
1

Git as a HIT

Dan Licata
Wesleyan University

1

1

Git as a HIT

Dan Licata
Wesleyan University

Darcs

1

2

Generator for
equality of equality

HITs

2

2

Generator for
equality of equality

HITs
Homotopy Type Theory is an extension of Agda/Coq
based on connections with homotopy theory
[Hofmann&Streicher,Awodey&Warren,Voevodsky,Lumsdaine,Garner&van den Berg]

2

2

Generator for
equality of equality

HITs
Homotopy Type Theory is an extension of Agda/Coq
based on connections with homotopy theory
[Hofmann&Streicher,Awodey&Warren,Voevodsky,Lumsdaine,Garner&van den Berg]

Higher inductive types (HITs) are a new type former!

2

2

Generator for
equality of equality

HITs
Homotopy Type Theory is an extension of Agda/Coq
based on connections with homotopy theory
[Hofmann&Streicher,Awodey&Warren,Voevodsky,Lumsdaine,Garner&van den Berg]

Higher inductive types (HITs) are a new type former!

They were originally invented[Lumsdaine,Shulman,…] to model
basic spaces (circle, spheres, the torus, …) and
constructions in homotopy theory

2

2

Generator for
equality of equality

HITs
Homotopy Type Theory is an extension of Agda/Coq
based on connections with homotopy theory
[Hofmann&Streicher,Awodey&Warren,Voevodsky,Lumsdaine,Garner&van den Berg]

Higher inductive types (HITs) are a new type former!

They were originally invented[Lumsdaine,Shulman,…] to model
basic spaces (circle, spheres, the torus, …) and
constructions in homotopy theory

But they have many other applications,
including some programming ones!

2

Patches

3

a
b
c

diff
2c2
< b

> d

a
d
c

=

Patch

3

4

a
b
c

id a
b
c

4

4

a
b
c

id a
b
c

a
b
c

p a
d
c

q a
d
e

4

4

a
b
c

id a
b
c

a
b
c

p a
d
c

q a
d
e

q o p

4

4

a
b
c

id a
b
c

a
b
c

p a
d
c

q a
d
e

q o p

a
b
c

p
a
d
c

4

4

a
b
c

id a
b
c

a
b
c

p a
d
c

q a
d
e

q o p

a
b
c

p
a
d
c

!p

4

4

a
b
c

id a
b
c

a
b
c

p a
d
c

q a
d
e

q o p

a
b
c

p
a
d
c

!p

undo/rollback

4

4

a
b
c

id a
b
c

a
b
c

p a
d
c

q a
d
e

q o p

a
b
c

p
a
d
c

!p

undo/rollback

[Yorgey,Jacobson,…]
4

Simple Setup

5

a u s s o i s

a u s b u s

a ↔ b at 0

a ↔ b at 0

5

Simple Setup

5

“Repository” is a char vector of fixed length n

a u s s o i s

Basic patch is a ↔ b at i where i<n

a u s b u s

a ↔ b at 0

a ↔ b at 0

5

Domain-Specific Language

6
6

Domain-Specific Language

7
7

Domain-Specific Language

7

swapat a b i v permutes a and b at position i in v

7

Domain-Specific Language

8

Spec: ∀ p. interp p is a bijection:
 ∀ v. g (f v) = v where (f,g)=interp p
 ∀ v. f (g v) = v

8

Domain-Specific Language

8

Spec: ∀ p. interp p is a bijection:
 ∀ v. g (f v) = v where (f,g)=interp p
 ∀ v. f (g v) = v

undo really un-does

8

Domain-Specific Language

8

Spec: ∀ p. interp p is a bijection:
 ∀ v. g (f v) = v where (f,g)=interp p
 ∀ v. f (g v) = v

undo really un-does

Can package this as:

8

Merging

9

a
b
c

p

a
d
c

q

a
b
e

9

Merging

9

a
b
c

p

a
d
c

q

a
b
e

a
d
e

q’ p’

9

Merging

9

a
b
c

p

a
d
c

q

a
b
e

a
d
e

q’ p’

p=b↔d at 1
q=c↔e at 2

9

Merging

9

a
b
c

p

a
d
c

q

a
b
e

a
d
e

q’ p’

p=b↔d at 1
q=c↔e at 2

p’=p
q’=q

9

Merging

9

a
b
c

p

a
d
c

q

a
b
e

a
d
e

q’ p’

=

p=b↔d at 1
q=c↔e at 2

p’=p
q’=q

9

Merging

10

merge : (p q : Patch)
 ! Σq’,p’:Patch.
 Maybe(q’ o p =
 p’ o q)

10

Merging

10

merge : (p q : Patch)
 ! Σq’,p’:Patch.
 Maybe(q’ o p =
 p’ o q)

When are two patches equal?

