation

↵T
= ↵

unitT = unit

intT = int

9↵.⌧T
= 9↵.⌧T

µ↵.⌧T
= µ↵.⌧T

box h⌧iT = box h⌧T i

box 8[↵].(⌧1, . . . , ⌧n)! ⌧ 0T

= box 8[↵, ⇣, ✏].

{ra : box 8[].{r1 : ⌧ 0T ; ⇣}✏;

⌧nT :: · · · :: ⌧1T :: ⇣}ra

 ;�; � ` e : ⌧ e where T
; (�T , ⇣, ✏);�;�; ra ` e : ⌧T

;�

for � = ra : 8[].{r1 : ⌧T ;�}✏ and � = order(�, ⇣)T
Figure 8: Compiler from A to T

Compiling A To T The type translation from A to T is only in-
teresting in the function case The result of compiling an A func-
tion expects two additional type-level arguments: the stack type ex-
pected at return time, and the return marker of this code’s contin-
uation. The only register argument is the return address, passed in
register ra. Arguments corresponding to the original A function’s

arguments are received on the stack, and must be popped off the
stack before returning.

The term translation operates on A components e, and builds a
T component e = (I,H) by translating the term component of e
as well as any heap values contained in e. The initial code block I
comes from the term component of e, but any part of e could gen-
erate multiple code blocks in H. The translation is parameterized
by a meta-function order(�,�)T that takes an unordered type en-
vironment � and produces a stack type with entries corresponding
to the entries in � on top of a tail �.

5. FCAT
The full multi-language system, shown in Figure 9, adds boundary
forms for interoperation between A and T. Since T has no terms,
we add the form for embedding an A component into T as an in-
struction import rd,

�T A⌧ e. After reducing e to a value, FCAT
saves the result of the value translation in a register rd. The extra
type annotation � on this instruction indicates a tail of the stack
which must be treated abstractly by e.

Since word values are not components, lumps Lh⌧iAT w are a
separate term form added to A in addition to the usual component
form ⌧AT e. The value translations between A and T deal with
word values on the T side, but otherwise follow the same principles
as the previous language pairs.

The other major addition needed in the full FCAT language is
that functions in F, C, and A need the ability to abstract over the
type of the stack. TODO: finish zetas discussion. do we explain in
more detail why we need this change? doing so could be painful
without giving the big ugly value translation case that uses it.
mention that we give the updated type and reduction rules for F
functions.

The type judgment for FCAT components needs to be aug-
mented with T’s environments. Add to the type rules of FCA a
register type �, which can be arbitray, a pair of stack types � and
�0 which serve as pre- and postconditions, and a return marker q,
which must have the new value out for everything outside of T.
To the T type rules for components, instructions, and instruction
sequences, add a type environment �. Additionally, wrap the code
in T reductions with evaluation contexts E.

5.1 FCAT Contextual Equivalence
5.2 FCAT Logical Relation

6. Compiler Correctness
7. Discussion and Related Work
8. Outline
Sec 1: Introduction [2] – looks like HOPE paper + list of contribu-
tions

- Discuss CompCert and need to link with libraries. Coughing
up source term is bad!

- A (small) example? Compile a component; link with TAL
component that implements something in an imperative fashion
(have refs in TAL); don’t need to cough up a related F component.
Or maybe mention example but show details in TR.

Sec 2: F-to-C [1] - Start out by giving F and C. - Then show
clos-conv translation and interop semantics for int and tau1-¿tau2
only - Then say: what happens when we consider forall [alpha]...
Typed operational translation and basic idea of going between types
of two languages

Sec 3: C-to-A [1] - Basic setup same as F-to-C (just give type
trans, operational type trans, translation) - Then discuss that interop
semantics allocates memory and looks up memory Leaky (space),
but only need it as a specification

7 2012/11/7

ret-type(r,�,�) = ⌧ ;�0 if �(r) = box 8[].{r0 : ⌧ ;�0}q

ret-type(i,�,�) = ⌧ ;�0 if �(i) = box 8[].{r0 : ⌧ ;�0}q

ret-type(end[⌧ ;�0],�,�) = ⌧ ;�0

` M : (,�,�)
· ` H : ` R :� ` S :�

` (H,R, S:�) : (,�,�)

 ;�;�;�;q ` e : ⌧ ;�0

 ;�;�;�;q ` I
ret-type(q,�,�) = ⌧ ;�0

 ;�;�;�;q ` I : ⌧ ;�0

 ` H : e boxheap(e)

ret-type(q,�,�) = ⌧ ;�0 (, e);�;�;�;q ` I

 ;�;�;�;q ` (I,H) : ⌧ ;�0

 ;�;�;�;q ` I
�(r) = box 8[].{r0 : ⌧ ;�}q0

�(r0) = ⌧

 ;�;�;�; r ` ret r, r0

�(r) = ⌧

 ;�;�;�; end[⌧ ;�] ` ret end[⌧ ;�], r
· · ·

 ;�;�;�;q ` ◆)�0
;�0

;�0
;q0 where q, q0 6= ✏

 ;�;� ` u : ⌧ q 6= rd

 ;�;�;�;q ` mv rd, u)�;�[rd : ⌧];�;q

 ;�;� ` u : ⌧

 ;�;�;�; rs ` mv rd, rs)�;�[rd : ⌧];�; rd
. . .

Figure 7: Selected portions of T type system

Type System Our type system for T consists of several judg-
ments, shown in Figure 6. For those judgments with a return marker
q, we require q to be some r, i, or end[⌧ ;�], not ✏: code is not
allowed to abstract over its own return marker. TODO: what else is
important to say about the judgments?

Some of the inference rules in the type system are given in
Figure 7.

TODO: explain how ret-type meta-function gives us the return
type of a component

TODO: Explain how instruction judgment tracks movement of
return marker, prevents it from being discarded

TODO: say something about ret rules and jump rules

⌧T Type translation

↵T
= ↵

unitT = unit

intT = int

9↵.⌧T
= 9↵.⌧T

µ↵.⌧T
= µ↵.⌧T

box h⌧iT = box h⌧T i

box 8[↵].(⌧1, . . . , ⌧n)! ⌧ 0T

= box 8[↵, ⇣, ✏].

{ra : box 8[].{r1 : ⌧ 0T ; ⇣}✏;

⌧nT :: · · · :: ⌧1T :: ⇣}ra

 ;�; � ` e : ⌧ e where T
; (�T , ⇣, ✏);�;�; ra ` e : ⌧T

;�

for � = ra : 8[].{r1 : ⌧T ;�}✏ and � = order(�, ⇣)T
Figure 8: Compiler from A to T

Compiling A To T The type translation from A to T is only in-
teresting in the function case The result of compiling an A func-
tion expects two additional type-level arguments: the stack type ex-
pected at return time, and the return marker of this code’s contin-
uation. The only register argument is the return address, passed in
register ra. Arguments corresponding to the original A function’s

arguments are received on the stack, and must be popped off the
stack before returning.

The term translation operates on A components e, and builds a
T component e = (I,H) by translating the term component of e
as well as any heap values contained in e. The initial code block I
comes from the term component of e, but any part of e could gen-
erate multiple code blocks in H. The translation is parameterized
by a meta-function order(�,�)T that takes an unordered type en-
vironment � and produces a stack type with entries corresponding
to the entries in � on top of a tail �.

5. FCAT
The full multi-language system, shown in Figure 9, adds boundary
forms for interoperation between A and T. Since T has no terms,
we add the form for embedding an A component into T as an in-
struction import rd,

�T A⌧ e. After reducing e to a value, FCAT
saves the result of the value translation in a register rd. The extra
type annotation � on this instruction indicates a tail of the stack
which must be treated abstractly by e.

Since word values are not components, lumps Lh⌧iAT w are a
separate term form added to A in addition to the usual component
form ⌧AT e. The value translations between A and T deal with
word values on the T side, but otherwise follow the same principles
as the previous language pairs.

The other major addition needed in the full FCAT language is
that functions in F, C, and A need the ability to abstract over the
type of the stack. TODO: finish zetas discussion. do we explain in
more detail why we need this change? doing so could be painful
without giving the big ugly value translation case that uses it.
mention that we give the updated type and reduction rules for F
functions.

The type judgment for FCAT components needs to be aug-
mented with T’s environments. Add to the type rules of FCA a
register type �, which can be arbitray, a pair of stack types � and
�0 which serve as pre- and postconditions, and a return marker q,
which must have the new value out for everything outside of T.
To the T type rules for components, instructions, and instruction
sequences, add a type environment �. Additionally, wrap the code
in T reductions with evaluation contexts E.

5.1 FCAT Contextual Equivalence
5.2 FCAT Logical Relation

6. Compiler Correctness
7. Discussion and Related Work
8. Outline
Sec 1: Introduction [2] – looks like HOPE paper + list of contribu-
tions

- Discuss CompCert and need to link with libraries. Coughing
up source term is bad!

- A (small) example? Compile a component; link with TAL
component that implements something in an imperative fashion
(have refs in TAL); don’t need to cough up a related F component.
Or maybe mention example but show details in TR.

Sec 2: F-to-C [1] - Start out by giving F and C. - Then show
clos-conv translation and interop semantics for int and tau1-¿tau2
only - Then say: what happens when we consider forall [alpha]...
Typed operational translation and basic idea of going between types
of two languages

Sec 3: C-to-A [1] - Basic setup same as F-to-C (just give type
trans, operational type trans, translation) - Then discuss that interop
semantics allocates memory and looks up memory Leaky (space),
but only need it as a specification

7 2012/11/7

 ;�;� ` e : ⌧ e

implies that ;�;� ` e : ⌧ and T ;�T ; ·; ·;�T :: •; end[⌧T ; �T :: •] ` e : ⌧T ;�T :: •

 ;�;8[].{r1 : ⌧T ; �T :: ⇣}✏ :: � :: ⇣ ` t : ⌧ ⇣,✏,0 (I,H :)

he = code[�T , ⇣, ✏]{ra : 8[].{r1 : ⌧T ; �T :: ⇣}✏; �T :: ⇣}ra.salloc 1; sst 0, ra; mv ra, `0e[�T][⇣][✏]; I

h0
e = code[�T , ⇣, ✏]{r1 : ⌧T ; 8[].{r1 : ⌧T ; �T :: ⇣}✏ :: �T :: ⇣}0.sld ra, 0; sfree 1; ret ra, r1

hend = code[�T]{r1 : ⌧T ; �T :: •}end[⌧
T ; �T :: •].ret end[⌧T ; �T :: •], r1

H0 = H, `e 7! he, `
0
e 7! h0

e, `end 7! hend

 ;�;� ` t : ⌧ ((mv ra, `end[�
T]; jmp `e[�

T][•][end[⌧T ; �T :: •]]),H0)

 ` H : 0 H : ;�;8[].{r1 : ⌧T ; �T :: ⇣}✏ :: � :: ⇣ ` t : ⌧ ⇣,✏,0 (I,H :)

he = code[�T , ⇣, ✏]{ra : 8[].{r1 : ⌧T ; �T :: ⇣}✏; �T :: ⇣}ra.salloc 1; sst 0, ra; mv ra, `0e[�T][⇣][✏]; I

h0
e = code[�T , ⇣, ✏]{r1 : ⌧T ; 8[].{r1 : ⌧T ; �T :: ⇣}✏ :: �T :: ⇣}0.sld ra, 0; sfree 1; ret ra, r1

hend = code[�T]{r1 : ⌧T ; �T :: •}end[⌧
T ; �T :: •].ret end[⌧T ; �T :: •], r1

H00 = H,H0`e 7! he, `
0
e 7! h0

e, `end 7! hend

 ;�;� ` t : ⌧ ((mv ra, `end[�
T]; jmp `e[�

T][•][end[⌧T ; �T :: •]]),H00)

25

 ;�;� ` e : ⌧ e

implies that ;�;� ` e : ⌧ and T ;�T ; ·; ·;�T :: •; end[⌧T ; �T :: •] ` e : ⌧T ;�T :: •

 ;�;8[].{r1 : ⌧T ; �T :: ⇣}✏ :: � :: ⇣ ` t : ⌧ ⇣,✏,0 (I,H :)

he = code[�T , ⇣, ✏]{ra : 8[].{r1 : ⌧T ; �T :: ⇣}✏; �T :: ⇣}ra.salloc 1; sst 0, ra; mv ra, `0e[�T][⇣][✏]; I

h0
e = code[�T , ⇣, ✏]{r1 : ⌧T ; 8[].{r1 : ⌧T ; �T :: ⇣}✏ :: �T :: ⇣}0.sld ra, 0; sfree 1; ret ra, r1

hend = code[�T]{r1 : ⌧T ; �T :: •}end[⌧
T ; �T :: •].ret end[⌧T ; �T :: •], r1

H0 = H, `e 7! he, `
0
e 7! h0

e, `end 7! hend

 ;�;� ` t : ⌧ ((mv ra, `end[�
T]; jmp `e[�

T][•][end[⌧T ; �T :: •]]),H0)

 ` H : 0 H : ;�;8[].{r1 : ⌧T ; �T :: ⇣}✏ :: � :: ⇣ ` t : ⌧ ⇣,✏,0 (I,H :)

he = code[�T , ⇣, ✏]{ra : 8[].{r1 : ⌧T ; �T :: ⇣}✏; �T :: ⇣}ra.salloc 1; sst 0, ra; mv ra, `0e[�T][⇣][✏]; I

h0
e = code[�T , ⇣, ✏]{r1 : ⌧T ; 8[].{r1 : ⌧T ; �T :: ⇣}✏ :: �T :: ⇣}0.sld ra, 0; sfree 1; ret ra, r1

hend = code[�T]{r1 : ⌧T ; �T :: •}end[⌧
T ; �T :: •].ret end[⌧T ; �T :: •], r1

H00 = H,H0`e 7! he, `
0
e 7! h0

e, `end 7! hend

 ;�;� ` t : ⌧ ((mv ra, `end[�
T]; jmp `e[�

T][•][end[⌧T ; �T :: •]]),H00)

25

Thursday, October 17, 13

Code Generation: A to T

ret-type(r,�,�) = ⌧ ;�0 if �(r) = box 8[].{r0 : ⌧ ;�0}q

ret-type(i,�,�) = ⌧ ;�0 if �(i) = box 8[].{r0 : ⌧ ;�0}q

ret-type(end[⌧ ;�0],�,�) = ⌧ ;�0

` M : (,�,�)
· ` H : ` R :� ` S :�

` (H,R, S:�) : (,�,�)

 ;�;�;�;q ` e : ⌧ ;�0

 ;�;�;�;q ` I
ret-type(q,�,�) = ⌧ ;�0

 ;�;�;�;q ` I : ⌧ ;�0

 ` H : e boxheap(e)

ret-type(q,�,�) = ⌧ ;�0 (, e);�;�;�;q ` I

 ;�;�;�;q ` (I,H) : ⌧ ;�0

 ;�;�;�;q ` I
�(r) = box 8[].{r0 : ⌧ ;�}q0

�(r0) = ⌧

 ;�;�;�; r ` ret r, r0

�(r) = ⌧

 ;�;�;�; end[⌧ ;�] ` ret end[⌧ ;�], r
· · ·

 ;�;�;�;q ` ◆)�0
;�0

;�0
;q0 where q, q0 6= ✏

 ;�;� ` u : ⌧ q 6= rd

 ;�;�;�;q ` mv rd, u)�;�[rd : ⌧];�;q

 ;�;� ` u : ⌧

 ;�;�;�; rs ` mv rd, rs)�;�[rd : ⌧];�; rd
. . .

Figure 7: Selected portions of T type system

Type System Our type system for T consists of several judg-
ments, shown in Figure 6. For those judgments with a return marker
q, we require q to be some r, i, or end[⌧ ;�], not ✏: code is not
allowed to abstract over its own return marker. TODO: what else is
important to say about the judgments?

Some of the inference rules in the type system are given in
Figure 7.

TODO: explain how ret-type meta-function gives us the return
type of a component

TODO: Explain how instruction judgment tracks movement of
return marker, prevents it from being discarded

TODO: say something about ret rules and jump rules

⌧T Type translation

↵T
= ↵

unitT = unit

intT = int

9↵.⌧T
= 9↵.⌧T

µ↵.⌧T
= µ↵.⌧T

box h⌧iT = box h⌧T i

box 8[↵].(⌧1, . . . , ⌧n)! ⌧ 0T

= box 8[↵, ⇣, ✏].

{ra : box 8[].{r1 : ⌧ 0T ; ⇣}✏;

⌧nT :: · · · :: ⌧1T :: ⇣}ra

 ;�; � ` e : ⌧ e where T
; (�T , ⇣, ✏);�;�; ra ` e : ⌧T

;�

for � = ra : 8[].{r1 : ⌧T ;�}✏ and � = order(�, ⇣)T
Figure 8: Compiler from A to T

Compiling A To T The type translation from A to T is only in-
teresting in the function case The result of compiling an A func-
tion expects two additional type-level arguments: the stack type ex-
pected at return time, and the return marker of this code’s contin-
uation. The only register argument is the return address, passed in
register ra. Arguments corresponding to the original A function’s

arguments are received on the stack, and must be popped off the
stack before returning.

The term translation operates on A components e, and builds a
T component e = (I,H) by translating the term component of e
as well as any heap values contained in e. The initial code block I
comes from the term component of e, but any part of e could gen-
erate multiple code blocks in H. The translation is parameterized
by a meta-function order(�,�)T that takes an unordered type en-
vironment � and produces a stack type with entries corresponding
to the entries in � on top of a tail �.

