
GPS:

Aaron Turon
Viktor Vafeiadis 

Derek Dreyer 
MPI-SWS

Navigating weak memory with
ghosts, protocols, and separation

GPS:

Aaron Turon
Viktor Vafeiadis 

Derek Dreyer 
MPI-SWS

Navigating weak memory with
ghosts, protocols, and separation

To appear in OOPSLA’14  

(don’t shoot me)

Concurrent Program Logics
Separation	

Logic, 2001

Concurrent	

SL, 2004

RGSep &	

SAGL, 2007

Deny-Guarantee, 	

2009

LRG, 	

2009

HLRG, 	

2010

CAP, 	

2010

HOCAP, 	

2011

RGSim, 	

2012

Concurrent Program Logics
Separation	

Logic, 2001

Concurrent	

SL, 2004

RGSep &	

SAGL, 2007

Deny-Guarantee, 	

2009

LRG, 	

2009

HLRG, 	

2010

CAP, 	

2010

HOCAP, 	

2011

RGSim, 	

2012

!

Geared toward reasoning about racy,  
high-performance (e.g. lock-free)  

concurrent data structures

Concurrent Program Logics
Separation	

Logic, 2001

Concurrent	

SL, 2004

RGSep &	

SAGL, 2007

Deny-Guarantee, 	

2009

CAP, 	

2010

HOCAP, 	

2011

Increasing
Modularity:
!
Ownership & separation 
Rely/guarantee
Hidden state
etc.

The Problem
All these logics assume:
 - unrestricted data races 
 - sequential consistency (SC)

This is not a realistic model of concurrency for
high-performance algorithms!

x := 1
y := 2
x := 3

x := 1
y := 2
x := 3

x := 1
y := 2
x := 3

x := 1
y := 2
x := 3

x := 1
y := 2
x := 3

print y
print x

print y
print x

x := 1
y := 2
x := 3

x := 1
y := 2
x := 3

print y
print x

print y
print x
⟶ 2 0

x := 1
y := 2
x := 3

x := 1
y := 2
x := 3

print y
print x

print y
print x
⟶ 2 0

⟶ 2 0/

x := 1
y := 2
x := 3

x := 1
y := 2
x := 3

print y
print x

print y
print x
⟶ 2 0

⟶ 2 0/

Unsound!

x := 1
y := 2
x := 3

x := 1
y := 2
x := 3

Option #1: Prohibit data races  

😎 Makes sense for most code 
😎 Validates seq. optimizations 
😢 Doesn’t help if we want to be  
 racy for high performance

x := 1
y := 2
x := 3

print y
print x
⟶ 2 0/

Option #2: Allow data races for certain variables  

😎 Good for hi-perf concurrent algorithms  
😢 SC semantics is too expensive to implement  
 on modern hardware (must add fences) 
😳 Unnecessary in many cases: better to let  
 experts use weaker consistency semantics

x := 1
y := 2
x := 3

print y
print x
⟶ 2 0

Option #2: Allow data races for certain variables  

😎 Good for hi-perf concurrent algorithms  
😢 SC semantics is too expensive to implement  
 on modern hardware (must add fences) 
😳 Unnecessary in many cases: better to let  
 experts use weaker consistency semantics

C11 Memory
Model

Atomics 
(Synchronization)

Nonatomics
(Data)

• Intended for most users 
(data race-free)

• If no data races exist, 
they behave as SC

• If data races exist, 
all bets are off

• Validate standard  
sequential optimizations

• Intended for experts 
(data races permitted)

• Several consistency levels: 
- SC 
- Release/acquire 
- Release/consume 
- Relaxed

• Weaker consistency => 
More reordering permitted
by compilers and hardware

Uh Oh…

J�K : CExp ! P(hres : Val [{?},A : P(AName), lab : A ! Act, sb : P(A⇥A), fst : A, lst : Ai)
JvK def

= {hv, {a}, lab, ;, a, ai | a 2 AName ^ lab(a) = skip}
Jalloc()K def

= {h`, {a}, lab, ;, a, ai | a 2 AName ^ ` 2 Loc ^ lab(a) = A(`)}
J[v]

Z

:= v

0K def

= {hv0, {a}, lab, ;, a, ai | a 2 AName ^ lab(a) = W

Z

(v, v

0
)}

J[v]
Z

K def

= {hv0, {a}, lab, ;, a, ai | a 2 AName ^ v

0 2 Val ^ lab(a) = R

Z

(v, v

0
)}

JCAS

X,Y

(v, v

o

, v

n

)K def

= {hv0, {a}, lab, ;, a, ai | a 2 AName ^ v

0 2 Val ^ v

0 6= v

o

^ lab(a) = R

Y

(v, v

0
)}

[{hv
o

, {a}, lab, ;, a, ai | a 2 AName ^ lab(a) = RMW

X

(v, v

o

, v

n

)}
Jlet x = E

1

in E

2

K def

= {h?,A
1

, lab
1

, sb
1

, fst

1

, lst

1

i | h?,A
1

, lab
1

, sb
1

, fst

1

, lst

1

i 2 JE
1

K}
[{hres

2

,A
1

]A
2

, lab
1

[lab
2

, sb
1

[sb
2

[{(lst
1

, fst

2

)}, fst
1

, lst

2

i |
hv

1

,A
1

, lab
1

, sb
1

, fst

1

, lst

1

i 2 JE
1

K ^ hres
2

,A
2

, lab
2

, sb
2

, fst

2

, lst

2

i 2 JE
2

[v

1

/x]K}
Jrepeat E endK def

= {hres
N

,

U

i2[1..N]

