TOP

Rinus Plasmeijer - Bas Lijnse - Peter Achten
Pieter Koopman - Steffen Michels - Jurrien Slutterheim (TNO-RU)
Jan Martin Jansen (NLDA) - Laszlo Domoszlai (ELTE)

Radboud University Nijmegen

Task Oriented Programming

Rinus Plasmeijer - Bas Lijnse - Peter Achten
Pieter Koopman - Steffen Michels - Jurrien Slutterheim (TNO-RU)
Jan Martin Jansen (NLDA) - Laszlo Domoszlai (ELTE)

Radboud University Nijmegen

From Workflow Specifications in FP to TOP

How can we define nicely
- workflows management systems in a pure FP ?
- multi-user web based GUI applications ?
- merge sever-side and client-side evaluation ?
- the management of tasks, as a task ?

- soft real-time complex collaborations, e.g. support for crisis management ?

Why Task Oriented Programming ?

Tasks are a common notion in daily life / in any organization

People increasingly work together distributively on the internet
Focus on complex collaborations, arbitrary ways of working
(sub) tasks and their interdependencies are dynamically determined
Any kind of task (involving computers) should be expressible
Huge Application Area

CC2, Crisis management, (e) Health Care, Insurance Market, Systems for
Economical Market, (e) Government, Legal Systems, ERP, Social Media

) @,
0’0 0’0

@, @,
0’0 0’0

Tasks are useful building blocks when developing software
<+ function call, procedure call, method invocation, calling a web-service, a query
<+ web form handling, email handling

% process, thread, "app”

L)

Tasks are suited to communicate ideas between Domain Expert - TOP Programmer

Task Oriented Programming

New style of (functional) programming
Tasks as basic building blocks
Reactive system

Declarative
High level of abstraction
No worry about technical realization !

Yields application coordinating the work of collaborating people & systems

But, it can also be used
for Rapid Prototyping
to formalize how work should be organized
to investigate different ways of doing work using simulation with agents
for training: mix of real people and agents

to check properties by testing, analysis or by formal proof (semantics formally
defined)

to communicate desired ways of working between domain experts and
programmers

1 G - implementation of TOP

dynamic workflow system

Domain Specific Programming Language, embedded in -

"just” another Combinator Library

Abstracts as much technical stuff as possible (thanks to generic functions):
graphical user interfaces & handling of user-interaction
persistent storage of information
(client-server) communication
evaluation on client
informing tasks about the progress in tasks others work on
informing tasks when shared information is changed

Yields Web-Service coordinating the tasks o be done...
Tasks can run on server, on client , or on both
Clean is standard compiled twice:

1. to native code (Windows, Mac-0OS, Linux)
2.to SAPL, and just-in-time on demand by client to javascript

iTasks Architecture

My iTask II
Specification

iTasks Architecture

iTask Web Server .

iTask Combinator
Library

My iTask II
Specification

iTasks Architecture

Tablet Sensor

Computer
iTask Client iTask Client iTask Client iTask Client
i iTask User i iTask User i iTask User i iTask User ¢ iTask User
WEB
i Web Service ¢ Web Service ¢ Web Service ¢ RPC Cloud /
Database
: y

iTask Web Server iTask Web Server

iTask Combinator iTask Combinator
Library Library

My iTask II iTask II
Specification Specification

Case study -> Prototype: Coast Guard Search And Rescue

— m
| sthar ”{5“”',5& [Map [Satelite | Hyoria [Temain
’Zl'-)—t(_”:‘ O Redcar, "

oMLUN
'Q%u rmu

g Nor Jeno
lelch
9 Wilhel

W = [N ; %%;OI‘ ow
@ ' 4 rI "<>|<;°“Wa"i"‘ <>"’w ingdh ighmeriana ‘_g|
4 / I = R (
Yy W Smallingessnd O 5
. (/ jf-# ,ﬁ/ﬂ & %s fi A?l 84 s e
/ A @f‘ y@ o
y

1 9 4 Emmen
P ’\} iy
Y WP
) d ﬁ k’/ Hogm -
8 Alkma o

Hoogeveen

i {31 |

v L@ \a@-f.
" ordhom
/} @‘é?srd A Amel 0
l] o L & s Nz Osna
a a - 010 Mol
-./ azriemmermeer -.% -‘wegUU”'_r—emenoo :
2 2= Enschede
nion ¥ : 1 A
W g 23 2 3
im Keynes Luton 1] C:Iches:e&?@@f—‘{ A G 5*5‘4“*”0
) y - o 3 g 4 | 530 n”p| | NorthSea
Chelmsfo N Dam\lar
tiohy_Last abans g ol gﬁ s United
Oxford '-“‘yca'rbe ° ? o Kirjgd
B Jindon f mr m bouthendon SEd Q Dmsmsﬂ.
Eindhoven Deutchla
b ~

