Git as a HIT

Dan Licata
Wesleyan University

parcs
-Git-as a HIT

Dan Licata
Wesleyan University

HI TS

HITs

% Homotopy Type Theory is an extension of Agda/Cog
based on connections with homotopy theory

[Hofmann&Streicher,Awodey&Warren,Voevodsky,Lumsdaine,Garner&van den Berg]

HITs

% Homotopy Type Theory is an extension of Agda/Cog
based on connections with homotopy theory

[Hofmann&Streicher,Awodey&Warren,Voevodsky,Lumsdaine,Garner&van den Berg]

% Higher inductive types (HITs) are a new type former!

HITs

% Homotopy Type Theory is an extension of Agda/Cog
based on connections with homotopy theory

[Hofmann&Streicher,Awodey&Warren,Voevodsky,Lumsdaine,Garner&van den Berg]

% Higher inductive types (HITs) are a new type former!

* They were originally invented| umsdaine,Shuiman,...] t0 model
basic spaces (circle, spheres, the torus, ...) and
constructions in homotopy theory

HITs

% Homotopy Type Theory is an extension of Agda/Cog
based on connections with homotopy theory

[Hofmann&Streicher,Awodey&Warren,Voevodsky,Lumsdaine,Garner&van den Berg]

% Higher inductive types (HITs) are a new type former!

* They were originally invented| umsdaine,Shuiman,...] t0 model
basic spaces (circle, spheres, the torus, ...) and
constructions in homotopy theory

* But they have many other applications,
iIncluding some programming ones!

FPatches

Patch

diff . . — .
c c
>d

C C C - C
- undo/rollback

—_— —_—

C C e

S =
C C C -E C

” undo/rollback

=g g

C

—_—

[Yorgey,Jacobson,...]

Simple Setup

aJuls)sfofifs]

Simple Setup

* “Repository” is a char vector of fixed length n

aJuls)sfofifs]

% Basic patchis a <« b at 1 where 1<n

Domain-Specific Language

data Patch :
: Patch

: Patch - Patch - Patch

: Patch - Patch

: Char -» Char -» Fin n - Patch

1d

.
o_at

Set where

Domain-Specific Language

interp : Patch - (Vec Char n - Vec Char n) x
(Vec Char n - Vec Char n)
interp 1d = (A x - x) , (A X - X)
interp (g o p) = fst (1nterp gq) o fst (interp p) ,
snd (interp p) o snd (i1nterp q)
interp (! p) = snd (interp p) , fst (interp p)
interp (a « b at 1) = swapat a b 1 , swapat a b 1

Domain-Specific Language

interp : Patch - (Vec Char n - Vec Char n) x
(Vec Char n - Vec Char n)
interp 1d = (A x - x) , (A X - X)
interp (g o p) = fst (1nterp gq) o fst (interp p) ,
snd (interp p) o snd (i1nterp q)
interp (! p) = snd (interp p) , fst (interp p)
interp (a « b at 1) = swapat a b 1 , swapat a b 1

—

swapat a b 1 v permutes a and b at position 1 in v

Domain-Specific Language

Spec: v p. 1nterp p is a bijection:
vv. g((fv)=v where (f,g)=1nterp p
vv. f(gv) =V

Domain-Specific Language
/undo really un-does

Spec: v p. 1nterp p is a bijection:
vv. g((fv)=v where (f,g)=1nterp p
vv. f(gv) =V

Domain-Specific Language
/undo really un-does

Spec: v p. 1nterp p is a bijection:
vv. g((fv)=v where (f,g)=1nterp p

Can package this as:

interp : Patch -
Bijection (Vec Char n) (Vec Char n)

MVerging

Merg|ﬂg p=b—~d at 1
- - - gq=C<e at 2

7 NE
ANV

e

Vierging

S

e

- - - gq=C<e at 2

0/, \p

e

p’=p
aq’=q

Vierging

merge : (p q : Patch)

> 2q’,p’ :Patch.
Maybe(qgq’ o p =

p’ 0 q)

Vierging

mP e

merge : (p q : Patch) .
> 2q’,p’ :Patch. -/_\-
Maybe(g’ o p = °;‘_)
p’ 0 q) 4

When are two patches equal?