A
i

,

S

i2[1..N]

lab
i

,

S

i2[1..N]

sb
i

[{(lst
1

, fst

2

), . . . , (lst

N�1

, fst

N

)}, fst
1

, lst

N

i |
8i. hres

i

,A
i

, lab
i

, sb
i

, fst

i

, lst

i

i 2 JEK ^ (i 6= N =) res

i

= 0) ^ res

N

6= 0}
JE

1

kE
2

K def

= {hcombine(res
1

, res

2

),A
1

]A
2

] {a
fork

, a

join

}, lab
1

[lab
2

[{a
fork

7! skip, a

join

7! skip},
sb

1

[sb
2

[{(a
fork

, fst

1

), (a

fork

, fst

2

), (lst

1

, a

join

), (lst

2

, a

join

)}, a
fork

, a

join

i |
hres

1

,A
1

, sb
1

, fst

1

, lst

1

i 2 JE
1

K ^ hres
2

,A
2

, sb
2

, fst

2

, lst

2

i 2 JE
2

K ^ a

fork

, a

join

2 AName}

Figure 2. Semantics of closed program expressions.
@x. hb(x, x) (IrreflexiveHB)

8`. totalorder({a 2 A | iswrite
`

(a)},mo) ^ hb
`

✓ mo (ConsistentMO)

totalorder({a 2 A | isSeqCst(a)}, sc) ^ hb
SeqCst

✓ sc ^mo
SeqCst

✓ sc (ConsistentSC)

8b. rf(b) 6= ? () 9`, a. iswrite
`

(a) ^ isread
`

(b) ^ hb(a, b) (ConsistentRFdom)

8a, b. rf(b) = a =) 9`, v. iswrite
`,v

(a) ^ isread
`,v

(b) ^ ¬hb(b, a) (ConsistentRF)

8a, b. rf(b) = a ^ (mode(a) = na _mode(b) = na) =) hb(a, b) (ConsistentRFna)

8a, b. rf(b) = a ^ isSeqCst(b) =) isc(a, b) _ ¬isSeqCst(a) ^ (8x. isc(x, b)) ¬hb(a, x)) (RestrSCReads)
@a, b. hb(a, b) ^mo(rf(b), rf(a)) ^ locs(a) = locs(b) (CoherentRR)

@a, b. hb(a, b) ^mo(rf(b), a) ^ iswrite(a) ^ locs(a) = locs(b) (CoherentWR)

@a, b. hb(a, b) ^mo(b, rf(a)) ^ iswrite(b) ^ locs(a) = locs(b) (CoherentRW)

8a. isrmw(a) ^ rf(a) 6= ? =) mo(rf(a), a) ^ @c. mo(rf(a), c) ^mo(c, a) (AtomicRMW)

8a, b, `. lab(a) = lab(b) = A(`) =) a = b (ConsistentAlloc)

where iswrite
`,v

(a)

def

= 9X, v

old

. lab(a) 2 {W
X

(`, v),RMW

X

(`, v

old

, v)} iswrite
`

(a)

def

= 9v. iswrite
`,v

(a)

isread
`,v

(a)

def

= 9X, v

new

. lab(a) 2 {R
X

(`, v),RMW

X

(`, v, v

new

)} etc.
rsElem(a, b)

def

= sameThread(a, b) _ isrmw(b)

rseq(a)
def

= {a} [{b | rsElem(a, b) ^mo(a, b) ^ (8c. mo(a, c) ^mo(c, b)) rsElem(a, c))}
sw

def

= {(a, b) | mode(a) 2 {rel, rel_acq, sc} ^mode(b) 2 {acq, rel_acq, sc} ^ rf(b) 2 rseq(a)}
hb

def

= (sb [sw)+

hb
`

def

= {(a, b) 2 hb | iswrite
`

(a) ^ iswrite
`

(b)}
X

SeqCst

def

= {(a, b) 2 X | isSeqCst(a) ^ isSeqCst(b)}
isc(a, b)

def

= iswrite
locs(b)

(a) ^ sc(a, b) ^ @c. sc(a, c) ^ sc(c, b) ^ iswrite
locs(b)

(c)

Figure 3. Axioms satisfied by consistent C11 executions, Consistent(A, lab, sb, rf,mo, sc).

c : W(`, 1)

rf

//
a : R(`, 1)

hb ✏✏
d : W(`, 2)

mo

OO

rf

//
b : R(`, 2)

c : W(`, 2)

rf

((

mo

//
a : W(`, 1)

hb ✏✏
b : R(`, 2)

c : W(`, 1)

rf

//
a : R(`, 1)

hb ✏✏
b : W(`, 2)

mo

hh
a

rf�! b means a = rf(b)

a

mo��! b means mo(a, b)

a

hb�! b means hb(a, b)violates CoherentRR violates CoherentWR violates CoherentRW

Figure 4. Sample executions violating coherency conditions (Batty et al. 2011).

