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% Homotopy Type Theory is an extension of Agda/Cog
based on connections with homotopy theory

[Hofmann&Streicher,Awodey&Warren,Voevodsky,Lumsdaine,Garner&van den Berg]

% Higher inductive types (HITs) are a new type former!

* They were originally invented| umsdaine,Shuiman,...] t0 model
basic spaces (circle, spheres, the torus, ...) and
constructions in homotopy theory

* But they have many other applications,
iIncluding some programming ones!




FPatches

Patch

diff . . — .
c c
>d



















C C C - C
- undo/rollback

—_— —_—

C C e




S =
C C C -E C

” undo/rollback

=g g

C

—_—

[Yorgey,Jacobson,...]




Simple Setup

aJuls)sfofifs]




Simple Setup

* “Repository” is a char vector of fixed length n

aJuls)sfofifs]

% Basic patchis a <« b at 1 where 1<n




Domain-Specific Language

data Patch :
: Patch

: Patch - Patch - Patch

: Patch - Patch

: Char -» Char -» Fin n - Patch

1d

.
o_at

Set where




Domain-Specific Language

interp : Patch - (Vec Char n - Vec Char n) x
(Vec Char n - Vec Char n)
interp 1d = (A x - x) , (A X - X)
interp (g o p) = fst (1nterp gq) o fst (interp p) ,
snd (interp p) o snd (i1nterp q)
interp (! p) = snd (interp p) , fst (interp p)
interp (a « b at 1) = swapat a b 1 , swapat a b 1
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interp 1d = (A x - x) , (A X - X)
interp (g o p) = fst (1nterp gq) o fst (interp p) ,
snd (interp p) o snd (i1nterp q)
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interp (a « b at 1) = swapat a b 1 , swapat a b 1

—

swapat a b 1 v permutes a and b at position 1 in v




Domain-Specific Language

Spec: v p. 1nterp p is a bijection:
vv. g((fv)=v where (f,g)=1nterp p
vv. f(gv) =V
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Domain-Specific Language
/undo really un-does

Spec: v p. 1nterp p is a bijection:
vv. g((fv)=v where (f,g)=1nterp p

Can package this as:

interp : Patch -
Bijection (Vec Char n) (Vec Char n)




MVerging







Merg|ﬂg p=b—~d at 1
- - - gq=C<e at 2
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Vierging
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Vierging

merge : (p q : Patch)

> 2q’,p’ :Patch.
Maybe(qgq’ o p =

p’ 0 q)




Vierging

mP e

merge : (p q : Patch) .
> 2q’,p’ :Patch. -/_\-
Maybe(g’ o p = °;‘_ )
p’ 0 q) 4

When are two patches equal?

e




Patch £quality

(aeb at 1)o(ced at j) =
(ced at j)o(aeb at i) if i=zj
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(ced at j)o(aeb at 1) 1f 123
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Patch Equality

Basic Axioms:
(aeb at 1)o(ced at j) =

(ced at j)o(aeb at 1) 1f 123
(a<~a at 1) = 1d
l(a~b at 1) = (a<b at 1)
(a~b at 1) = (bea at 1)




Patch equality

Basic axioms:
(aeb at i)o(ced at 3)
=(ced at j)o(asb at 1)
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Patch equality

Basic axioms: Group laws:

(aob at i)o(ced at j) id op=p=p o id

=(c~d at jdoCa=b at i)  po(qor) = (pog)or
lpop=1d=polp

Congruence:
P=P lp = Ip’ if p = p’
p=q 1f g=p poq=p ogq if

p=r 1f p=q and g=r p=p and g = q’




Patch as Quotient Type

Elements:
data Patch' : Set where
id : Patch'
°o_ : Patch' - Patch' - Patch’
! : Patch' - Patch’
o_at_ : Char - Char - Fin n - Patch’

Equality:
(aeb at 1)o(ced at )~
(ced at j)o(aeb at 1)