e

Patch £quality

(aeb at 1)o(ced at j) =
(ced at j)o(aeb at i) if i=zj

Patch Equality

(aeb at 1)o(ced at j) =
(ced at j)o(aeb at 1) 1f 123
(a<~a at 1) = 1d
l(a~b at 1) = (a<b at 1)
(a~b at 1) = (bea at 1)

Patch Equality

Basic Axioms:
(aeb at 1)o(ced at j) =

(ced at j)o(aeb at 1) 1f 123
(a<~a at 1) = 1d
l(a~b at 1) = (a<b at 1)
(a~b at 1) = (bea at 1)

Patch equality

Basic axioms:
(aeb at i)o(ced at 3)
=(ced at j)o(asb at 1)

Patch equality

Basic axioms: Group laws:

(aob at i)o(ced at j) id op=p=p o id

=(ced at j)o(aeb at 1) po(gor) = (pog)or
lpop=1d=polp

Patch equality

Basic axioms: Group laws:

(aob at i)o(ced at j) id op=p=p o id

=(c~d at jdoCa=b at i) po(qor) = (pog)or
lpop=1d=polp

Congruence:
P=P lp = Ip’ if p = p’
p=q 1f g=p poq=p ogq if

p=r 1f p=q and g=r p=p and g = q’

Patch as Quotient Type

Elements:
data Patch' : Set where
id : Patch'
°o_ : Patch' - Patch' - Patch’
! : Patch' - Patch’
o_at_ : Char - Char - Fin n - Patch’

Equality:
(aeb at 1)o(ced at)~
(ced at j)o(aeb at 1)

{c.l.op~p~poid

po(qor) ~ (poglor
lpop~1d~p o !p

p~p

p~q 1f g~p

p~r 1f p~q and g~r

lp ~ Ip” if p ~ p’

pog~p’ ogq if p~p’and g~ g

13

13

Patch as Quotient Type

Elements: Quotient Type:

data Patch' : Set where
id : Patch'

o: Patch' - Patch' - Patch’ PatCh T = PatCh g /N

! : Patch' - Patch’
o_at_ : Char - Char - Fin n - Patch’

Equality:
(aeb at 1)o(ced at)~
(ced at j)o(aeb at 1)

{c.l.op~p~poid

po(qor) ~ (poglor
lpop~1d~p o !p

p~p

p~q 1f g~p

p~r 1f p~q and g~r

lp ~ Ip” if p ~ p’

pog~p’ogq ifp~p’and g~ q’

13

13

Patch as Quotient Type

Elements: Quotient Type:
data Patch' : Set where
id : Patch: ' ' . 9
e patch' - Patch - Patch Patch := Patch’/~
;e_at_ ; Char -» Char -» Fin n - Patch'
Equality: Elimination rule:
(acb at i)oc,c(_)d at j)N, interp : Patch -
(ced at j)o(acb at 1) Bijection (Vec Char n) (Vec Char n)
e . b/
ob eb o ic define on Patch’ as before,
po(gor) ~ (pog)or then prove p ~ g implies
'lpop~1d ~p o !p . .
b 1nterp p = 1nterp g

p~q if g~p for all 14+ rules for ~
p~r 1f p~q and g~r

lp ~ Ip> 1f p ~ p’

pog~p> oq ifp~p’and g~ q’

13

13

Patches as a HI |

1.How do you define Patch
using a higher inductive type?

2.What is the elimination rule?

3.How do you use the elim. rule
to define 1nterp?

Patches as a HI |

1.How do you define Patch
using a higher inductive type?

2.What is the elimination rule?

3.How do you use the elim. rule
to define 1nterp?

Higher Inductive lype

Higher Inductive lype

Type freely generated by constructors for elements,
equalities, equalities between equalities, ...

Higher Inductive lype

Type freely generated by constructors for elements,
equalities, equalities between equalities, ...

RepoDesc : Type

Higher Inductive lype

Type freely generated by constructors for elements,
equalities, equalities between equalities, ...

RepoDesc : Type

vec : RepoDesc generator for element

16

16

Higher Inductive lype

Type freely generated by constructors for elements,
equalities, equalities between equalities, ...

RepoDesc : Type

vec : RepoDesc generator for element

(a<b at 1) : vec = vec generator for equality

16

16

Higher Inductive lype

Type freely generated by constructors for elements,
equalities, equalities between equalities, ...

