
TOP

Rinus Plasmeijer – Bas Lijnse - Peter Achten
Pieter Koopman - Steffen Michels - Jurrien Slutterheim (TNO-RU)

Jan Martin Jansen (NLDA) - Laszlo Domoszlai (ELTE)

Radboud University Nijmegen
1

Task Oriented Programming

Rinus Plasmeijer – Bas Lijnse - Peter Achten
Pieter Koopman - Steffen Michels - Jurrien Slutterheim (TNO-RU)

Jan Martin Jansen (NLDA) - Laszlo Domoszlai (ELTE)

Radboud University Nijmegen
2

3

From Workflow Specifications in FP to TOP

How can we define nicely

- workflows management systems in a pure FP ?

- multi-user web based GUI applications ?

- merge sever-side and client-side evaluation ?

- the management of tasks, as a task ?

- soft real-time complex collaborations, e.g. support for crisis management ?

TOP

4

Why Task Oriented Programming ?

Tasks are a common notion in daily life / in any organization

 People increasingly work together distributively on the internet
 Focus on complex collaborations, arbitrary ways of working

 (sub) tasks and their interdependencies are dynamically determined
 Any kind of task (involving computers) should be expressible
 Huge Application Area

 CC2, Crisis management, (e) Health Care, Insurance Market, Systems for
Economical Market, (e) Government, Legal Systems, ERP, Social Media

Tasks are useful building blocks when developing software

 function call, procedure call, method invocation, calling a web-service, a query
 web form handling, email handling
 process, thread, “app”

Tasks are suited to communicate ideas between Domain Expert – TOP Programmer

Task Oriented Programming

New style of (functional) programming

Tasks as basic building blocks

Reactive system

Declarative
High level of abstraction
No worry about technical realization !

Yields application coordinating the work of collaborating people & systems

But, it can also be used
for Rapid Prototyping
to formalize how work should be organized
to investigate different ways of doing work using simulation with agents
for training: mix of real people and agents
to check properties by testing, analysis or by formal proof (semantics formally
defined)
to communicate desired ways of working between domain experts and
programmers

5

- implementation of TOP

Domain Specific Programming Language, embedded in

“just” another Combinator Library

Abstracts as much technical stuff as possible (thanks to generic functions):
graphical user interfaces & handling of user-interaction
persistent storage of information
(client-server) communication
evaluation on client
informing tasks about the progress in tasks others work on
informing tasks when shared information is changed

Yields Web-Service coordinating the tasks to be done…
Tasks can run on server, on client , or on both
Clean is standard compiled twice:
1. to native code (Windows, Mac-OS, Linux)
2. to SAPL, and just-in-time on demand by client to javascript

6

My iTask

Specification

iTasks Architecture

7

iTask Web Server

iTask Combinator

Library

My iTask

Specification

iTasks Architecture

8

WEB

iTask Web Server

iTask Combinator

Library

My iTask

Specification

iTask Web Server

iTask Combinator

Library

iTask

Specification

Web ServiceWeb Service Web Service RPC

Computer

iTask User

iTask Client

iTask User

iTask App

Laptop

iTask Client

Phone

iTask User

iTask Client

Cloud /
Database

Tablet

iTask User

iTask Client

Sensor

iTask User

iTask Client

iTasks Architecture

9

Case study -> Prototype: Coast Guard Search And Rescue

10

Prototype : Vessel Crew Optimization – TNO

11

12

iTask Core

• Tasks: typed, a task value may change over time

• Basic tasks:
Interactive Tasks : editors
Simple Tasks : return, …
Foreign stuff : web-service, OS-call, sensors, …

• Sequential and Parallel Combinators for combining tasks
Defines control flow and data flow between tasks

• Shared Information: one concept for sharing any kind of information

+ growing iTask Library to support frequently occurring work patterns

+ Clean
pure, higher order, polymorphic, overloaded, generic functions
hybrid typing: strongly statically typed + dynamic typing

