Microsoft Research BE \icrosoft

Wireless programming
for hardware dummies

Compiling stream processors for software-based
low-latency network processing

Gordon Stewart (Princeton), Mahanth Gowda (UIUQ),
Geoff Mainland (Drexel), Bozidar Radunovic (MSR),
Dimitrios Vytiniotis (MSR)

Motivation

- Lots of innovation in PHY/MAC design
- Popular experimental platform: GnuRadio

- Easy to program but slow, no real network deployment

- Modern wireless PHYs require high-rate DSP
- Real-time platforms (SORA, Warp, ...)

- Achieve protocol processing requirements, difficult to program, no code
portability (lots of manual hand-tuning)

Issues for wireless researchers
- SMP platforms (e.g. SORA)

- Manual vectorization, CPU placement
- Cache optimizations

- FPGA platforms (e.g. Warp)

- Latency-sensitive design, difficult for new CS students/researchers to break into

- Portability/readability

- (Manually) highly optimized code is difficult to read and maintain
- Practically impossible to target another platform

Our goal

- New wireless programming platform

1. Code written in a high-level language
2. Compiler deals with low-level code optimization
3. Same code compiles on different platforms (not there just yet!)

- Challenges
1. Design PL abstractions that are intuitive and expressive
2. Design efficient compilation schemes (to multiple platforms)

- What is special about wireless

1. ... that affects abstractions: large degree of separation b/w data and control
2. ... that affects compilation: need low latency stream processing

Related works

- SMP: SORA bricks (MSRA), GnuRadio blocks

- Language extension (templates) and lots of libraries

- FPGA: Airblue

- Programmer deals with hardware low-level stuff (sync, queues, etc)
- Control and data separation: CodiPhy, OpenRadio (Stanford)
- Streaming languages: Streamlt (MIT)
- Functional reactive programming: e.g. Yampa (Yale), Fran
- Dataflow languages e.q. Lucid (but no clocks here)

WPL: A 2-layer design

- Lower-level

- Imperative C-like code for manipulating bits, bytes, arrays etc.

- Higher-level:
- A monadic language for specifying and staging stream processors
- Enforces clean separation between control and data flow

- Runtime implements low-level execution model

- Inspired by stream fusion in Haskell
- Provides efficient sequential and pipeline-parallel executions

- Monadic stream language enables aggressive compiler
optimizations

Datatlow streaming abstractions

Predominant abstraction today (e.g. SORA, Streamit,
GnuRadio) is that of a “vertex” in a dataflow graph

- Reasonable as abstraction of the execution model
- Unsatisfactory as programming and compilation model

Why unsatisfactory? It does not expose:
(1) When is vertex state (re-) initialized?
(2) Under which external “control” messages

Events (messages) come in

can the vertex change behavior?
(3) How can vertex transmit “control”

. : . Events (messages) come out
information to other vertices?

Control-aware streaming abstractions

l (inStream (a) l (nStream (a)
outControl (v)
t C e — . = >
l outStream (b) l outStream (b)
A stream transformer t, A stream computer c,
of type: of type:

STTab ST(Cv)ab

Control-aware streaming abstractions

l (inStream (a) l (nStream (a)
outControl (v)
t C s — . = >
l outStream (b) l outStream (b)
map :: (@ ->b) ->STTab take :: ST (C a) a b

repeat :: ST (C ()) ab ->ST Tab| emit :: v -> ST (C ()) a v

Horizontal and vertical composition

(>>>) :+: STTab ->STTbc ->STTac
(>>>) :: ST(Cv) ab->STTbc ->ST (Cv) ac
(>>>) :: STTab ->ST (Cv) bc ->ST (Cv) ac
)
®

Composition
along “data path”

Composition along

“control path”
(like a monad?*)

(>>=) ::ST(Cv) ab —>°(v ->ST xab) ->STxab
return :: v -> ST (Cv) a b

(like an arrow)

* This is like Yampa's switch, but using different channels for control and data

Staging a pipeline, in diagrams

do { v <- (cl1 >»>> t1)
5 12 >>> t3

¥

Simple example: scrambler

let scrambler{u : unit) =
wvar scrmbl =st: arr([7] bit:
wvar tmp: bit;

Data In
>
wvar wy:bit; {__

return |
for i in 0,7 {
gcrmbl _s=stc[i] := bit(l)

