Microsoft Research BE \icrosoft

Wireless programming
for hardware dummies

Compiling stream processors for software-based
low-latency network processing

Gordon Stewart (Princeton), Mahanth Gowda (UIUQ),
Geoff Mainland (Drexel), Bozidar Radunovic (MSR),
Dimitrios Vytiniotis (MSR)



Motivation

- Lots of innovation in PHY/MAC design
- Popular experimental platform: GnuRadio

- Easy to program but slow, no real network deployment

- Modern wireless PHYs require high-rate DSP
- Real-time platforms (SORA, Warp, ...)

- Achieve protocol processing requirements, difficult to program, no code
portability (lots of manual hand-tuning)



Issues for wireless researchers
- SMP platforms (e.g. SORA)

- Manual vectorization, CPU placement
- Cache optimizations

- FPGA platforms (e.g. Warp)

- Latency-sensitive design, difficult for new CS students/researchers to break into

- Portability/readability

- (Manually) highly optimized code is difficult to read and maintain
- Practically impossible to target another platform




Our goal

- New wireless programming platform

1. Code written in a high-level language
2. Compiler deals with low-level code optimization
3. Same code compiles on different platforms (not there just yet!)

- Challenges
1. Design PL abstractions that are intuitive and expressive
2. Design efficient compilation schemes (to multiple platforms)

- What is special about wireless

1. ... that affects abstractions: large degree of separation b/w data and control
2. ... that affects compilation: need low latency stream processing



Related works

- SMP: SORA bricks (MSRA), GnuRadio blocks

- Language extension (templates) and lots of libraries

- FPGA: Airblue

- Programmer deals with hardware low-level stuff (sync, queues, etc)
- Control and data separation: CodiPhy, OpenRadio (Stanford)
- Streaming languages: Streamlt (MIT)
- Functional reactive programming: e.g. Yampa (Yale), Fran
- Dataflow languages e.q. Lucid (but no clocks here)



WPL: A 2-layer design

- Lower-level

- Imperative C-like code for manipulating bits, bytes, arrays etc.

- Higher-level:
- A monadic language for specifying and staging stream processors
- Enforces clean separation between control and data flow

- Runtime implements low-level execution model

- Inspired by stream fusion in Haskell
- Provides efficient sequential and pipeline-parallel executions

- Monadic stream language enables aggressive compiler
optimizations



Datatlow streaming abstractions

Predominant abstraction today (e.g. SORA, Streamit,
GnuRadio) is that of a “vertex” in a dataflow graph

- Reasonable as abstraction of the execution model
- Unsatisfactory as programming and compilation model

Why unsatisfactory? It does not expose:
(1) When is vertex state (re-) initialized?
(2) Under which external “control” messages

Events (messages) come in

can the vertex change behavior?
(3) How can vertex transmit “control”

. : . Events (messages) come out
information to other vertices?




Control-aware streaming abstractions

l (inStream (a) l (nStream (a)
outControl (v)
t C e — . = >
l outStream (b) l outStream (b)
A stream transformer t, A stream computer c,
of type: of type:

STTab ST(Cv)ab




Control-aware streaming abstractions

l (inStream (a) l (nStream (a)
outControl (v)
t C s — . = >
l outStream (b) l outStream (b)
map :: (@ ->b) ->STTab take :: ST (C a) a b

repeat :: ST (C ()) ab ->ST Tab| emit :: v -> ST (C ()) a v




Horizontal and vertical composition

(>>>) :+: STTab ->STTbc ->STTac
(>>>) :: ST(Cv) ab->STTbc ->ST (Cv) ac
(>>>) :: STTab ->ST (Cv) bc ->ST (Cv) ac
)
®

Composition
along “data path”

Composition along

“control path”
(like a monad?*)

(>>=) ::ST(Cv) ab —>°(v ->ST xab) ->STxab
return :: v -> ST (Cv) a b

(like an arrow)

* This is like Yampa's switch, but using different channels for control and data



Staging a pipeline, in diagrams

do { v <- (cl1 >»>> t1)
5 12 >>> t3

¥




Simple example: scrambler

let scrambler{u : unit) =
wvar scrmbl =st: arr([7] bit:
wvar tmp: bit;

Data In
>
wvar wy:bit; {__

return |
for i in 0,7 {
gcrmbl _s=stc[i] := bit(l)