Task Values

:: Task a typed unit of work which should deliver a task result of type a

While the task is going on, its value may change over time

13

Task Values

:: Task a typed unit of work which should deliver a task result of type a

While the task is going on, its value may change over time

NoVal

14

Task Values

:: Task a typed unit of work which should deliver a task result of type a

While the task is going on, its value may change over time

NoVal
Val a
False

15

Task Values

:: Task a typed unit of work which should deliver a task result of type a

While the task is going on, its value may change over time

NoVal
Val a
False

16

Task Values

:: Task a typed unit of work which should deliver a task result of type a

While the task is going on, its value may change over time

NoVal
Val a
False

Val a
True

17

Task Values

:: Task a typed unit of work which should deliver a task result of type a

While the task is going on, its value may change over time

:: TaskResult a = ValRes TimeStamp (Value a)
| e: ExcRes e & iTask e

:: Value a = NoVal
| Val a Stability

:: Stability :== Bool

Task values
can be observed by other tasks
may influence the work of others
can be of any type: user defined, higher order (e.g a task or a function)
must satisfy the iTask context restriction

A Task may raise an exception
A Task never finishes (although the work may be done)

but its value may not be needed anymore by the environment…

18

NoVal
Val a
False

Val a
True

Model

View

19

Editors

module example

import iTasks

Start :: *World *World

Start world = startEngine myTask world

myTask :: Task Int

myTask = enterInformation "Enter an integer" []

One can change
the value as often

as one likes

Editors never
deliver a Stable

value

Optional Lens
for tuning

standard view

Persistent

Model

View

20

Editors - 2

:: Person = { name :: String, gender :: Gender, dateOfBirth :: Maybe Date}

:: Gender = Male | Female

derive class iTask Person, Gender

myTask :: Task Person

myTask = enterInformation "Enter your personal information" []

21

Editors - 3

myTask :: Task [Person]

myTask = enterInformation "Please personal information of multiple people" []

22

Editors - 4

simpleEditor :: Task Note

simpleEditor = enterInformation "Enter a piece of text" []

chooseDate :: Task Date

chooseDate = enterInformation "Choose a date" []

pointOnMap :: Task GoogleMap

pointOnMap = enterInformation "Show me the location" []

simpleDraw:: Task SimpleDraw

simpleDraw = enterInformation “Make a drawing" []

23

Editors - 5

pizzaWith :: Task [String]

pizzaWith = enterMultipleChoice "What do you like on your pizza ?" []
["Cheese","Tomato","Ansjofish","Salami"]

24

Variant of Interactive Editors

Basic tasks: Interactive editor for filling in forms of a certain type:

viewInformation :: d [ViewOption a] a Task a | descr d & iTask a

enterInformation :: d [EnterOption a] Task a | descr d & iTask a

updateInformation :: d [UpdateOption a a] a Task a | descr d & iTask a

enterChoice :: d [ChoiceOption o] [o] Task o | descr d & iTask o
updateChoice :: d [ChoiceOption o] [o] o Task o | descr d & iTask o

enterMultipleChoice :: d [MultiChoiceOption o] [o] Task [o] | descr d & iTask o
updateMultipleChoice :: d [MultiChoiceOption o] [o] [o] Task [o] | descr d & iTask o

All instances of one Core editor

Options: definable view: between task value type a and arbitrary view type v

descr d: can vary from a simple string to html code

iTask a : bunch of type driven generic functions for doing the real work

25

Sequential Combinator: >>*

palindrome :: Task (Maybe String)

palindrome = enterInformation "Enter a palindrome" []

>>* [OnAction ActionOk (ifValue isPalindrome (\v return (Just v)))

, OnAction ActionCancel (always (return Nothing))

]

26

Sequential Combinator: >>*

>>*

Observe Task a, continue with one of the Task b's:

- if a certain action is performed by the end-user

- if the value of the observed task is satisfying a certain predicate

- or the observed task has raised an exception to be handled here

Task a Task b

Task b

Task b

Core – Sequential Combinator

Combinator for Sequential Composition

(>>*) infixl 1 :: (Task a) [TaskStep a b] → Task b | iTask a & iTask b

:: TaskStep a b

= OnAction Action ((Value a) → Maybe (Task b))

| OnValue ((Value a) → Maybe (Task b))

| E.e: OnException (e → Task b) & iTask e

:: Action = Action String [ActionOption]

:: ActionOption = ActionKey Hotkey

| ActionWeight Int

| ActionIcon String

| ActionTrigger DoubleClick

:: Hotkey = { key :: Key, ctrl :: Bool, alt :: Bool, shift :: Bool }

ActionOk :== Action "Ok“ [ActionIcon "ok", ActionKey (unmodified KEY_ENTER)]

27

Core – Sequential Combinator

Combinator for Sequential Composition

(>>*) infixl 1 :: (Task a) [TaskStep a b] → Task b | iTask a & iTask b

:: TaskStep a b

= OnAction Action ((Value a) → Maybe (Task b))

| OnValue ((Value a) → Maybe (Task b))

| E.e: OnException (e → Task b) & iTask e

:: Action = Action String [ActionOption]

:: ActionOption = ActionKey Hotkey

| ActionWeight Int

| ActionIcon String

| ActionTrigger DoubleClick

:: Hotkey = { key :: Key, ctrl :: Bool, alt :: Bool, shift :: Bool }

ActionOpen :== Action "/File/Open" [ActionIcon "open", ActionKey (ctrl KEY_O)]

28

Core - Shared Data Sources

SDS: one abstraction layer for any type of shared data: easy to use for the progammer

- Shared Memory , Files , Database , Time , Sensors , ….

- Reading and Writing can be of different type

- SDS’s can be composed from others

- Tasks depending on an SDS are automatically informed when it is being changed

:: RWShared r w

:: Shared a :== RWShared a a

:: ReadOnlyShared a :== RWShared a Void

:: WriteOnlyShared a :== RWShared Void a

29

30

Variants of Interactive Editors

viewInformation

enterInformation

updateInformation

enterChoice
updateChoice

enterMultipleChoice
updateMultipleChoice

31

Variants of Interactive Editors

viewInformation viewSharedInformation

enterInformation

updateInformation updateSharedInformation

enterChoice enterSharedChoice
updateChoice updateSharedChoice

enterMultipleChoice enterSharedMultipleChoice
updateMultipleChoice updateSharedMultipleChoice

All instances of one Core editor:

interact :: d (ReadOnlyShared r) (r (l,v)) (l r v (l,v)) Task l
| descr d & iTask l & iTask r & iTask v

Editors on SDS’s

viewCurDateTime :: Task DateTime

viewCurDateTime

= viewSharedInformation "The current date and time is:" [] currentDateTime

Assign task to someone do both tasks in parallel,
return value first

Editors on SDS’s

twoTasks :: a → Task a | iTask a

twoTasks v = withShared v doTasks

doTasks :: (Shared a) → Task a | iTask a

doTasks sv = user1 @: updateSharedInformation sv

-||

user2 @: viewSharedInformation sv

33

34

Handy predefined functions based on parallel

and : return values of all (embedded) parallel tasks:

allTasks :: [Task a] Task [a] | iTask a

(-&&-) infixr 4 :: (Task a) (Task b) Task (a, b) | iTask a & iTask b

or: return result of (embedded) parallel tasks yielding a value as first:

eitherTask :: (Task a) (Task b) Task (Either a b) | iTask a & iTask b

anyTask :: [Task a] Task a | iTask a

(-||-) infixr 3 :: (Task a) (Task a) Task a | iTask a

one-of: start two tasks, but we are only interested in the result of one of them, use the other to inform:

(||-) infixr 3 :: (Task a) (Task b) Task b | iTask a & iTask b

(-||) infixl 3 :: (Task a) (Task b) Task a | iTask a & iTask b

assign a task to a specific user:

(@:) infix 3 :: User (Task a) Task a | iTask a

All instances of one Core parallel task combinator:

parallel :: d [(ParallelTaskType, (ReadOnlyShared (TaskList a)) Task a)]

 Task [(TaskTime, TaskValue a)] | descr d & iTask a

35

Standard iTask Client

36

Incidone – Coast Guard Search and Rescue Support

Semantics - What is a Task ?