X xb X x* X x2 X

)z Data Out
repeat | Figure 113—Data scrambler
® <— takel:

return

tmp = (scrmbl sSt[3)] © scrmbl sc[0]) !
for i in 0,6 {

scrmbl st[i] := scrmbl st[i+l]
scrmbxl st[6] = tmp;
v o= X T tmp

Descrambled

WiFi receiver (simplified)

!

removeDC
4 i Channel i“"""?r"""" AN 2
Detect Channel _ _info _i> Invert Invert
Carrier Estimation | Channel Channel
: Packet l
Decode __info_ Decode
Header Packet

a

Semanties-Execution model (SMP)

Fvery component (ST (C v) a b) ‘compiles” to 2
functions:

tick : Void — (Result v a b + NeedInput)
process :a— Resultvab
Result vab = Skip | Yield b | Done v
Needlnput=() °

Details more intricate: components Similar to the

datatype used in

have and our execution model

reflects that stream fusion

-xecution model (continued)

?U ﬂtlme |OOp In reality:

» Very few function calls with a CPS-based
translation: every “process” function knows
its continuation

1: Let t = top-level-component Optimizations: never tick components with
2. whatis := t .tick() trivial tick(), never generate process() for
. . . tick()-only components
3: 1f whatis == Yield b Only indirection is for bind: at different
then putBuf(b) ; goto 2 points in tirrl\es, func,'lcion p:)int?rs point to
else if whatis == Skip then goto 2 the correct "process” and "tick

Slightly different approach to input/output

else if whatis == Done then exit()
else if whatis == NeedInput then
c = getBuf(); whatis := t.process(); goto 3.

15

Ticking
[cT>>=c2]] =

{ init := cl.init();

, tick := cl.tick()
, process := \a -> case cl.process(a) of

Skip -> Skip
Yield b -> Yield b
Done v -> (c2 v).init();

tick := (c2 v).tick()

process :

nINd / sec

uence

:= (c2 v).process() }

{ init :

, tick :

, process

[Cl>>>c2]] =

cl.init(); c2.init();

case c2.tick() of

Result r -> Result r
NeedInput -> case cl.tick() of
Skip -> Skip
Emit b -> c2.process(b)
NeedInput -> NeedInput

= \a ->
case cl.process(a) of

Skip -> Skip
Emit b -> c2.process(b) }

16

Speed! (Optimizations)

Bits Bits Bits Bits Samples Samples Samples Samples
@24Mbps @24Mbps @48Mbps @48Mbps @384Mbps @5 12Mbps @ E40Mbps @1.28Ghps
_ —3 Scramble Co”“’o'ﬂio”a' by Interloaving QAM Mod FFT Gl Addition Sﬁ’gﬁo' Wave —
Transmitter: encoder aping To AF
From MAC
Samplas Samples Samples Samples Bits Bits Bits
Recaiver: @1, 28Ghps @E40Mbps @51 2Mbps (@ 384Mbps @48Mbps @ 24Mbps @24Mbps

N Demod + Viterhi N
— Docimation e Bermove Gl FFT Intetleaving —* decoding Descramble »

From RF To MAC

(b) IEEE 802.11a/g 24hbps

* From the SORA paper, [NSDI 2009]

17

Auto-vectorization

- Convert pipelines automatically to work with arrays
STxab ~~~>STx(arrna)(arr mb)

- Challenges: How to figure out the right multiplicities?

- Implemented “cardinality analysis”

- Searching space of vectorizations in two modes:

- Scale-up vectorization
- Scale-down vectorization

18

Scale-up vectorization

let block(u:unit) =
var y:int;

repeat(
(x : int) <- takel;
return(y := x+1);
emit (y)

)

let block VECTORIZED (u: unit) =
var y: int;
repeat let vect up wrap 46 () =
var vect ya 48: arr[4] int;
(vect xa 47 : arr[4] int) <- takel;
__unused_174 <- times 4 (\vect_j 50. (x : int) <- return vect xa 47[0*4+vect j 50*1+0];
__unused_ 1 <- return y := x+1;
return vect ya 48[vect j 50*1+0] := y);
emit vect ya 48
in
vect up wrap 46 (tt)