{c.l.op~p~poid

po(qor) ~ (poglor
lpop~1d~p o !p

p~p

p~q 1f g~p

p~r 1f p~q and g~r

lp ~ Ip” if p ~ p’

pog~p’ ogq if p~p’and g~ g
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Patch as Quotient Type

Elements: Quotient Type:

data Patch' : Set where
id : Patch'

_o_: Patch' - Patch' - Patch’ PatCh T = PatCh g /N
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Patch as Quotient Type

Elements: Quotient Type:
data Patch' : Set where
id : Patch: ' ' . 9
e patch' - Patch - Patch Patch := Patch’/~
;e_at_ ; Char -» Char -» Fin n - Patch'
Equality: Elimination rule:
(acb at i)oc,c(_)d at j)N, interp : Patch -
(ced at j)o(acb at 1) Bijection (Vec Char n) (Vec Char n)
e . b/
ob eb o ic define on Patch’ as before,
po(gor) ~ (pog)or then prove p ~ g implies
'lpop~1d ~p o !p . .
b 1nterp p = 1nterp g

p~q if g~p for all 14+ rules for ~
p~r 1f p~q and g~r

lp ~ Ip> 1f p ~ p’

pog~p> oq ifp~p’and g~ q’

13

13
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Higher Inductive lype

Type freely generated by constructors for elements,
equalities, equalities between equalities, ...

RepoDesc : Type proof-relevant!

vec : RepoDesc generator for element

(a<b at 1) : vec = vec generator for equality

commute: generator for equality
(aeb at 1)o(ced at j) between equalities

=(ced at j)o(a<b at 1)

16
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Type: Patch

Elements:
id : Patch
_o_ : Patch - Patch - Patch
! : Patch - Patch
o_at_ : Char - Char - Fin n - Patch

Equality:
(aeb at i)o(ced at j)=
(ced at jDo(aeb at i)

1:LC.|.0I0=IO=|oode

po(gor) = (pog)or

lpop=1id=p o !p

p=p

p=q 1f q=p

p=r if p=q and g=r

'p = Ip’ 1f p = p’

poqg=p>oq’ ifp=p’and q =79’
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Type: Patch

Elements:

id : Patch
_o_ : Patch - Patch - Patch
! : Patch - Patch
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p=q 1f q=p
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'p = Ip’ 1f p = p’
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Type: RepoDesc
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RepoDesc
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Type: Patch

Elements:

id : Patch

_o_ : Patch - Patch - Patch

! : Patch - Patch

_e_at_ : Char - Char - Fin n - Patch
Equality:

(aeb at i)o(ced at j)=
(ced at jDo(aeb at i)

1:LC.|.0I0=IO=|oode
po(qor) = (pog)or
lpop=1id=p o !p
p=p

p=q 1f q=p

p=r if p=q and g=r
'p = Ip’ 1f p = p’

pog=p oq if p=p’>andqg=g’

Type: RepoDesc

Element: vecC
Equality:

a~b at 1 : vec
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Type: Patch

Elements:

id : Patch

_o_ : Patch - Patch - Patch

! : Patch - Patch

_e_at_ : Char - Char - Fin n - Patch
Equality:

(aeb at i)o(ced at j)=
(ced at jDo(aeb at i)

1:LC.|.0I0=IO=|oode
po(qor) = (pog)or
lpop=1id=p o !p
p=p

p=q 1f q=p

p=r if p=q and g=r
'p = Ip’ 1f p = p’

pog=p oq if p=p’>andqg=g’

Type: RepoDesc

Element: vecC
Equality:
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Patch

b

a~b at 1 : vec vec




Type: Patch

Elements:
id : Patch
_o_ : Patch - Patch - Patch
! : Patch - Patch
_e_at_ : Char - Char - Fin n - Patch

Equality:
(aeb at i)o(ced at j)=
(ced at jDo(aeb at i)