FOERECET

. Venlo Es
4 oogle

w%(:onsuﬂing..\nﬂp@hka Kfers:’\“ Y

Prototype : Vessel Crew Optimization - TNO

itasks

dynamic workflow system

iTask
® Tasks: typed, a task value may change over time
®* Basic tasks:

Interactive Tasks : editors

Simple Tasks : return, ...

Foreign stuff : web-service, OS-call, sensors, ...

® Sequential and Parallel Combinators for combining tasks
Defines control flow and data flow between tasks

® Shared Information: one concept for sharing any kind of information
+ growing iTask to support frequently occurring work patterns
+ Clean

pure, higher order, polymorphic, overloaded, generic functions
hybrid typing: strongly statically typed + dynamic typing

12

Task Values

it Task a = typed unit of work which should deliver a task result of type a

While the task is going on, its value may change over fime

13

Task Values

i Task a = typed unit of work which should deliver a task result of type a

D

While the task is going on, its value may change over fime

14

Task Values

i Task a = typed unit of work which should deliver a task result of type a

While the task is going on, its value may change over fime

ﬁ

D @

15

Task Values

i Task a = typed unit of work which should deliver a task result of type a

While the task is going on, its value may change over fime

ﬁ

. A

16

Task Values

m i Taska typedunit of work which should deliver a task result of type a

= While the task is going on, its value may change over time

17

Task Values

i: Task a = typed unit of work which should deliver a task result of type a
While the task is going on, its value may change over fime

:: TaskResult a = ValRes TimeStamp (Value a)

| 3e: ExcRese & iTask e
:: Value a = NoVal

| Val a Stability 1
:: Stability E Bool ‘

Task values
can be observed by other tasks
may influence the work of others y
can be of any type: user defined, higher order (e.g a task or a function)
must satisfy the iTask context restriction

A Task may raise an exception

A Task never finishes (although the work may be done)

but its value may not be needed anymore by the environment...

18

Editors

module example

import iTasks Optional Lens

for tuning
Start :: *World —» *World standard view

Start world = startEngine myTask world

myTask :: Task-
myTask = enterInformation "Enter an integer" []

rlter an integer

43|

One can change
the value as often
as one likes

Editors never
deliver a Stable
value

View

19

Editors - 2

:: Person
.: Gender

{ name :: String, gender :: Gender, dateOfBirth :: Maybe Date}
Male | Female

derive class iTask Person, Gender

myTask :: Task -

myTask = enterInformation "Enter your personal information" []

Enter your personal information

Mame™: Albert Einstein

- H,
Gender®: Male

Date of birth: 1897-03-14

20

Editors - 3

myTask :: Task [Person]
myTask = enterInformation "Please personal information of multiple people” []

Enter personal information of multiple people

Mame™: Albert Einstein
Gender®: Male

Date of hirth: 1897-03-14

Mame®: Miels Bahr

o t
Gender®: Male

Date of birth: 1885-10-07]

Editors - 4

simpleEditor :: Task Note :

simpleEditor = enterInformation "Enter a piece of text" []

Enter a piece of text

You can type in 2 pigge
of text here
ifth
a’téj;%[gs g,;mug to large & Choose a date

chooseDate :: Task Date

chooseDate = enterInformation "Choose a date" []

antarraticalhd Choose a date

pointOnMap :: Task GoogleMap
pointOnMap = enterInformation "ShonjEs—-

&~ Show me the location

simple
simple

| satelliet | Hybride | Terrein |
=

4’%&
c:“"‘a

Middelaar

NZT1

tepnsunteS

"?@%g

NZT1

Kaartggevens ©2011 Google - &

Tool: | Line

[~| | Clear | | Finish |

Editors - 5

pizzaWith :: Task [String]

pizzaWith = enterMultipleChoice "What do you like on your pizza ?" []
["Cheese" " Tomato","Ansjofish","Salami"]

o~ What do you like on your pizza ?

What do you like on your pizza ?

