The Trouble with Types

Martin Odersky

EPFL and Typesafe

CO

strange

2013

Types

Everyone has an opinion on them

Industry:
— Used to be the norm (C/C++, Java).
— Today split about evenly with dynamic.
Academia:

— Static types are more common.

Static: Points in Favor

More efficient

Better tooling

Fewer tests needed
Better documentation

Safety net for maintenance

Dynamic: Points in Favor

Simpler languages

Fewer puzzling compiler errors
No boilerplate

Easier for exploration

No type-imposed limits to expressiveness

What is Good Design?

— Clear
— Correct
- Minimal

- The opposite of “random”

Great designs are often discovered,
not invented.

Elements Of Great Designs:

Patterns
&

Constraints

Example: Bach Fugues

) . ’.ﬂ. ‘ AN

/’-\7

César Franck : Prélude. Choral & Fugue, premiéres mesures

What Is A Good Language for Design?

One that helps discovering great designs.

What Is A Good Language for Design?

One that helps discovering great designs.

Patterns = Abstractions

Constraints =2 Types

Example

— Functional Collections

— And their generalizations, e.g. monads,

applicatives

Powerful patterns made safe by types.

But...

Type systems are hairy.

Otherwise there would not be so many different
ones.

I'm not against types, but | don't know of any type
systems that aren't a complete pain, so I still like

dynamic typing [Alan Kay]

Type Systems Landscape

static

dynamic

A

Ve

OCaml

Java Haskell

CH# Scala

Typescript
Dart

Assembly JS Ruby Python, Clojure

>

weak strong

Static Type Systems

\

detailed Haskell "Type it to

\
\ Scala
\ OCaml the max”

“Cutting Typescript
corners”

“*My way or

coarse / Javay Pascal the highway”
>

strong

Static Type Systems

\

detailed Haskell "Type it to

\
\ Scala
\ OCaml the max”

“Cutting Typescript
corners”

“*My way or

coarse / Javay Pascal the highway”
>

strong

(1) My Way or the Highway

A
detailed

Typescript
Dart

coarse

My Way or The Highway

Simple type systems
No generics
Not that extensible by users

—> Simpler tooling
- Highly normative

(3) Type it to the Max

\

A
detailed Haskell

\
\
) Scala OCaml

Typescript
Dart

coarse

Type it to the Max

Rich* language to write types
Type combination forms, including generics.

Type systems often inspired by logic.

* Often, turing complete

Type it to the Max

Where dynamic languages had the upper hand:
— No type-imposed limits to expressiveness
—> Rich type system + escape hatches such as casts
— No boilerplate
- Type Inference
— Easier for exploration

—> Bottom type Nothing, ??77?

Making Good Use of Nothing

def f(x: Int) = 777

Making Good Use of Nothing

def f(x: Int): Nothing = 7?77

1f (x < 0) 777 else f(x)

Other Strengths of Dynamic

* Simpler languages
- Rich types add complexity

* Fewer puzzling compiler errors

5862.scala:36:

found : scala

scala.collection.

{ type _$1; type

scala.collection.

scala.collection
{ type _$1; type
scala.collection
{ type _$1; type

scala.collection.
scala.collection.

{ type _$1; type

scala.collection.

{ type _$1; type

scala.collection.
scala.collection.

{ type _$1; type

scala.collection.

{ type _$1; type

scala.collection.m

scala.collectggn.

error:

.collection.mutable.Iterable[_

type mismatch;

>: (MapReducelob.this.DataSource,
mutable.Set[test.TaggedMapper[_, _, _1]) with test.TaggedMapper[_$1,_%$2,_%$3] forSome
_$2; type _$3 } <: Object] with

mutable.Builder[(MapReducelob.this.DataSource,

.mutable.Set[test.TaggedMapper[_, _, _]1) with test.TaggedMapper[_$1,_%$2,_%$3] forSome

_$2; type _$3 },scala.collection.mutable.Iterable[_ >: (MapReWuceJob.this.DataSource,

.mutable.Set[test.TaggedMapper[_, _, _]]) with test.Tagge&?fﬁ&en{_$l,_$2,_$3] forSome

_$2; type _$3 } <: Object] with

mutable.Builder[(MapReducelob.this.DataSource,

mutable.Set[test.TaggedMapper[_, _, _]]1)qwit t gg€dMapper[_$1,_%$2,_%$3] forSome

_$2; type _$3 },scala.collection.mutab)‘ : (MapReducelJob.this.DataSource,

mutable.Set[test.TaggedMapper[_ h test TaggedMapper[$1,_%2,_%3] forSome

_$2; type _$3 } <: Object] wi

mutable.Builder[(MapReduc is. DataSource

mutable.Set[test. d A<E§F[_, —, 11D with test.TaggedMapper[_$1,_$Z,_$3] forSome

$2; type $3 },sca 118ction.mutable.Iterable[>: (MapReducelob.this.DataSource,
ag edMapper[_, _, _]11) with test. TaggedMapper[$1,_%2,_%3] forSome

mutable.S
_$Z t p < Object] with
der[(MapReduceJob this.DataSource,

e Set[test TaggedMapper[_, _, _11)

and so on for another 200 lines

(3) Cutting Corners

A
detailed

Typescript

coarse

Cutting Corners

Appeal to user’s intuitions (covariant generics).
— Employee are Persons

— So functions from Employees to Employers are also functions

from Persons to Employers, right?
Embrace unsoundness.
Easy, and superficially simple.
But, fundamentally, a hack.