19

Program transformations

let block VECTORIZED (u: unit) =
var y: int;
repeat let vect _up_wrap 46 () =
var vect_ya 48: arr[4] int;
(vect_xa_47 : arr i takel;
__unused_1724<- times 4 (\vect_j 50. (x : int) <- return vect_xa_47[0*4+vect_j 50*1+0];
__unused_1 <- return y := x+1;
return vect_ya 48[vect_j 50*1+0] := y);

emit vect_ya 48
in
vect _up _wrap_46 (tt) Dataflow graph iteration

converted to tight loop!
In this case we got x3 speedup

let block VECTORIZED (u: unit) =
var y: int;
repeat let vect up wrap 46 () =
var vect_ya 48: arr[4] int;
(vect_xa_47 : arr : <- takeil;
emit let sed_174 = for vect_j 50 in 0, 4 {

let x = vect_xa_47[0*4+vect_j 50*1+0]
in let _unused 1 =y := x+1
in vect_ya 48[vect_j 50*1+0] :=

in vect_ya 48
in vect_up_wrap_46 (tt)

Scale-down vectorization

For components that take/emit many elements

let tllaDataSymbol(u:unit) =
repeat (
(xp:arr[80] complex) <- take 89;
4 emits xp[16:79]
repeat let vect dn 8 () =)
var vect xa_9: arr[80] int;

var vect ya 10: arr[64] int;
__unused 33 <- times 20 (\vect i 11. (xtemp_12 : arr[4] int) <- takel;
return vect_xa_9[vect_i 11*4:+4] := xtemp_12);

let (xp : arr[80] int) = vect xa 9[0:+80]

in

let vect res 13 = vect ya 19[0:+64] := xp[1l6:+64]

in
__unused 32 <- times 16 (\vect i 11. emit vect ya 10[vect i 11*4:+4]);

return vect res 13

21

Vectorization boundaries and queues

First path can be vectorized to:
3*n*k — 4%k
Second path can be vectorized to:
else 2*n"*k’ — 3*K
repeat (take 2 elements; emit 3 elements)

if ¢ then
repeat (take 3 elements; emit 4 elements)

Least “good” input queue = 72

TOO LARGE!

Solution: introduce queues as primitives, to take
pressure off the vectorizer read :: Queueld -> ST BUF 2

write :: Queueld -> ST a BUF

if c then
repeat (take 3 elements; emit 4 elements) >>> write(out)
else
repeat (take 2 elements; emit 3 elements) >>> write(out)

22

Data paths now vectorize independently!

Requires type-directed

compilation of read/write

This path
vectorizes to 6-4
°
[]

if c then

repeat (take 3 elements; emit 4 elements) >>> write(out)

else

repeat (take 2 elements; emit 3 elements) >>> W

This path
vectorizes to 6-3

23

Pipelining with SMPs

802.11a transmitter: Opportunity to

pipeline parallelize

read >>> (.
hInfo <- emitHeader(tt) »>>> scrambler(tt) >>> ®
encode(12) >>> @
interleaver(bpsk) >>>
modulate(bpsk) >>> map_ofdm(tt)) ;

scrambler(tt) >>> encode(hInfo[2])
>>> interleaver(hinfo[1]) »>>> modulate(hinfo[1]) >>> map_ofdm(tt)

) >>> write

24

Pipelining with SMPs

foo >>> bar >>> zoo

foo >>> write(ql) >>> @

o
read(gl) >>> bar >>> write(q2) >>>

read(q2) >>> zoo

foo >>> writéZa1;/::://///////*

read(q2) >>> 200 read(ql) >>> bar >>> write(qg2)

Thread 1, pin to Core 1 Thread 2, pin to Core 2

25

Status report

- Fully working language and compiler implementation
- Other features: SIMD-programming library

- Interfacing with external C-functions

+ Re-using SORA driver (for faster kernel-space run)

- Vectorizer *really* works: 2x faster on the complete Wifi receiver
pipeline, up to 4x faster on individual components.

+ Processing rate: single-CPU, SIMD+vectorized ~ 200ms/20MB =
twice as fast as the protocol requirements

26

In the pipeline

Working on:

1. Finalizing pipeline parallelization

2. Detailed profiling and evaluation

3. Writing paper, implementing more challenging protocols (4G LTE)
Future:

1. Cost models of execution model and vectorizer

2. FPGA backend, heterogeneous compilation

3. Verification of arithmetic floating point errors

4. Resource bounds prediction or modeling

27

Join us!

As users, or developers ...

== Microsoft

©2013 Microsoft Corporation. All rights reserved.