J| Cheese
Tormato

4| Ansjofish

/| Salami

23

Variant of Interactive Editors

Basic tasks: Interactive editor for filling in forms of a certain type:

viewInformation

enterInformation

:: d [ViewOptiona] a — Task a i"descr d &iTask a

:i d [En generic gVisualizeEditor a | gVisualizeText a, gHeaders a, géridRows. a

— :: (Maybe a) *V5t. — (VisualizationResult,*V.o1)
updateInformation :: d [Up generic gVisualizeText a = StaticVisualizationMode a — [String]
. generic gUpdate a i (UpdateMode a) *USt. > (a, *U31)
enterChoice % © [Ch generic gkleaders a it a —> [String]
upda‘l‘eChoice i d [Ch generic géridRows a | gVisualizeText a
:: a [String] — Maybe [String]

enterMultipleChoice :: d [N generic gVerify. a T 2 iMaybe a) *Verst. %Ewﬁt |

. —— generic JSONEncode : — [JSONNode
updateMultipleChoice : d [1 0 i 7eoNpecode t = [Z5ONNode] > (Maybe t, [1SQNNade])

generic gEq a tag — Bool
All instances of one editor

Options: definable view: between task value type a and arbitrary view type v

descr d: can vary from a simple string to html code

iTask a : bunch of type driven generic functions for doing the real work

24

Sequential Combinator: >*

palindrome :: Task (Maybe String)
palindrome = enterInformation "Enter a palindrome" []
>>* [OnAction ActionOk (ifValue isPalindrome (\v — return (Just v)))
, OnAction ActionCancel (always (return Nothing))

]

Enter a palindrome

F-EII:El:Ell

Enter a palindrome

racecar|

25

Sequential Combinator: >*

Observe Task a, continue with one of the Task b's:
- if a certain action is performed by the end-user
- if the value of the observed task is satisfying a certain predicate

- or the observed task has raised an exception to be handled here

oF>c

26

- Sequential Combinator

Combinator for Sequential Composition
(>»*) infix| 1:: (Task a) [TaskStep ab] — Task b

:: TaskStepab

= OnAction Action ((Value a) — Maybe (Task b))

| iTaska & iTask b

| OnValue ((Value @) — Maybe (Task b))
| E.e: OnException (e — Task b) & iTask e
it Action = Action String [ActionOption]
:: ActionOption = ActionKey Hotkey
| ActionWeight Int
| ActionIcon String
| ActionTrigger DoubleClick
;i Hotkey = { key :: Key, ctrl :: Bool, alt :: Bool, shift :: Bool }

ActionOk

:== Action "Ok" [ActionIcon "ok", ActionKey (unmodified KEY_ENTER)]

27

- Sequential Combinator

Combinator for Sequential Composition
(>»*) infix| 1:: (Task a) [TaskStep ab] — Task b

:: TaskStepab

= OnAction Action ((Value a) — Maybe (Task b))

| iTaska & iTask b

| OnValue ((Value a) — Maybe (Task b))
| E.e: OnException (e — Task b) & iTask e
it Action = Action String [ActionOption]
:: ActionOption = ActionKey Hotkey
| ActionWeight Int
| ActionIcon String
| ActionTrigger DoubleClick
;i Hotkey = { key :: Key, ctrl :: Bool, alt :: Bool, shift :: Bool }
ActionOpen :== Action "/File/Open" [ActionIcon "open", ActionKey (ctrl KEY_O)]

28

- Shared Data Sources

SDS: one abstraction layer for any type of shared data: easy to use for the progammer
- Shared Memory@ , Files @1 Database E , Time @ , Sensors , ...

- Reading and Writing can be of different type

- SDS's can be composed from others

- Tasks depending on an SDS are automatically informed when it is being changed

:: RWShared rw

:: Shareda == RWShareda a

:: ReadOnlyShared a :== RWShared a Void
:: WriteOnlyShared a :== RWShared Void a

VAY

Variants of Interactive Editors

viewInformation

enterInformation
updateInformation

enterChoice
updateChoice

enterMultipleChoice
updateMultipleChoice

30

Variants of Interactive Editors

viewInformation viewSharedInformation

enterInformation

updateInformation updateSharedInformation

enterChoice enterSharedChoice

updateChoice updateSharedChoice

enterMultipleChoice enterSharedMultipleChoice

updateMultipleChoice updateSharedMultipleChoice
All instances of one editor:

interact :: d (ReadOnlyShared r) (r > (v)) (|l > r—> v— (lv)) > Task |
| descr d & iTask | & iTask r & iTask v