RepoDesc : Type proof-relevant!

vec : RepoDesc generator for element

(a<b at 1) : vec = vec generator for equality

16

16

Higher Inductive lype

Type freely generated by constructors for elements,
equalities, equalities between equalities, ...

RepoDesc : Type proof-relevant!

vec : RepoDesc generator for element

(a<b at 1) : vec = vec generator for equality

commute: generator for equality
(aeb at 1)o(ced at j) between equalities

=(ced at j)o(a<b at 1)

16

16

Type: Patch

Elements:
id : Patch
o : Patch - Patch - Patch
! : Patch - Patch
o_at_ : Char - Char - Fin n - Patch

Equality:
(aeb at i)o(ced at j)=
(ced at jDo(aeb at i)

1:LC.|.0I0=IO=|oode

po(gor) = (pog)or

lpop=1id=p o !p

p=p

p=q 1f q=p

p=r if p=q and g=r

'p = Ip’ 1f p = p’

poqg=p>oq’ ifp=p’and q =79’

17

17

Type: Patch

Elements:

id : Patch
o : Patch - Patch - Patch
! : Patch - Patch
o_at_ : Char -» Char - Fin n - Patch

Equality:
(aeb at i)o(ced at j)=
(ced at jDo(aeb at i)

1:LC.|.0I0=IO=|oode

po(gor) = (pog)or

lpop=1id=p o !p

p=p

p=q 1f q=p

p=r if p=q and g=r

'p = Ip’ 1f p = p’

poqg=p>oq’ ifp=p’and q =79’

Type: RepoDesc

17

17

Type: Patch

Elements:

id : Patch
o : Patch - Patch - Patch
! : Patch - Patch
o_at_ : Char -» Char - Fin n - Patch

Equality:
(aeb at i)o(ced at j)=
(ced at jDo(aeb at i)

1:LC.|.0I0=IO=|oode

po(gor) = (pog)or

lpop=1id=p o !p

p=p

p=q 1f q=p

p=r if p=q and g=r

'p = Ip’ 1f p = p’

poqg=p>oq’ ifp=p’and q =79’

Type: RepoDesc
Element: vecC :

RepoDesc

17

17

Type: Patch

Elements:

id : Patch

o : Patch - Patch - Patch

! : Patch - Patch

_e_at_ : Char - Char - Fin n - Patch
Equality:

(aeb at i)o(ced at j)=
(ced at jDo(aeb at i)

1:LC.|.0I0=IO=|oode
po(qor) = (pog)or
lpop=1id=p o !p
p=p

p=q 1f q=p

p=r if p=q and g=r
'p = Ip’ 1f p = p’

pog=p oq if p=p’>andqg=g’

Type: RepoDesc

Element: vecC
Equality:

a~b at 1 : vec

17

RepoDesc

vec

Type: Patch

Elements:

id : Patch

o : Patch - Patch - Patch

! : Patch - Patch

_e_at_ : Char - Char - Fin n - Patch
Equality:

(aeb at i)o(ced at j)=
(ced at jDo(aeb at i)

1:LC.|.0I0=IO=|oode
po(qor) = (pog)or
lpop=1id=p o !p
p=p

p=q 1f q=p

p=r if p=q and g=r
'p = Ip’ 1f p = p’

pog=p oq if p=p’>andqg=g’

Type: RepoDesc

Element: vecC
Equality:

17

RepoDesc

Patch

b

a~b at 1 : vec vec

Type: Patch

Elements:
id : Patch
o : Patch - Patch - Patch
! : Patch - Patch
_e_at_ : Char - Char - Fin n - Patch

Equality:
(aeb at i)o(ced at j)=
(ced at jDo(aeb at i)

{C.I.op=p=poid

po(Cqor) = (pog)or
lpop=1d=p o lp

p=p

p=g 1f g=p

p=r 1f p=q and g=r

'p=1!p> ifp=p

poqg=p oq ifp=p’andq=gq

Type: RepoDesc
Element: vec : RepoDesc

Equality: Patch

. Ny
a—b at 1 : vec = vec

Equality between equalities:

commute
(aeob at 1)o(ced at J)=

(ced at j)o(a<b at 1)

... basic axioms only!