Uh Oh…

J�K : CExp ! P(hres : Val [{?},A : P(AName), lab : A ! Act, sb : P(A⇥A), fst : A, lst : Ai)
JvK def

= {hv, {a}, lab, ;, a, ai | a 2 AName ^ lab(a) = skip}
Jalloc()K def

= {h`, {a}, lab, ;, a, ai | a 2 AName ^ ` 2 Loc ^ lab(a) = A(`)}
J[v]

Z

:= v

0K def

= {hv0, {a}, lab, ;, a, ai | a 2 AName ^ lab(a) = W

Z

(v, v

0
)}

J[v]
Z

K def

= {hv0, {a}, lab, ;, a, ai | a 2 AName ^ v

0 2 Val ^ lab(a) = R

Z

(v, v

0
)}

JCAS

X,Y

(v, v

o

, v

n

)K def

= {hv0, {a}, lab, ;, a, ai | a 2 AName ^ v

0 2 Val ^ v

0 6= v

o

^ lab(a) = R

Y

(v, v

0
)}

[{hv
o

, {a}, lab, ;, a, ai | a 2 AName ^ lab(a) = RMW

X

(v, v

o

, v

n

)}
Jlet x = E

1

in E

2

K def

= {h?,A
1

, lab
1

, sb
1

, fst

1

, lst

1

i | h?,A
1

, lab
1

, sb
1

, fst

1

, lst

1

i 2 JE
1

K}
[{hres

2

,A
1

]A
2

, lab
1

[lab
2

, sb
1

[sb
2

[{(lst
1

, fst

2

)}, fst
1

, lst

2

i |
hv

1

,A
1

, lab
1

, sb
1

, fst

1

, lst

1

i 2 JE
1

K ^ hres
2

,A
2

, lab
2

, sb
2

, fst

2

, lst

2

i 2 JE
2

[v

1

/x]K}
Jrepeat E endK def

= {hres
N

,

U

i2[1..N]

A
i

,

S

i2[1..N]

lab
i

,

S

i2[1..N]

sb
i

[{(lst
1

, fst

2

), . . . , (lst

N�1

, fst

N

)}, fst
1

, lst

N

i |
8i. hres

i

,A
i

, lab
i

, sb
i

, fst

i

, lst

i

i 2 JEK ^ (i 6= N =) res

i

= 0) ^ res

N

6= 0}
JE

1

kE
2

K def

= {hcombine(res
1

, res

2

),A
1

]A
2

] {a
fork

, a

join

}, lab
1

[lab
2

[{a
fork

7! skip, a

join

7! skip},
sb

1

[sb
2

[{(a
fork

, fst

1

), (a

fork

, fst

2

), (lst

1

, a

join

), (lst

2

, a

join

)}, a
fork

, a

join

i |
hres

1

,A
1

, sb
1

, fst

1

, lst

1

i 2 JE
1

K ^ hres
2

,A
2

, sb
2

, fst

2

, lst

2

i 2 JE
2

K ^ a

fork

, a

join

2 AName}

Figure 2. Semantics of closed program expressions.
@x. hb(x, x) (IrreflexiveHB)

8`. totalorder({a 2 A | iswrite
`

(a)},mo) ^ hb
`

✓ mo (ConsistentMO)

totalorder({a 2 A | isSeqCst(a)}, sc) ^ hb
SeqCst

✓ sc ^mo
SeqCst

✓ sc (ConsistentSC)

8b. rf(b) 6= ? () 9`, a. iswrite
`

(a) ^ isread
`

(b) ^ hb(a, b) (ConsistentRFdom)

8a, b. rf(b) = a =) 9`, v. iswrite
`,v

(a) ^ isread
`,v

(b) ^ ¬hb(b, a) (ConsistentRF)

8a, b. rf(b) = a ^ (mode(a) = na _mode(b) = na) =) hb(a, b) (ConsistentRFna)

8a, b. rf(b) = a ^ isSeqCst(b) =) isc(a, b) _ ¬isSeqCst(a) ^ (8x. isc(x, b)) ¬hb(a, x)) (RestrSCReads)
@a, b. hb(a, b) ^mo(rf(b), rf(a)) ^ locs(a) = locs(b) (CoherentRR)

@a, b. hb(a, b) ^mo(rf(b), a) ^ iswrite(a) ^ locs(a) = locs(b) (CoherentWR)

@a, b. hb(a, b) ^mo(b, rf(a)) ^ iswrite(b) ^ locs(a) = locs(b) (CoherentRW)

8a. isrmw(a) ^ rf(a) 6= ? =) mo(rf(a), a) ^ @c. mo(rf(a), c) ^mo(c, a) (AtomicRMW)