31

Editors on SDS's

viewCurDateTime :: Task DateTime
viewCurDateTime
= viewSharedInformation "The current date and time is:" [] currentDateTime

View date and time

The current date and time is:

2013-06-24 15:23:06

Editors on SDS's

twoTasks :: a — Task a | iTask a

; ' do both tasks in parallel,
twoTasks v = withShared v doTasks Assign task to someone return value first

doTasks :: (Shared a) =
doTasks sv = userl @: updg

user?2 @: viewSharedInformation sv

Edit a Track

Source™: v &

Album™: sor Satchafunkilus and the musterion of rock
Artist™: Joe Satriani
Year®: 2008

Track™:

4

Title™: Professor Satchafunkilus View a Track

Time™: 00:04:47 v &

Tags™:

metal

gurcar

rock

instrumental

guitar hero

guitar hero

Handy predefined functions based on parallel

and : return values of all (embedded) parallel tasks:
all Tasks it [Task a] — Task [a] | iTask a
(-&&-) infixr 4 it (Task a) (Task b) — Task (a, b) | iTaska & iTask b

or: return result of (embedded) parallel tasks yielding a value as first:

eitherTask it (Task a) (Task b) — Task (Either a b) | iTaska & iTask b
any Task it [Task a] — Task a | iTask a
(-1|-) infixr 3 :: (Task a) (Taska) — Taska | iTask a

one-of: start two tasks, but we are only interested in the result of one of them, use the other to inform:
(|]-) infixr 3 it (Task a) (Task b) — Taskb | iTaska & iTask b
(-1 infixl 3 it (Task a) (Task b) — Taska | iTaska & iTask b

assign a task to a specific user:
(@:) infix 3 it User (Task a) — Task a | iTask a

All instances of one parallel fask combinator:

parallel :: d [(ParallelTaskType, (ReadOnlyShared (TaskList a)) - Task a)]
— Task [(TaskTime, TaskValue a)] | descr d & iTask a

34

itasks Standard iTask Client

< dynamic workflow system

Running...

(F. ! localhost Pl A ﬂ'

|| Tasks Welcome Root user <roots %, pefresh ﬁj Log out
=" Basic API Examples Title Priority Date Deadine
=3 Interaction with basic types
=] Hello world

=_;| Enter a string
=] Enter an integer View stored persons MormalPriority 2012-03-29 13:32:36

=] Enter a date & time Enter a siring MermalPriority 2012-03-29 13:36:18
[Interaction with custom types Enter an integer MormalPriority 2012-03-29 13:36:25

Edit stored persons MormalPriority 2012-03-29 13:29:15
Edit stored persans MarmalPriority 2012-03-29 13:30:36

== Interaction with shared data Manage users MormalPriority 2012-03-29 13:40:59
=] view date and time
=] Edit stored persons -
:_:I View stored persons I-:; Open |cpl Delets

] Sequential task composition Untitled | Untitled = || Untitled = || Untitled
=+] Parallel task composition

=] Manage users Import & export ~ | [__| File -
Import CSV file... available

Export CSV file... Title
Import demo users Root user
Alice
Bob
Carol
Dave
|| Task description
Eve

Fred

Manage system users...

Start Workflow

Incidone - Coast Guard Search and Rescue Support

Incidone

Incidone | + L

| | B | itasks.org * Go

S L Q) | ¥ |#) (B~ |= -]
DN INCIDONE poveres o osis Wecome s Linse <cis> 2l g o

./ Communication Incidents £z~ Contacts v Actions
_f? Add phone call Add radio call
Communication no Time Type Direction Handled by ‘With contact About incidents Call status Caller id
16 2013-05-20 15:34:07 PhoneCall In Bas Lijnse Uly [Surfer gevallen drijft af bij Domburg] Answered -
15 2013-08-20 15:32:37 P2000Message Out = = N = =
14 »| | -
13 Communication direction -
12 . B -
11 In + @
10 Caller 606 Lt
5] Log in Lkl
Indicate who you called with. You can either enter a new contac
] _‘67 localhost B- Q &wﬁ | B3~ | # |~
7 Add new contactl _‘\INC")ONEWWM byitasks Welcome Bas Lijnse <bas> 3 Preferences... | Log out
B 3 calls and Messages Incidents || &’ Contacts | « Actions | Zeearend Diver miss
5 = | New Open
Ype: Person
Browse Map i
4 p— ___.__Tevoli Amaranth
Name: = - Map l_ﬁg:e\llte | < z
: . | ‘ g Warmerhuizen B
3 Position: X 9] 4} 0 Enkif
D~ 2 o =)
Heerhugowaard
1 Needs help: 77 - g 00 . [kmaar Hoorn
18
Communication means: B u 0 Oy :
S | 5 9] y, Castricum Markerr g
Seala) i -
T (% eemskerk Purmerend e
XCMTelephone N = ol | Contact no: 1
o fen <g Type: Vessel
Phone no: V) o aggram
) O o ; Name: Ievoli Amaranth
litem) il (o 0 Amsterdam: umeer Almere
. T W b OQ % oot AT
0 g 0 0 Hilegormt 1 AT RiZNCS) I
] < 0 e /> Bussum
o : ()
- 0 Hilversum
b <SQ
aar Maarssenbroek