17

17

Type: Patch

Elements:
(wid : Patch
o : Patch - Patch - Patch ;
L : Patch - Patch
“e_at_ : Char - Char - Fin n - Patch
Equality:

(aeb at i)o(ced at j)=
(ced at jDo(aeb at i)

(idop=p=po id

- po(gor) = (pog)or

" lpop=1d=polp
P=p

p=q 1f g=p

p=r 1f p=q and g=r
lp = 1p” if p =p’

poqgq=p> oq ifp=p’andq-=q’
. , , . , ,

>

Type: RepoDesc

Element: vec RepoDesc
Equality: Patch

. et
a—b at 1 vec = VvecC

Equality between equalities:

commute
(aeob at 1)o(ced at J)=

(ced at j)o(a<b at 1)
... basic axioms only!

Everything else comes
“for free” from
the equality type!

17

17

lyped Patches

RepoDesc : Type

veCc : RepoDesc generators for elements
compressed : RepoDesc

d—b at 1 : vec = vec generators for equalities
gzlp : vec = compressed

lyped Patches

RepoDesc : Type

veCc : RepoDesc generators for elements
compressed : RepoDesc

d—b at 1 : vec = vec generators for equalities
gzlp : vec = compressed
| S

Patch vec compressed

18

18

Patches as a HI |

1.How do you define Patch
using a higher inductive type?

2.What is the elimination rule
for RepoDesc?

3.How do you use the elim. rule
to define 1nterp?

19

19

Repobesc recursion

To define a function RepoDesc » A
it suffices to

Repobesc recursion

To define a function RepoDesc » A
it suffices to

* map the element generators of RepoDesc
to elements of A

Repobesc recursion

To define a function RepoDesc » A
it suffices to

% map the element generators of RepoDesc
to elements of A

% map the equality generators of RepoDesc
to equalities between the corresponding elements of A

20

20

Repobesc recursion

To define a function RepoDesc » A
it suffices to

% map the element generators of RepoDesc
to elements of A

% map the equality generators of RepoDesc
to equalities between the corresponding elements of A

* map the equality-between-equality generators to
equalities between the corresponding equalities in A

20

20

Repobesc recursion

To define a function f : RepoDesc -» A
it suffices to give

Repobesc recursion

To define a function f : RepoDesc -» A
it suffices to give

fCvec) = .. : A

Repobesc recursion

To define a function f : RepoDesc -» A
it suffices to give

fCvec) = .. : A
f1(a~b at 1) := .. : fQvec) = f(vec)

Repobesc recursion

To define a function f : RepoDesc -» A
it suffices to give

f(vec) = .. : A
f1(a~b at 1) := .. : fQvec) = f(vec)
fo(compose abcd1i jizj) = .

. f1((aeb at 1)o(ced at 7))

= f1((ced at j)o(a<b at 3))

Repobesc recursion

To define a function f : RepoDesc -» A
it suffices to give

f(vec) = .. : A
f1(a~b at 1) := .. : fQvec) = f(vec)
fo(compose abcd1i jizj) = .

. f1((aeb at 1)o(ced at 7))

= f1((ced at j)o(a<b at 3))

You only specify f on generators,
not 1d,0,!,group laws,congruence,...
(1 patch and 4 basic axioms, instead of 4 and 14!

21

21

Repobesc recursion

To define a function f : RepoDesc -» A
it suffices to give

f(vec) = .. : A
f1(a~b at 1) := .. : fQvec) = f(vec)
fo(compose abcd1i jizj) = .

. f1((aeb at 1)o(ced at 7))

= f1((ced at j)o(a<b at 3))

Repobesc recursion

To define a function f : RepoDesc -» A
it suffices to give

f(vec) = .. : A
f1(a~b at 1) := .. : fQvec) = f(vec)
fo(compose abcd1i jizj) = .

. f1((aeb at 1)o(ced at 7))

= f1((ced at j)o(a<b at 3))

Type-generic equality rules say that functions act
homomorphically on 1d,0,!,...

Repobesc recursion

To define a function f : RepoDesc -» A

it suffices to give =f1(aeb at 1)o
fCvec) = .. . A f1(c~d at J)
f1(aeb at 1) =< : f(Qvec) = f(vec)

f2(com abcdijizj) = .
. f1((a<b at 1)o(ced at j))

= f1((ced at jDoCaeb at)

Type-generic equality rules say that functions act
homomorphically on 1d,0,!,...