8a, b, `. lab(a) = lab(b) = A(`) =) a = b (ConsistentAlloc)

where iswrite
`,v

(a)

def

= 9X, v

old

. lab(a) 2 {W
X

(`, v),RMW

X

(`, v

old

, v)} iswrite
`

(a)

def

= 9v. iswrite
`,v

(a)

isread
`,v

(a)

def

= 9X, v

new

. lab(a) 2 {R
X

(`, v),RMW

X

(`, v, v

new

)} etc.
rsElem(a, b)

def

= sameThread(a, b) _ isrmw(b)

rseq(a)
def

= {a} [{b | rsElem(a, b) ^mo(a, b) ^ (8c. mo(a, c) ^mo(c, b)) rsElem(a, c))}
sw

def

= {(a, b) | mode(a) 2 {rel, rel_acq, sc} ^mode(b) 2 {acq, rel_acq, sc} ^ rf(b) 2 rseq(a)}
hb

def

= (sb [sw)+

hb
`

def

= {(a, b) 2 hb | iswrite
`

(a) ^ iswrite
`

(b)}
X

SeqCst

def

= {(a, b) 2 X | isSeqCst(a) ^ isSeqCst(b)}
isc(a, b)

def

= iswrite
locs(b)

(a) ^ sc(a, b) ^ @c. sc(a, c) ^ sc(c, b) ^ iswrite
locs(b)

(c)

Figure 3. Axioms satisfied by consistent C11 executions, Consistent(A, lab, sb, rf,mo, sc).

c : W(`, 1)

rf

//
a : R(`, 1)

hb ✏✏
d : W(`, 2)

mo

OO

rf

//
b : R(`, 2)

c : W(`, 2)

rf

((

mo

//
a : W(`, 1)

hb ✏✏
b : R(`, 2)

c : W(`, 1)

rf

//
a : R(`, 1)

hb ✏✏
b : W(`, 2)

mo

hh
a

rf�! b means a = rf(b)

a

mo��! b means mo(a, b)

a

hb�! b means hb(a, b)violates CoherentRR violates CoherentWR violates CoherentRW

Figure 4. Sample executions violating coherency conditions (Batty et al. 2011).

Event graph axioms
are global, subtle,
and very low-level

Want: local reasoning
with clear, high-level

specifications

Our Contribution
GPS: a “modern” separation logic 
supporting a carefully restricted form of
 - protocols
 - ghost state
 - ownership transfer
that is sound for the C11 weak memory model

Our major focus is showing how to reason about  
the release-acquire consistency mode.

Our Contribution
GPS: a “modern” separation logic 
supporting a carefully restricted form of
 - protocols
 - ghost state
 - ownership transfer
that is sound for the C11 weak memory model

Our major focus is showing how to reason about  
the release-acquire consistency mode.

Takeaway
Separation logic can make sense

of (a form of) weak memory!

Circular Buffers  
(Linux kernel)

D.5.3 Proof setup
Top-level spec

{true} newBuffer() {q. Prod(q) ⇤ Cons(q)}
{Prod(q) ⇤ P (x)} tryProd(q, x) {z. Prod(q) ⇤ (z 6= 0 _ P (x))}

{Cons(q)} tryCons(q) {x. Cons(q) ⇤ (x = 0 _ P (x))}

A ghost PCM for natural numbers We set up a ghost PCM with carrier P(N)4 with composition] component-wise. We
define the following terms over this PCM:

all , (N,N,N,N)
restP(i) , ({j | j > i}, {j | j � i}, ;, ;)

restC(i) , (;, ;, {j | j > i}, {j | j � i})

protP(i) , ({i}, ;, ;, ;)

escP(i) , (;, {i}, ;, ;)

protC(i) , (;, ;, {i}, ;)

escC(i) , (;, ;, ;, {i})

Escrows We define two escrows, PE(�, q, i) and CE(�, q, i), as follows:

PE(�, q, i) : � : escP(i) uninit(q + b+ (i mod N))

_ (q + b+ (i mod N)) ,! �

CE(�, q, j) : � : escC(j) 9x. P (x) ⇤ (q + b+ (j mod N)) ,! x

Protocols We assume STS states for every natural number. We assume two protocols, PP(�, q) and CP(�, q) over natural
number states, with transition relations

vPP , vCP , 

and state interpretations

PP(�, q)(i, x) , ⇤(x = i mod N ⇤ 8j < i. [CE(�, q, j)]) ⇤

� : protP(i)

CP(�, q)(j, x) , ⇤(x = j mod N ⇤ 8i < j +N. [PE(�, q, i)]) ⇤

� : protC(j)

High-level predicates

Prod(q) , 9�, i, j. i < j +N ⇤

q + wi : i PP(�, q)
⇤

q + ri : j CP(�, q)
⇤

� : restP(i)

Cons(q) , 9�, i, j. j  i ⇤ q + wi : i PP(�, q)
⇤

q + ri : j CP(�, q)
⇤

� : restC(j)

47 2014/7/25

D.5 Circular buffer
D.5.1 Parameters
• Fix some choice of buffer size N > 1; the actual capacity is N � 1.
• Fix some per-element predicate P (x).

Let wi = 0, ri = 1, b = 2. We will use these values as field offsets.