{C.I.op=p=poid

po(Cqor) = (pog)or
lpop=1d=p o lp

p=p

p=g 1f g=p

p=r 1f p=q and g=r

'p=1!p> ifp=p

poqg=p oq ifp=p’andq=gq

Type: RepoDesc
Element: vec : RepoDesc

Equality: Patch

. Ny
a—b at 1 : vec = vec

Equality between equalities:

commute
(aeob at 1)o(ced at J)=

(ced at j)o(a<b at 1)

... basic axioms only!
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Type: Patch

Elements:
(wid : Patch
o : Patch - Patch - Patch ;
L : Patch - Patch
“e_at_ : Char - Char - Fin n - Patch
Equality:

(aeb at i)o(ced at j)=
(ced at jDo(aeb at i)

(idop=p=po id

- po(gor) = (pog)or

" lpop=1d=polp
P=p

p=q 1f g=p

p=r 1f p=q and g=r
lp = 1p” if p =p’

poqgq=p> oq ifp=p’andq-=q’
. , , . , ,

>

Type: RepoDesc

Element: vec RepoDesc
Equality: Patch

. et
a—b at 1 vec = VvecC

Equality between equalities:

commute
(aeob at 1)o(ced at J)=

(ced at j)o(a<b at 1)
... basic axioms only!

Everything else comes
“for free” from
the equality type!

17
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lyped Patches

RepoDesc : Type

veCc : RepoDesc generators for elements
compressed : RepoDesc

d—b at 1 : vec = vec generators for equalities
gzlp : vec = compressed




lyped Patches

RepoDesc : Type

veCc : RepoDesc generators for elements
compressed : RepoDesc

d—b at 1 : vec = vec generators for equalities
gzlp : vec = compressed
| S

Patch vec compressed

18
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Patches as a HI |

1.How do you define Patch
using a higher inductive type?

2.What is the elimination rule
for RepoDesc?

3.How do you use the elim. rule
to define 1nterp?
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Repobesc recursion

To define a function RepoDesc » A
it suffices to

% map the element generators of RepoDesc
to elements of A

% map the equality generators of RepoDesc
to equalities between the corresponding elements of A

* map the equality-between-equality generators to
equalities between the corresponding equalities in A

20
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Repobesc recursion

To define a function f : RepoDesc -» A
it suffices to give

f(vec) = .. : A
f1(a~b at 1) := .. : fQvec) = f(vec)
fo(compose abcd1i jizj) = .

. f1((aeb at 1)o(ced at 7))

= f1((ced at j)o(a<b at 3))

You only specify f on generators,
not 1d,0,!,group laws,congruence,...
(1 patch and 4 basic axioms, instead of 4 and 14!
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Repobesc recursion

To define a function f : RepoDesc -» A

it suffices to give =f1(aeb at 1)o
fCvec) = .. . A f1(c~d at J)
f1(aeb at 1) =< : f(Qvec) = f(vec)

f2(com abcdijizj) = .
. f1((a<b at 1)o(ced at j))

= f1((ced at jDoCaeb at )

Type-generic equality rules say that functions act
homomorphically on 1d,0,!,...




Repobesc recursion

To define a function f : RepoDesc -» A
it suffices to give

f(vec) = .. : A
f1(a~b at 1) := .. : fQvec) = f(vec)
fo(compose abcd1i jizj) = .

. f1((aeb at 1)o(ced at 7))

= f1((ced at j)o(a<b at 3))




Repobesc recursion

To define a function f : RepoDesc -» A
it suffices to give

f(vec) = .. : A
f1(a~b at 1) := .. : fQvec) = f(vec)
fo(compose abcd1i jizj) = .

. f1((aeb at 1)o(ced at 7))

= f1((ced at j)o(a<b at 3))

All functions on RepoDesc respect patches
All functions on patches respect patch equality
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Patches as a HI |

1.How do you define Patch
using a higher inductive type?

2.\What is the elimination rule
for RepoDesc?