10

Patch Equality

11

(a↔b at i)o(c↔d at j) =
 (c↔d at j)o(a↔b at i) if i≠j

11

Patch Equality

11

(a↔b at i)o(c↔d at j) =
 (c↔d at j)o(a↔b at i) if i≠j

(a↔a at i) = id

!(a↔b at i) = (a↔b at i)
(a↔b at i) = (b↔a at i)

11

Patch Equality

11

(a↔b at i)o(c↔d at j) =
 (c↔d at j)o(a↔b at i) if i≠j

(a↔a at i) = id

!(a↔b at i) = (a↔b at i)
(a↔b at i) = (b↔a at i)

Basic Axioms:

11

Patch Equality

12

(a↔b at i)o(c↔d at j)
=(c↔d at j)o(a↔b at i)

Basic axioms:

12

Patch Equality

12

id o p = p = p o id
po(qor) = (poq)or
!p o p = id = p o !p

(a↔b at i)o(c↔d at j)
=(c↔d at j)o(a↔b at i)

Basic axioms: Group laws:

12

Patch Equality

12

id o p = p = p o id
po(qor) = (poq)or
!p o p = id = p o !p

p=p
p=q if q=p
p=r if p=q and q=r

!p = !p’ if p = p’
p o q = p’ o q’ if
 p = p’ and q = q’

(a↔b at i)o(c↔d at j)
=(c↔d at j)o(a↔b at i)

Basic axioms: Group laws:

Congruence:

12

Patch as Quotient Type

13

id o p ~ p ~ p o id
po(qor) ~ (poq)or

!p o p ~ id ~ p o !p
p~p
p~q if q~p

p~r if p~q and q~r
!p ~ !p’ if p ~ p’
p o q ~ p’ o q’ if p ~ p’ and q ~ q’

(a↔b at i)o(c↔d at j)~
 (c↔d at j)o(a↔b at i)

...

Elements:

Equality:

13

Patch as Quotient Type

13

id o p ~ p ~ p o id
po(qor) ~ (poq)or

!p o p ~ id ~ p o !p
p~p
p~q if q~p

p~r if p~q and q~r
!p ~ !p’ if p ~ p’
p o q ~ p’ o q’ if p ~ p’ and q ~ q’

(a↔b at i)o(c↔d at j)~
 (c↔d at j)o(a↔b at i)

...

Elements:

Equality:

Quotient Type:

Patch := Patch’/~

13

Patch as Quotient Type

13

id o p ~ p ~ p o id
po(qor) ~ (poq)or

!p o p ~ id ~ p o !p
p~p
p~q if q~p

p~r if p~q and q~r
!p ~ !p’ if p ~ p’
p o q ~ p’ o q’ if p ~ p’ and q ~ q’

(a↔b at i)o(c↔d at j)~
 (c↔d at j)o(a↔b at i)

...

Elements:

Equality: Elimination rule:

define on Patch’ as before,
then prove p ~ q implies
interp p = interp q
for all 14+ rules for ~

Quotient Type:

Patch := Patch’/~

13

Patches as a HIT

14

1.How do you define Patch
using a higher inductive type?

2.What is the elimination rule?

3.How do you use the elim. rule
to define interp?

14

Patches as a HIT

15

1.How do you define Patch
using a higher inductive type?

2.What is the elimination rule?

3.How do you use the elim. rule
to define interp?