D.5.2 Code
Based on circular buffers from the Linux kernel [19].

newBuffer() ,
let q = alloc(N + 2) /* queue = writer index, reader index, buffer */
[q + ri]

at

:= 0;

[q + wi]
at

:= 0;

q

tryProd(q, x) ,
let w = [q + wi]

at

let r = [q + ri]
at

let w0
= w + 1 mod N

if w0
== r then 0

else [q + b +w]
na

:=x;
[q + wi]

at

:=w0
;

1

tryCons(q) ,
let w = [q + wi]

at

let r = [q + ri]
at

if w == r then 0

else let x = [q + b + r]
na

[q + ri]
at

:= r + 1 mod N ;

x

In real implementations, this data structure provides an operation returning a bound on the size of the buffer, which can
then be used to efficiently batch a series of reads/writes without checking the indices each time. It would be straightforward to
generalize our proof to handle such an operation.

Note also that this data structure exhibits non-SC behavior for essentially the same reasons as the Michael-Scott queue does.
(One can construct a similar example to the one given in §D.4.1.)

46 2014/7/25

D.5 Circular buffer
D.5.1 Parameters
• Fix some choice of buffer size N > 1; the actual capacity is N � 1.
• Fix some per-element predicate P (x).

Let wi = 0, ri = 1, b = 2. We will use these values as field offsets.

D.5.2 Code
Based on circular buffers from the Linux kernel [19].

newBuffer() ,
let q = alloc(N + 2) /* queue = writer index, reader index, buffer */
[q + ri]

at

:= 0;

[q + wi]
at

:= 0;

q

tryProd(q, x) ,
let w = [q + wi]

at

let r = [q + ri]
at

let w0
= w + 1 mod N

if w0
== r then 0

else [q + b +w]
na

:=x;
[q + wi]

at

:=w0
;

1

tryCons(q) ,
let w = [q + wi]

at

let r = [q + ri]
at

if w == r then 0

else let x = [q + b + r]
na

[q + ri]
at

:= r + 1 mod N ;

x

In real implementations, this data structure provides an operation returning a bound on the size of the buffer, which can
then be used to efficiently batch a series of reads/writes without checking the indices each time. It would be straightforward to
generalize our proof to handle such an operation.

Note also that this data structure exhibits non-SC behavior for essentially the same reasons as the Michael-Scott queue does.
(One can construct a similar example to the one given in §D.4.1.)

46 2014/7/25

D.5 Circular buffer
D.5.1 Parameters
• Fix some choice of buffer size N > 1; the actual capacity is N � 1.
• Fix some per-element predicate P (x).

Let wi = 0, ri = 1, b = 2. We will use these values as field offsets.

D.5.2 Code
Based on circular buffers from the Linux kernel [19].

newBuffer() ,
let q = alloc(N + 2) /* queue = writer index, reader index, buffer */
[q + ri]

at

:= 0;

[q + wi]
at

:= 0;

q

tryProd(q, x) ,
let w = [q + wi]

at

let r = [q + ri]
at

let w0
= w + 1 mod N

if w0
== r then 0

else [q + b +w]
na

:=x;
[q + wi]

at

:=w0
;

1

tryCons(q) ,
let w = [q + wi]

at

let r = [q + ri]
at

if w == r then 0

else let x = [q + b + r]
na

[q + ri]
at

:= r + 1 mod N ;

x

In real implementations, this data structure provides an operation returning a bound on the size of the buffer, which can
then be used to efficiently batch a series of reads/writes without checking the indices each time. It would be straightforward to
generalize our proof to handle such an operation.

Note also that this data structure exhibits non-SC behavior for essentially the same reasons as the Michael-Scott queue does.
(One can construct a similar example to the one given in §D.4.1.)

46 2014/7/25

Nonatomics

[x]at := 1 [y]at := 1
print [x]at
print [y]at

print [y]at
print [x]at

[x]at := 1 [x]at := 2
print [x]at
print [x]at

print [x]at
print [x]at

{true} allocna(v) {x. x ,! v} {` ,! �} [`]na := v {` ,! v} {` ,! v} [`]na {x. x = v ⇤ ` ,! v}

{P} e {x. Q}
{P ⇤R} e {x. Q ⇤R}

{P1} e1 {Q1} {P2} e2 {Q2}
{P1 ⇤ P2} e1 k e2 {Q1 ⇤Q2}

1

[x]at := 1 [y]at := 1
print [x]at
print [y]at

print [y]at
print [x]at

[x]at := 1 [x]at := 2
print [x]at
print [x]at

print [x]at
print [x]at

{true} allocna(v) {x. x ,! v} {` ,! �} [`]na := v {` ,! v} {` ,! v} [`]na {x. x = v ⇤ ` ,! v}

{P} e {x. Q}
{P ⇤R} e {x. Q ⇤R}

{P1} e1 {Q1} {P2} e2 {Q2}
{P1 ⇤ P2} e1 k e2 {Q1 ⇤Q2}

1

[x]at := 1 [y]at := 1
print [x]at
print [y]at

print [y]at
print [x]at

[x]at := 1 [x]at := 2
print [x]at
print [x]at

print [x]at
print [x]at

{true} allocna(v) {x. x ,! v} {` ,! �} [`]na := v {` ,! v} {` ,! v} [`]na {x. x = v ⇤ ` ,! v}