Can we build great designs on false theories?

Precision

Soundness

Simplicity

Take Any Two?

Abstractions

Two fundamental forms
— Parameters (positional, functional)

— Abstract Members (name-based, object-oriented)

Abstractions

Two fundamental forms
— Parameters (positional, functional)

— Abstract Members (name-based, modular)

Types in Scala

scala.collection.BitSet Named Type
Channel with Logged Compound Type

Channel { def close(): Unit } Refined Type

List[String] Parameterized

List[T] forSome { type T } Existential Type

List Higher-Kinded

Modular

Functional

Orthogonal Design

Functional

Named T{...} Twith U

Modular

Non-Orthogonal Design

More Features
Fewer combinations

,‘\\3\‘ Functional
TwithU T[U]

Modular

Too Many Combinations?

Functional

Named T{...} Twith U

Modular

Projections Reduce Dimensionality

Functional

Named T{...} Twith U

Modular

Projections Help Remove Features

Functional

/

Named T{...} Twith U

Modular

Dot and Dotty

Calculus for Dependent Object Types

A Scala-Like Language with DOT
as Its core

[FOOL 201 2] Dependent Object Types

Towards a foundation for Scala’s type system

Nada Amin

Adriaan Moors

EPFL

Martin Odersky

first.last@epfl.ch

Abstract

We propose a new type-theoretic foundation of Scala and languages
like it: the Dependent Object Types (DOT) calculus. DOT models
Scala’s path-dependent types, abstract type members and its mix-
ture of nominal and structural typing through the use of refinement
types. The core formalism makes no attempt to model inheritance
and mixin composition. DOT normalizes Scala’s type system by
unifying the constructs for type members and by providing clas-
sical intersection and union types which simplify greatest lower
bound and least upper bound computations.

In this paper, we present the DOT calculus, both formally and
informally. We also discuss our work-in-progress to prove type-
safety of the calculus.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features): Abstract data types, Classes and objects, polymor-
phism; D.3.1 [Formal Definitions and Theory]: Syntax, Seman-
tics; FE.3.1 [Specifying and Verifying and Reasoning about Pro-
grams]; FE3.3 [Studies of Program Constructs]: Object-oriented
constructs, type structure; F.3.2 [Semantics or Programming Lan-
guages): Operational semantics

General Terms Languages, Theory, Verification

Keywords calculus, objects, dependent types

1. Introduction

A scalable programming language is one in which the same con-
cepts can describe small as well as large parts. Towards this goal,
Scala unifies concepts from object and module systems. An es-
sential ingredient of this unification is objects with type members.
Given a stable path to an object, its type members can be accessed
as types, called path-dependent types.

This paper presents Dependent Object Types (DOT), a small
object calculus with path-dependent types. In addition to path-
dependent types, types in DOT are built from refinements, inter-
sections and unions. A refinement extends a type by (re-)declaring
members, which can be types, values or methods.

‘We propose DOT as a new type-theoretic foundation of Scala
and languages like it. The properties we are interested in modeling
are Scala’s path-dependent types and abstract type members, as

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

FOOL '12 October 22, 2012, Tucson, AZ, USA.

Copyright © 2012 ACM ([to be supplied]...$10.00

well as its mixture of nominal and structural typing through the
use of refinement types. Compared to previous approaches [5, 14],
we make no attempt to model inheritance or mixin composition.
Indeed we will argue that such concepts are better modeled in a
different setting.

The DOT calculus does not precisely describe what’s currently
in Scala. It is more normative than descriptive. The main point
of deviation concerns the difference between Scala’s compound
type formation using with and classical type intersection, as it is
modeled in the calculus. Scala, and the previous calculi attempting
to model it, conflates the concepts of compound types (which in-
herit the members of several parent types) and mixin composition
(which build classes from other classes and traits). At first glance,
this offers an economy of concepts. However, it is problematic be-
cause mixin composition and intersection types have quite different
properties. In the case of several inherited members with the same
name, mixin composition has to pick one which overrides the oth-
ers. It uses for that the concept of linearization of a trait hierarchy.
Typically, given two independent traits 7 and 7% with a common
method mm, the mixin composition 77 with 7% would pick the m in
T, whereas the member in 7 would be available via a super-call.
All this makes sense from an implementation standpoint. From a
typing standpoint it is more awkward, because it breaks commuta-
tivity and with it several monotonicity properties.