15

Higher Inductive Type

16

Generator for
equality of equality

16

Higher Inductive Type

16

Type freely generated by constructors for elements,
equalities, equalities between equalities, …

Generator for
equality of equality

16

Higher Inductive Type

16

Type freely generated by constructors for elements,
equalities, equalities between equalities, …
RepoDesc : Type

Generator for
equality of equality

16

Higher Inductive Type

16

Type freely generated by constructors for elements,
equalities, equalities between equalities, …
RepoDesc : Type
vec : RepoDesc

Generator for
equality of equality

generator for element

16

Higher Inductive Type

16

Type freely generated by constructors for elements,
equalities, equalities between equalities, …
RepoDesc : Type
vec : RepoDesc
(a↔b at i) : vec = vec

Generator for
equality of equality

generator for element

generator for equality

16

Higher Inductive Type

16

Type freely generated by constructors for elements,
equalities, equalities between equalities, …
RepoDesc : Type
vec : RepoDesc
(a↔b at i) : vec = vec

Generator for
equality of equality

proof-relevant!

generator for element

generator for equality

16

Higher Inductive Type

16

Type freely generated by constructors for elements,
equalities, equalities between equalities, …
RepoDesc : Type
vec : RepoDesc
(a↔b at i) : vec = vec
commute:
 (a↔b at i)o(c↔d at j)
=(c↔d at j)o(a↔b at i)

Generator for
equality of equality

proof-relevant!

generator for element

generator for equality

generator for equality
between equalities

16

17

id o p = p = p o id
po(qor) = (poq)or

!p o p = id = p o !p
p=p
p=q if q=p

p=r if p=q and q=r
!p = !p’ if p = p’
p o q = p’ o q’ if p = p’ and q = q’

(a↔b at i)o(c↔d at j)=
 (c↔d at j)o(a↔b at i)

...

Elements:

Equality:

Type: Patch

17

17

id o p = p = p o id
po(qor) = (poq)or

!p o p = id = p o !p
p=p
p=q if q=p

p=r if p=q and q=r
!p = !p’ if p = p’
p o q = p’ o q’ if p = p’ and q = q’

(a↔b at i)o(c↔d at j)=
 (c↔d at j)o(a↔b at i)

...

Elements:

Equality:

Type: RepoDescType: Patch

17

17

id o p = p = p o id
po(qor) = (poq)or

!p o p = id = p o !p
p=p
p=q if q=p

p=r if p=q and q=r
!p = !p’ if p = p’
p o q = p’ o q’ if p = p’ and q = q’

(a↔b at i)o(c↔d at j)=
 (c↔d at j)o(a↔b at i)

...

Elements:

Equality:

Type: RepoDesc
Element: vec : RepoDesc

Type: Patch

17

17

id o p = p = p o id
po(qor) = (poq)or

!p o p = id = p o !p
p=p
p=q if q=p

p=r if p=q and q=r
!p = !p’ if p = p’
p o q = p’ o q’ if p = p’ and q = q’

(a↔b at i)o(c↔d at j)=
 (c↔d at j)o(a↔b at i)

...

Elements:

Equality:

Type: RepoDesc
Element: vec : RepoDesc
Equality:

a↔b at i : vec = vec

Type: Patch

17

17

id o p = p = p o id
po(qor) = (poq)or

!p o p = id = p o !p
p=p
p=q if q=p

p=r if p=q and q=r
!p = !p’ if p = p’
p o q = p’ o q’ if p = p’ and q = q’

(a↔b at i)o(c↔d at j)=
 (c↔d at j)o(a↔b at i)

...

Elements:

Equality:

Type: RepoDesc
Element: vec : RepoDesc
Equality:

a↔b at i : vec = vec

Type: Patch

{Patch

17

17

id o p = p = p o id
po(qor) = (poq)or

!p o p = id = p o !p
p=p
p=q if q=p

p=r if p=q and q=r
!p = !p’ if p = p’
p o q = p’ o q’ if p = p’ and q = q’

(a↔b at i)o(c↔d at j)=
 (c↔d at j)o(a↔b at i)

...

Elements:

Equality:

Type: RepoDesc
Element: vec : RepoDesc
Equality:

a↔b at i : vec = vec

Equality between equalities:
commute :
(a↔b at i)o(c↔d at j)=
(c↔d at j)o(a↔b at i)

… basic axioms only!

Type: Patch

{Patch

17

17

id o p = p = p o id
po(qor) = (poq)or

!p o p = id = p o !p
p=p
p=q if q=p

p=r if p=q and q=r
!p = !p’ if p = p’
p o q = p’ o q’ if p = p’ and q = q’

(a↔b at i)o(c↔d at j)=
 (c↔d at j)o(a↔b at i)

...

Elements:

Equality:

Type: RepoDesc
Element: vec : RepoDesc
Equality:

a↔b at i : vec = vec

Equality between equalities:
commute :
(a↔b at i)o(c↔d at j)=
(c↔d at j)o(a↔b at i)

… basic axioms only!