3.How do you use the elim. rule
to define 1nterp?
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Interp

Goal is to define:
ihterp : vec = vec

» Bi1jection (Vec Char n) (Vec Char n)
interp(1d) = (AXx.Xx, ..)
ihterp(q o p) = (1nterp q) oo (1nterp p)
interp(lp) = !y (interp p)
interp(a<b at 1) = swapat a b 1

25
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INnterp

Goal is to define:

ihterp : vec = vec
» Bi1jection (Vec Char n) (Vec Char n)

interp(id) = (AX.X, ..)

interp(g o p) = (interp g) op (interp p)
interp(!p) = v (1nterp p)

interp(a<b at 1) = swapat a b 1

But only tool available is RepoDesc recursion:
no direct recursion over proofs of equality

25
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interp : vec = vec
> Bi1jection (Vec Char n) (Vec Char n)
interp(a<b at 1) = swapat a b 1

Need to pick A and define
fCvec) (= .. ¢ A
fi(aeb at 1) := .. : fQvec) = f(vec)

fo(compose) := ..

26
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interp : vec = vec
> Bi1jection (Vec Char n) (Vec Char n)
interp(a<b at 1) = swapat a b 1

Key idea: pick A = Type and define
f(vec) := .. : Type
f1(a=b at 1) := .. : fQvec) = f(vec)

fo(compose) := ..
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interp : vec = vec
> Bi1jection (Vec Char n) (Vec Char n)
interp(a<b at 1) = swapat a b 1

Key idea: pick A = Type and define
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fo(compose) := ..
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interp : vec = vec
> Bi1jection (Vec Char n) (Vec Char n)
interp(a<b at 1) = swapat a b 1

Key idea: pick A = Type and define
f(vec) := Vec Char n : Type
f1(a~b at 1) := .. : Vec Char n = Vec Char n

fo(compose) := ..
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interp : vec = vec
> Bi1jection (Vec Char n) (Vec Char n)
interp(a<b at 1) = swapat a b 1

Key idea: pick A = Type and define
f(vec) := Vec Char n : Type
fi(aeb at 1) := ua(swapat a b 1)
: Vec Char n = Vec Char n
fo(compose) := ..
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interp : vec = vec
> Bi1jection (Vec Char n) (Vec Char n)
interp(a<b at 1) = swapat a b 1

Key idea: pick A = Type and define
f(vec) := Vec Char n : Type
fi(aeb at 1) := ua(swapat a b 1)
:\ Vec Char n = Vec Char n
fo(compose) := ..

Voevodky’s univalence axiom >
bijective types are equal

30
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interp : vec = vec
> Bi1jection (Vec Char n) (Vec Char n)
interp(a<b at 1) = swapat a b 1

Key idea: pick A = Type and define
f(vec) := Vec Char n : Type
fi(a~b at 1) := ua(swapat a b 1)
: Vec Char n = Vec Char n
fo(compose) := <proof about swapat as before>
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interp : vec = vec
> Bi1jection (Vec Char n) (Vec Char n)
interp(a<b at 1) = swapat a b 1

Key idea: pick A = Type and define
I(vec) := Vec Char n : Type
I1(aeb at 1) := ua(swapat a b 1)
: Vec Char n = Vec Char n
I2(compose) := <proof about swapat as before>

32
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interp : vec = vec
> Bi1jection (Vec Char n) (Vec Char n)

interp(p) = ua1(I1(p))

Key idea: pick A = Type and define
I(vec) := Vec Char n : Type
I:1(aeb at 1) := ua(swapat a b 1)
: Vec Char n = Vec Char n
I.(compose) := <proof about swapat as before>

33
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interp : vec = vec
> Bi1jection (Vec Char n) (Vec Char n)

interp(p) = ual(I1(p))

Satisfies the desired equations (as propositional equalities):
interp(1id) = (Ax.Xx, ..)

interp(g o p) = (1nterp g) ob, (interp p)
interp(!p) = v (1nterp p)
interp(a<b at 1) = swapat a b 1

34
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* 1 . RepoDesc -» Type interprets RepoDescC’s as Types,
patches as bijections, satisfying patch equalities
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Summary

* 1 . RepoDesc -» Type interprets RepoDescC’s as Types,
patches as bijections, satisfying patch equalities

* Higher inductive elim. defines functions that respect equality:

you specify what happens on the generators;
homomorphically extended to 1d,0,!,...