Repobesc recursion

To define a function f : RepoDesc -» A
it suffices to give

f(vec) = .. : A
f1(a~b at 1) := .. : fQvec) = f(vec)
fo(compose abcd1i jizj) = .

. f1((aeb at 1)o(ced at 7))

= f1((ced at j)o(a<b at 3))

Repobesc recursion

To define a function f : RepoDesc -» A
it suffices to give

f(vec) = .. : A
f1(a~b at 1) := .. : fQvec) = f(vec)
fo(compose abcd1i jizj) = .

. f1((aeb at 1)o(ced at 7))

= f1((ced at j)o(a<b at 3))

All functions on RepoDesc respect patches
All functions on patches respect patch equality

23

23

Patches as a HI |

1.How do you define Patch
using a higher inductive type?

2.\What is the elimination rule
for RepoDesc?

3.How do you use the elim. rule
to define 1nterp?

24

24

Interp

Goal is to define:
ihterp : vec = vec

» Bi1jection (Vec Char n) (Vec Char n)
interp(1d) = (AXx.Xx, ..)
ihterp(q o p) = (1nterp q) oo (1nterp p)
interp(lp) = !y (interp p)
interp(a<b at 1) = swapat a b 1

25

25

INnterp

Goal is to define:

ihterp : vec = vec
» Bi1jection (Vec Char n) (Vec Char n)

interp(id) = (AX.X, ..)

interp(g o p) = (interp g) op (interp p)
interp(!p) = v (1nterp p)

interp(a<b at 1) = swapat a b 1

But only tool available is RepoDesc recursion:
no direct recursion over proofs of equality

25

25

interp : vec = vec
> Bi1jection (Vec Char n) (Vec Char n)
interp(a<b at 1) = swapat a b 1

Need to pick A and define
fCvec) (= .. ¢ A
fi(aeb at 1) := .. : fQvec) = f(vec)

fo(compose) := ..

26

26

interp : vec = vec
> Bi1jection (Vec Char n) (Vec Char n)
interp(a<b at 1) = swapat a b 1

Key idea: pick A = Type and define
f(vec) := .. : Type
f1(a=b at 1) := .. : fQvec) = f(vec)

fo(compose) := ..

27

27

interp : vec = vec
> Bi1jection (Vec Char n) (Vec Char n)
interp(a<b at 1) = swapat a b 1

Key idea: pick A = Type and define
f(vec) := Vec Char n : Type
f1(a=b at 1) := .. : fQvec) = f(vec)

fo(compose) := ..

28

28

interp : vec = vec
> Bi1jection (Vec Char n) (Vec Char n)
interp(a<b at 1) = swapat a b 1

Key idea: pick A = Type and define
f(vec) := Vec Char n : Type
f1(a~b at 1) := .. : Vec Char n = Vec Char n

fo(compose) := ..

29

29

interp : vec = vec
> Bi1jection (Vec Char n) (Vec Char n)
interp(a<b at 1) = swapat a b 1

Key idea: pick A = Type and define
f(vec) := Vec Char n : Type
fi(aeb at 1) := ua(swapat a b 1)
: Vec Char n = Vec Char n
fo(compose) := ..

30

30

interp : vec = vec
> Bi1jection (Vec Char n) (Vec Char n)
interp(a<b at 1) = swapat a b 1

Key idea: pick A = Type and define
f(vec) := Vec Char n : Type
fi(aeb at 1) := ua(swapat a b 1)
:\ Vec Char n = Vec Char n
fo(compose) := ..

Voevodky’s univalence axiom >
bijective types are equal

30

30

interp : vec = vec
> Bi1jection (Vec Char n) (Vec Char n)
interp(a<b at 1) = swapat a b 1

Key idea: pick A = Type and define
f(vec) := Vec Char n : Type
fi(a~b at 1) := ua(swapat a b 1)
: Vec Char n = Vec Char n
fo(compose) := <proof about swapat as before>

31

31

interp : vec = vec
> Bi1jection (Vec Char n) (Vec Char n)
interp(a<b at 1) = swapat a b 1

Key idea: pick A = Type and define
I(vec) := Vec Char n : Type
I1(aeb at 1) := ua(swapat a b 1)
: Vec Char n = Vec Char n
I2(compose) := <proof about swapat as before>