Type: Patch

{Patch

Everything else comes
“for free” from
the equality type!

17

Typed Patches

18

RepoDesc : Type
vec : RepoDesc

a↔b at i : vec = vec

Generator for
equality of equality

compressed : RepoDesc

gzip : vec = compressed

generators for elements

generators for equalities

18

Typed Patches

18

RepoDesc : Type
vec : RepoDesc

a↔b at i : vec = vec

Generator for
equality of equality

compressed : RepoDesc

gzip : vec = compressed

generators for elements

generators for equalities

{
Patch vec compressed

18

Patches as a HIT

19

1.How do you define Patch
using a higher inductive type?

2.What is the elimination rule
for RepoDesc?

3.How do you use the elim. rule
to define interp?

19

20

RepoDesc ! ATo define a function
it suffices to

Generator for
equality of equality

RepoDesc recursion

20

20

RepoDesc ! ATo define a function
it suffices to

Generator for
equality of equality

map the element generators of RepoDesc
to elements of A

RepoDesc recursion

20

20

RepoDesc ! ATo define a function
it suffices to

Generator for
equality of equality

map the element generators of RepoDesc
to elements of A
map the equality generators of RepoDesc
to equalities between the corresponding elements of A

RepoDesc recursion

20

20

RepoDesc ! ATo define a function
it suffices to

Generator for
equality of equality

map the element generators of RepoDesc
to elements of A
map the equality generators of RepoDesc
to equalities between the corresponding elements of A
map the equality-between-equality generators to
equalities between the corresponding equalities in A

RepoDesc recursion

20

RepoDesc recursion

21

f : RepoDesc ! ATo define a function
it suffices to give

Generator for
equality of equality

21

RepoDesc recursion

21

f : RepoDesc ! ATo define a function
it suffices to give

Generator for
equality of equality

f(vec) := … : A

21

RepoDesc recursion

21

f : RepoDesc ! ATo define a function
it suffices to give

Generator for
equality of equality

f(vec) := … : A
f1(a↔b at i) := … : f(vec) = f(vec)

21

RepoDesc recursion

21

f : RepoDesc ! ATo define a function
it suffices to give

Generator for
equality of equality

f(vec) := … : A
f1(a↔b at i) := … : f(vec) = f(vec)

f2(compose a b c d i j i≠j) := …
 : f1((a↔b at i)o(c↔d at j))
 = f1((c↔d at j)o(a↔b at j))

21

RepoDesc recursion

21

f : RepoDesc ! ATo define a function
it suffices to give

Generator for
equality of equality

f(vec) := … : A
f1(a↔b at i) := … : f(vec) = f(vec)

f2(compose a b c d i j i≠j) := …
 : f1((a↔b at i)o(c↔d at j))
 = f1((c↔d at j)o(a↔b at j))

You only specify f on generators,
not id,o,!,group laws,congruence,…
(1 patch and 4 basic axioms, instead of 4 and 14!)

21

RepoDesc recursion

22

f : RepoDesc ! ATo define a function
it suffices to give

Generator for
equality of equality

f(vec) := … : A
f1(a↔b at i) := … : f(vec) = f(vec)

f2(compose a b c d i j i≠j) := …
 : f1((a↔b at i)o(c↔d at j))
 = f1((c↔d at j)o(a↔b at j))

22

RepoDesc recursion

22

f : RepoDesc ! ATo define a function
it suffices to give

Generator for
equality of equality

f(vec) := … : A
f1(a↔b at i) := … : f(vec) = f(vec)

f2(compose a b c d i j i≠j) := …
 : f1((a↔b at i)o(c↔d at j))
 = f1((c↔d at j)o(a↔b at j))

Type-generic equality rules say that functions act
homomorphically on id,o,!,…

22

RepoDesc recursion

22

f : RepoDesc ! ATo define a function
it suffices to give

Generator for
equality of equality

f(vec) := … : A
f1(a↔b at i) := … : f(vec) = f(vec)

f2(compose a b c d i j i≠j) := …
 : f1((a↔b at i)o(c↔d at j))
 = f1((c↔d at j)o(a↔b at j))

Type-generic equality rules say that functions act
homomorphically on id,o,!,…

=f1(a↔b at i)o
 f1(c↔d at j)