X xb X x* X x2 X

)z Data Out
repeat | Figure 113—Data scrambler
® <— takel:

return

tmp = (scrmbl sSt[3)] © scrmbl sc[0]) !
for i in 0,6 {

scrmbl st[i] := scrmbl st[i+l]
scrmbxl st[6] = tmp;
v o= X T tmp

Descrambled



WiFi receiver (simplified)

!

removeDC
4 i Channel i“"""?r"""" AN 2
Detect Channel _ _info _i> Invert Invert
Carrier Estimation | Channel Channel
: Packet l
Decode __info_ Decode
Header Packet

_________

a




Semanties-Execution model (SMP)

Fvery component (ST (C v) a b) ‘compiles” to 2
functions:

tick : Void — (Result v a b + NeedInput)
process :a— Resultvab
Result vab = Skip | Yield b | Done v
Needlnput=() °

Details more intricate: components Similar to the

datatype used in

have and our execution model

reflects that stream fusion




-xecution model (continued)

?U ﬂtlme |OOp In reality:

» Very few function calls with a CPS-based
translation: every “process” function knows
its continuation

1: Let t = top-level-component Optimizations: never tick components with
2. whatis := t .tick() trivial tick(), never generate process() for
. . . tick()-only components
3: 1f whatis == Yield b Only indirection is for bind: at different
then putBuf(b) ; goto 2 points in tirrl\es, func,'lcion p:)int?rs point to
else if whatis == Skip then goto 2 the correct "process” and "tick

Slightly different approach to input/output

else if whatis == Done then exit()
else if whatis == NeedInput then
c = getBuf(); whatis := t.process(); goto 3.
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Ticking
[cT>>=c2]] =

{ init := cl.init();

, tick := cl.tick()
, process := \a -> case cl.process(a) of

Skip -> Skip
Yield b -> Yield b
Done v -> (c2 v).init();

tick := (c2 v).tick()

process :

nINd / sec

uence

:= (c2 v).process() }

{ init :

, tick :

, process

[Cl>>>c2]] =

cl.init(); c2.init();

case c2.tick() of

Result r -> Result r
NeedInput -> case cl.tick() of
Skip -> Skip
Emit b -> c2.process(b)
NeedInput -> NeedInput

= \a ->
case cl.process(a) of

Skip -> Skip
Emit b -> c2.process(b) }
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Speed! (Optimizations)

Bits Bits Bits Bits Samples Samples Samples Samples
@24Mbps @24Mbps @48Mbps @48Mbps @384Mbps @5 12Mbps @ E40Mbps @1.28Ghps
_ —3  Scramble Co”“’o'ﬂio”a' by Interloaving QAM Mod FFT Gl Addition Sﬁ’gﬁo' Wave —
Transmitter: encoder aping To AF
From MAC
Samplas Samples Samples Samples Bits Bits Bits
Recaiver: @1, 28Ghps @E40Mbps @51 2Mbps (@ 384Mbps @48Mbps @ 24Mbps @24Mbps

N Demod + Viterhi N
— Docimation e Bermove Gl FFT Intetleaving —* decoding Descramble »

From RF To MAC

(b) IEEE 802.11a/g 24hbps

* From the SORA paper, [NSDI 2009]
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Auto-vectorization

- Convert pipelines automatically to work with arrays
STxab ~~~>STx(arrna)(arr mb)

- Challenges: How to figure out the right multiplicities?

- Implemented “cardinality analysis”

- Searching space of vectorizations in two modes:

- Scale-up vectorization
- Scale-down vectorization

18



Scale-up vectorization

let block(u:unit) =
var y:int;

repeat(
(x : int) <- takel;
return(y := x+1);
emit (y)

)

let block VECTORIZED (u: unit) =
var y: int;
repeat let vect up wrap 46 () =
var vect ya 48: arr[4] int;
(vect xa 47 : arr[4] int) <- takel;
__unused_174 <- times 4 (\vect_j 50. (x : int) <- return vect xa 47[0*4+vect j 50*1+0];
__unused_ 1 <- return y := x+1;
return vect ya 48[vect j 50*1+0] := y);
emit vect ya 48
in
vect up wrap 46 (tt)