5. FCAT
The full multi-language system, shown in Figure 9, adds boundary
forms for interoperation between A and T. Since T has no terms,
we add the form for embedding an A component into T as an in-
struction import rd,

�T A⌧ e. After reducing e to a value, FCAT
saves the result of the value translation in a register rd. The extra
type annotation � on this instruction indicates a tail of the stack
which must be treated abstractly by e.

Since word values are not components, lumps Lh⌧iAT w are a
separate term form added to A in addition to the usual component
form ⌧AT e. The value translations between A and T deal with
word values on the T side, but otherwise follow the same principles
as the previous language pairs.

The other major addition needed in the full FCAT language is
that functions in F, C, and A need the ability to abstract over the
type of the stack. TODO: finish zetas discussion. do we explain in
more detail why we need this change? doing so could be painful
without giving the big ugly value translation case that uses it.
mention that we give the updated type and reduction rules for F
functions.

The type judgment for FCAT components needs to be aug-
mented with T’s environments. Add to the type rules of FCA a
register type �, which can be arbitray, a pair of stack types � and
�0 which serve as pre- and postconditions, and a return marker q,
which must have the new value out for everything outside of T.
To the T type rules for components, instructions, and instruction
sequences, add a type environment �. Additionally, wrap the code
in T reductions with evaluation contexts E.

5.1 FCAT Contextual Equivalence
5.2 FCAT Logical Relation

6. Compiler Correctness
7. Discussion and Related Work
8. Outline
Sec 1: Introduction [2] – looks like HOPE paper + list of contribu-
tions

- Discuss CompCert and need to link with libraries. Coughing
up source term is bad!

- A (small) example? Compile a component; link with TAL
component that implements something in an imperative fashion
(have refs in TAL); don’t need to cough up a related F component.
Or maybe mention example but show details in TR.

Sec 2: F-to-C [1] - Start out by giving F and C. - Then show
clos-conv translation and interop semantics for int and tau1-¿tau2
only - Then say: what happens when we consider forall [alpha]...
Typed operational translation and basic idea of going between types
of two languages

Sec 3: C-to-A [1] - Basic setup same as F-to-C (just give type
trans, operational type trans, translation) - Then discuss that interop
semantics allocates memory and looks up memory Leaky (space),
but only need it as a specification

7 2012/11/7

ret-type(r,�,�) = ⌧ ;�0 if �(r) = box 8[].{r0 : ⌧ ;�0}q

ret-type(i,�,�) = ⌧ ;�0 if �(i) = box 8[].{r0 : ⌧ ;�0}q

ret-type(end[⌧ ;�0],�,�) = ⌧ ;�0

` M : (,�,�)
· ` H : ` R :� ` S :�

` (H,R, S:�) : (,�,�)

 ;�;�;�;q ` e : ⌧ ;�0

 ;�;�;�;q ` I
ret-type(q,�,�) = ⌧ ;�0

 ;�;�;�;q ` I : ⌧ ;�0

 ` H : e boxheap(e)

ret-type(q,�,�) = ⌧ ;�0 (, e);�;�;�;q ` I

 ;�;�;�;q ` (I,H) : ⌧ ;�0

 ;�;�;�;q ` I
�(r) = box 8[].{r0 : ⌧ ;�}q0

�(r0) = ⌧

 ;�;�;�; r ` ret r, r0

�(r) = ⌧

 ;�;�;�; end[⌧ ;�] ` ret end[⌧ ;�], r
· · ·

 ;�;�;�;q ` ◆)�0
;�0

;�0
;q0 where q, q0 6= ✏

 ;�;� ` u : ⌧ q 6= rd

 ;�;�;�;q ` mv rd, u)�;�[rd : ⌧];�;q

 ;�;� ` u : ⌧

 ;�;�;�; rs ` mv rd, rs)�;�[rd : ⌧];�; rd
. . .

Figure 7: Selected portions of T type system

Type System Our type system for T consists of several judg-
ments, shown in Figure 6. For those judgments with a return marker
q, we require q to be some r, i, or end[⌧ ;�], not ✏: code is not
allowed to abstract over its own return marker. TODO: what else is
important to say about the judgments?

Some of the inference rules in the type system are given in
Figure 7.

TODO: explain how ret-type meta-function gives us the return
type of a component

TODO: Explain how instruction judgment tracks movement of
return marker, prevents it from being discarded

TODO: say something about ret rules and jump rules

⌧T Type translation

↵T
= ↵

unitT = unit

intT = int

9↵.⌧T
= 9↵.⌧T

µ↵.⌧T
= µ↵.⌧T

box h⌧iT = box h⌧T i

box 8[↵].(⌧1, . . . , ⌧n)! ⌧ 0T

= box 8[↵, ⇣, ✏].

{ra : box 8[].{r1 : ⌧ 0T ; ⇣}✏;

⌧nT :: · · · :: ⌧1T :: ⇣}ra

 ;�; � ` e : ⌧ e where T
; (�T , ⇣, ✏);�;�; ra ` e : ⌧T

;�

for � = ra : 8[].{r1 : ⌧T ;�}✏ and � = order(�, ⇣)T
Figure 8: Compiler from A to T

Compiling A To T The type translation from A to T is only in-
teresting in the function case The result of compiling an A func-
tion expects two additional type-level arguments: the stack type ex-
pected at return time, and the return marker of this code’s contin-
uation. The only register argument is the return address, passed in
register ra. Arguments corresponding to the original A function’s

arguments are received on the stack, and must be popped off the
stack before returning.

The term translation operates on A components e, and builds a
T component e = (I,H) by translating the term component of e
as well as any heap values contained in e. The initial code block I
comes from the term component of e, but any part of e could gen-
erate multiple code blocks in H. The translation is parameterized
by a meta-function order(�,�)T that takes an unordered type en-
vironment � and produces a stack type with entries corresponding
to the entries in � on top of a tail �.

5. FCAT
The full multi-language system, shown in Figure 9, adds boundary
forms for interoperation between A and T. Since T has no terms,
we add the form for embedding an A component into T as an in-
struction import rd,

�T A⌧ e. After reducing e to a value, FCAT
saves the result of the value translation in a register rd. The extra
type annotation � on this instruction indicates a tail of the stack
which must be treated abstractly by e.

Since word values are not components, lumps Lh⌧iAT w are a
separate term form added to A in addition to the usual component
form ⌧AT e. The value translations between A and T deal with
word values on the T side, but otherwise follow the same principles
as the previous language pairs.

The other major addition needed in the full FCAT language is
that functions in F, C, and A need the ability to abstract over the
type of the stack. TODO: finish zetas discussion. do we explain in
more detail why we need this change? doing so could be painful
without giving the big ugly value translation case that uses it.
mention that we give the updated type and reduction rules for F
functions.

The type judgment for FCAT components needs to be aug-
mented with T’s environments. Add to the type rules of FCA a
register type �, which can be arbitray, a pair of stack types � and
�0 which serve as pre- and postconditions, and a return marker q,
which must have the new value out for everything outside of T.
To the T type rules for components, instructions, and instruction
sequences, add a type environment �. Additionally, wrap the code
in T reductions with evaluation contexts E.

5.1 FCAT Contextual Equivalence
5.2 FCAT Logical Relation

6. Compiler Correctness
7. Discussion and Related Work
8. Outline
Sec 1: Introduction [2] – looks like HOPE paper + list of contribu-
tions

- Discuss CompCert and need to link with libraries. Coughing
up source term is bad!

- A (small) example? Compile a component; link with TAL
component that implements something in an imperative fashion
(have refs in TAL); don’t need to cough up a related F component.
Or maybe mention example but show details in TR.

Sec 2: F-to-C [1] - Start out by giving F and C. - Then show
clos-conv translation and interop semantics for int and tau1-¿tau2
only - Then say: what happens when we consider forall [alpha]...
Typed operational translation and basic idea of going between types
of two languages

Sec 3: C-to-A [1] - Basic setup same as F-to-C (just give type
trans, operational type trans, translation) - Then discuss that interop
semantics allocates memory and looks up memory Leaky (space),
but only need it as a specification

7 2012/11/7

 ;�;� ` e : ⌧ e

implies that ;�;� ` e : ⌧ and T ;�T ; ·; ·;�T :: •; end[⌧T ; �T :: •] ` e : ⌧T ;�T :: •

 ;�;8[].{r1 : ⌧T ; �T :: ⇣}✏ :: � :: ⇣ ` t : ⌧ ⇣,✏,0 (I,H :)

he = code[�T , ⇣, ✏]{ra : 8[].{r1 : ⌧T ; �T :: ⇣}✏; �T :: ⇣}ra.salloc 1; sst 0, ra; mv ra, `0e[�T][⇣][✏]; I

h0
e = code[�T , ⇣, ✏]{r1 : ⌧T ; 8[].{r1 : ⌧T ; �T :: ⇣}✏ :: �T :: ⇣}0.sld ra, 0; sfree 1; ret ra, r1

hend = code[�T]{r1 : ⌧T ; �T :: •}end[⌧
T ; �T :: •].ret end[⌧T ; �T :: •], r1

H0 = H, `e 7! he, `
0
e 7! h0

e, `end 7! hend

 ;�;� ` t : ⌧ ((mv ra, `end[�
T]; jmp `e[�

T][•][end[⌧T ; �T :: •]]),H0)

 ` H : 0 H : ;�;8[].{r1 : ⌧T ; �T :: ⇣}✏ :: � :: ⇣ ` t : ⌧ ⇣,✏,0 (I,H :)

he = code[�T , ⇣, ✏]{ra : 8[].{r1 : ⌧T ; �T :: ⇣}✏; �T :: ⇣}ra.salloc 1; sst 0, ra; mv ra, `0e[�T][⇣][✏]; I

h0
e = code[�T , ⇣, ✏]{r1 : ⌧T ; 8[].{r1 : ⌧T ; �T :: ⇣}✏ :: �T :: ⇣}0.sld ra, 0; sfree 1; ret ra, r1

hend = code[�T]{r1 : ⌧T ; �T :: •}end[⌧
T ; �T :: •].ret end[⌧T ; �T :: •], r1

H00 = H,H0`e 7! he, `
0
e 7! h0

e, `end 7! hend

 ;�;� ` t : ⌧ ((mv ra, `end[�
T]; jmp `e[�

T][•][end[⌧T ; �T :: •]]),H00)

25

 ;�;� ` e : ⌧ e

implies that ;�;� ` e : ⌧ and T ;�T ; ·; ·;�T :: •; end[⌧T ; �T :: •] ` e : ⌧T ;�T :: •

 ;�;8[].{r1 : ⌧T ; �T :: ⇣}✏ :: � :: ⇣ ` t : ⌧ ⇣,✏,0 (I,H :)

he = code[�T , ⇣, ✏]{ra : 8[].{r1 : ⌧T ; �T :: ⇣}✏; �T :: ⇣}ra.salloc 1; sst 0, ra; mv ra, `0e[�T][⇣][✏]; I

h0
e = code[�T , ⇣, ✏]{r1 : ⌧T ; 8[].{r1 : ⌧T ; �T :: ⇣}✏ :: �T :: ⇣}0.sld ra, 0; sfree 1; ret ra, r1

hend = code[�T]{r1 : ⌧T ; �T :: •}end[⌧
T ; �T :: •].ret end[⌧T ; �T :: •], r1

H0 = H, `e 7! he, `
0
e 7! h0

e, `end 7! hend

 ;�;� ` t : ⌧ ((mv ra, `end[�
T]; jmp `e[�

T][•][end[⌧T ; �T :: •]]),H0)

 ` H : 0 H : ;�;8[].{r1 : ⌧T ; �T :: ⇣}✏ :: � :: ⇣ ` t : ⌧ ⇣,✏,0 (I,H :)

he = code[�T , ⇣, ✏]{ra : 8[].{r1 : ⌧T ; �T :: ⇣}✏; �T :: ⇣}ra.salloc 1; sst 0, ra; mv ra, `0e[�T][⇣][✏]; I

h0
e = code[�T , ⇣, ✏]{r1 : ⌧T ; 8[].{r1 : ⌧T ; �T :: ⇣}✏ :: �T :: ⇣}0.sld ra, 0; sfree 1; ret ra, r1

hend = code[�T]{r1 : ⌧T ; �T :: •}end[⌧
T ; �T :: •].ret end[⌧T ; �T :: •], r1

H00 = H,H0`e 7! he, `
0
e 7! h0

e, `end 7! hend

 ;�;� ` t : ⌧ ((mv ra, `end[�
T]; jmp `e[�

T][•][end[⌧T ; �T :: •]]),H00)

25

Thursday, October 17, 13

Interoperability: A and T

⌧ ::= · · · | 8[↵]⇣ .(⌧)! ⌧ 0

t ::= · · · | �[↵]⇣(x : ⌧).t

v ::= · · · | �[↵]⇣(x : ⌧).t

⌧ ::= · · · | 8[↵]⇣ .(⌧)! ⌧ 0

t ::= · · · | �[↵]⇣(x : ⌧).t

v ::= · · · | �[↵]⇣(x : ⌧).t

⌧ ::= · · · | Lh⌧i
 ::= · · · | 8[↵]⇣ .(⌧)! ⌧ 0

t ::= · · · | ⌧AT e | Lh⌧iAT w

v ::= · · · | Lh⌧iAT w

h ::= · · · | �[↵]⇣(x : ⌧).t
Et ::= · · · | ⌧AT E

⌧ ::= · · · | d↵e | d↵e | d↵e
q ::= · · · | out

◆ ::= · · · | import rd, �T A⌧ e

EI ::= · · · | import rd, �T A⌧E; I

⌧ ::= · · · | ⌧
e ::= · · · | e

v ::= · · · | v

E ::= · · · | E

M ::= (H,M)

 ::= (,)

� ::= · · · | �,↵ | �, ⇣ | �, ✏

⌧ hT i Operational Type Translation

↵hT i
= d↵e · · · Lh⌧ihT i

= ⌧ d↵ehT i
= d↵e d↵ehT i

= d↵e

Type substitution: d↵e[⌧/↵] = ((⌧hCi)hAi)hT i

d↵e[⌧/↵] = (⌧ hAi)hT i d↵e[⌧/↵] = ⌧ hT i

` M : (,�,�)
(·, (, ·, ·)) ` H : (, ·) ` M : (,�,�)

` (H,M) : ((,),�,�)

 ;�;�;�;�;q ` e : ⌧ ;�0 Add �, �, q, �0 to FCA; � to T

 ; (�,↵, ⇣); (�, x : ⌧); ·; ⇣;out ` t : ⌧ 0; ⇣

 ;�;�;�;�;out ` �[↵]⇣(x : ⌧).t : 8[↵]⇣ .(⌧)! ⌧ 0;�
. . .

 ;�;�; ·;�; end[⌧ hT i;�0] ` e : ⌧ hT i
;�0

 ;�;�;�;�;out ` ⌧AT e : ⌧ ;�0

 ;� ` w : ⌧

 ;�;�;�;�;out ` Lh⌧iAT w : Lh⌧i;�

 ;�;�;�;�;q ` ◆) �

0
;�0

;�0
;q0 q, q0 6= out

� = ⌧ :: �0 �0
= ⌧ 0 :: �0

 ; (�, ⇣);�;�; (⌧ :: ⇣);out ` e : ⌧ ; (⌧ 0 :: ⇣)
q = i > len(⌧) and q0

= i� len(⌧) + len(⌧ 0
)

or q = q0
= end[⌧̂ ; �̂]

 ;�;�;�;�;q ` import rd,
�0T A⌧ e) �; (rd : ⌧T);�0

;q0

TA⌧
(v,M) = (w,M 0

)

⌧AT(w,M) = (v,M 0
) Value Translations

hM | ei 7�! hM 0 | e0i Lift FCA rules to new config.; add E to T rules

hM | E[�[↵]⇣(x : ⌧).t [⌧ 0] v]i 7�! hM | E[t[⌧ 0/↵][M.M.�/⇣][v/x]]i

· · ·
⌧AT(M.M.R(r),M) = (v,M 0

)

hM | E[

⌧AT ret end[⌧ hT i;�], r]i 7�! hM 0 | E[v]i
TA⌧

(v,M) = (w,M 0
)

hM | E[import rd,
�0

T A⌧ v; I]i 7�! hM 0 | E[mv rd,w; I]i
Figure 9: FCAT Multi-language system (extends and updates Fig-
ures 4 and 5)

Sec 4: A-to-T [2] - TAL syntax: need stacks and stack effects.
- Just TAL: we want to be able to reason about equivalence of
components: What is a component? What is the ”return type”
of a component? Need support from type system: return markers
?? Contextual equivalence for TAL (contexts!); or just grammar
for TAL contexts - Type trans, operational type trans, no space
for actual translation (see TR) - Interop semantics (some cases);
discuss calling conventions (perhaps w/ trans discussion)

Sec 5: FCAT, Logical Relation [2.5] - FCAT: some additions to
earlier passes, e.g., lambdas need zetas - FCAT typing judgments

C ::= [·] | C p t | · · · | �[↵]⇣(x : ⌧).C | · · · | ⌧FCC
C ::= [·] | · · · | �[↵]⇣(x : ⌧).C | · · · | CF⌧

C | ⌧CAC

C ::= (Ct,H) | (t,CH)

Ct ::= [·] | · · · | AC⌧C | ⌧AT C

CH ::= CH, ` 7! h | H, ` 7! �[↵]⇣(x : ⌧).Ct

C ::= (CI,H) | (I,CH)

CI ::= [·] | ◆; CI | import rd, �T A⌧C; I

CH ::= CH, ` 7! h | H, ` 7! code[�]{�;�}q.CI

C ::= C | C | C | C

C[e] Context Plugging (T cases shown)

(CI,H)[e] =

8
><

>:

(CI[I], (H,H0)) e = (I,H0) ^
CI contains no lang. boundaries

(CI[e],H) otherwise

(I,CH)[e] =

8
><

>:

(I, (CH[I],H0)) e = (I,H0) ^
CH contains no lang. boundaries

(I,CH[e]) otherwise
[·][I] = I

(◆; CI)[e] = ◆; CI[e]

(import rd, �T A⌧C; I)[e] = import rd, �T A⌧ (C[e]); I

(CH, ` 7! h)[e] = (CH[e]), ` 7! h

(H, ` 7! code[�]{�;�}q.CI)[e] = H, ` 7! code[�]{�;�}q.(CI[e])

` C : (;�;�;�;�;q ` ⌧ ; �̂) (

0
;�

0
;�

0
;�0

;�0
;q0 ` ⌧ 0; �̂0

)

Contextual Equivalence

 ;�;�;�;�;q ` e1 ⇡ctx e2 : ⌧ ; �̂
def
=

 ;�;�;�;�;q ` e1 : ⌧ ; �̂ ^ ;�;�;�;�;q ` e2 : ⌧ ; �̂ ^
8C,M, 0,�0,�0,q0, ⌧ 0, �̂0. ` M : (

0,�0, �̂0
) ^

` C : (;�;�;�;�;q ` ⌧ ;�0
) (

0
; ·; ·;�0

; �̂;q0 ` ⌧ 0; �̂0
) ^

(q0
= out _ (9⌧ 0. ⌧ 0 = ⌧ 0 ^ q0

= end[⌧ 0; �̂0]))

=) (hM | C[e1]i# () hM | C[e2]i#)

Figure 10: General Contexts and Contextual Equivalence for FCAT

(how to modify F,C,A judgments to get FCAT judgments) - Con-
textual equivalence for FCAT - Logical relation (excerpts) - What
about ciu? Need to show continuations!!