22

RepoDesc recursion

23

f : RepoDesc ! ATo define a function
it suffices to give

Generator for
equality of equality

f(vec) := … : A
f1(a↔b at i) := … : f(vec) = f(vec)

f2(compose a b c d i j i≠j) := …
 : f1((a↔b at i)o(c↔d at j))
 = f1((c↔d at j)o(a↔b at j))

23

RepoDesc recursion

23

f : RepoDesc ! ATo define a function
it suffices to give

Generator for
equality of equality

f(vec) := … : A
f1(a↔b at i) := … : f(vec) = f(vec)

f2(compose a b c d i j i≠j) := …
 : f1((a↔b at i)o(c↔d at j))
 = f1((c↔d at j)o(a↔b at j))

All functions on RepoDesc respect patches
All functions on patches respect patch equality

23

Patches as a HIT

24

1.How do you define Patch
using a higher inductive type?

2.What is the elimination rule
for RepoDesc?

3.How do you use the elim. rule
to define interp?

24

Interp

25

Goal is to define:

Generator for
equality of equality

interp : vec = vec
 " Bijection (Vec Char n) (Vec Char n)

interp(a↔b at i) = swapat a b i

interp(q o p) = (interp q) ob (interp p)
interp(id) = (λx.x, …)

interp(!p) = !b (interp p)

25

Interp

25

Goal is to define:

Generator for
equality of equality

But only tool available is RepoDesc recursion:
no direct recursion over proofs of equality

interp : vec = vec
 " Bijection (Vec Char n) (Vec Char n)

interp(a↔b at i) = swapat a b i

interp(q o p) = (interp q) ob (interp p)
interp(id) = (λx.x, …)

interp(!p) = !b (interp p)

25

26

Generator for
equality of equality

Need to pick A and define

interp : vec = vec
 " Bijection (Vec Char n) (Vec Char n)

f(vec) := … : A
f1(a↔b at i) := … : f(vec) = f(vec)

f2(compose) := …

interp(a↔b at i) = swapat a b i

26

27

Generator for
equality of equality

Key idea: pick A = Type and define

interp : vec = vec
 " Bijection (Vec Char n) (Vec Char n)

f(vec) := … : Type
f1(a↔b at i) := … : f(vec) = f(vec)

f2(compose) := …

interp(a↔b at i) = swapat a b i

27

28

Generator for
equality of equality

Key idea: pick A = Type and define

interp : vec = vec
 " Bijection (Vec Char n) (Vec Char n)

f(vec) := Vec Char n : Type
f1(a↔b at i) := … : f(vec) = f(vec)

f2(compose) := …

interp(a↔b at i) = swapat a b i

28

29

Generator for
equality of equality

Key idea: pick A = Type and define

interp : vec = vec
 " Bijection (Vec Char n) (Vec Char n)
interp(a↔b at i) = swapat a b i

f(vec) := Vec Char n : Type
f1(a↔b at i) := … : Vec Char n = Vec Char n

f2(compose) := …

29

30

Generator for
equality of equality

Key idea: pick A = Type and define

interp : vec = vec
 " Bijection (Vec Char n) (Vec Char n)
interp(a↔b at i) = swapat a b i

f(vec) := Vec Char n : Type
f1(a↔b at i) := ua(swapat a b i)
 : Vec Char n = Vec Char n
f2(compose) := …

30

30

Generator for
equality of equality

Key idea: pick A = Type and define

interp : vec = vec
 " Bijection (Vec Char n) (Vec Char n)
interp(a↔b at i) = swapat a b i

f(vec) := Vec Char n : Type
f1(a↔b at i) := ua(swapat a b i)
 : Vec Char n = Vec Char n
f2(compose) := …

Voevodky’s univalence axiom ⊃
bijective types are equal

30

31

Generator for
equality of equality

Key idea: pick A = Type and define

interp : vec = vec
 " Bijection (Vec Char n) (Vec Char n)
interp(a↔b at i) = swapat a b i

f(vec) := Vec Char n : Type
f1(a↔b at i) := ua(swapat a b i)
 : Vec Char n = Vec Char n
f2(compose) := <proof about swapat as before>

31

32

Generator for
equality of equality

Key idea: pick A = Type and define

interp : vec = vec
 " Bijection (Vec Char n) (Vec Char n)
interp(a↔b at i) = swapat a b i

I(vec) := Vec Char n : Type
I1(a↔b at i) := ua(swapat a b i)
 : Vec Char n = Vec Char n
I2(compose) := <proof about swapat as before>