19



Program transformations

let block VECTORIZED (u: unit) =
var y: int;
repeat let vect _up_wrap 46 () =
var vect_ya 48: arr[4] int;
(vect_xa_47 : arr i takel;
__unused_1724<- times 4 (\vect_j 50. (x : int) <- return vect_xa_47[0*4+vect_j 50*1+0];
__unused_1 <- return y := x+1;
return vect_ya 48[vect_j 50*1+0] := y);

emit vect_ya 48
in
vect _up _wrap_46 (tt) Dataflow graph iteration

converted to tight loop!
In this case we got x3 speedup

let block VECTORIZED (u: unit) =
var y: int;
repeat let vect up wrap 46 () =
var vect_ya 48: arr[4] int;
(vect_xa_47 : arr : <- takeil;
emit let sed_174 = for vect_j 50 in 0, 4 {

let x = vect_xa_47[0*4+vect_j 50*1+0]
in let _unused 1 =y := x+1
in vect_ya 48[vect_j 50*1+0] :=

in vect_ya 48
in vect_up_wrap_46 (tt)



Scale-down vectorization

For components that take/emit many elements

let tllaDataSymbol(u:unit) =
repeat (
(xp:arr[80] complex) <- take 89;
4 emits xp[16:79]
repeat let vect dn 8 () = )
var vect xa_9: arr[80] int;

var vect ya 10: arr[64] int;
__unused 33 <- times 20 (\vect i 11. (xtemp_12 : arr[4] int) <- takel;
return vect_xa_9[vect_i 11*4:+4] := xtemp_12);

let (xp : arr[80] int) = vect xa 9[0:+80]

in

let vect res 13 = vect ya 19[0:+64] := xp[1l6:+64]

in
__unused 32 <- times 16 (\vect i 11. emit vect ya 10[vect i 11*4:+4]);

return vect res 13
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Vectorization boundaries and queues

First path can be vectorized to:
3*n*k — 4%k
Second path can be vectorized to:
else 2*n"*k’ — 3*K
repeat (take 2 elements; emit 3 elements)

if ¢ then
repeat (take 3 elements; emit 4 elements)

Least “good” input queue = 72

TOO LARGE!

Solution: introduce queues as primitives, to take
pressure off the vectorizer read :: Queueld -> ST BUF 2

write :: Queueld -> ST a BUF

if c then
repeat (take 3 elements; emit 4 elements) >>> write(out)
else
repeat (take 2 elements; emit 3 elements) >>> write(out)
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Data paths now vectorize independently!

Requires type-directed

compilation of read/write

This path
vectorizes to 6-4
°
[ ]

if c then

repeat (take 3 elements; emit 4 elements) >>> write(out)

else

repeat (take 2 elements; emit 3 elements) >>> W

This path
vectorizes to 6-3
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Pipelining with SMPs

802.11a transmitter: Opportunity to

pipeline parallelize

read >>> ( .
hInfo <- emitHeader(tt) »>>> scrambler(tt) >>> ®
encode(12) >>> @
interleaver(bpsk) >>>
modulate(bpsk) >>> map_ofdm(tt)) ;

scrambler(tt) >>> encode(hInfo[2])
>>> interleaver(hinfo[1]) »>>> modulate(hinfo[1]) >>> map_ofdm(tt)

) >>> write
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Pipelining with SMPs

foo >>> bar >>> zoo

foo >>> write(ql) >>> @

o
read(gl) >>> bar >>> write(q2) >>>

read(q2) >>> zoo

foo >>> writéZa1;/::://///////\\\\\\\\\\\\\\\\\\*

read(q2) >>> 200 read(ql) >>> bar >>> write(qg2)

Thread 1, pin to Core 1 Thread 2, pin to Core 2
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Status report

- Fully working language and compiler implementation
- Other features: SIMD-programming library

- Interfacing with external C-functions

+ Re-using SORA driver (for faster kernel-space run)

- Vectorizer *really* works: 2x faster on the complete Wifi receiver
pipeline, up to 4x faster on individual components.

+ Processing rate: single-CPU, SIMD+vectorized ~ 200ms/20MB =
twice as fast as the protocol requirements
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In the pipeline

Working on:

1. Finalizing pipeline parallelization

2. Detailed profiling and evaluation

3. Writing paper, implementing more challenging protocols (4G LTE)
Future:

1. Cost models of execution model and vectorizer

2. FPGA backend, heterogeneous compilation

3. Verification of arithmetic floating point errors

4. Resource bounds prediction or modeling
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Join us!

As users, or developers ...
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