Woerden Utrecht Zeist

Nieu

gein
Gouda)

Vianer

- What is a Task ?

i Task a 1=z Event — *State — *((Reduct a, [(TaskNo, Response)]), *State)
' Reducta = Reduct (Tasleesul’r a) (Task a)
rewrite :: (Task a) » *State — *(Maybe a, *State) | iTask a
rewrite task st
(ev, world) = getNextEvent st.world
(t, world) = getCurrentTime world
((Reduct , responses), st) = task ev {st & tfimeStamp = t, world = world}
= case of

ValRes _ (Val a Stable) — (Just a, st)

ExcRes _ — (Nothing, st)

— rewrite {st & world = informClients responses st.world}

37

Conclusions

Task Oriented Programming
New style of programming for implementing multi-user web applications
Focusing on tasks, not on the underlying technology
All source code in one language

reactive tasks working on local and shared data

shared data sources abstracting from any type of shared data
editor: can handle all interactions

sequential and parallel combinators

Operational Semantics
defined in Clean
readable, concise, type-checked, executable
blueprint for implementations

38

Future Work

Real real-world applications
Coast Guard
TNO Vessel Crew

Applicability
efficiency, scalability, security, version management, collaboration existing systems..

Parallel & distributed servers

Simulation
What is the best way to do the work ?
Can we do the work with less resources ?

How to communicate task specifications with Domain Experts, End-Users ?
Graphical Representations of iTasks, ...

Semantics
Reasoning ? Proving ? Testing ?

39

Questions ?

40

Papers on iTasks

First paper on iTasks:
iTasks: Executable Specifications of Interactive Work Flow Systems for the Web (ICFP 2007)

Extensions:
iTasks for a change - Type-safe run-time change in dynamically evolving workflows (PEPM 2011)
GiN: a graphical language and tool for defining iTask workflows (TFP 2011)
iTask as a new paradigm for building GUI applications (IFL 2010)
Getting a grip on tasks that coordinate tasks (LDTA 2011)
Semantics:
An Executable and Testable Semantics for iTasks (IFL 2008)
Task Oriented Programming in a Pure Functional Language (PPDP 2012)

Client site evaluation of tasks:

Transparant Ajax and Client-Site Evaluation of iTasks (IFL 2007)
iEditors: Extending iTask with Interactive Plug-ins (IFL 2008)
Applicability:

A Conference Management System based on the iData Toolkit (IFL 2007)
Web Based Dynamic Workflow Systems for C2 of Military Operations (ICCRTS 2010)
Managing COPD exacerberations with telemedicine (AIME 2010)
Towards Dynamic Workflows for Crisis Management (ISCRAM 2010)
Capturing the Netherlands Coast Guard's SAR Workflow with iTasks (ISCRAM 2011)
A Task-Oriented Incident Coordination Tool (ISCRAM 2012)

41

Shared Data Sources

Creating an SDS:
withShared

sharedStore
externalFile
sqlShare

Reading an SDS:
get :: (RWShared r w)

currentTime
currentDate
currentDateTime
currentUser
users

Updating an SDS:
set

update

it a ((Shared a) — Task b) — Task b | iTask b

:: String a — Shareda | iTaska

:: FilePath — Shared String

:: SQLDatabase String ... — ReadWriteShared r w
— Task r | iTask r

:: ReadOnlyShared Time

:: ReadOnlyShared Date

:: ReadOnlyShared DateTime
:: ReadOnlyShared User

:: ReadOnlyShared [User]

:: w (RWShared r w) — Task w | iTask w

// Shared memory

// Special File
// Ordinary File
// SQL Database

// read once

// write once

it (r > w) (RWShared r w) — Task w | iTask r & iTask w

42