32

33

Generator for
equality of equality

Key idea: pick A = Type and define

interp : vec = vec
 " Bijection (Vec Char n) (Vec Char n)

I(vec) := Vec Char n : Type
I1(a↔b at i) := ua(swapat a b i)
 : Vec Char n = Vec Char n
I2(compose) := <proof about swapat as before>

interp(p) = ua-1(I1(p))

33

34

Generator for
equality of equality

interp : vec = vec
 " Bijection (Vec Char n) (Vec Char n)
interp(p) = ua-1(I1(p))

interp(a↔b at i) = swapat a b i

interp(q o p) = (interp q) ob (interp p)
interp(id) = (λx.x, …)

interp(!p) = !b (interp p)

Satisfies the desired equations (as propositional equalities):

34

35

Generator for
equality of equality

Summary

35

35

Generator for
equality of equality

Summary
I : RepoDesc ! Type interprets RepoDesc’s as Types,
patches as bijections, satisfying patch equalities

35

35

Generator for
equality of equality

Summary
I : RepoDesc ! Type interprets RepoDesc’s as Types,
patches as bijections, satisfying patch equalities

Higher inductive elim. defines functions that respect equality:
you specify what happens on the generators;
homomorphically extended to id,o,!,...

35

35

Generator for
equality of equality

Summary
I : RepoDesc ! Type interprets RepoDesc’s as Types,
patches as bijections, satisfying patch equalities

Higher inductive elim. defines functions that respect equality:
you specify what happens on the generators;
homomorphically extended to id,o,!,...

Univalence lets you give a computational model of equality
proofs (here, patches); guaranteed to satisfy laws

35

35

Generator for
equality of equality

Summary
I : RepoDesc ! Type interprets RepoDesc’s as Types,
patches as bijections, satisfying patch equalities

Higher inductive elim. defines functions that respect equality:
you specify what happens on the generators;
homomorphically extended to id,o,!,...

Univalence lets you give a computational model of equality
proofs (here, patches); guaranteed to satisfy laws

Shorter definition and code than using quotients:
1 basic patch & 4 basic axioms of equality, instead of
4 patches & 14 equations

35

36

Generator for
equality of equality

Where does this
programming technique
come from?

36

Homotopy type theory

37

a b

p

37

Homotopy type theory

37

a b

p

a space is a type A

37

Homotopy type theory

37

a b

p

points are
elements
a:A

a space is a type A

37

Homotopy type theory

37

a b

p

points are
elements
a:A

a space is a type A

paths are
proofs of equality

p : a =A b

37

Homotopy type theory

37

a b

p

points are
elements
a:A

a space is a type A

paths are
proofs of equality

p : a =A b

path operations

37

Homotopy type theory

37

a b

pid

points are
elements
a:A

a space is a type A

paths are
proofs of equality

p : a =A b

path operations
id : a = a (refl)

37

Homotopy type theory

37

a b

pid
!p

points are
elements
a:A

a space is a type A

paths are
proofs of equality

p : a =A b

path operations
id : a = a (refl)
!p : b = a (sym)

37

Homotopy type theory

37

a b

p

c

q

id
!p

points are
elements
a:A

a space is a type A

paths are
proofs of equality

p : a =A b

path operations
id : a = a (refl)
!p : b = a (sym)
q o p : a = c (trans)

37

Homotopy type theory

37

a b

p

c

q

id
!p

points are
elements
a:A

a space is a type A

paths are
proofs of equality

p : a =A b

path operations
id : a = a (refl)
!p : b = a (sym)
q o p : a = c (trans)

homotopies
id o p = p
!p o p = id
r o (q o p)
 = (r o q) o p

37

Homotopy type theory

37

points are
elements
a:A

a space is a type A

paths are
proofs of equality

p : a =A b

path operations
id : a = a (refl)
!p : b = a (sym)
q o p : a = c (trans)

homotopies
id o p = p
!p o p = id
r o (q o p)
 = (r o q) o p

37

Equality elimination rule

38

Type of equalities
between a and -

a

id

a

is inductively
generated by

y3y1

y2

p1 p3
p2

38

Equality elimination rule

38

Fix a type A with element a:A.
For a family of types C(y:A, p:a=y),
to give an element of
 C(y,p) for all y and p:a=y,
suffices to give an element of
 C(a,id)