32

32

interp : vec = vec
> Bi1jection (Vec Char n) (Vec Char n)

interp(p) = ua1(I1(p))

Key idea: pick A = Type and define
I(vec) := Vec Char n : Type
I:1(aeb at 1) := ua(swapat a b 1)
: Vec Char n = Vec Char n
I.(compose) := <proof about swapat as before>

33

33

interp : vec = vec
> Bi1jection (Vec Char n) (Vec Char n)

interp(p) = ual(I1(p))

Satisfies the desired equations (as propositional equalities):
interp(1id) = (Ax.Xx, ..)

interp(g o p) = (1nterp g) ob, (interp p)
interp(!p) = v (1nterp p)
interp(a<b at 1) = swapat a b 1

34

34

Summary

Summary

* 1 . RepoDesc -» Type interprets RepoDescC’s as Types,
patches as bijections, satisfying patch equalities

35

35

Summary

* 1 . RepoDesc -» Type interprets RepoDescC’s as Types,
patches as bijections, satisfying patch equalities

* Higher inductive elim. defines functions that respect equality:
you specify what happens on the generators;

homomorphically extended to 1d,0,!,...

35

35

Summary

* 1 . RepoDesc -» Type interprets RepoDescC’s as Types,
patches as bijections, satisfying patch equalities

* Higher inductive elim. defines functions that respect equality:

you specify what happens on the generators;
homomorphically extended to 1d,0,!,...

* Univalence lets you give a computational model of equality
proofs (here, patches); guaranteed to satisfy laws

35

35

Summary

* 1 . RepoDesc -» Type interprets RepoDescC’s as Types,
patches as bijections, satisfying patch equalities

* Higher inductive elim. defines functions that respect equality:

you specify what happens on the generators;
homomorphically extended to 1d,0,!,...

* Univalence lets you give a computational model of equality
proofs (here, patches); guaranteed to satisfy laws

* Shorter definition and code than using quotients:
1 basic patch & 4 basic axioms of equality, instead of
4 patches & 14 equations

35

35

VWhere does this
porogramming technique
come from?

Homotopy type theory

Homotopy type theory

a space is a type A

/ i P "

Homotopy type theory

a space is a type A

P

points are
elements

a:A

Homotopy type theory

a space is a type A

P

points are

elements |
a-A paths are

proofs of equality
p . a=ab

Homotopy type theory

a space is a type A path operations
——

points are

elements |
a- A paths are

proofs of equality
p :a=ab

Homotopy type theory

a space is a type A path operations

. D ~ id : a=a (refl)

points are

elements |
a- A paths are

proofs of equality
p :a=ab

Homotopy type theory

a space is a type A path operations

o—> id : a =a (refl)
Ip : b =a (sym)

Aid

points are

elements |
a- A paths are

proofs of equality
p :a=ab

Homotopy type theory

a space is a type A path operations
T P> 1d . a=a (refl)
F Ip . b =a (sym)
qgop : a=c (trans)

points are

elements |
a- A paths are

proofs of equality
p :a=ab

Homotopy type theory

a space is a type A path operations

e S id :a = a (refl)
Ip . b =a (sym)
qop : a=c (trans)

/~id
F &

homotopies
1dop=p
points are Il o b = 1d
elements lth P P
a:A Paths are r o (q o p)

prooff of equality =(roqg)op
p:a=ab

Homotopy type theory

a space is a type A

points are

elements
a-A paths are

proofs of equality
p . a=ab

path operations

1d :a = a (refl)

Ip : b =a (sym)

qop : a=c (trans)

homotopies

1dop=p

lp 0 p = 1d

r o (q o p)
=(rog)op

cquality elimination rule

Type of equalities is inductively
between a and - generated by

y2
p1 P3 a

a

38

38

cquality elimination rule

Type of equalities is inductively
between a and - generated by
y2
y P2 y3 Qid
of aﬁo a

Fix a type A with element a:A.
For a family of types C(y:A, p:a=y),
to give an element of

C(y,p) forall y and p:a=y,
suffices to give an element of

C(a,1d)

38

38

Composition and ASSOC

O :d=b-sb=c->a=c

1dop=p

o-assoc : (p : a=b)(g : b=c)(r : c=d)

spo(qor)=(pogqg or
o-assoc 1d 1d id = 1d

Functions are functors

f : A - B has action at all levels
fi1 : (araz : A)
> d1 =A A2 - f(al) =B f(az)
f2 : (araz: D(p p’ : a1 =a az) -
D =al=a2 P’ -
f1(p) =fca-fa2> T1(p’)
and so on