Sec 6: Compiler Correctness (theorems) [0.5] - Theorem state-
ments

Sec 7: Related work & conclusion [0.5]
References [0.5]

References
[1] A. Ahmed and M. Blume. An equivalence-preserving cps transla-

tion via multi-language semantics. In International Conference on
Functional Programming (ICFP), Tokyo, Japan, pages 431–444, Sept.
2011.

[2] A. Ahmed, D. Dreyer, and A. Rossberg. State-dependent representa-
tion independence. In ACM Symposium on Principles of Programming
Languages (POPL), Savannah, Georgia, Jan. 2009.

[3] N. Benton and C.-K. Hur. Biorthogonality, step-indexing and compiler
correctness. In International Conference on Functional Programming
(ICFP), Edinburgh, Scotland, Sept. 2009.

[4] C.-K. Hur and D. Dreyer. A kripke logical relation between ml
and assembly. In ACM Symposium on Principles of Programming
Languages (POPL), Austin, Texas, Jan. 2011.

[5] C.-K. Hur, D. Dreyer, G. Neis, and V. Vafeiadis. The marriage of
bisimulations and kripke logical relations. In ACM Symposium on
Principles of Programming Languages (POPL), Philadelphia, Penn-
sylvania, Jan. 2012.

8 2012/11/7

⌧ ::= · · · | 8[↵]⇣ .(⌧)! ⌧ 0

t ::= · · · | �[↵]⇣(x : ⌧).t

v ::= · · · | �[↵]⇣(x : ⌧).t

⌧ ::= · · · | 8[↵]⇣ .(⌧)! ⌧ 0

t ::= · · · | �[↵]⇣(x : ⌧).t

v ::= · · · | �[↵]⇣(x : ⌧).t

⌧ ::= · · · | Lh⌧i
 ::= · · · | 8[↵]⇣ .(⌧)! ⌧ 0

t ::= · · · | ⌧AT e | Lh⌧iAT w

v ::= · · · | Lh⌧iAT w

h ::= · · · | �[↵]⇣(x : ⌧).t
Et ::= · · · | ⌧AT E

⌧ ::= · · · | d↵e | d↵e | d↵e
q ::= · · · | out

◆ ::= · · · | import rd, �T A⌧ e

EI ::= · · · | import rd, �T A⌧E; I

⌧ ::= · · · | ⌧
e ::= · · · | e

v ::= · · · | v

E ::= · · · | E

M ::= (H,M)

 ::= (,)

� ::= · · · | �,↵ | �, ⇣ | �, ✏

⌧ hT i Operational Type Translation

↵hT i
= d↵e · · · Lh⌧ihT i

= ⌧ d↵ehT i
= d↵e d↵ehT i

= d↵e

Type substitution: d↵e[⌧/↵] = ((⌧hCi)hAi)hT i

d↵e[⌧/↵] = (⌧ hAi)hT i d↵e[⌧/↵] = ⌧ hT i

` M : (,�,�)
(·, (, ·, ·)) ` H : (, ·) ` M : (,�,�)

` (H,M) : ((,),�,�)

 ;�;�;�;�;q ` e : ⌧ ;�0 Add �, �, q, �0 to FCA; � to T

 ; (�,↵, ⇣); (�, x : ⌧); ·; ⇣;out ` t : ⌧ 0; ⇣

 ;�;�;�;�;out ` �[↵]⇣(x : ⌧).t : 8[↵]⇣ .(⌧)! ⌧ 0;�
. . .

 ;�;�; ·;�; end[⌧ hT i;�0] ` e : ⌧ hT i
;�0

 ;�;�;�;�;out ` ⌧AT e : ⌧ ;�0

 ;� ` w : ⌧

 ;�;�;�;�;out ` Lh⌧iAT w : Lh⌧i;�

 ;�;�;�;�;q ` ◆) �

0
;�0

;�0
;q0 q, q0 6= out

� = ⌧ :: �0 �0
= ⌧ 0 :: �0

 ; (�, ⇣);�;�; (⌧ :: ⇣);out ` e : ⌧ ; (⌧ 0 :: ⇣)
q = i > len(⌧) and q0

= i� len(⌧) + len(⌧ 0
)

or q = q0
= end[⌧̂ ; �̂]

 ;�;�;�;�;q ` import rd,
�0T A⌧ e) �; (rd : ⌧T);�0

;q0

TA⌧
(v,M) = (w,M 0

)

⌧AT(w,M) = (v,M 0
) Value Translations

hM | ei 7�! hM 0 | e0i Lift FCA rules to new config.; add E to T rules

hM | E[�[↵]⇣(x : ⌧).t [⌧ 0] v]i 7�! hM | E[t[⌧ 0/↵][M.M.�/⇣][v/x]]i

· · ·
⌧AT(M.M.R(r),M) = (v,M 0

)

hM | E[

⌧AT ret end[⌧ hT i;�], r]i 7�! hM 0 | E[v]i
TA⌧

(v,M) = (w,M 0
)

hM | E[import rd,
�0

T A⌧ v; I]i 7�! hM 0 | E[mv rd,w; I]i
Figure 9: FCAT Multi-language system (extends and updates Fig-
ures 4 and 5)

Sec 4: A-to-T [2] - TAL syntax: need stacks and stack effects.
- Just TAL: we want to be able to reason about equivalence of
components: What is a component? What is the ”return type”
of a component? Need support from type system: return markers
?? Contextual equivalence for TAL (contexts!); or just grammar
for TAL contexts - Type trans, operational type trans, no space
for actual translation (see TR) - Interop semantics (some cases);
discuss calling conventions (perhaps w/ trans discussion)

Sec 5: FCAT, Logical Relation [2.5] - FCAT: some additions to
earlier passes, e.g., lambdas need zetas - FCAT typing judgments

C ::= [·] | C p t | · · · | �[↵]⇣(x : ⌧).C | · · · | ⌧FCC
C ::= [·] | · · · | �[↵]⇣(x : ⌧).C | · · · | CF⌧

C | ⌧CAC

C ::= (Ct,H) | (t,CH)

Ct ::= [·] | · · · | AC⌧C | ⌧AT C

CH ::= CH, ` 7! h | H, ` 7! �[↵]⇣(x : ⌧).Ct

C ::= (CI,H) | (I,CH)

CI ::= [·] | ◆; CI | import rd, �T A⌧C; I

CH ::= CH, ` 7! h | H, ` 7! code[�]{�;�}q.CI

C ::= C | C | C | C

C[e] Context Plugging (T cases shown)

(CI,H)[e] =

8
><

>:

(CI[I], (H,H0)) e = (I,H0) ^
CI contains no lang. boundaries

(CI[e],H) otherwise

(I,CH)[e] =

8
><

>:

(I, (CH[I],H0)) e = (I,H0) ^
CH contains no lang. boundaries

(I,CH[e]) otherwise
[·][I] = I

(◆; CI)[e] = ◆; CI[e]

(import rd, �T A⌧C; I)[e] = import rd, �T A⌧ (C[e]); I

(CH, ` 7! h)[e] = (CH[e]), ` 7! h

(H, ` 7! code[�]{�;�}q.CI)[e] = H, ` 7! code[�]{�;�}q.(CI[e])

` C : (;�;�;�;�;q ` ⌧ ; �̂) (

0
;�

0
;�

0
;�0

;�0
;q0 ` ⌧ 0; �̂0

)

Contextual Equivalence

 ;�;�;�;�;q ` e1 ⇡ctx e2 : ⌧ ; �̂
def
=

 ;�;�;�;�;q ` e1 : ⌧ ; �̂ ^ ;�;�;�;�;q ` e2 : ⌧ ; �̂ ^
8C,M, 0,�0,�0,q0, ⌧ 0, �̂0. ` M : (

0,�0, �̂0
) ^

` C : (;�;�;�;�;q ` ⌧ ;�0
) (

0
; ·; ·;�0

; �̂;q0 ` ⌧ 0; �̂0
) ^

(q0
= out _ (9⌧ 0. ⌧ 0 = ⌧ 0 ^ q0

= end[⌧ 0; �̂0]))

=) (hM | C[e1]i# () hM | C[e2]i#)

Figure 10: General Contexts and Contextual Equivalence for FCAT

(how to modify F,C,A judgments to get FCAT judgments) - Con-
textual equivalence for FCAT - Logical relation (excerpts) - What
about ciu? Need to show continuations!!

Sec 6: Compiler Correctness (theorems) [0.5] - Theorem state-
ments

Sec 7: Related work & conclusion [0.5]
References [0.5]

References
[1] A. Ahmed and M. Blume. An equivalence-preserving cps transla-

tion via multi-language semantics. In International Conference on
Functional Programming (ICFP), Tokyo, Japan, pages 431–444, Sept.
2011.

[2] A. Ahmed, D. Dreyer, and A. Rossberg. State-dependent representa-
tion independence. In ACM Symposium on Principles of Programming
Languages (POPL), Savannah, Georgia, Jan. 2009.

[3] N. Benton and C.-K. Hur. Biorthogonality, step-indexing and compiler
correctness. In International Conference on Functional Programming
(ICFP), Edinburgh, Scotland, Sept. 2009.

[4] C.-K. Hur and D. Dreyer. A kripke logical relation between ml
and assembly. In ACM Symposium on Principles of Programming
Languages (POPL), Austin, Texas, Jan. 2011.

[5] C.-K. Hur, D. Dreyer, G. Neis, and V. Vafeiadis. The marriage of
bisimulations and kripke logical relations. In ACM Symposium on
Principles of Programming Languages (POPL), Philadelphia, Penn-
sylvania, Jan. 2012.

8 2012/11/7

Thursday, October 17, 13

Interoperability: A and T

⌧ ::= · · · | 8[↵]⇣ .(⌧)! ⌧ 0

t ::= · · · | �[↵]⇣(x : ⌧).t

v ::= · · · | �[↵]⇣(x : ⌧).t

⌧ ::= · · · | 8[↵]⇣ .(⌧)! ⌧ 0

t ::= · · · | �[↵]⇣(x : ⌧).t

v ::= · · · | �[↵]⇣(x : ⌧).t

⌧ ::= · · · | Lh⌧i
 ::= · · · | 8[↵]⇣ .(⌧)! ⌧ 0

t ::= · · · | ⌧AT e | Lh⌧iAT w

v ::= · · · | Lh⌧iAT w

h ::= · · · | �[↵]⇣(x : ⌧).t
Et ::= · · · | ⌧AT E

⌧ ::= · · · | d↵e | d↵e | d↵e
q ::= · · · | out

◆ ::= · · · | import rd, �T A⌧ e

EI ::= · · · | import rd, �T A⌧E; I

⌧ ::= · · · | ⌧
e ::= · · · | e

v ::= · · · | v

E ::= · · · | E

M ::= (H,M)

 ::= (,)

� ::= · · · | �,↵ | �, ⇣ | �, ✏

⌧ hT i Operational Type Translation

↵hT i
= d↵e · · · Lh⌧ihT i

= ⌧ d↵ehT i
= d↵e d↵ehT i

= d↵e

Type substitution: d↵e[⌧/↵] = ((⌧hCi)hAi)hT i

d↵e[⌧/↵] = (⌧ hAi)hT i d↵e[⌧/↵] = ⌧ hT i

` M : (,�,�)
(·, (, ·, ·)) ` H : (, ·) ` M : (,�,�)

` (H,M) : ((,),�,�)

 ;�;�;�;�;q ` e : ⌧ ;�0 Add �, �, q, �0 to FCA; � to T

 ; (�,↵, ⇣); (�, x : ⌧); ·; ⇣;out ` t : ⌧ 0; ⇣

 ;�;�;�;�;out ` �[↵]⇣(x : ⌧).t : 8[↵]⇣ .(⌧)! ⌧ 0;�
. . .

 ;�;�; ·;�; end[⌧ hT i;�0] ` e : ⌧ hT i
;�0

 ;�;�;�;�;out ` ⌧AT e : ⌧ ;�0

 ;� ` w : ⌧

 ;�;�;�;�;out ` Lh⌧iAT w : Lh⌧i;�

 ;�;�;�;�;q ` ◆) �

0
;�0

;�0
;q0 q, q0 6= out

� = ⌧ :: �0 �0
= ⌧ 0 :: �0

 ; (�, ⇣);�;�; (⌧ :: ⇣);out ` e : ⌧ ; (⌧ 0 :: ⇣)
q = i > len(⌧) and q0

= i� len(⌧) + len(⌧ 0
)

or q = q0
= end[⌧̂ ; �̂]

 ;�;�;�;�;q ` import rd,
�0T A⌧ e) �; (rd : ⌧T);�0

;q0

TA⌧
(v,M) = (w,M 0

)

⌧AT(w,M) = (v,M 0
) Value Translations

hM | ei 7�! hM 0 | e0i Lift FCA rules to new config.; add E to T rules

hM | E[�[↵]⇣(x : ⌧).t [⌧ 0] v]i 7�! hM | E[t[⌧ 0/↵][M.M.�/⇣][v/x]]i

· · ·
⌧AT(M.M.R(r),M) = (v,M 0

)

hM | E[

⌧AT ret end[⌧ hT i;�], r]i 7�! hM 0 | E[v]i
TA⌧

(v,M) = (w,M 0
)

hM | E[import rd,
�0

T A⌧ v; I]i 7�! hM 0 | E[mv rd,w; I]i
Figure 9: FCAT Multi-language system (extends and updates Fig-
ures 4 and 5)

Sec 4: A-to-T [2] - TAL syntax: need stacks and stack effects.
- Just TAL: we want to be able to reason about equivalence of
components: What is a component? What is the ”return type”
of a component? Need support from type system: return markers
?? Contextual equivalence for TAL (contexts!); or just grammar
for TAL contexts - Type trans, operational type trans, no space
for actual translation (see TR) - Interop semantics (some cases);
discuss calling conventions (perhaps w/ trans discussion)

Sec 5: FCAT, Logical Relation [2.5] - FCAT: some additions to
earlier passes, e.g., lambdas need zetas - FCAT typing judgments

C ::= [·] | C p t | · · · | �[↵]⇣(x : ⌧).C | · · · | ⌧FCC
C ::= [·] | · · · | �[↵]⇣(x : ⌧).C | · · · | CF⌧

C | ⌧CAC

C ::= (Ct,H) | (t,CH)

Ct ::= [·] | · · · | AC⌧C | ⌧AT C

CH ::= CH, ` 7! h | H, ` 7! �[↵]⇣(x : ⌧).Ct

C ::= (CI,H) | (I,CH)

CI ::= [·] | ◆; CI | import rd, �T A⌧C; I

CH ::= CH, ` 7! h | H, ` 7! code[�]{�;�}q.CI

C ::= C | C | C | C

C[e] Context Plugging (T cases shown)

(CI,H)[e] =

8
><

>:

(CI[I], (H,H0)) e = (I,H0) ^
CI contains no lang. boundaries

(CI[e],H) otherwise

(I,CH)[e] =

8
><

>:

(I, (CH[I],H0)) e = (I,H0) ^
CH contains no lang. boundaries

(I,CH[e]) otherwise
[·][I] = I

(◆; CI)[e] = ◆; CI[e]

(import rd, �T A⌧C; I)[e] = import rd, �T A⌧ (C[e]); I

(CH, ` 7! h)[e] = (CH[e]), ` 7! h

(H, ` 7! code[�]{�;�}q.CI)[e] = H, ` 7! code[�]{�;�}q.(CI[e])

` C : (;�;�;�;�;q ` ⌧ ; �̂) (

0
;�

0
;�

0
;�0

;�0
;q0 ` ⌧ 0; �̂0

)

Contextual Equivalence

 ;�;�;�;�;q ` e1 ⇡ctx e2 : ⌧ ; �̂
def
=

 ;�;�;�;�;q ` e1 : ⌧ ; �̂ ^ ;�;�;�;�;q ` e2 : ⌧ ; �̂ ^
8C,M, 0,�0,�0,q0, ⌧ 0, �̂0. ` M : (

0,�0, �̂0
) ^

` C : (;�;�;�;�;q ` ⌧ ;�0
) (

0
; ·; ·;�0

; �̂;q0 ` ⌧ 0; �̂0
) ^

(q0
= out _ (9⌧ 0. ⌧ 0 = ⌧ 0 ^ q0

= end[⌧ 0; �̂0]))

=) (hM | C[e1]i# () hM | C[e2]i#)

Figure 10: General Contexts and Contextual Equivalence for FCAT

(how to modify F,C,A judgments to get FCAT judgments) - Con-
textual equivalence for FCAT - Logical relation (excerpts) - What
about ciu? Need to show continuations!!