Type of equalities
between a and -

a

id

a

is inductively
generated by

y3y1

y2

p1 p3
p2

38

39

Composition and Assoc
o : a = b " b = c " a = c
id o p = p

o-assoc : (p : a=b)(q : b=c)(r : c=d)
 " p o (q o r) = (p o q) o r
o-assoc id id id = id

39

40

Functions are functors

f : A " B has action at all levels
 f1 : (a1 a2 : A)
 " a1 =A a2 " f(a1) =B f(a2)
 f2 : (a1 a2 : A)(p p’ : a1 =A a2) "
 p =a1=a2 p’ "
 f1(p) =f(a1)=f(a2) f1(p’)
 and so on

40

The Circle

41

Circle S1 is HIT generated by
loop

base

41

The Circle

41

Circle S1 is HIT generated by
base : S1
loop : base = base

loop

base

41

The Circle

41

Circle S1 is HIT generated by
base : S1
loop : base = base

loop

base

Free type: equipped with

idloop-1

inv : loop o loop-1 = idid
loop-1
loop o loop

...

41

The Circle

42

Circle recursion:
 function S1 ! X determined by

base’ : X
loop’ : base’ = base’

loop

base

loop’
base’

42

Fundamental group of circle

43

How many different loops are there on
the circle, up to homotopy?

loop

base

43

Fundamental group of circle

43

How many different loops are there on
the circle, up to homotopy?

loop

base

id

43

Fundamental group of circle

43

How many different loops are there on
the circle, up to homotopy?

loop

base

id
loop

43

Fundamental group of circle

43

How many different loops are there on
the circle, up to homotopy?

loop

base

id
loop
loop-1

43

Fundamental group of circle

43

How many different loops are there on
the circle, up to homotopy?

loop

base

id
loop
loop-1
loop o loop

43

Fundamental group of circle

43

How many different loops are there on
the circle, up to homotopy?

loop

base

id
loop
loop-1
loop o loop
loop-1 o loop-1

43

Fundamental group of circle

43

How many different loops are there on
the circle, up to homotopy?

loop

base

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

43

Fundamental group of circle

43

How many different loops are there on
the circle, up to homotopy?

loop

base

= id

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

43

Fundamental group of circle

43

How many different loops are there on
the circle, up to homotopy?

loop

base

= id

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

0

43

Fundamental group of circle

43

How many different loops are there on
the circle, up to homotopy?

loop

base

= id

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

0
1

43

Fundamental group of circle

43

How many different loops are there on
the circle, up to homotopy?

loop

base

= id

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

0
1
-1

43

Fundamental group of circle

43

How many different loops are there on
the circle, up to homotopy?

loop

base

= id

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

0
1
-1
2

43

Fundamental group of circle

43

How many different loops are there on
the circle, up to homotopy?

loop

base

= id

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

0
1
-1
2
-2

43

Fundamental group of circle

43

How many different loops are there on
the circle, up to homotopy?

loop

base

= id

id
loop
loop-1
loop o loop
loop-1 o loop-1
loop o loop-1

0
1
-1
2
-2
0

43

Fundamental group of circle

44

Theorem. Group of loops on the circle
 is isomorphic to ℤ
Proof: Define universal cover

44

Fundamental group of circle

44

Theorem. Group of loops on the circle
 is isomorphic to ℤ
Proof: Define universal cover

Cover : S1 ! Type
Cover(base) := ℤ
Cover1(loop) :=
 ua(successor) : ℤ = ℤ

44

Fundamental group of circle

44

Theorem. Group of loops on the circle
 is isomorphic to ℤ
Proof: Define universal cover

Cover : S1 ! Type
Cover(base) := ℤ
Cover1(loop) :=
 ua(successor) : ℤ = ℤ

interpret loop as
“add 1” bijection

44

Homotopy in HoTT

45

π1(S1) = ℤ

πk<n(Sn) = 0

π2(S2) = ℤ
Hopf fibration

π3(S2) = ℤ

πn(Sn) = ℤ

Freudenthal

π4(S3) = ℤ?

James
Construction

K(G,n)

Blakers-Massey

Van Kampen

Covering spaces

Whitehead
for n-typesCohomology

axioms

[Brunerie, Finster, Hou,
 Licata, Lumsdaine, Shulman]

45

46

Generator for
equality of equality

What’s next?
Operational semantics of HITs and univalence is still an
open problem in general, though some special cases
are known

Have just started exploring programming applications

Extensions to this example: more realistic basic
patches, patches that can fail (partial bijections),
implement merge

46