{P} e {x. Q}
{P ⇤R} e {x. Q ⇤R}

{P1} e1 {Q1} {P2} e2 {Q2}
{P1 ⇤ P2} e1 k e2 {Q1 ⇤Q2}

1

[x]at := 1 [y]at := 1
print [x]at
print [y]at

print [y]at
print [x]at

[x]at := 1 [x]at := 2
print [x]at
print [x]at

print [x]at
print [x]at

{true} allocna(v) {x. x ,! v} {` ,! �} [`]na := v {` ,! v} {` ,! v} [`]na {x. x = v ⇤ ` ,! v}

{P} e {x. Q}
{P ⇤R} e {x. Q ⇤R}

{P1} e1 {Q1} {P2} e2 {Q2}
{P1 ⇤ P2} e1 k e2 {Q1 ⇤Q2}

1

[x]at := 1 [y]at := 1
print [x]at
print [y]at

print [y]at
print [x]at

[x]at := 1 [x]at := 2
print [x]at
print [x]at

print [x]at
print [x]at

{true} allocna(v) {x. x ,! v} {` ,! �} [`]na := v {` ,! v} {` ,! v} [`]na {x. x = v ⇤ ` ,! v}

{P} e {x. Q}
{P ⇤R} e {x. Q ⇤R}

{P1} e1 {Q1} {P2} e2 {Q2}
{P1 ⇤ P2} e1 k e2 {Q1 ⇤Q2}

1

A Brief Introduction to  
Release/Acquire

tion according to an abstract state transition system (§3). Although
seemingly focused on single locations, PL-protocols are in fact the
key to cross-location reasoning: by discovering that one location `
is in a state s in its protocol, one can learn that another location `0 is
at least in some state s

0 in its protocol. This kind of “transitive vis-
ibility” is at the heart of weak memory models, and PL-protocols
provide a structured, thread-local way to reason about it.

PL-protocols are modeled after similar mechanisms in recent
SC concurrency logics [26], and as such, support a flexible combi-
nation of rely-guarantee (by abstractly characterizing interference
between threads), ghost state (by tracking the history of writes to
a location), and CSL-style resource invariants. GPS also offers two
other facilities for ghost instrumentation—ghosts and escrows—
which we explain in §3. The need for multiple mechanisms stems
from the fact that ghost state is not sound in general under a weak
memory semantics. Adapting ghost state to weak memory thus re-
quired us to isolate several different usage patterns that do remain
sound under weak memory assumptions.

GPS targets the recent C11 [16, 17] memory model, which of-
fers portable but fine-grained control over memory consistency
guarantees. To keep the presentation focused, we consider the
two most important consistency modes—nonatomic and release-
acquire (see §2). The logic is, however, sound under the full axioms
of C11. We have defined its semantics and proven its soundness di-
rectly in terms of the axioms of C11, as summarized in §5. The
supplementary materials [1] provide many further details, as well
as a Coq mechanization of the soundness proof of GPS.

To evaluate GPS, we have applied it to several challenging case
studies drawn from the Linux kernel and lock-free data structures,
as we describe in §4. We conclude in §6 with related work.

2. The C11 memory model

Memory models answer a seemingly simple question: when a
thread reads from a location, what values can it encounter?

• Sequential consistency (SC) provides an equally simple answer:
threads read the last value written. SC leads naturally to an
interleaving semantics of concurrency, where threads interact
through a global heap holding each location’s current value.

• In weaker consistency models, the “last value written” to a lo-
cation plays no special role—it may not even be well-defined.
Instead, threads can read out-of-date values reflecting the pos-
sible reorderings performed by the CPU or compiler.

The C11 memory model [16, 17] strikes a careful balance between
these extremes by offering a menu of consistency levels. Broadly,
memory operations are classified as either nonatomic (the default)
or atomic. Nonatomic accesses are intended for “normal data”,
while atomic accesses are used for synchronization.

Nonatomics are governed by a peculiar contract: the program-
mer can assume them to be SC, but must (under this assump-
tion!) never create a data race—roughly, a thread must never write
nonatomically if another thread might access the same location
concurrently. The lack of data races effectively prevents the pro-
gram from observing reorderings, so nonatomic accesses can enjoy
the full suite of compiler/CPU optimizations and still appear SC.

Atomics offer the opposite tradeoff: concurrent threads may
race to e.g., update a location atomically, but the memory model
provides weaker guarantees (and admits fewer optimizations) for
atomic accesses in general. The precise guarantees are determined
by an “ordering annotation”, ranging from SC to fully relaxed.
In this paper, we focus on the release-acquire ordering, which is
the primary building block for non-SC synchronization. As such,
we will use two ordering annotations, O 2 {at, na}, for atomic
(release-acquire) and nonatomic accesses, respectively.