Sec 6: Compiler Correctness (theorems) [0.5] - Theorem state-
ments

Sec 7: Related work & conclusion [0.5]
References [0.5]

References
[1] A. Ahmed and M. Blume. An equivalence-preserving cps transla-

tion via multi-language semantics. In International Conference on
Functional Programming (ICFP), Tokyo, Japan, pages 431–444, Sept.
2011.

[2] A. Ahmed, D. Dreyer, and A. Rossberg. State-dependent representa-
tion independence. In ACM Symposium on Principles of Programming
Languages (POPL), Savannah, Georgia, Jan. 2009.

[3] N. Benton and C.-K. Hur. Biorthogonality, step-indexing and compiler
correctness. In International Conference on Functional Programming
(ICFP), Edinburgh, Scotland, Sept. 2009.

[4] C.-K. Hur and D. Dreyer. A kripke logical relation between ml
and assembly. In ACM Symposium on Principles of Programming
Languages (POPL), Austin, Texas, Jan. 2011.

[5] C.-K. Hur, D. Dreyer, G. Neis, and V. Vafeiadis. The marriage of
bisimulations and kripke logical relations. In ACM Symposium on
Principles of Programming Languages (POPL), Philadelphia, Penn-
sylvania, Jan. 2012.

8 2012/11/7

⌧ ::= · · · | 8[↵]⇣ .(⌧)! ⌧ 0

t ::= · · · | �[↵]⇣(x : ⌧).t

v ::= · · · | �[↵]⇣(x : ⌧).t

⌧ ::= · · · | 8[↵]⇣ .(⌧)! ⌧ 0

t ::= · · · | �[↵]⇣(x : ⌧).t

v ::= · · · | �[↵]⇣(x : ⌧).t

⌧ ::= · · · | Lh⌧i
 ::= · · · | 8[↵]⇣ .(⌧)! ⌧ 0

t ::= · · · | ⌧AT e | Lh⌧iAT w

v ::= · · · | Lh⌧iAT w

h ::= · · · | �[↵]⇣(x : ⌧).t
Et ::= · · · | ⌧AT E

⌧ ::= · · · | d↵e | d↵e | d↵e
q ::= · · · | out

◆ ::= · · · | import rd, �T A⌧ e

EI ::= · · · | import rd, �T A⌧E; I

⌧ ::= · · · | ⌧
e ::= · · · | e

v ::= · · · | v

E ::= · · · | E

M ::= (H,M)

 ::= (,)

� ::= · · · | �,↵ | �, ⇣ | �, ✏

⌧ hT i Operational Type Translation

↵hT i
= d↵e · · · Lh⌧ihT i

= ⌧ d↵ehT i
= d↵e d↵ehT i

= d↵e

Type substitution: d↵e[⌧/↵] = ((⌧hCi)hAi)hT i

d↵e[⌧/↵] = (⌧ hAi)hT i d↵e[⌧/↵] = ⌧ hT i

` M : (,�,�)
(·, (, ·, ·)) ` H : (, ·) ` M : (,�,�)

` (H,M) : ((,),�,�)

 ;�;�;�;�;q ` e : ⌧ ;�0 Add �, �, q, �0 to FCA; � to T

 ; (�,↵, ⇣); (�, x : ⌧); ·; ⇣;out ` t : ⌧ 0; ⇣

 ;�;�;�;�;out ` �[↵]⇣(x : ⌧).t : 8[↵]⇣ .(⌧)! ⌧ 0;�
. . .

 ;�;�; ·;�; end[⌧ hT i;�0] ` e : ⌧ hT i
;�0

 ;�;�;�;�;out ` ⌧AT e : ⌧ ;�0

 ;� ` w : ⌧

 ;�;�;�;�;out ` Lh⌧iAT w : Lh⌧i;�

 ;�;�;�;�;q ` ◆) �

0
;�0

;�0
;q0 q, q0 6= out

� = ⌧ :: �0 �0
= ⌧ 0 :: �0

 ; (�, ⇣);�;�; (⌧ :: ⇣);out ` e : ⌧ ; (⌧ 0 :: ⇣)
q = i > len(⌧) and q0

= i� len(⌧) + len(⌧ 0
)

or q = q0
= end[⌧̂ ; �̂]

 ;�;�;�;�;q ` import rd,
�0T A⌧ e) �; (rd : ⌧T);�0

;q0

TA⌧
(v,M) = (w,M 0

)

⌧AT(w,M) = (v,M 0
) Value Translations

hM | ei 7�! hM 0 | e0i Lift FCA rules to new config.; add E to T rules

hM | E[�[↵]⇣(x : ⌧).t [⌧ 0] v]i 7�! hM | E[t[⌧ 0/↵][M.M.�/⇣][v/x]]i

· · ·
⌧AT(M.M.R(r),M) = (v,M 0

)

hM | E[

⌧AT ret end[⌧ hT i;�], r]i 7�! hM 0 | E[v]i
TA⌧

(v,M) = (w,M 0
)

hM | E[import rd,
�0

T A⌧ v; I]i 7�! hM 0 | E[mv rd,w; I]i
Figure 9: FCAT Multi-language system (extends and updates Fig-
ures 4 and 5)

Sec 4: A-to-T [2] - TAL syntax: need stacks and stack effects.
- Just TAL: we want to be able to reason about equivalence of
components: What is a component? What is the ”return type”
of a component? Need support from type system: return markers
?? Contextual equivalence for TAL (contexts!); or just grammar
for TAL contexts - Type trans, operational type trans, no space
for actual translation (see TR) - Interop semantics (some cases);
discuss calling conventions (perhaps w/ trans discussion)

Sec 5: FCAT, Logical Relation [2.5] - FCAT: some additions to
earlier passes, e.g., lambdas need zetas - FCAT typing judgments

C ::= [·] | C p t | · · · | �[↵]⇣(x : ⌧).C | · · · | ⌧FCC
C ::= [·] | · · · | �[↵]⇣(x : ⌧).C | · · · | CF⌧

C | ⌧CAC

C ::= (Ct,H) | (t,CH)

Ct ::= [·] | · · · | AC⌧C | ⌧AT C

CH ::= CH, ` 7! h | H, ` 7! �[↵]⇣(x : ⌧).Ct

C ::= (CI,H) | (I,CH)

CI ::= [·] | ◆; CI | import rd, �T A⌧C; I

CH ::= CH, ` 7! h | H, ` 7! code[�]{�;�}q.CI

C ::= C | C | C | C

C[e] Context Plugging (T cases shown)

(CI,H)[e] =

8
><

>:

(CI[I], (H,H0)) e = (I,H0) ^
CI contains no lang. boundaries

(CI[e],H) otherwise

(I,CH)[e] =

8
><

>:

(I, (CH[I],H0)) e = (I,H0) ^
CH contains no lang. boundaries

(I,CH[e]) otherwise
[·][I] = I

(◆; CI)[e] = ◆; CI[e]

(import rd, �T A⌧C; I)[e] = import rd, �T A⌧ (C[e]); I

(CH, ` 7! h)[e] = (CH[e]), ` 7! h

(H, ` 7! code[�]{�;�}q.CI)[e] = H, ` 7! code[�]{�;�}q.(CI[e])

` C : (;�;�;�;�;q ` ⌧ ; �̂) (

0
;�

0
;�

0
;�0

;�0
;q0 ` ⌧ 0; �̂0

)

Contextual Equivalence

 ;�;�;�;�;q ` e1 ⇡ctx e2 : ⌧ ; �̂
def
=

 ;�;�;�;�;q ` e1 : ⌧ ; �̂ ^ ;�;�;�;�;q ` e2 : ⌧ ; �̂ ^
8C,M, 0,�0,�0,q0, ⌧ 0, �̂0. ` M : (

0,�0, �̂0
) ^

` C : (;�;�;�;�;q ` ⌧ ;�0
) (

0
; ·; ·;�0

; �̂;q0 ` ⌧ 0; �̂0
) ^

(q0
= out _ (9⌧ 0. ⌧ 0 = ⌧ 0 ^ q0

= end[⌧ 0; �̂0]))

=) (hM | C[e1]i# () hM | C[e2]i#)

Figure 10: General Contexts and Contextual Equivalence for FCAT

(how to modify F,C,A judgments to get FCAT judgments) - Con-
textual equivalence for FCAT - Logical relation (excerpts) - What
about ciu? Need to show continuations!!

Sec 6: Compiler Correctness (theorems) [0.5] - Theorem state-
ments

Sec 7: Related work & conclusion [0.5]
References [0.5]

References
[1] A. Ahmed and M. Blume. An equivalence-preserving cps transla-

tion via multi-language semantics. In International Conference on
Functional Programming (ICFP), Tokyo, Japan, pages 431–444, Sept.
2011.

[2] A. Ahmed, D. Dreyer, and A. Rossberg. State-dependent representa-
tion independence. In ACM Symposium on Principles of Programming
Languages (POPL), Savannah, Georgia, Jan. 2009.

[3] N. Benton and C.-K. Hur. Biorthogonality, step-indexing and compiler
correctness. In International Conference on Functional Programming
(ICFP), Edinburgh, Scotland, Sept. 2009.

[4] C.-K. Hur and D. Dreyer. A kripke logical relation between ml
and assembly. In ACM Symposium on Principles of Programming
Languages (POPL), Austin, Texas, Jan. 2011.

[5] C.-K. Hur, D. Dreyer, G. Neis, and V. Vafeiadis. The marriage of
bisimulations and kripke logical relations. In ACM Symposium on
Principles of Programming Languages (POPL), Philadelphia, Penn-
sylvania, Jan. 2012.

8 2012/11/7

Thursday, October 17, 13

Interoperability: A and T

⌧ ::= · · · | 8[↵]⇣ .(⌧)! ⌧ 0

t ::= · · · | �[↵]⇣(x : ⌧).t

v ::= · · · | �[↵]⇣(x : ⌧).t

⌧ ::= · · · | 8[↵]⇣ .(⌧)! ⌧ 0

t ::= · · · | �[↵]⇣(x : ⌧).t

v ::= · · · | �[↵]⇣(x : ⌧).t

⌧ ::= · · · | Lh⌧i
 ::= · · · | 8[↵]⇣ .(⌧)! ⌧ 0

t ::= · · · | ⌧AT e | Lh⌧iAT w

v ::= · · · | Lh⌧iAT w

h ::= · · · | �[↵]⇣(x : ⌧).t
Et ::= · · · | ⌧AT E

⌧ ::= · · · | d↵e | d↵e | d↵e
q ::= · · · | out

◆ ::= · · · | import rd, �T A⌧ e

EI ::= · · · | import rd, �T A⌧E; I

⌧ ::= · · · | ⌧
e ::= · · · | e

v ::= · · · | v

E ::= · · · | E

M ::= (H,M)

 ::= (,)

� ::= · · · | �,↵ | �, ⇣ | �, ✏

⌧ hT i Operational Type Translation

↵hT i
= d↵e · · · Lh⌧ihT i

= ⌧ d↵ehT i
= d↵e d↵ehT i

= d↵e

Type substitution: d↵e[⌧/↵] = ((⌧hCi)hAi)hT i

d↵e[⌧/↵] = (⌧ hAi)hT i d↵e[⌧/↵] = ⌧ hT i

` M : (,�,�)
(·, (, ·, ·)) ` H : (, ·) ` M : (,�,�)

` (H,M) : ((,),�,�)

 ;�;�;�;�;q ` e : ⌧ ;�0 Add �, �, q, �0 to FCA; � to T

 ; (�,↵, ⇣); (�, x : ⌧); ·; ⇣;out ` t : ⌧ 0; ⇣

 ;�;�;�;�;out ` �[↵]⇣(x : ⌧).t : 8[↵]⇣ .(⌧)! ⌧ 0;�
. . .

 ;�;�; ·;�; end[⌧ hT i;�0] ` e : ⌧ hT i
;�0

 ;�;�;�;�;out ` ⌧AT e : ⌧ ;�0

 ;� ` w : ⌧

 ;�;�;�;�;out ` Lh⌧iAT w : Lh⌧i;�

 ;�;�;�;�;q ` ◆) �

0
;�0

;�0
;q0 q, q0 6= out

� = ⌧ :: �0 �0
= ⌧ 0 :: �0

 ; (�, ⇣);�;�; (⌧ :: ⇣);out ` e : ⌧ ; (⌧ 0 :: ⇣)
q = i > len(⌧) and q0

= i� len(⌧) + len(⌧ 0
)

or q = q0
= end[⌧̂ ; �̂]

 ;�;�;�;�;q ` import rd,
�0T A⌧ e) �; (rd : ⌧T);�0

;q0

TA⌧
(v,M) = (w,M 0

)

⌧AT(w,M) = (v,M 0
) Value Translations

hM | ei 7�! hM 0 | e0i Lift FCA rules to new config.; add E to T rules

hM | E[�[↵]⇣(x : ⌧).t [⌧ 0] v]i 7�! hM | E[t[⌧ 0/↵][M.M.�/⇣][v/x]]i

· · ·
⌧AT(M.M.R(r),M) = (v,M 0

)

hM | E[

⌧AT ret end[⌧ hT i;�], r]i 7�! hM 0 | E[v]i
TA⌧

(v,M) = (w,M 0
)

hM | E[import rd,
�0

T A⌧ v; I]i 7�! hM 0 | E[mv rd,w; I]i
Figure 9: FCAT Multi-language system (extends and updates Fig-
ures 4 and 5)

Sec 4: A-to-T [2] - TAL syntax: need stacks and stack effects.
- Just TAL: we want to be able to reason about equivalence of
components: What is a component? What is the ”return type”
of a component? Need support from type system: return markers
?? Contextual equivalence for TAL (contexts!); or just grammar
for TAL contexts - Type trans, operational type trans, no space
for actual translation (see TR) - Interop semantics (some cases);
discuss calling conventions (perhaps w/ trans discussion)

Sec 5: FCAT, Logical Relation [2.5] - FCAT: some additions to
earlier passes, e.g., lambdas need zetas - FCAT typing judgments

C ::= [·] | C p t | · · · | �[↵]⇣(x : ⌧).C | · · · | ⌧FCC
C ::= [·] | · · · | �[↵]⇣(x : ⌧).C | · · · | CF⌧

C | ⌧CAC

C ::= (Ct,H) | (t,CH)

Ct ::= [·] | · · · | AC⌧C | ⌧AT C

CH ::= CH, ` 7! h | H, ` 7! �[↵]⇣(x : ⌧).Ct

C ::= (CI,H) | (I,CH)

CI ::= [·] | ◆; CI | import rd, �T A⌧C; I

CH ::= CH, ` 7! h | H, ` 7! code[�]{�;�}q.CI

C ::= C | C | C | C

C[e] Context Plugging (T cases shown)

(CI,H)[e] =

8
><

>:

(CI[I], (H,H0)) e = (I,H0) ^
CI contains no lang. boundaries

(CI[e],H) otherwise

(I,CH)[e] =

8
><

>:

(I, (CH[I],H0)) e = (I,H0) ^
CH contains no lang. boundaries

(I,CH[e]) otherwise
[·][I] = I

(◆; CI)[e] = ◆; CI[e]

(import rd, �T A⌧C; I)[e] = import rd, �T A⌧ (C[e]); I

(CH, ` 7! h)[e] = (CH[e]), ` 7! h

(H, ` 7! code[�]{�;�}q.CI)[e] = H, ` 7! code[�]{�;�}q.(CI[e])

` C : (;�;�;�;�;q ` ⌧ ; �̂) (

0
;�

0
;�

0
;�0

;�0
;q0 ` ⌧ 0; �̂0

)

Contextual Equivalence

 ;�;�;�;�;q ` e1 ⇡ctx e2 : ⌧ ; �̂
def
=

 ;�;�;�;�;q ` e1 : ⌧ ; �̂ ^ ;�;�;�;�;q ` e2 : ⌧ ; �̂ ^
8C,M, 0,�0,�0,q0, ⌧ 0, �̂0. ` M : (

0,�0, �̂0
) ^

` C : (;�;�;�;�;q ` ⌧ ;�0
) (

0
; ·; ·;�0

; �̂;q0 ` ⌧ 0; �̂0
) ^

(q0
= out _ (9⌧ 0. ⌧ 0 = ⌧ 0 ^ q0

= end[⌧ 0; �̂0]))

=) (hM | C[e1]i# () hM | C[e2]i#)

Figure 10: General Contexts and Contextual Equivalence for FCAT

(how to modify F,C,A judgments to get FCAT judgments) - Con-
textual equivalence for FCAT - Logical relation (excerpts) - What
about ciu? Need to show continuations!!