In the present calculus, we replace Scala’s compound types
by classical intersection types, which are commutative. We also
complement this by classical union types. Intersections and unions
form a lattice wrt subtyping. This addresses another problematic
feature of Scala: In Scala’s current type system, least upper bounds
and greatest lower bounds do not always exist. Here is an example:
given two traits A and B, where each declares an abstract upper-
bounded type member T,

trait A { type T<A }
trait B { type T<:B }

the greatest lower bound of A and B is approximated by the infinite
sequence

A with B { type T<: A with B { type T<: A with B {
type T < ...
11}

The limit of this sequence does not exist as a type in Scala.

This is problematic because greatest lower bounds and least
upper bounds play a central role in Scala’s type inference. For
example, in order to infer the type of an if expression such as

if (cond) ((a: A) = c: C) else ((b: B) => d: D)

type inference tries to compute the greatest lower bound of A and
B and the least upper bound of C and D. The absence of universal
greatest lower bounds and least upper bounds makes type inference
more brittle and more unpredictable.

Syntax

z,Y, 2 Variable i= Type label
l Value label L. class label
m Method label L, abstract type label
v n= Value S, T, UV,W .= Type
T variable p.L . type selection
tu= Term T {z = D} refinement
v value TAT intersection type
val z = newc; ¢ new instance TVvT union type
t.l field selection T top type
t.m(t) method invocation 1 bottom type
pu= Path Se,Te : Concrete type
T variable pL]T{z=>D}|T/\T]T
p.l selection : Declaration
cu=T.{d} Constructor LS type declaration
d: Initialization 1:T value declaration
l =v field initialization m:S—->U method declaration
m(z) =t method initialization
su=Tr—C Store =g T Environment
Reduction tls = t'|s
y'_)j‘c{l=,ul.’n(z)=t}es valz =newc; t|s = t|s,z—c (NEW)
(MSEL)
ym;i(v)|s = [v/zilti|s
yo T{l=vm(@) =t} €s tls > t'|¢
SEL _— CONTEXT
yli|ls = vils (SEL) e[t]|s — eft]|s ()
where evaluation context eu=[]]|em(t)|v.m(e) | el
Type Assignment I'kt:T
z:Tel (VAR) F-tal:T SEL
'tz:T PkEtl:T (SEL)
y¢ fn(T') _
'Ftom:8—>T I'-T.wle, T. <y L: SUD
r-¢:7,7<:8 T, 'T~|—S< dﬁ
o <‘ (MSEL) Y (NEW)
I'-tm@):T Fl—valy:newT{ }it
Declaration Assignment I'd:D
Frrv: V',V <V T + S wfe
(VDECL) Dz:S+t:T, T <:T

Pk (l=v):(1:V)

F(m(z)=t):(m:S—=>1T)

(MDECL)

Types in Dotty

scala.collection.BitSet Named Type
Channel & Logged Intersection Type

Channel { def close(): Unit } Refined Type
(List[String] Parameterized)

I—I-U\.al_l_l LI | -t W1 N L \-—r’\-d L] J

. L
LLOU

Modelling Generics

class Set[T] { ... } class Set { type $T }
Set[String] Set { type $T = String }

class List[+T] { ... } class List { type $T }
List[String] List { type $T <: String }

Parameters Abstract members

Arguments Refinements

Making Parameters Public

class Set[type Elem] {...} class Set { type Elem ...}
Set[String] Set { type Elem = String }

class List[type +Elem] {...} class List { type Elem ...}
List[String] List { type Elem <: String }

Analogous to “val” parameters:

class C(val fld: Int) class C { val fld: Int }

Expressing Existentials

What is the type of Lists with arbitrary element
type?
Previously: List[_]

List[T] forSome { type T }

Now: List

(Types can have abstract members)

Expressing Higher-Kinded

What is the type of List constructors?
Previously: List

Now: List

Can always instantiate later:
type X = List
X { type T = String }
X[String]

In @ Nutshell

In this system,

Existential = Higher-kinded

In fact, both are just types with abstract members.

We do not distinguish between types and type
constructors.

Subtyping

Fundamental relation:
T1<:T2
T1is asubtype of T2.

Comes in many guises:

Implementation matches Interface
Type class extension

Signature ascription

Native Meets and Joins

* The horrible type error message came from a
computed join of two types.

* Problem: In Scala, the least upper bound of
two types can be infinitely large.

* Adding native & and | types fixes that.

Will this Be Scala?

* Hopefully. Depends on how compatible we
can make it.

* Note: SIP 18 already forces you to flag usages
of existentials and higher-kinded types in

Scala.

* This should give you a some indication how
much effort would be needed to convert.

The Essence of Scala

Harness the power of naming

A small language struggling to get out

Types Are Trouble

— Tooling
— Error messages
— Conceptual complexity

— Scope for misuse

But | believe they are worth it,

because they can lead to great designs.