The Circle

Circle St is HIT generated by Q
loop

base

The Circle

Circle St is HIT generated by

base : St
loop : base

= base

<::¥;::> loop

base

The Circle

Circle St is HIT generated by
base : St

Ioop_‘I loop

loop : base = base “base

Free type: equipped with

1d 1nv

loopt
loop o loop

loop o loop™t = 1id

41

41

The Circle

Circle recursion: loop
function ST » X determined by

base

base’ : X i

base’

loop’ : base’ = base’

42

42

Fundamental group of circle

How many different loops are there on loop
the circle, up to homotopy?

base

Fundamental group of circle

How many different loops are there on loop
the circle, up to homotopy?
base

1d

Fundamental group of circle

How many different loops are there on loop
the circle, up to homotopy?
base
1d
loop

Fundamental group of circle

How many different loops are there on loop
the circle, up to homotopy?
base
1d
loop
Loopt

Fundamental group of circle

How many different loops are there on loop
the circle, up to homotopy?
base
1d
loop
Loopt
loop o loop

Fundamental group of circle

How many different loops are there on loop
the circle, up to homotopy?
base

1d

loop

Loopt

loop o loop

loop~t o loop

Fundamental group of circle

How many different loops are there on Q loop
the circle, up to homotopy?
base
1d
loop
Loopt
loop o loop
loop~t o loop
loop o loopt

Fundamental group of circle

How many different loops are there on loop
the circle, up to homotopy?
base

1d

loop

Loopt

loop o loop

loop~t o loop

loop o loopt id

Fundamental group of circle

How many different loops are there on loop
the circle, up to homotopy?
base

1d 0

loop

Loopt

loop o loop

loop~t o loop

loop o loopt id

Fundamental group of circle

How many different loops are there on loop
the circle, up to homotopy?

base

1d 0
loop 1
Loopt

loop o loop
loop~t o loop

loop o loopt id

Fundamental group of circle

How many different loops are there on loop
the circle, up to homotopy?

base

1d 0
loop 1
Loop? -1

loop o loop
loop~t o loop

loop o loopt id

Fundamental group of circle

How many different loops are there on loop
the circle, up to homotopy?

base

1d 0
loop 1
Loop? -1
loop o loop 2

loop~t o loop

loop o loopt id

Fundamental group of circle

How many different loops are there on loop
the circle, up to homotopy?

base

1d 0
loop 1
Loop? -1
loop o loop 2
loop~t o loop -2

loop o loopt id

Fundamental group of circle

How many different loops are there on loop
the circle, up to homotopy?

base

1d 0
loop 1
Loop? -1
loop o loop 2
loop~t o loop -2

loop o loop-t id 0

Fundamental group of circle

Theorem. Group of loops on the circle
IS Isomorphic to Z

Proof: Define universal cover

Sl

=
CbD

Fundamental group of circle

Theorem. Group of loops on the circle
IS Isomorphic to Z

Proof: Define universal cover

Cover : S' s Type

Coveri(loop) :=
gl ua(successor) : 7Z = 7

g - Cover(base) := Z
N
<::%:::>

Fundamental group of circle

Theorem. Group of loops on the circle
IS Isomorphic to Z

Proof: Define universal cover

Cover : S' s Type

Coveri(loop) :=
gl ua(successor) : 7Z = 7

\

interpret loop as
“add 1” bijection

g - Cover(base) := Z
N
<::%:::>

44

44

Homotopy In HO T |

m(S') =Z Freudenthal Van Kampen
Mk<n(S") = 0 ma(S") = Z Covering spaces
Hopf fibration K(G,n) Whitehead
no(S?) =7 Cohomology for n-types
Ma(S?) = Z axioms

James Blakers-Massey

Construction

3\ —
Mu(S°) = Z7 [Brunerie, Finster, Hou,
Licata, Lumsdaine, Shulman]

45

45

What’s next”?

* Operational semantics of HITs and univalence is still an
open problem in general, though some special cases
are known

* Have just started exploring programming applications

* Extensions to this example: more realistic basic
patches, patches that can fail (partial bijections),
implement merge

46

46