:: Task a :== Event → *State → *((Reduct a, [(TaskNo, Response)]), *State)

:: Reduct a = Reduct (TaskResult a) (Task a)

rewrite :: (Task a) → *State → *(Maybe a, *State) | iTask a

rewrite task st

(ev, world) = getNextEvent st.world

(t, world) = getCurrentTime world

((Reduct result ntask, responses), st) = task ev {st & timeStamp = t, world = world}

= case result of

ValRes _ (Val a Stable) → (Just a, st)

ExcRes _ → (Nothing, st)

_ → rewrite ntask {st & world = informClients responses st.world}

Current Value Remaining Task To do

37

Conclusions

 Task Oriented Programming

 New style of programming for implementing multi-user web applications

 Focusing on tasks, not on the underlying technology

 All source code in one language

 Core

 reactive tasks working on local and shared data

 shared data sources abstracting from any type of shared data

 editor: can handle all interactions

 sequential and parallel combinators

 Operational Semantics

 defined in Clean

 readable, concise, type-checked, executable

 blueprint for implementations

38

39

Future Work

 Real real-world applications

 Coast Guard

 TNO Vessel Crew

 Applicability

 efficiency, scalability, security, version management, collaboration existing systems…

 Parallel & distributed servers

 Simulation

 What is the best way to do the work ?

 Can we do the work with less resources ?

 How to communicate task specifications with Domain Experts, End-Users ?

 Graphical Representations of iTasks, …

 Semantics

 Reasoning ? Proving ? Testing ?

Questions ?

40

41

Papers on iTasks

First paper on iTasks:
iTasks: Executable Specifications of Interactive Work Flow Systems for the Web (ICFP 2007)

Extensions:
iTasks for a change - Type-safe run-time change in dynamically evolving workflows (PEPM 2011)
GiN: a graphical language and tool for defining iTask workflows (TFP 2011)
iTask as a new paradigm for building GUI applications (IFL 2010)
Getting a grip on tasks that coordinate tasks (LDTA 2011)

Semantics:
An Executable and Testable Semantics for iTasks (IFL 2008)

 Task Oriented Programming in a Pure Functional Language (PPDP 2012)

Client site evaluation of tasks:
Transparant Ajax and Client-Site Evaluation of iTasks (IFL 2007)
iEditors: Extending iTask with Interactive Plug-ins (IFL 2008)

Applicability:
A Conference Management System based on the iData Toolkit (IFL 2007)
Web Based Dynamic Workflow Systems for C2 of Military Operations (ICCRTS 2010)
Managing COPD exacerberations with telemedicine (AIME 2010)
Towards Dynamic Workflows for Crisis Management (ISCRAM 2010)
Capturing the Netherlands Coast Guard's SAR Workflow with iTasks (ISCRAM 2011)
A Task-Oriented Incident Coordination Tool (ISCRAM 2012)

Shared Data Sources

Creating an SDS:

withShared :: a ((Shared a) → Task b) → Task b | iTask b // Shared memory

sharedStore :: String a → Shared a | iTask a // Special File

externalFile :: FilePath → Shared String // Ordinary File

sqlShare :: SQLDatabase String … → ReadWriteShared r w // SQL Database

Reading an SDS:

get :: (RWShared r w) → Task r | iTask r // read once

currentTime :: ReadOnlyShared Time

currentDate :: ReadOnlyShared Date

currentDateTime :: ReadOnlyShared DateTime

currentUser :: ReadOnlyShared User

users :: ReadOnlyShared [User]

Updating an SDS:

set :: w (RWShared r w) → Task w | iTask w // write once

update :: (r → w) (RWShared r w) → Task w | iTask r & iTask w

42