Examples Before introducing C11 formally, we build some in-
tuition through two classic examples. The first is a simplified ver-
sion of Dekker’s algorithm, which provided the first solution to the
mutual-exclusion problem [10]:

[x]
at

:= 1
if [y]

at

== 0 then
/* crit. section */

[y]
at

:= 1
if [x]

at

== 0 then
/* crit. section */

We presume at the outset that x and y are pointers to distinct loca-
tions, both with initial value 0.2 The two threads race to announce
their intent to enter a critical section; each thread then checks
whether it announced first. In this simplified version, even under
SC, it is possible for both threads to lose. Unfortunately, in the C11
model, it is also possible for both threads to win! The intuition is
that C11 allows the reads to be performed before the writes have
become visible to all threads: the two threads can read stale values.

The second example illustrates a case where C11 atomics do
enforce some ordering. The goal is to pass a data structure from
one thread to another (here represented as a single value, 37):

[x]
na

:= 37;
[y]

at

:= 1;
repeat [y]

at

end;
[x]

na

Again, we presume x and y are pointers to distinct locations,
initially 0. The repeat construct executes an expression repeatedly
until its value is nonzero, so the second thread will “spin” until it
sees the write to y by the first thread. Unlike in Dekker’s algorithm,
here C11 will guarantee that the subsequent read from x will re-
turn 37. The key difference is that reading 1 from y yields positive
information about what the first thread has done: if an atomic (re-
lease) write by a given thread is seen by another thread, so is every-
thing that “happened before” the write, including all the writes that
appear prior to it in the thread’s code. Dekker’s algorithm, by con-
trast, draws conclusions from not seeing a write by another thread.

In general, then, release-acquire in C11 does not guarantee
that threads see the globally-latest write to a location, but it does
guarantee that (1) if a thread sees a particular write, it also sees
everything that happened before it, and (2) of the writes a thread
sees for a location, it can only read from the latest.

A final point about the message-passing example: its use of y
guarantees that the write to x by the first thread happens before—
not concurrently with—the read of x by the second thread. Thus
the code is data-race free, despite its nonatomic accesses to x.

Event graphs We now present the C11 model formally, follow-
ing Batty et al. [6] and subsequent simplifications [7, 27]. Our pre-
sentation makes several further simplifications due to our focus on
release-acquire atomics, but GPS is also sound for the full-blown
C11 axioms. The appendix includes more details [1].

Since weak memory models allow threads to see stale values,
they must track the history of an execution and use it to specify
the values a read can return. The C11 model takes the axiomatic
approach: it treats each step of a program execution as a node in a
graph, and then constrains the graph through a collection of global
axioms on several kinds of edges. Each node is labeled with one of
the following actions:

↵ ::= S | A(`..`0) | R(`, V,O) | W(`, V,O) | U(`, V, V)

The actions are Skip (no memory interaction), Allocate, Read,
Write, and atomic Update. Reads and writes record the location,
value read/written, and ordering annotation. An atomic update
U(`, Vo, Vn) simultaneously reads the value Vo from location ` and
updates it with the new value Vn (used for e.g., compare-and-set).

We assume an infinite set of event IDs; an action map A is then a
finite partial map from event IDs to actions, which defines the nodes

2 We are using here the program logic notation for pointer dereferencing,
[�], which avoids ambiguity with the ⇤ of separation logic.

2 2013/12/9

Dekker’s Algorithm 😢

tion according to an abstract state transition system (§3). Although
seemingly focused on single locations, PL-protocols are in fact the
key to cross-location reasoning: by discovering that one location `
is in a state s in its protocol, one can learn that another location `0 is
at least in some state s

0 in its protocol. This kind of “transitive vis-
ibility” is at the heart of weak memory models, and PL-protocols
provide a structured, thread-local way to reason about it.

PL-protocols are modeled after similar mechanisms in recent
SC concurrency logics [26], and as such, support a flexible combi-
nation of rely-guarantee (by abstractly characterizing interference
between threads), ghost state (by tracking the history of writes to
a location), and CSL-style resource invariants. GPS also offers two
other facilities for ghost instrumentation—ghosts and escrows—
which we explain in §3. The need for multiple mechanisms stems
from the fact that ghost state is not sound in general under a weak
memory semantics. Adapting ghost state to weak memory thus re-
quired us to isolate several different usage patterns that do remain
sound under weak memory assumptions.

GPS targets the recent C11 [16, 17] memory model, which of-
fers portable but fine-grained control over memory consistency
guarantees. To keep the presentation focused, we consider the
two most important consistency modes—nonatomic and release-
acquire (see §2). The logic is, however, sound under the full axioms
of C11. We have defined its semantics and proven its soundness di-
rectly in terms of the axioms of C11, as summarized in §5. The
supplementary materials [1] provide many further details, as well
as a Coq mechanization of the soundness proof of GPS.

To evaluate GPS, we have applied it to several challenging case
studies drawn from the Linux kernel and lock-free data structures,
as we describe in §4. We conclude in §6 with related work.

2. The C11 memory model

Memory models answer a seemingly simple question: when a
thread reads from a location, what values can it encounter?

• Sequential consistency (SC) provides an equally simple answer:
threads read the last value written. SC leads naturally to an
interleaving semantics of concurrency, where threads interact
through a global heap holding each location’s current value.