Sec 6: Compiler Correctness (theorems) [0.5] - Theorem state-
ments

Sec 7: Related work & conclusion [0.5]
References [0.5]

References
[1] A. Ahmed and M. Blume. An equivalence-preserving cps transla-

tion via multi-language semantics. In International Conference on
Functional Programming (ICFP), Tokyo, Japan, pages 431–444, Sept.
2011.

[2] A. Ahmed, D. Dreyer, and A. Rossberg. State-dependent representa-
tion independence. In ACM Symposium on Principles of Programming
Languages (POPL), Savannah, Georgia, Jan. 2009.

[3] N. Benton and C.-K. Hur. Biorthogonality, step-indexing and compiler
correctness. In International Conference on Functional Programming
(ICFP), Edinburgh, Scotland, Sept. 2009.

[4] C.-K. Hur and D. Dreyer. A kripke logical relation between ml
and assembly. In ACM Symposium on Principles of Programming
Languages (POPL), Austin, Texas, Jan. 2011.

[5] C.-K. Hur, D. Dreyer, G. Neis, and V. Vafeiadis. The marriage of
bisimulations and kripke logical relations. In ACM Symposium on
Principles of Programming Languages (POPL), Philadelphia, Penn-
sylvania, Jan. 2012.

8 2012/11/7

⌧ ::= · · · | 8[↵]⇣ .(⌧)! ⌧ 0

t ::= · · · | �[↵]⇣(x : ⌧).t

v ::= · · · | �[↵]⇣(x : ⌧).t

⌧ ::= · · · | 8[↵]⇣ .(⌧)! ⌧ 0

t ::= · · · | �[↵]⇣(x : ⌧).t

v ::= · · · | �[↵]⇣(x : ⌧).t

⌧ ::= · · · | Lh⌧i
 ::= · · · | 8[↵]⇣ .(⌧)! ⌧ 0

t ::= · · · | ⌧AT e | Lh⌧iAT w

v ::= · · · | Lh⌧iAT w

h ::= · · · | �[↵]⇣(x : ⌧).t
Et ::= · · · | ⌧AT E

⌧ ::= · · · | d↵e | d↵e | d↵e
q ::= · · · | out

◆ ::= · · · | import rd, �T A⌧ e

EI ::= · · · | import rd, �T A⌧E; I

⌧ ::= · · · | ⌧
e ::= · · · | e

v ::= · · · | v

E ::= · · · | E

M ::= (H,M)

 ::= (,)

� ::= · · · | �,↵ | �, ⇣ | �, ✏

⌧ hT i Operational Type Translation

↵hT i
= d↵e · · · Lh⌧ihT i

= ⌧ d↵ehT i
= d↵e d↵ehT i

= d↵e

Type substitution: d↵e[⌧/↵] = ((⌧hCi)hAi)hT i

d↵e[⌧/↵] = (⌧ hAi)hT i d↵e[⌧/↵] = ⌧ hT i

` M : (,�,�)
(·, (, ·, ·)) ` H : (, ·) ` M : (,�,�)

` (H,M) : ((,),�,�)

 ;�;�;�;�;q ` e : ⌧ ;�0 Add �, �, q, �0 to FCA; � to T

 ; (�,↵, ⇣); (�, x : ⌧); ·; ⇣;out ` t : ⌧ 0; ⇣

 ;�;�;�;�;out ` �[↵]⇣(x : ⌧).t : 8[↵]⇣ .(⌧)! ⌧ 0;�
. . .

 ;�;�; ·;�; end[⌧ hT i;�0] ` e : ⌧ hT i
;�0

 ;�;�;�;�;out ` ⌧AT e : ⌧ ;�0

 ;� ` w : ⌧

 ;�;�;�;�;out ` Lh⌧iAT w : Lh⌧i;�

 ;�;�;�;�;q ` ◆) �

0
;�0

;�0
;q0 q, q0 6= out

� = ⌧ :: �0 �0
= ⌧ 0 :: �0

 ; (�, ⇣);�;�; (⌧ :: ⇣);out ` e : ⌧ ; (⌧ 0 :: ⇣)
q = i > len(⌧) and q0

= i� len(⌧) + len(⌧ 0
)

or q = q0
= end[⌧̂ ; �̂]

 ;�;�;�;�;q ` import rd,
�0T A⌧ e) �; (rd : ⌧T);�0

;q0

TA⌧
(v,M) = (w,M 0

)

⌧AT(w,M) = (v,M 0
) Value Translations

hM | ei 7�! hM 0 | e0i Lift FCA rules to new config.; add E to T rules

hM | E[�[↵]⇣(x : ⌧).t [⌧ 0] v]i 7�! hM | E[t[⌧ 0/↵][M.M.�/⇣][v/x]]i

· · ·
⌧AT(M.M.R(r),M) = (v,M 0

)

hM | E[

⌧AT ret end[⌧ hT i;�], r]i 7�! hM 0 | E[v]i
TA⌧

(v,M) = (w,M 0
)

hM | E[import rd,
�0

T A⌧ v; I]i 7�! hM 0 | E[mv rd,w; I]i
Figure 9: FCAT Multi-language system (extends and updates Fig-
ures 4 and 5)

Sec 4: A-to-T [2] - TAL syntax: need stacks and stack effects.
- Just TAL: we want to be able to reason about equivalence of
components: What is a component? What is the ”return type”
of a component? Need support from type system: return markers
?? Contextual equivalence for TAL (contexts!); or just grammar
for TAL contexts - Type trans, operational type trans, no space
for actual translation (see TR) - Interop semantics (some cases);
discuss calling conventions (perhaps w/ trans discussion)

Sec 5: FCAT, Logical Relation [2.5] - FCAT: some additions to
earlier passes, e.g., lambdas need zetas - FCAT typing judgments

C ::= [·] | C p t | · · · | �[↵]⇣(x : ⌧).C | · · · | ⌧FCC
C ::= [·] | · · · | �[↵]⇣(x : ⌧).C | · · · | CF⌧

C | ⌧CAC

C ::= (Ct,H) | (t,CH)

Ct ::= [·] | · · · | AC⌧C | ⌧AT C

CH ::= CH, ` 7! h | H, ` 7! �[↵]⇣(x : ⌧).Ct

C ::= (CI,H) | (I,CH)

CI ::= [·] | ◆; CI | import rd, �T A⌧C; I

CH ::= CH, ` 7! h | H, ` 7! code[�]{�;�}q.CI

C ::= C | C | C | C

C[e] Context Plugging (T cases shown)

(CI,H)[e] =

8
><

>:

(CI[I], (H,H0)) e = (I,H0) ^
CI contains no lang. boundaries

(CI[e],H) otherwise

(I,CH)[e] =

8
><

>:

(I, (CH[I],H0)) e = (I,H0) ^
CH contains no lang. boundaries

(I,CH[e]) otherwise
[·][I] = I

(◆; CI)[e] = ◆; CI[e]

(import rd, �T A⌧C; I)[e] = import rd, �T A⌧ (C[e]); I

(CH, ` 7! h)[e] = (CH[e]), ` 7! h

(H, ` 7! code[�]{�;�}q.CI)[e] = H, ` 7! code[�]{�;�}q.(CI[e])

` C : (;�;�;�;�;q ` ⌧ ; �̂) (

0
;�

0
;�

0
;�0

;�0
;q0 ` ⌧ 0; �̂0

)

Contextual Equivalence

 ;�;�;�;�;q ` e1 ⇡ctx e2 : ⌧ ; �̂
def
=

 ;�;�;�;�;q ` e1 : ⌧ ; �̂ ^ ;�;�;�;�;q ` e2 : ⌧ ; �̂ ^
8C,M, 0,�0,�0,q0, ⌧ 0, �̂0. ` M : (

0,�0, �̂0
) ^

` C : (;�;�;�;�;q ` ⌧ ;�0
) (

0
; ·; ·;�0

; �̂;q0 ` ⌧ 0; �̂0
) ^

(q0
= out _ (9⌧ 0. ⌧ 0 = ⌧ 0 ^ q0

= end[⌧ 0; �̂0]))

=) (hM | C[e1]i# () hM | C[e2]i#)

Figure 10: General Contexts and Contextual Equivalence for FCAT

(how to modify F,C,A judgments to get FCAT judgments) - Con-
textual equivalence for FCAT - Logical relation (excerpts) - What
about ciu? Need to show continuations!!

Sec 6: Compiler Correctness (theorems) [0.5] - Theorem state-
ments

Sec 7: Related work & conclusion [0.5]
References [0.5]

References
[1] A. Ahmed and M. Blume. An equivalence-preserving cps transla-

tion via multi-language semantics. In International Conference on
Functional Programming (ICFP), Tokyo, Japan, pages 431–444, Sept.
2011.

[2] A. Ahmed, D. Dreyer, and A. Rossberg. State-dependent representa-
tion independence. In ACM Symposium on Principles of Programming
Languages (POPL), Savannah, Georgia, Jan. 2009.

[3] N. Benton and C.-K. Hur. Biorthogonality, step-indexing and compiler
correctness. In International Conference on Functional Programming
(ICFP), Edinburgh, Scotland, Sept. 2009.

[4] C.-K. Hur and D. Dreyer. A kripke logical relation between ml
and assembly. In ACM Symposium on Principles of Programming
Languages (POPL), Austin, Texas, Jan. 2011.

[5] C.-K. Hur, D. Dreyer, G. Neis, and V. Vafeiadis. The marriage of
bisimulations and kripke logical relations. In ACM Symposium on
Principles of Programming Languages (POPL), Philadelphia, Penn-
sylvania, Jan. 2012.

8 2012/11/7

Thursday, October 17, 13

Interoperability: A and T

⌧ ::= · · · | 8[↵]⇣ .(⌧)! ⌧ 0

t ::= · · · | �[↵]⇣(x : ⌧).t

v ::= · · · | �[↵]⇣(x : ⌧).t

⌧ ::= · · · | 8[↵]⇣ .(⌧)! ⌧ 0

t ::= · · · | �[↵]⇣(x : ⌧).t

v ::= · · · | �[↵]⇣(x : ⌧).t

⌧ ::= · · · | Lh⌧i
 ::= · · · | 8[↵]⇣ .(⌧)! ⌧ 0

t ::= · · · | ⌧AT e | Lh⌧iAT w

v ::= · · · | Lh⌧iAT w

h ::= · · · | �[↵]⇣(x : ⌧).t
Et ::= · · · | ⌧AT E

⌧ ::= · · · | d↵e | d↵e | d↵e
q ::= · · · | out

◆ ::= · · · | import rd, �T A⌧ e

EI ::= · · · | import rd, �T A⌧E; I

⌧ ::= · · · | ⌧
e ::= · · · | e

v ::= · · · | v

E ::= · · · | E

M ::= (H,M)

 ::= (,)

� ::= · · · | �,↵ | �, ⇣ | �, ✏

⌧ hT i Operational Type Translation

↵hT i
= d↵e · · · Lh⌧ihT i

= ⌧ d↵ehT i
= d↵e d↵ehT i

= d↵e

Type substitution: d↵e[⌧/↵] = ((⌧hCi)hAi)hT i

d↵e[⌧/↵] = (⌧ hAi)hT i d↵e[⌧/↵] = ⌧ hT i

` M : (,�,�)
(·, (, ·, ·)) ` H : (, ·) ` M : (,�,�)

` (H,M) : ((,),�,�)

 ;�;�;�;�;q ` e : ⌧ ;�0 Add �, �, q, �0 to FCA; � to T

 ; (�,↵, ⇣); (�, x : ⌧); ·; ⇣;out ` t : ⌧ 0; ⇣

 ;�;�;�;�;out ` �[↵]⇣(x : ⌧).t : 8[↵]⇣ .(⌧)! ⌧ 0;�
. . .

 ;�;�; ·;�; end[⌧ hT i;�0] ` e : ⌧ hT i
;�0

 ;�;�;�;�;out ` ⌧AT e : ⌧ ;�0

 ;� ` w : ⌧

 ;�;�;�;�;out ` Lh⌧iAT w : Lh⌧i;�

 ;�;�;�;�;q ` ◆) �

0
;�0

;�0
;q0 q, q0 6= out

� = ⌧ :: �0 �0
= ⌧ 0 :: �0

 ; (�, ⇣);�;�; (⌧ :: ⇣);out ` e : ⌧ ; (⌧ 0 :: ⇣)
q = i > len(⌧) and q0

= i� len(⌧) + len(⌧ 0
)

or q = q0
= end[⌧̂ ; �̂]

 ;�;�;�;�;q ` import rd,
�0T A⌧ e) �; (rd : ⌧T);�0

;q0

TA⌧
(v,M) = (w,M 0

)

⌧AT(w,M) = (v,M 0
) Value Translations

hM | ei 7�! hM 0 | e0i Lift FCA rules to new config.; add E to T rules

hM | E[�[↵]⇣(x : ⌧).t [⌧ 0] v]i 7�! hM | E[t[⌧ 0/↵][M.M.�/⇣][v/x]]i

· · ·
⌧AT(M.M.R(r),M) = (v,M 0

)

hM | E[

⌧AT ret end[⌧ hT i;�], r]i 7�! hM 0 | E[v]i
TA⌧

(v,M) = (w,M 0
)

hM | E[import rd,
�0

T A⌧ v; I]i 7�! hM 0 | E[mv rd,w; I]i
Figure 9: FCAT Multi-language system (extends and updates Fig-
ures 4 and 5)

Sec 4: A-to-T [2] - TAL syntax: need stacks and stack effects.
- Just TAL: we want to be able to reason about equivalence of
components: What is a component? What is the ”return type”
of a component? Need support from type system: return markers
?? Contextual equivalence for TAL (contexts!); or just grammar
for TAL contexts - Type trans, operational type trans, no space
for actual translation (see TR) - Interop semantics (some cases);
discuss calling conventions (perhaps w/ trans discussion)

Sec 5: FCAT, Logical Relation [2.5] - FCAT: some additions to
earlier passes, e.g., lambdas need zetas - FCAT typing judgments

C ::= [·] | C p t | · · · | �[↵]⇣(x : ⌧).C | · · · | ⌧FCC
C ::= [·] | · · · | �[↵]⇣(x : ⌧).C | · · · | CF⌧

C | ⌧CAC

C ::= (Ct,H) | (t,CH)

Ct ::= [·] | · · · | AC⌧C | ⌧AT C

CH ::= CH, ` 7! h | H, ` 7! �[↵]⇣(x : ⌧).Ct

C ::= (CI,H) | (I,CH)

CI ::= [·] | ◆; CI | import rd, �T A⌧C; I

CH ::= CH, ` 7! h | H, ` 7! code[�]{�;�}q.CI

C ::= C | C | C | C

C[e] Context Plugging (T cases shown)

(CI,H)[e] =

8
><

>:

(CI[I], (H,H0)) e = (I,H0) ^
CI contains no lang. boundaries

(CI[e],H) otherwise

(I,CH)[e] =

8
><

>:

(I, (CH[I],H0)) e = (I,H0) ^
CH contains no lang. boundaries

(I,CH[e]) otherwise
[·][I] = I

(◆; CI)[e] = ◆; CI[e]

(import rd, �T A⌧C; I)[e] = import rd, �T A⌧ (C[e]); I

(CH, ` 7! h)[e] = (CH[e]), ` 7! h

(H, ` 7! code[�]{�;�}q.CI)[e] = H, ` 7! code[�]{�;�}q.(CI[e])

` C : (;�;�;�;�;q ` ⌧ ; �̂) (

0
;�

0
;�

0
;�0

;�0
;q0 ` ⌧ 0; �̂0

)

Contextual Equivalence

 ;�;�;�;�;q ` e1 ⇡ctx e2 : ⌧ ; �̂
def
=

 ;�;�;�;�;q ` e1 : ⌧ ; �̂ ^ ;�;�;�;�;q ` e2 : ⌧ ; �̂ ^
8C,M, 0,�0,�0,q0, ⌧ 0, �̂0. ` M : (

0,�0, �̂0
) ^

` C : (;�;�;�;�;q ` ⌧ ;�0
) (

0
; ·; ·;�0

; �̂;q0 ` ⌧ 0; �̂0
) ^

(q0
= out _ (9⌧ 0. ⌧ 0 = ⌧ 0 ^ q0

= end[⌧ 0; �̂0]))

=) (hM | C[e1]i# () hM | C[e2]i#)

Figure 10: General Contexts and Contextual Equivalence for FCAT

(how to modify F,C,A judgments to get FCAT judgments) - Con-
textual equivalence for FCAT - Logical relation (excerpts) - What
about ciu? Need to show continuations!!

Sec 6: Compiler Correctness (theorems) [0.5] - Theorem state-
ments

Sec 7: Related work & conclusion [0.5]
References [0.5]

References
[1] A. Ahmed and M. Blume. An equivalence-preserving cps transla-

tion via multi-language semantics. In International Conference on
Functional Programming (ICFP), Tokyo, Japan, pages 431–444, Sept.
2011.

[2] A. Ahmed, D. Dreyer, and A. Rossberg. State-dependent representa-
tion independence. In ACM Symposium on Principles of Programming
Languages (POPL), Savannah, Georgia, Jan. 2009.

[3] N. Benton and C.-K. Hur. Biorthogonality, step-indexing and compiler
correctness. In International Conference on Functional Programming
(ICFP), Edinburgh, Scotland, Sept. 2009.

