

An Overview of Lua

Roberto Ierusalimschy

“Haskell: How do I drive this thing? Despite
being older than many languages on the list,

Haskell is more modern in most ways.”

“If programming languages were cars”

http://perevodik.net/en/posts/39/

“Lua: cute, efficient, and becoming very trendy.”

http://perevodik.net/en/posts/39/

4

What is Lua?

● Yet another scripting language
– a “dysfunctional language”?

● Not totally unlike Python, Ruby, Perl, etc.

5

Where is Lua?

● Scripting of applications
● Strong niche in games
● Strong niche in embedded devices

Scripting

 Nmap, Snort, Wireshark, LuaTeX, Flame, VLC
Media Player, Adobe Lightroom, ...

● Slashdot, Feb 1, 2012: “Wikipedia Chooses Lua
As Its New Template Language”

● Wired, March 19, 2013: “Meet Wikipedia, the
Encyclopedia Anyone Can Code”

“As of this weekend, anyone on Earth can use Lua
[...] to build material on Wikipedia and its many
sister sites, such as Wikiquote and Wiktionary.”

{{chess diagram-fen
|fen=r3r1k1/1bqn1p1p/ppnpp1p1/6P1/P2NPP2/2N4R/
1PP2QBP/5R1K
}}

Wikipedia: Example

Lua in Games

● The Engine Survey (Mark DeLoura,
03/02/09,Gamasutra)

● What script languages are most people using?

10

1

11

Embedded Systems

 Samsung (TVs), Cisco (routers), Logitech
(keyboards), Olivetti (printers), Océ (printers),
Ginga (Brazilian TV middleware), Verison (set-top
boxes), Texas Instruments (calculators Nspire),
Huawei (cell phones), Sierra Wireless (M2M
devices), …

Scripting the Internet of
Things

November 2011: Sierra Wireless, IBM,
Eurotech, and the Eclipse Foundation establish
an M2M Industry Working Group to ease the
development, testing, and deployment of
machine-to-machine solutions.

13

Books

Why Lua?

● Embedability
● Portability
● Small size
● Simplicity

Embedability

● Emphasis on scripting
– to be used together with a system language

– tight integration between languages

– by-directional communication

● Not only an implementation issue
– big impact on language design

● Embedded in C/C++, Java, Fortran, C#, Perl,
Ruby, Python, etc.

Scripting in Grim Fandango

“[The engine] doesn't know anything about adventure games, or
talking, or puzzles, or anything else that makes Grim Fandango
the game it is. It just knows how to render a set from data that it's
loaded and draw characters in that set. […]
The real heroes in the development of Grim Fandango were the
scripters. They wrote everything from how to respond to the
controls to dialogs to camera scripts to door scripts to the in-game
menus and options screens. […]
A TREMENDOUS amount of this game is written in Lua. The
engine, including the Lua interpreter, is really just a small part of
the finished product.”

Bret Mogilefsky

Portability

● Written in ANSI C ∩ ANSI C++
• avoids #ifdef's
• avoids dark corners of the C standard

● Runs on most platforms we ever heard of
– iOS, Android, PS3, PSP, Nintendo DS, IBM z/OS,

Arduino boards, embedded hardware, etc.

● Runs on bare metal
– eLua

Small size

● Less than 20,000 lines of C code
● ELF binary: less than 200 KB

– complete package

● Important for portability
– allows Lua to run in small machines

Simplicity

Reference manual with 100 pages (proxy for
complexity)

(spine)

documents language,
libraries, and C API

function fact (n)
 if n == 0 then
 return 1
 else
 return n * fact(n ­ 1)
 end
end

function fact (n)
 local f = 1
 for i=2,n do
 f = f * i
 end
 return f
end

How is Lua?

● Conventional syntax
• somewhat verbose (end-user programming)

BTW...

function fact (n)
 local f = 1
 for i=2,n do f = f * i; end
 return f
end

fact = function (n)
 local f = 1
 for i=2,n do f = f * i; end
 return f
 end

syntactic sugar

How is Lua?

● semantically somewhat similar to Scheme
● similar to JavaScript, too

– Lua predates JS by two years

● functions are first-class values with static
scoping

● proper tail recursive
● co-routines

– equivalent to one-shot continuations (call/1cc)

Tables

● associative arrays
– any value to any value

● only data-structure mechanism in Lua
● tables implement most data structures in a

simple and efficient way
● records: syntactical sugar t.x for t["x"]
● arrays: integers as indices
● sets: elements as indices

Modules

● Tables populated with functions

● Several facilities come for free
• submodules
• local names

local math = require "math"
print(math.sqrt(10))

Objects

● first-class functions + tables ≈ objects
● + syntactical sugar for methods (to handle

self) + delegation

function a:foo (x)
 ...
end

a.foo = function (self,x)
 ...
end

a:foo(x) a.foo(a,x)

Objects

● first-class functions + tables ≈ objects
● syntactical sugar for methods

• handles self

Delegation

● field-access delegation (instead of method-
call delegation)

● when a delegates to b, any field absent in a
is got from b
• a[k] becomes (a[k] or b[k])

● allows prototype-based and class-based
objects

● allows single inheritance

Delegation at work

a:foo(x) a.foo(a,x)

● k = 0
delegate:

● "class": ● a:
● foo = function ...
● ...

Coroutines

● old and well-established concept, but with
several variations

● variations not equivalent
• several languages implement restricted forms of

coroutines that are not equivalent to one-shot
continuations

Coroutines in Lua

c = coroutine.create(function ()
 print(1)
 coroutine.yield()
 print(2)
 end)

coroutine.resume(c) --> 1
coroutine.resume(c) --> 2

Coroutines in Lua

● first-class values
• in particular, we may invoke a coroutine from any

point in a program
● stackful

• a coroutine can transfer control from inside any
number of function calls

● asymmetrical
• different commands to resume and to yield

Coroutines in Lua

● simple and efficient implementation
• the easy part of multithreading

● first class + stackful = complete coroutines
• equivalent to one-shot continuations
• we can implement call/1cc

● coroutines present one-shot continuations in
a format that is more familiar to most
programmers

Asymmetric coroutines

● asymmetric and symmetric coroutines are
equivalent

● not when there are different kinds of contexts
– integration with C

● how to do a transfer with C activation
records in the stack?

● resume fits naturally in the C API

Coroutines x continuations

● most uses of continuations can be coded
with coroutines
– “who has the main loop” problem

• producer-consumer
• extending x embedding

• iterators x generators
• the same-fringe problem

• collaborative multithreading

So, What About Lua?

● Emphasis on scripting
● Small and simple
● Leading scripting language in games
● Very popular in embedded devices
● Several other big applications
● Virtually unknown in some circles

– both games and embedding have some cultural
barriers

– not a “Web language”?

Escape from Monkey Island (2000)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Lua
	Embedability
	Slide 16
	Portability
	Slide 18
	Slide 19
	An overview of Lua
	BTW...
	Slide 23
	Data structures
	Modules
	Objects
	Slide 27
	Delegation
	Slide 29
	Coroutines
	Coroutines in Lua
	Slide 32
	Slide 33
	Slide 34
	Coroutines x continuations
	Slide 36
	Slide 37