* Univalence lets you give a computational model of equality
proofs (here, patches); guaranteed to satisfy laws

* Shorter definition and code than using quotients:
1 basic patch & 4 basic axioms of equality, instead of
4 patches & 14 equations

35
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VWhere does this
porogramming technique
come from?
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a space is a type A path operations
T P> 1d . a=a (refl)
F Ip . b =a (sym)
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a- A paths are
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Homotopy type theory

a space is a type A path operations

e S id :a = a (refl)
Ip . b =a (sym)
qop : a=c (trans)

/~id
F &

homotopies
1dop=p
points are Il o b = 1d
elements lth P P
a:A Paths are r o (q o p)
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Homotopy type theory

a space is a type A

points are

elements
a-A paths are

proofs of equality
p . a=ab

path operations

1d :a = a (refl)

Ip : b =a (sym)

qop : a=c (trans)

homotopies

1dop=p

lp 0 p = 1d

r o (q o p)
=(rog)op




cquality elimination rule

Type of equalities is inductively
between a and - generated by

y2
p1 P3 a

a
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cquality elimination rule

Type of equalities is inductively
between a and - generated by
y2
y P2 y3 Qid
of aﬁo a

Fix a type A with element a:A.
For a family of types C(y:A, p:a=y),
to give an element of

C(y,p) forall y and p:a=y,
suffices to give an element of

C(a,1d)

38
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Composition and ASSOC

O :d=b-sb=c->a=c

1dop=p

o-assoc : (p : a=b)(g : b=c)(r : c=d)

spo(qor)=(pogqg or
o-assoc 1d 1d id = 1d




Functions are functors

f : A - B has action at all levels
fi1 : (araz : A)
> d1 =A A2 - f(al) =B f(az)
f2 : (araz: D(p p’ : a1 =a az) -
D =al=a2 P’ -
f1(p) =fca-fa2> T1(p’)
and so on
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The Circle

Circle St is HIT generated by

base : St
loop : base

= base

<::¥;::> loop

base




The Circle

Circle St is HIT generated by
base : St

Ioop_‘I loop

loop : base = base “base

Free type: equipped with

1d 1nv

loopt
loop o loop

loop o loop™t = 1id
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The Circle

Circle recursion: loop
function ST » X determined by

base

base’ : X i

base’

loop’ : base’ = base’

42
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Fundamental group of circle

How many different loops are there on loop
the circle, up to homotopy?

base
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Fundamental group of circle

How many different loops are there on loop
the circle, up to homotopy?

base

1d 0
loop 1
Loop? -1
loop o loop 2
loop~t o loop -2

loop o loop-t id 0




Fundamental group of circle

Theorem. Group of loops on the circle
IS Isomorphic to Z

Proof: Define universal cover
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Theorem. Group of loops on the circle
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Proof: Define universal cover

Cover : S' s Type
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g - Cover(base) := Z
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Fundamental group of circle

Theorem. Group of loops on the circle
IS Isomorphic to Z

Proof: Define universal cover

Cover : S' s Type

Coveri(loop) :=
gl ua(successor) : 7Z = 7

\

interpret loop as
“add 1” bijection

g - Cover(base) := Z
N
<::%:::>
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Homotopy In HO T |

m(S') =Z Freudenthal Van Kampen
Mk<n(S") = 0 ma(S") = Z Covering spaces
Hopf fibration K(G,n) Whitehead
no(S?) =7 Cohomology for n-types
Ma(S?) = Z axioms

James Blakers-Massey

Construction

3\ —
Mu(S°) = Z7 [Brunerie, Finster, Hou,
Licata, Lumsdaine, Shulman]
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What’s next”?

* Operational semantics of HITs and univalence is still an
open problem in general, though some special cases
are known

* Have just started exploring programming applications

* Extensions to this example: more realistic basic
patches, patches that can fail (partial bijections),
implement merge
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