[4] C.-K. Hur and D. Dreyer. A kripke logical relation between ml
and assembly. In ACM Symposium on Principles of Programming
Languages (POPL), Austin, Texas, Jan. 2011.

[5] C.-K. Hur, D. Dreyer, G. Neis, and V. Vafeiadis. The marriage of
bisimulations and kripke logical relations. In ACM Symposium on
Principles of Programming Languages (POPL), Philadelphia, Penn-
sylvania, Jan. 2012.

8 2012/11/7

⌧ ::= · · · | 8[↵]⇣ .(⌧)! ⌧ 0

t ::= · · · | �[↵]⇣(x : ⌧).t

v ::= · · · | �[↵]⇣(x : ⌧).t

⌧ ::= · · · | 8[↵]⇣ .(⌧)! ⌧ 0

t ::= · · · | �[↵]⇣(x : ⌧).t

v ::= · · · | �[↵]⇣(x : ⌧).t

⌧ ::= · · · | Lh⌧i
 ::= · · · | 8[↵]⇣ .(⌧)! ⌧ 0

t ::= · · · | ⌧AT e | Lh⌧iAT w

v ::= · · · | Lh⌧iAT w

h ::= · · · | �[↵]⇣(x : ⌧).t
Et ::= · · · | ⌧AT E

⌧ ::= · · · | d↵e | d↵e | d↵e
q ::= · · · | out

◆ ::= · · · | import rd, �T A⌧ e

EI ::= · · · | import rd, �T A⌧E; I

⌧ ::= · · · | ⌧
e ::= · · · | e

v ::= · · · | v

E ::= · · · | E

M ::= (H,M)

 ::= (,)

� ::= · · · | �,↵ | �, ⇣ | �, ✏

⌧ hT i Operational Type Translation

↵hT i
= d↵e · · · Lh⌧ihT i

= ⌧ d↵ehT i
= d↵e d↵ehT i

= d↵e

Type substitution: d↵e[⌧/↵] = ((⌧hCi)hAi)hT i

d↵e[⌧/↵] = (⌧ hAi)hT i d↵e[⌧/↵] = ⌧ hT i

` M : (,�,�)
(·, (, ·, ·)) ` H : (, ·) ` M : (,�,�)

` (H,M) : ((,),�,�)

 ;�;�;�;�;q ` e : ⌧ ;�0 Add �, �, q, �0 to FCA; � to T

 ; (�,↵, ⇣); (�, x : ⌧); ·; ⇣;out ` t : ⌧ 0; ⇣

 ;�;�;�;�;out ` �[↵]⇣(x : ⌧).t : 8[↵]⇣ .(⌧)! ⌧ 0;�
. . .

 ;�;�; ·;�; end[⌧ hT i;�0] ` e : ⌧ hT i
;�0

 ;�;�;�;�;out ` ⌧AT e : ⌧ ;�0

 ;� ` w : ⌧

 ;�;�;�;�;out ` Lh⌧iAT w : Lh⌧i;�

 ;�;�;�;�;q ` ◆) �

0
;�0

;�0
;q0 q, q0 6= out

� = ⌧ :: �0 �0
= ⌧ 0 :: �0

 ; (�, ⇣);�;�; (⌧ :: ⇣);out ` e : ⌧ ; (⌧ 0 :: ⇣)
q = i > len(⌧) and q0

= i� len(⌧) + len(⌧ 0
)

or q = q0
= end[⌧̂ ; �̂]

 ;�;�;�;�;q ` import rd,
�0T A⌧ e) �; (rd : ⌧T);�0

;q0

TA⌧
(v,M) = (w,M 0

)

⌧AT(w,M) = (v,M 0
) Value Translations

hM | ei 7�! hM 0 | e0i Lift FCA rules to new config.; add E to T rules

hM | E[�[↵]⇣(x : ⌧).t [⌧ 0] v]i 7�! hM | E[t[⌧ 0/↵][M.M.�/⇣][v/x]]i

· · ·
⌧AT(M.M.R(r),M) = (v,M 0

)

hM | E[

⌧AT ret end[⌧ hT i;�], r]i 7�! hM 0 | E[v]i
TA⌧

(v,M) = (w,M 0
)

hM | E[import rd,
�0

T A⌧ v; I]i 7�! hM 0 | E[mv rd,w; I]i
Figure 9: FCAT Multi-language system (extends and updates Fig-
ures 4 and 5)

Sec 4: A-to-T [2] - TAL syntax: need stacks and stack effects.
- Just TAL: we want to be able to reason about equivalence of
components: What is a component? What is the ”return type”
of a component? Need support from type system: return markers
?? Contextual equivalence for TAL (contexts!); or just grammar
for TAL contexts - Type trans, operational type trans, no space
for actual translation (see TR) - Interop semantics (some cases);
discuss calling conventions (perhaps w/ trans discussion)

Sec 5: FCAT, Logical Relation [2.5] - FCAT: some additions to
earlier passes, e.g., lambdas need zetas - FCAT typing judgments

C ::= [·] | C p t | · · · | �[↵]⇣(x : ⌧).C | · · · | ⌧FCC
C ::= [·] | · · · | �[↵]⇣(x : ⌧).C | · · · | CF⌧

C | ⌧CAC

C ::= (Ct,H) | (t,CH)

Ct ::= [·] | · · · | AC⌧C | ⌧AT C

CH ::= CH, ` 7! h | H, ` 7! �[↵]⇣(x : ⌧).Ct

C ::= (CI,H) | (I,CH)

CI ::= [·] | ◆; CI | import rd, �T A⌧C; I

CH ::= CH, ` 7! h | H, ` 7! code[�]{�;�}q.CI

C ::= C | C | C | C

C[e] Context Plugging (T cases shown)

(CI,H)[e] =

8
><

>:

(CI[I], (H,H0)) e = (I,H0) ^
CI contains no lang. boundaries

(CI[e],H) otherwise

(I,CH)[e] =

8
><

>:

(I, (CH[I],H0)) e = (I,H0) ^
CH contains no lang. boundaries

(I,CH[e]) otherwise
[·][I] = I

(◆; CI)[e] = ◆; CI[e]

(import rd, �T A⌧C; I)[e] = import rd, �T A⌧ (C[e]); I

(CH, ` 7! h)[e] = (CH[e]), ` 7! h

(H, ` 7! code[�]{�;�}q.CI)[e] = H, ` 7! code[�]{�;�}q.(CI[e])

` C : (;�;�;�;�;q ` ⌧ ; �̂) (

0
;�

0
;�

0
;�0

;�0
;q0 ` ⌧ 0; �̂0

)

Contextual Equivalence

 ;�;�;�;�;q ` e1 ⇡ctx e2 : ⌧ ; �̂
def
=

 ;�;�;�;�;q ` e1 : ⌧ ; �̂ ^ ;�;�;�;�;q ` e2 : ⌧ ; �̂ ^
8C,M, 0,�0,�0,q0, ⌧ 0, �̂0. ` M : (

0,�0, �̂0
) ^

` C : (;�;�;�;�;q ` ⌧ ;�0
) (

0
; ·; ·;�0

; �̂;q0 ` ⌧ 0; �̂0
) ^

(q0
= out _ (9⌧ 0. ⌧ 0 = ⌧ 0 ^ q0

= end[⌧ 0; �̂0]))

=) (hM | C[e1]i# () hM | C[e2]i#)

Figure 10: General Contexts and Contextual Equivalence for FCAT

(how to modify F,C,A judgments to get FCAT judgments) - Con-
textual equivalence for FCAT - Logical relation (excerpts) - What
about ciu? Need to show continuations!!

Sec 6: Compiler Correctness (theorems) [0.5] - Theorem state-
ments

Sec 7: Related work & conclusion [0.5]
References [0.5]

References
[1] A. Ahmed and M. Blume. An equivalence-preserving cps transla-

tion via multi-language semantics. In International Conference on
Functional Programming (ICFP), Tokyo, Japan, pages 431–444, Sept.
2011.

[2] A. Ahmed, D. Dreyer, and A. Rossberg. State-dependent representa-
tion independence. In ACM Symposium on Principles of Programming
Languages (POPL), Savannah, Georgia, Jan. 2009.

[3] N. Benton and C.-K. Hur. Biorthogonality, step-indexing and compiler
correctness. In International Conference on Functional Programming
(ICFP), Edinburgh, Scotland, Sept. 2009.

[4] C.-K. Hur and D. Dreyer. A kripke logical relation between ml
and assembly. In ACM Symposium on Principles of Programming
Languages (POPL), Austin, Texas, Jan. 2011.

[5] C.-K. Hur, D. Dreyer, G. Neis, and V. Vafeiadis. The marriage of
bisimulations and kripke logical relations. In ACM Symposium on
Principles of Programming Languages (POPL), Philadelphia, Penn-
sylvania, Jan. 2012.

8 2012/11/7

Thursday, October 17, 13

Interoperability: A and T

⌧ ::= · · · | 8[↵]⇣ .(⌧)! ⌧ 0

t ::= · · · | �[↵]⇣(x : ⌧).t

v ::= · · · | �[↵]⇣(x : ⌧).t

⌧ ::= · · · | 8[↵]⇣ .(⌧)! ⌧ 0

t ::= · · · | �[↵]⇣(x : ⌧).t

v ::= · · · | �[↵]⇣(x : ⌧).t

⌧ ::= · · · | Lh⌧i
 ::= · · · | 8[↵]⇣ .(⌧)! ⌧ 0

t ::= · · · | ⌧AT e | Lh⌧iAT w

v ::= · · · | Lh⌧iAT w

h ::= · · · | �[↵]⇣(x : ⌧).t
Et ::= · · · | ⌧AT E

⌧ ::= · · · | d↵e | d↵e | d↵e
q ::= · · · | out

◆ ::= · · · | import rd, �T A⌧ e

EI ::= · · · | import rd, �T A⌧E; I

⌧ ::= · · · | ⌧
e ::= · · · | e

v ::= · · · | v

E ::= · · · | E

M ::= (H,M)

 ::= (,)

� ::= · · · | �,↵ | �, ⇣ | �, ✏

⌧ hT i Operational Type Translation

↵hT i
= d↵e · · · Lh⌧ihT i

= ⌧ d↵ehT i
= d↵e d↵ehT i

= d↵e

Type substitution: d↵e[⌧/↵] = ((⌧hCi)hAi)hT i

d↵e[⌧/↵] = (⌧ hAi)hT i d↵e[⌧/↵] = ⌧ hT i

` M : (,�,�)
(·, (, ·, ·)) ` H : (, ·) ` M : (,�,�)

` (H,M) : ((,),�,�)

 ;�;�;�;�;q ` e : ⌧ ;�0 Add �, �, q, �0 to FCA; � to T

 ; (�,↵, ⇣); (�, x : ⌧); ·; ⇣;out ` t : ⌧ 0; ⇣

 ;�;�;�;�;out ` �[↵]⇣(x : ⌧).t : 8[↵]⇣ .(⌧)! ⌧ 0;�
. . .

 ;�;�; ·;�; end[⌧ hT i;�0] ` e : ⌧ hT i
;�0

 ;�;�;�;�;out ` ⌧AT e : ⌧ ;�0

 ;� ` w : ⌧

 ;�;�;�;�;out ` Lh⌧iAT w : Lh⌧i;�

 ;�;�;�;�;q ` ◆) �

0
;�0

;�0
;q0 q, q0 6= out

� = ⌧ :: �0 �0
= ⌧ 0 :: �0

 ; (�, ⇣);�;�; (⌧ :: ⇣);out ` e : ⌧ ; (⌧ 0 :: ⇣)
q = i > len(⌧) and q0

= i� len(⌧) + len(⌧ 0
)

or q = q0
= end[⌧̂ ; �̂]

 ;�;�;�;�;q ` import rd,
�0T A⌧ e) �; (rd : ⌧T);�0

;q0

TA⌧
(v,M) = (w,M 0

)

⌧AT(w,M) = (v,M 0
) Value Translations

hM | ei 7�! hM 0 | e0i Lift FCA rules to new config.; add E to T rules

hM | E[�[↵]⇣(x : ⌧).t [⌧ 0] v]i 7�! hM | E[t[⌧ 0/↵][M.M.�/⇣][v/x]]i

· · ·
⌧AT(M.M.R(r),M) = (v,M 0

)

hM | E[

⌧AT ret end[⌧ hT i;�], r]i 7�! hM 0 | E[v]i
TA⌧

(v,M) = (w,M 0
)

hM | E[import rd,
�0

T A⌧ v; I]i 7�! hM 0 | E[mv rd,w; I]i
Figure 9: FCAT Multi-language system (extends and updates Fig-
ures 4 and 5)

Sec 4: A-to-T [2] - TAL syntax: need stacks and stack effects.
- Just TAL: we want to be able to reason about equivalence of
components: What is a component? What is the ”return type”
of a component? Need support from type system: return markers
?? Contextual equivalence for TAL (contexts!); or just grammar
for TAL contexts - Type trans, operational type trans, no space
for actual translation (see TR) - Interop semantics (some cases);
discuss calling conventions (perhaps w/ trans discussion)

Sec 5: FCAT, Logical Relation [2.5] - FCAT: some additions to
earlier passes, e.g., lambdas need zetas - FCAT typing judgments

C ::= [·] | C p t | · · · | �[↵]⇣(x : ⌧).C | · · · | ⌧FCC
C ::= [·] | · · · | �[↵]⇣(x : ⌧).C | · · · | CF⌧

C | ⌧CAC

C ::= (Ct,H) | (t,CH)

Ct ::= [·] | · · · | AC⌧C | ⌧AT C

CH ::= CH, ` 7! h | H, ` 7! �[↵]⇣(x : ⌧).Ct

C ::= (CI,H) | (I,CH)

CI ::= [·] | ◆; CI | import rd, �T A⌧C; I

CH ::= CH, ` 7! h | H, ` 7! code[�]{�;�}q.CI

C ::= C | C | C | C

C[e] Context Plugging (T cases shown)

(CI,H)[e] =

8
><

>:

(CI[I], (H,H0)) e = (I,H0) ^
CI contains no lang. boundaries

(CI[e],H) otherwise

(I,CH)[e] =

8
><

>:

(I, (CH[I],H0)) e = (I,H0) ^
CH contains no lang. boundaries

(I,CH[e]) otherwise
[·][I] = I

(◆; CI)[e] = ◆; CI[e]

(import rd, �T A⌧C; I)[e] = import rd, �T A⌧ (C[e]); I

(CH, ` 7! h)[e] = (CH[e]), ` 7! h

(H, ` 7! code[�]{�;�}q.CI)[e] = H, ` 7! code[�]{�;�}q.(CI[e])

` C : (;�;�;�;�;q ` ⌧ ; �̂) (

0
;�

0
;�

0
;�0

;�0
;q0 ` ⌧ 0; �̂0

)

Contextual Equivalence

 ;�;�;�;�;q ` e1 ⇡ctx e2 : ⌧ ; �̂
def
=

 ;�;�;�;�;q ` e1 : ⌧ ; �̂ ^ ;�;�;�;�;q ` e2 : ⌧ ; �̂ ^
8C,M, 0,�0,�0,q0, ⌧ 0, �̂0. ` M : (

0,�0, �̂0
) ^

` C : (;�;�;�;�;q ` ⌧ ;�0
) (

0
; ·; ·;�0

; �̂;q0 ` ⌧ 0; �̂0
) ^

(q0
= out _ (9⌧ 0. ⌧ 0 = ⌧ 0 ^ q0

= end[⌧ 0; �̂0]))

=) (hM | C[e1]i# () hM | C[e2]i#)

Figure 10: General Contexts and Contextual Equivalence for FCAT

(how to modify F,C,A judgments to get FCAT judgments) - Con-
textual equivalence for FCAT - Logical relation (excerpts) - What
about ciu? Need to show continuations!!

Sec 6: Compiler Correctness (theorems) [0.5] - Theorem state-
ments

Sec 7: Related work & conclusion [0.5]
References [0.5]

References
[1] A. Ahmed and M. Blume. An equivalence-preserving cps transla-

tion via multi-language semantics. In International Conference on
Functional Programming (ICFP), Tokyo, Japan, pages 431–444, Sept.
2011.

[2] A. Ahmed, D. Dreyer, and A. Rossberg. State-dependent representa-
tion independence. In ACM Symposium on Principles of Programming
Languages (POPL), Savannah, Georgia, Jan. 2009.

[3] N. Benton and C.-K. Hur. Biorthogonality, step-indexing and compiler
correctness. In International Conference on Functional Programming
(ICFP), Edinburgh, Scotland, Sept. 2009.

[4] C.-K. Hur and D. Dreyer. A kripke logical relation between ml
and assembly. In ACM Symposium on Principles of Programming
Languages (POPL), Austin, Texas, Jan. 2011.

[5] C.-K. Hur, D. Dreyer, G. Neis, and V. Vafeiadis. The marriage of
bisimulations and kripke logical relations. In ACM Symposium on
Principles of Programming Languages (POPL), Philadelphia, Penn-
sylvania, Jan. 2012.

8 2012/11/7

⌧ ::= · · · | 8[↵]⇣ .(⌧)! ⌧ 0

t ::= · · · | �[↵]⇣(x : ⌧).t

v ::= · · · | �[↵]⇣(x : ⌧).t

⌧ ::= · · · | 8[↵]⇣ .(⌧)! ⌧ 0

t ::= · · · | �[↵]⇣(x : ⌧).t

v ::= · · · | �[↵]⇣(x : ⌧).t

⌧ ::= · · · | Lh⌧i
 ::= · · · | 8[↵]⇣ .(⌧)! ⌧ 0

t ::= · · · | ⌧AT e | Lh⌧iAT w

v ::= · · · | Lh⌧iAT w

h ::= · · · | �[↵]⇣(x : ⌧).t
Et ::= · · · | ⌧AT E

⌧ ::= · · · | d↵e | d↵e | d↵e
q ::= · · · | out

◆ ::= · · · | import rd, �T A⌧ e

EI ::= · · · | import rd, �T A⌧E; I

⌧ ::= · · · | ⌧
e ::= · · · | e

v ::= · · · | v

E ::= · · · | E

M ::= (H,M)

 ::= (,)

� ::= · · · | �,↵ | �, ⇣ | �, ✏

⌧ hT i Operational Type Translation

↵hT i
= d↵e · · · Lh⌧ihT i

= ⌧ d↵ehT i
= d↵e d↵ehT i

= d↵e

Type substitution: d↵e[⌧/↵] = ((⌧hCi)hAi)hT i

d↵e[⌧/↵] = (⌧ hAi)hT i d↵e[⌧/↵] = ⌧ hT i

` M : (,�,�)
(·, (, ·, ·)) ` H : (, ·) ` M : (,�,�)

` (H,M) : ((,),�,�)

 ;�;�;�;�;q ` e : ⌧ ;�0 Add �, �, q, �0 to FCA; � to T

 ; (�,↵, ⇣); (�, x : ⌧); ·; ⇣;out ` t : ⌧ 0; ⇣

 ;�;�;�;�;out ` �[↵]⇣(x : ⌧).t : 8[↵]⇣ .(⌧)! ⌧ 0;�
. . .

 ;�;�; ·;�; end[⌧ hT i;�0] ` e : ⌧ hT i
;�0

 ;�;�;�;�;out ` ⌧AT e : ⌧ ;�0

 ;� ` w : ⌧

 ;�;�;�;�;out ` Lh⌧iAT w : Lh⌧i;�

 ;�;�;�;�;q ` ◆) �

0
;�0

;�0
;q0 q, q0 6= out

� = ⌧ :: �0 �0
= ⌧ 0 :: �0

 ; (�, ⇣);�;�; (⌧ :: ⇣);out ` e : ⌧ ; (⌧ 0 :: ⇣)
q = i > len(⌧) and q0

= i� len(⌧) + len(⌧ 0
)

or q = q0
= end[⌧̂ ; �̂]

 ;�;�;�;�;q ` import rd,
�0T A⌧ e) �; (rd : ⌧T);�0

;q0

TA⌧
(v,M) = (w,M 0

)

⌧AT(w,M) = (v,M 0
) Value Translations

hM | ei 7�! hM 0 | e0i Lift FCA rules to new config.; add E to T rules

hM | E[�[↵]⇣(x : ⌧).t [⌧ 0] v]i 7�! hM | E[t[⌧ 0/↵][M.M.�/⇣][v/x]]i

· · ·
⌧AT(M.M.R(r),M) = (v,M 0

)

hM | E[

⌧AT ret end[⌧ hT i;�], r]i 7�! hM 0 | E[v]i
TA⌧

(v,M) = (w,M 0
)

hM | E[import rd,
�0

T A⌧ v; I]i 7�! hM 0 | E[mv rd,w; I]i
Figure 9: FCAT Multi-language system (extends and updates Fig-
ures 4 and 5)

Sec 4: A-to-T [2] - TAL syntax: need stacks and stack effects.
- Just TAL: we want to be able to reason about equivalence of
components: What is a component? What is the ”return type”
of a component? Need support from type system: return markers
?? Contextual equivalence for TAL (contexts!); or just grammar
for TAL contexts - Type trans, operational type trans, no space
for actual translation (see TR) - Interop semantics (some cases);
discuss calling conventions (perhaps w/ trans discussion)

Sec 5: FCAT, Logical Relation [2.5] - FCAT: some additions to
earlier passes, e.g., lambdas need zetas - FCAT typing judgments

C ::= [·] | C p t | · · · | �[↵]⇣(x : ⌧).C | · · · | ⌧FCC
C ::= [·] | · · · | �[↵]⇣(x : ⌧).C | · · · | CF⌧

C | ⌧CAC

C ::= (Ct,H) | (t,CH)

Ct ::= [·] | · · · | AC⌧C | ⌧AT C

CH ::= CH, ` 7! h | H, ` 7! �[↵]⇣(x : ⌧).Ct

C ::= (CI,H) | (I,CH)

CI ::= [·] | ◆; CI | import rd, �T A⌧C; I

CH ::= CH, ` 7! h | H, ` 7! code[�]{�;�}q.CI

C ::= C | C | C | C

C[e] Context Plugging (T cases shown)

(CI,H)[e] =

8
><

>:

(CI[I], (H,H0)) e = (I,H0) ^
CI contains no lang. boundaries

(CI[e],H) otherwise

(I,CH)[e] =

8
><

>:

(I, (CH[I],H0)) e = (I,H0) ^
CH contains no lang. boundaries

(I,CH[e]) otherwise
[·][I] = I

(◆; CI)[e] = ◆; CI[e]

(import rd, �T A⌧C; I)[e] = import rd, �T A⌧ (C[e]); I

(CH, ` 7! h)[e] = (CH[e]), ` 7! h

(H, ` 7! code[�]{�;�}q.CI)[e] = H, ` 7! code[�]{�;�}q.(CI[e])

` C : (;�;�;�;�;q ` ⌧ ; �̂) (

0
;�

0
;�

0
;�0

;�0
;q0 ` ⌧ 0; �̂0

)

Contextual Equivalence

 ;�;�;�;�;q ` e1 ⇡ctx e2 : ⌧ ; �̂
def
=

 ;�;�;�;�;q ` e1 : ⌧ ; �̂ ^ ;�;�;�;�;q ` e2 : ⌧ ; �̂ ^
8C,M, 0,�0,�0,q0, ⌧ 0, �̂0. ` M : (

0,�0, �̂0
) ^

` C : (;�;�;�;�;q ` ⌧ ;�0
) (

0
; ·; ·;�0

; �̂;q0 ` ⌧ 0; �̂0
) ^

(q0
= out _ (9⌧ 0. ⌧ 0 = ⌧ 0 ^ q0

= end[⌧ 0; �̂0]))

=) (hM | C[e1]i# () hM | C[e2]i#)

Figure 10: General Contexts and Contextual Equivalence for FCAT

(how to modify F,C,A judgments to get FCAT judgments) - Con-
textual equivalence for FCAT - Logical relation (excerpts) - What
about ciu? Need to show continuations!!

Sec 6: Compiler Correctness (theorems) [0.5] - Theorem state-
ments

Sec 7: Related work & conclusion [0.5]
References [0.5]

References
[1] A. Ahmed and M. Blume. An equivalence-preserving cps transla-

tion via multi-language semantics. In International Conference on
Functional Programming (ICFP), Tokyo, Japan, pages 431–444, Sept.
2011.

[2] A. Ahmed, D. Dreyer, and A. Rossberg. State-dependent representa-
tion independence. In ACM Symposium on Principles of Programming
Languages (POPL), Savannah, Georgia, Jan. 2009.

[3] N. Benton and C.-K. Hur. Biorthogonality, step-indexing and compiler
correctness. In International Conference on Functional Programming
(ICFP), Edinburgh, Scotland, Sept. 2009.

[4] C.-K. Hur and D. Dreyer. A kripke logical relation between ml
and assembly. In ACM Symposium on Principles of Programming
Languages (POPL), Austin, Texas, Jan. 2011.

[5] C.-K. Hur, D. Dreyer, G. Neis, and V. Vafeiadis. The marriage of
bisimulations and kripke logical relations. In ACM Symposium on
Principles of Programming Languages (POPL), Philadelphia, Penn-
sylvania, Jan. 2012.

8 2012/11/7

7.4 Well-Typed Memory ` M : (,�,�)

(·,) ` H : (, ·) ` M : (,�,�)

` (H,M) : ((,),�,�)

7.5 Well-Typed Heap Value (A) ` h :

Replace the rule for functions with the following:

 ; (↵, ⇣); x : ⌧ ; ·; ⇣;out ` t : ⌧ 0; ⇣

 ` �[↵]⇣(x : ⌧).t :8[↵]⇣ .(⌧)! ⌧ 0

7.6 Well-Typed Instruction Sequence ;�;�;�;�;q ` I

Amend the side-condition on this judgment to forbid q = out as well as q = ✏. Add the environment �.

7.7 Well-Typed Instruction ;�;�;�;�;q ` ◆) �0;�0;�0;q0

Amend the side-condition on this judgment to forbid q = out as well as q = ✏, add the environment �, and
add the following rule:

� = ⌧0 :: · · · :: ⌧j :: �0 �0 = ⌧ 0
0 :: · · · :: ⌧ 0

k :: �0

 ;�, ⇣;�;�; (⌧0 :: · · · :: ⌧j :: ⇣);out ` e : ⌧ ; (⌧ 0
0 :: · · · :: ⌧ 0

k :: ⇣) q = i > j or q = end[⌧̂ ; �̂]

 ;�;�;�;�;q ` import rd,
�0T A⌧ e) �; (rd : ⌧

T);�0; inc(q,k�j)

7.8 Well-Typed Component ;�;�;�;�;q ` e : ⌧ ;�0

Replace the type rule for functions in languages F and C with the following:

 ; (�,↵, ⇣); (�, x : ⌧); ·; ⇣;out ` t : ⌧ 0; ⇣

 ;�;�;�;�;out ` �[↵]⇣(x : ⌧).t : 8[↵]⇣ .(⌧)! ⌧ 0;�

 ; (↵, ⇣);x: ⌧ ; ·; ⇣;out ` t : ⌧ 0; ⇣

 ;�;�;�;�;out ` �[↵]⇣(x : ⌧).t :8[↵]⇣ .(⌧)! ⌧ 0;�

Add the following rules:

 ;�;�; ·;�; end[⌧ hT i;�0] ` e : ⌧ hT i;�0

 ;�;�;�;�;out ` ⌧AT e : ⌧ ;�0
 ;� ` w : ⌧

 ;�;�;�;�;out ` Lh⌧iAT w :Lh⌧ i;�

27

Thursday, October 17, 13

Interoperability: A and T

⌧ ::= · · · | 8[↵]⇣ .(⌧)! ⌧ 0

t ::= · · · | �[↵]⇣(x : ⌧).t

v ::= · · · | �[↵]⇣(x : ⌧).t

⌧ ::= · · · | 8[↵]⇣ .(⌧)! ⌧ 0

t ::= · · · | �[↵]⇣(x : ⌧).t

v ::= · · · | �[↵]⇣(x : ⌧).t

⌧ ::= · · · | Lh⌧i
 ::= · · · | 8[↵]⇣ .(⌧)! ⌧ 0

t ::= · · · | ⌧AT e | Lh⌧iAT w

v ::= · · · | Lh⌧iAT w

h ::= · · · | �[↵]⇣(x : ⌧).t
Et ::= · · · | ⌧AT E

⌧ ::= · · · | d↵e | d↵e | d↵e
q ::= · · · | out

◆ ::= · · · | import rd, �T A⌧ e

EI ::= · · · | import rd, �T A⌧E; I

⌧ ::= · · · | ⌧
e ::= · · · | e

v ::= · · · | v

E ::= · · · | E

M ::= (H,M)

 ::= (,)

� ::= · · · | �,↵ | �, ⇣ | �, ✏

⌧ hT i Operational Type Translation

↵hT i
= d↵e · · · Lh⌧ihT i

= ⌧ d↵ehT i
= d↵e d↵ehT i

= d↵e

Type substitution: d↵e[⌧/↵] = ((⌧hCi)hAi)hT i

d↵e[⌧/↵] = (⌧ hAi)hT i d↵e[⌧/↵] = ⌧ hT i

` M : (,�,�)
(·, (, ·, ·)) ` H : (, ·) ` M : (,�,�)

` (H,M) : ((,),�,�)

 ;�;�;�;�;q ` e : ⌧ ;�0 Add �, �, q, �0 to FCA; � to T

 ; (�,↵, ⇣); (�, x : ⌧); ·; ⇣;out ` t : ⌧ 0; ⇣

 ;�;�;�;�;out ` �[↵]⇣(x : ⌧).t : 8[↵]⇣ .(⌧)! ⌧ 0;�
. . .

 ;�;�; ·;�; end[⌧ hT i;�0] ` e : ⌧ hT i
;�0

 ;�;�;�;�;out ` ⌧AT e : ⌧ ;�0

 ;� ` w : ⌧

 ;�;�;�;�;out ` Lh⌧iAT w : Lh⌧i;�

 ;�;�;�;�;q ` ◆) �

0
;�0

;�0
;q0 q, q0 6= out

� = ⌧ :: �0 �0
= ⌧ 0 :: �0

 ; (�, ⇣);�;�; (⌧ :: ⇣);out ` e : ⌧ ; (⌧ 0 :: ⇣)
q = i > len(⌧) and q0

= i� len(⌧) + len(⌧ 0
)

or q = q0
= end[⌧̂ ; �̂]

 ;�;�;�;�;q ` import rd,
�0T A⌧ e) �; (rd : ⌧T);�0

;q0

TA⌧
(v,M) = (w,M 0

)

⌧AT(w,M) = (v,M 0
) Value Translations

hM | ei 7�! hM 0 | e0i Lift FCA rules to new config.; add E to T rules

hM | E[�[↵]⇣(x : ⌧).t [⌧ 0] v]i 7�! hM | E[t[⌧ 0/↵][M.M.�/⇣][v/x]]i

· · ·
⌧AT(M.M.R(r),M) = (v,M 0

)

hM | E[

⌧AT ret end[⌧ hT i;�], r]i 7�! hM 0 | E[v]i
TA⌧

(v,M) = (w,M 0
)

hM | E[import rd,
�0

T A⌧ v; I]i 7�! hM 0 | E[mv rd,w; I]i
Figure 9: FCAT Multi-language system (extends and updates Fig-
ures 4 and 5)

Sec 4: A-to-T [2] - TAL syntax: need stacks and stack effects.
- Just TAL: we want to be able to reason about equivalence of
components: What is a component? What is the ”return type”
of a component? Need support from type system: return markers
?? Contextual equivalence for TAL (contexts!); or just grammar
for TAL contexts - Type trans, operational type trans, no space
for actual translation (see TR) - Interop semantics (some cases);
discuss calling conventions (perhaps w/ trans discussion)

Sec 5: FCAT, Logical Relation [2.5] - FCAT: some additions to
earlier passes, e.g., lambdas need zetas - FCAT typing judgments

C ::= [·] | C p t | · · · | �[↵]⇣(x : ⌧).C | · · · | ⌧FCC
C ::= [·] | · · · | �[↵]⇣(x : ⌧).C | · · · | CF⌧

C | ⌧CAC

C ::= (Ct,H) | (t,CH)

Ct ::= [·] | · · · | AC⌧C | ⌧AT C

CH ::= CH, ` 7! h | H, ` 7! �[↵]⇣(x : ⌧).Ct

C ::= (CI,H) | (I,CH)

CI ::= [·] | ◆; CI | import rd, �T A⌧C; I

CH ::= CH, ` 7! h | H, ` 7! code[�]{�;�}q.CI

C ::= C | C | C | C

C[e] Context Plugging (T cases shown)

(CI,H)[e] =

8
><

>:

(CI[I], (H,H0)) e = (I,H0) ^
CI contains no lang. boundaries

(CI[e],H) otherwise

(I,CH)[e] =

8
><

>:

(I, (CH[I],H0)) e = (I,H0) ^
CH contains no lang. boundaries

(I,CH[e]) otherwise
[·][I] = I

(◆; CI)[e] = ◆; CI[e]

(import rd, �T A⌧C; I)[e] = import rd, �T A⌧ (C[e]); I

(CH, ` 7! h)[e] = (CH[e]), ` 7! h

(H, ` 7! code[�]{�;�}q.CI)[e] = H, ` 7! code[�]{�;�}q.(CI[e])

` C : (;�;�;�;�;q ` ⌧ ; �̂) (

0
;�

0
;�

0
;�0

;�0
;q0 ` ⌧ 0; �̂0

)

Contextual Equivalence

 ;�;�;�;�;q ` e1 ⇡ctx e2 : ⌧ ; �̂
def
=

 ;�;�;�;�;q ` e1 : ⌧ ; �̂ ^ ;�;�;�;�;q ` e2 : ⌧ ; �̂ ^
8C,M, 0,�0,�0,q0, ⌧ 0, �̂0. ` M : (

0,�0, �̂0
) ^

` C : (;�;�;�;�;q ` ⌧ ;�0
) (

0
; ·; ·;�0

; �̂;q0 ` ⌧ 0; �̂0
) ^

(q0
= out _ (9⌧ 0. ⌧ 0 = ⌧ 0 ^ q0

= end[⌧ 0; �̂0]))

=) (hM | C[e1]i# () hM | C[e2]i#)

Figure 10: General Contexts and Contextual Equivalence for FCAT

(how to modify F,C,A judgments to get FCAT judgments) - Con-
textual equivalence for FCAT - Logical relation (excerpts) - What
about ciu? Need to show continuations!!

Sec 6: Compiler Correctness (theorems) [0.5] - Theorem state-
ments

Sec 7: Related work & conclusion [0.5]
References [0.5]

References
[1] A. Ahmed and M. Blume. An equivalence-preserving cps transla-

tion via multi-language semantics. In International Conference on
Functional Programming (ICFP), Tokyo, Japan, pages 431–444, Sept.
2011.

[2] A. Ahmed, D. Dreyer, and A. Rossberg. State-dependent representa-
tion independence. In ACM Symposium on Principles of Programming
Languages (POPL), Savannah, Georgia, Jan. 2009.

[3] N. Benton and C.-K. Hur. Biorthogonality, step-indexing and compiler
correctness. In International Conference on Functional Programming
(ICFP), Edinburgh, Scotland, Sept. 2009.

[4] C.-K. Hur and D. Dreyer. A kripke logical relation between ml
and assembly. In ACM Symposium on Principles of Programming
Languages (POPL), Austin, Texas, Jan. 2011.

[5] C.-K. Hur, D. Dreyer, G. Neis, and V. Vafeiadis. The marriage of
bisimulations and kripke logical relations. In ACM Symposium on
Principles of Programming Languages (POPL), Philadelphia, Penn-
sylvania, Jan. 2012.

8 2012/11/7

⌧ ::= · · · | 8[↵]⇣ .(⌧)! ⌧ 0

t ::= · · · | �[↵]⇣(x : ⌧).t

v ::= · · · | �[↵]⇣(x : ⌧).t

⌧ ::= · · · | 8[↵]⇣ .(⌧)! ⌧ 0

t ::= · · · | �[↵]⇣(x : ⌧).t

v ::= · · · | �[↵]⇣(x : ⌧).t

⌧ ::= · · · | Lh⌧i
 ::= · · · | 8[↵]⇣ .(⌧)! ⌧ 0

t ::= · · · | ⌧AT e | Lh⌧iAT w

v ::= · · · | Lh⌧iAT w

h ::= · · · | �[↵]⇣(x : ⌧).t
Et ::= · · · | ⌧AT E

⌧ ::= · · · | d↵e | d↵e | d↵e
q ::= · · · | out

◆ ::= · · · | import rd, �T A⌧ e

EI ::= · · · | import rd, �T A⌧E; I

⌧ ::= · · · | ⌧
e ::= · · · | e

v ::= · · · | v

E ::= · · · | E

M ::= (H,M)

 ::= (,)

� ::= · · · | �,↵ | �, ⇣ | �, ✏

⌧ hT i Operational Type Translation

↵hT i
= d↵e · · · Lh⌧ihT i

= ⌧ d↵ehT i
= d↵e d↵ehT i

= d↵e

Type substitution: d↵e[⌧/↵] = ((⌧hCi)hAi)hT i

d↵e[⌧/↵] = (⌧ hAi)hT i d↵e[⌧/↵] = ⌧ hT i

` M : (,�,�)
(·, (, ·, ·)) ` H : (, ·) ` M : (,�,�)

` (H,M) : ((,),�,�)

 ;�;�;�;�;q ` e : ⌧ ;�0 Add �, �, q, �0 to FCA; � to T

 ; (�,↵, ⇣); (�, x : ⌧); ·; ⇣;out ` t : ⌧ 0; ⇣

 ;�;�;�;�;out ` �[↵]⇣(x : ⌧).t : 8[↵]⇣ .(⌧)! ⌧ 0;�
. . .

 ;�;�; ·;�; end[⌧ hT i;�0] ` e : ⌧ hT i
;�0

 ;�;�;�;�;out ` ⌧AT e : ⌧ ;�0

 ;� ` w : ⌧

 ;�;�;�;�;out ` Lh⌧iAT w : Lh⌧i;�

 ;�;�;�;�;q ` ◆) �

0
;�0

;�0
;q0 q, q0 6= out

� = ⌧ :: �0 �0
= ⌧ 0 :: �0

 ; (�, ⇣);�;�; (⌧ :: ⇣);out ` e : ⌧ ; (⌧ 0 :: ⇣)
q = i > len(⌧) and q0

= i� len(⌧) + len(⌧ 0
)

or q = q0
= end[⌧̂ ; �̂]

 ;�;�;�;�;q ` import rd,
�0T A⌧ e) �; (rd : ⌧T);�0

;q0

TA⌧
(v,M) = (w,M 0

)

⌧AT(w,M) = (v,M 0
) Value Translations

hM | ei 7�! hM 0 | e0i Lift FCA rules to new config.; add E to T rules

hM | E[�[↵]⇣(x : ⌧).t [⌧ 0] v]i 7�! hM | E[t[⌧ 0/↵][M.M.�/⇣][v/x]]i

· · ·
⌧AT(M.M.R(r),M) = (v,M 0

)

hM | E[

⌧AT ret end[⌧ hT i;�], r]i 7�! hM 0 | E[v]i
TA⌧

(v,M) = (w,M 0
)

hM | E[import rd,
�0

T A⌧ v; I]i 7�! hM 0 | E[mv rd,w; I]i
Figure 9: FCAT Multi-language system (extends and updates Fig-
ures 4 and 5)

Sec 4: A-to-T [2] - TAL syntax: need stacks and stack effects.
- Just TAL: we want to be able to reason about equivalence of
components: What is a component? What is the ”return type”
of a component? Need support from type system: return markers
?? Contextual equivalence for TAL (contexts!); or just grammar
for TAL contexts - Type trans, operational type trans, no space
for actual translation (see TR) - Interop semantics (some cases);
discuss calling conventions (perhaps w/ trans discussion)

Sec 5: FCAT, Logical Relation [2.5] - FCAT: some additions to
earlier passes, e.g., lambdas need zetas - FCAT typing judgments

C ::= [·] | C p t | · · · | �[↵]⇣(x : ⌧).C | · · · | ⌧FCC
C ::= [·] | · · · | �[↵]⇣(x : ⌧).C | · · · | CF⌧

C | ⌧CAC

C ::= (Ct,H) | (t,CH)

Ct ::= [·] | · · · | AC⌧C | ⌧AT C

CH ::= CH, ` 7! h | H, ` 7! �[↵]⇣(x : ⌧).Ct

C ::= (CI,H) | (I,CH)

CI ::= [·] | ◆; CI | import rd, �T A⌧C; I

CH ::= CH, ` 7! h | H, ` 7! code[�]{�;�}q.CI

C ::= C | C | C | C

C[e] Context Plugging (T cases shown)

(CI,H)[e] =

8
><

>:

(CI[I], (H,H0)) e = (I,H0) ^
CI contains no lang. boundaries

(CI[e],H) otherwise

(I,CH)[e] =

8
><

>:

(I, (CH[I],H0)) e = (I,H0) ^
CH contains no lang. boundaries

(I,CH[e]) otherwise
[·][I] = I

(◆; CI)[e] = ◆; CI[e]

(import rd, �T A⌧C; I)[e] = import rd, �T A⌧ (C[e]); I

(CH, ` 7! h)[e] = (CH[e]), ` 7! h

(H, ` 7! code[�]{�;�}q.CI)[e] = H, ` 7! code[�]{�;�}q.(CI[e])

` C : (;�;�;�;�;q ` ⌧ ; �̂) (

0
;�

0
;�

0
;�0

;�0
;q0 ` ⌧ 0; �̂0

)

Contextual Equivalence

 ;�;�;�;�;q ` e1 ⇡ctx e2 : ⌧ ; �̂
def
=

 ;�;�;�;�;q ` e1 : ⌧ ; �̂ ^ ;�;�;�;�;q ` e2 : ⌧ ; �̂ ^
8C,M, 0,�0,�0,q0, ⌧ 0, �̂0. ` M : (

0,�0, �̂0
) ^

` C : (;�;�;�;�;q ` ⌧ ;�0
) (

0
; ·; ·;�0

; �̂;q0 ` ⌧ 0; �̂0
) ^

(q0
= out _ (9⌧ 0. ⌧ 0 = ⌧ 0 ^ q0

= end[⌧ 0; �̂0]))

=) (hM | C[e1]i# () hM | C[e2]i#)

Figure 10: General Contexts and Contextual Equivalence for FCAT

(how to modify F,C,A judgments to get FCAT judgments) - Con-
textual equivalence for FCAT - Logical relation (excerpts) - What
about ciu? Need to show continuations!!

Sec 6: Compiler Correctness (theorems) [0.5] - Theorem state-
ments

Sec 7: Related work & conclusion [0.5]
References [0.5]

References
[1] A. Ahmed and M. Blume. An equivalence-preserving cps transla-

tion via multi-language semantics. In International Conference on
Functional Programming (ICFP), Tokyo, Japan, pages 431–444, Sept.
2011.

[2] A. Ahmed, D. Dreyer, and A. Rossberg. State-dependent representa-
tion independence. In ACM Symposium on Principles of Programming
Languages (POPL), Savannah, Georgia, Jan. 2009.

[3] N. Benton and C.-K. Hur. Biorthogonality, step-indexing and compiler
correctness. In International Conference on Functional Programming
(ICFP), Edinburgh, Scotland, Sept. 2009.

[4] C.-K. Hur and D. Dreyer. A kripke logical relation between ml
and assembly. In ACM Symposium on Principles of Programming
Languages (POPL), Austin, Texas, Jan. 2011.

[5] C.-K. Hur, D. Dreyer, G. Neis, and V. Vafeiadis. The marriage of
bisimulations and kripke logical relations. In ACM Symposium on
Principles of Programming Languages (POPL), Philadelphia, Penn-
sylvania, Jan. 2012.

8 2012/11/7

7.4 Well-Typed Memory ` M : (,�,�)

(·,) ` H : (, ·) ` M : (,�,�)

` (H,M) : ((,),�,�)

7.5 Well-Typed Heap Value (A) ` h :

Replace the rule for functions with the following:

 ; (↵, ⇣); x : ⌧ ; ·; ⇣;out ` t : ⌧ 0; ⇣

 ` �[↵]⇣(x : ⌧).t :8[↵]⇣ .(⌧)! ⌧ 0

7.6 Well-Typed Instruction Sequence ;�;�;�;�;q ` I

Amend the side-condition on this judgment to forbid q = out as well as q = ✏. Add the environment �.

7.7 Well-Typed Instruction ;�;�;�;�;q ` ◆) �0;�0;�0;q0

Amend the side-condition on this judgment to forbid q = out as well as q = ✏, add the environment �, and
add the following rule:

� = ⌧0 :: · · · :: ⌧j :: �0 �0 = ⌧ 0
0 :: · · · :: ⌧ 0

k :: �0

 ;�, ⇣;�;�; (⌧0 :: · · · :: ⌧j :: ⇣);out ` e : ⌧ ; (⌧ 0
0 :: · · · :: ⌧ 0

k :: ⇣) q = i > j or q = end[⌧̂ ; �̂]

 ;�;�;�;�;q ` import rd,
�0T A⌧ e) �; (rd : ⌧

T);�0; inc(q,k�j)

7.8 Well-Typed Component ;�;�;�;�;q ` e : ⌧ ;�0

Replace the type rule for functions in languages F and C with the following:

 ; (�,↵, ⇣); (�, x : ⌧); ·; ⇣;out ` t : ⌧ 0; ⇣

 ;�;�;�;�;out ` �[↵]⇣(x : ⌧).t : 8[↵]⇣ .(⌧)! ⌧ 0;�

 ; (↵, ⇣);x: ⌧ ; ·; ⇣;out ` t : ⌧ 0; ⇣

 ;�;�;�;�;out ` �[↵]⇣(x : ⌧).t :8[↵]⇣ .(⌧)! ⌧ 0;�

Add the following rules:

 ;�;�; ·;�; end[⌧ hT i;�0] ` e : ⌧ hT i;�0

 ;�;�;�;�;out ` ⌧AT e : ⌧ ;�0
 ;� ` w : ⌧

 ;�;�;�;�;out ` Lh⌧iAT w :Lh⌧ i;�

27

Thursday, October 17, 13

Other Issues
Contexts of FCAT

• plugging T context with a component is subtle

Logical Relation for FCAT nontrivial!

9 General Contexts and Contextual Equivalence

C ::= [·] | C p t | t p C | if0 C t t | if0 t C t | if0 t t C | �[↵]⇣(x : ⌧).C | C [⌧] t | t [⌧] t C t

| packh⌧,Ci as 9↵.⌧ | unpack h↵, xi = C in t | unpack h↵, xi = t in C | foldµ↵.⌧ C | unfold C | ht,C, ti
| ⇡i(C) | ⌧FCC

C ::= [·] | C p t | t p C | if0C t t | if0 t C t | if0 t t C | �[↵]⇣(x : ⌧).C | C [] t | t [] t C t | C[⌧]

| packh⌧,Ci as 9↵.⌧ | unpack h↵, xi = C in t | unpack h↵, xi = t in C | foldµ↵.⌧ C

| unfoldC | ht,C, ti | ⇡i(C) | CF⌧
C | ⌧CAC

C ::= (Ct,H) | (t,CH)

Ct ::= [·] | Ct p t | t p Ct | if0 Ct t t | if0 t Ct t | if0 t t Ct | Ct [] t | t [] t,Ct, t | Ct[⌧]

| packh⌧,Cti as 9↵.⌧ | unpack h↵, xi = Ct in t | unpack h↵, xi = t in Ct | foldµ↵.⌧ Ct | unfold Ct

| balloc ht,Ct, ti | read[i]Ct | AC⌧ C | ⌧AT C

CH ::= CH, ` 7! h | H, ` 7! �[↵]⇣(x : ⌧).Ct

C ::= (CI,H) | (I,CH)

CI ::= [·] | ◆; CI | import rd, �T A⌧ C; I

CH ::= CH, ` 7! h | H, ` 7! code[�]{�;�}q.CI

C ::= C | C | C | C

9.1 Plug Function C[e]

[·][e] = e (packh⌧,Ci as 9↵.⌧)[e] = packh⌧,(C[e])i as 9↵.⌧
(C p t)[e] = (C[e]) p t (unpack h↵, xi = C in t)[e] = unpack h↵, xi = (C[e]) in t

(t p C)[e] = t p (C[e]) (unpack h↵, xi = t in C)[e] = unpack h↵, xi = t in (C[e])

(if0 C t1 t2)[e] = if0 (C[e]) t1 t2 (foldµ↵.⌧ C)[e] = foldµ↵.⌧ (C[e])

(if0 t0 C t2)[e] = if0 t0 (C[e]) t2 (unfold C)[e] = unfold (C[e])

(if0 t0 t1 C)[e] = if0 t0 t1 (C[e]) (ht,C, t0i)[e] = ht, (C[e]), t0i
(�[↵]⇣(x : ⌧).C)[e] = �[↵]⇣(x : ⌧).(C[e]) (⇡i(C))[e] = ⇡i(C[e])

(C [⌧] t)[e] = (C[e]) [⌧] t (⌧FCC)[e] = ⌧FC (C[e])

(t0 [⌧] t C t)[e] = t

0 [⌧] t (C[e]) t

[·][e] = e (packh⌧,Ci as 9↵.⌧)[e] = packh⌧,(C[e])i as 9↵.⌧

(C p t)[e] = (C[e]) p t (unpack h↵, xi = C in t)[e] = unpack h↵, xi = (C[e]) in t

(t p C)[e] = t p (C[e]) (unpack h↵, xi = t in C)[e] = unpack h↵, xi = t in (C[e])

(if0C t1 t2)[e] = if0 (C[e]) t1 t2 (foldµ↵.⌧ C)[e] = foldµ↵.⌧ (C[e])

(if0 t0 C t2)[e] = if0 t0 (C[e]) t2 (unfoldC)[e] = unfold (C[e])

(if0 t0 t1 C)[e] = if0 t0 t1 (C[e]) (ht,C, t0i)[e] = ht, (C[e]), t0i
(�[↵]⇣(x : ⌧).C)[e] = �[↵]⇣(x : ⌧).(C[e]) (⇡i(C))[e] = ⇡i(C[e])

(C [] t)[e] = (C[e]) [] t (CF⌧
C)[e] = CF⌧ (C[e])

(t0 [] t C t)[e] = t0 [] t (C[e]) t (⌧CAC)[e] = ⌧CA (C[e])

(C[⌧])[e] = (C[e])[⌧]

31

Thursday, October 17, 13

Stepping Back... where’s this going?

ML F* C! ! !
target

Thursday, October 17, 13

Stepping Back... where’s this going?

ML F* C! ! !

Thursday, October 17, 13

Stepping Back... where’s this going?

ML F* C! ! !
untypeddependently typed

simply
typed Dependent

TAL with
gradual typing

Thursday, October 17, 13

Stepping Back... where’s this going?

ML F* C! ! !
preserve

parametricity?

untypeddependently typed
simply
typed Dependent

TAL with
gradual typing

Thursday, October 17, 13

Stepping Back... where’s this going?

ML F* C! ! !
preserve

parametricity?
preserve all
equivalences

untypeddependently typed
simply
typed Dependent

TAL with
gradual typing

Thursday, October 17, 13

Stepping Back... where’s this going?

ML F* C! ! !
preserve

parametricity?
preserve all
equivalences

nothing to
preserve?

untypeddependently typed
simply
typed Dependent

TAL with
gradual typing

Thursday, October 17, 13

Stepping Back... where’s this going?

ML F* C! ! !
preserve

parametricity?
preserve all
equivalences

nothing to
preserve?

untypeddependently typed
simply
typed Dependent

TAL with
gradual typing

It’s about principled language interoperability!

Thursday, October 17, 13

Conclusions
Correct compilation of components, not just whole programs

• it’s a language interoperability problem!

Multi-language approach:
• works for multi-pass compilers

• supports linking with target code of arbitrary provenance

• an opportunity to study principled interoperability

• interoperability semantics provides a specification of when
source and target are related

• but have to get all the languages to fit together!

Thursday, October 17, 13

Questions?

Thursday, October 17, 13