• In weaker consistency models, the “last value written” to a lo-
cation plays no special role—it may not even be well-defined.
Instead, threads can read out-of-date values reflecting the pos-
sible reorderings performed by the CPU or compiler.

The C11 memory model [16, 17] strikes a careful balance between
these extremes by offering a menu of consistency levels. Broadly,
memory operations are classified as either nonatomic (the default)
or atomic. Nonatomic accesses are intended for “normal data”,
while atomic accesses are used for synchronization.

Nonatomics are governed by a peculiar contract: the program-
mer can assume them to be SC, but must (under this assump-
tion!) never create a data race—roughly, a thread must never write
nonatomically if another thread might access the same location
concurrently. The lack of data races effectively prevents the pro-
gram from observing reorderings, so nonatomic accesses can enjoy
the full suite of compiler/CPU optimizations and still appear SC.

Atomics offer the opposite tradeoff: concurrent threads may
race to e.g., update a location atomically, but the memory model
provides weaker guarantees (and admits fewer optimizations) for
atomic accesses in general. The precise guarantees are determined
by an “ordering annotation”, ranging from SC to fully relaxed.
In this paper, we focus on the release-acquire ordering, which is
the primary building block for non-SC synchronization. As such,
we will use two ordering annotations, O 2 {at, na}, for atomic
(release-acquire) and nonatomic accesses, respectively.

Examples Before introducing C11 formally, we build some in-
tuition through two classic examples. The first is a simplified ver-
sion of Dekker’s algorithm, which provided the first solution to the
mutual-exclusion problem [10]:

[x]
at

:= 1
if [y]

at

== 0 then
/* crit. section */

[y]
at

:= 1
if [x]

at

== 0 then
/* crit. section */

We presume at the outset that x and y are pointers to distinct loca-
tions, both with initial value 0.2 The two threads race to announce
their intent to enter a critical section; each thread then checks
whether it announced first. In this simplified version, even under
SC, it is possible for both threads to lose. Unfortunately, in the C11
model, it is also possible for both threads to win! The intuition is
that C11 allows the reads to be performed before the writes have
become visible to all threads: the two threads can read stale values.

The second example illustrates a case where C11 atomics do
enforce some ordering. The goal is to pass a data structure from
one thread to another (here represented as a single value, 37):

[x]
na

:= 37;
[y]

at

:= 1;
repeat [y]

at

end;
[x]

na

Again, we presume x and y are pointers to distinct locations,
initially 0. The repeat construct executes an expression repeatedly
until its value is nonzero, so the second thread will “spin” until it
sees the write to y by the first thread. Unlike in Dekker’s algorithm,
here C11 will guarantee that the subsequent read from x will re-
turn 37. The key difference is that reading 1 from y yields positive
information about what the first thread has done: if an atomic (re-
lease) write by a given thread is seen by another thread, so is every-
thing that “happened before” the write, including all the writes that
appear prior to it in the thread’s code. Dekker’s algorithm, by con-
trast, draws conclusions from not seeing a write by another thread.

In general, then, release-acquire in C11 does not guarantee
that threads see the globally-latest write to a location, but it does
guarantee that (1) if a thread sees a particular write, it also sees
everything that happened before it, and (2) of the writes a thread
sees for a location, it can only read from the latest.

A final point about the message-passing example: its use of y
guarantees that the write to x by the first thread happens before—
not concurrently with—the read of x by the second thread. Thus
the code is data-race free, despite its nonatomic accesses to x.

Event graphs We now present the C11 model formally, follow-
ing Batty et al. [6] and subsequent simplifications [7, 27]. Our pre-
sentation makes several further simplifications due to our focus on
release-acquire atomics, but GPS is also sound for the full-blown
C11 axioms. The appendix includes more details [1].

Since weak memory models allow threads to see stale values,
they must track the history of an execution and use it to specify
the values a read can return. The C11 model takes the axiomatic
approach: it treats each step of a program execution as a node in a
graph, and then constrains the graph through a collection of global
axioms on several kinds of edges. Each node is labeled with one of
the following actions:

↵ ::= S | A(`..`0) | R(`, V,O) | W(`, V,O) | U(`, V, V)

The actions are Skip (no memory interaction), Allocate, Read,
Write, and atomic Update. Reads and writes record the location,
value read/written, and ordering annotation. An atomic update
U(`, Vo, Vn) simultaneously reads the value Vo from location ` and
updates it with the new value Vn (used for e.g., compare-and-set).

We assume an infinite set of event IDs; an action map A is then a
finite partial map from event IDs to actions, which defines the nodes

2 We are using here the program logic notation for pointer dereferencing,
[�], which avoids ambiguity with the ⇤ of separation logic.

2 2013/12/9

Dekker’s Algorithm

Under SC, both
threads can lose.

😢

tion according to an abstract state transition system (§3). Although
seemingly focused on single locations, PL-protocols are in fact the
key to cross-location reasoning: by discovering that one location `
is in a state s in its protocol, one can learn that another location `0 is
at least in some state s

0 in its protocol. This kind of “transitive vis-
ibility” is at the heart of weak memory models, and PL-protocols
provide a structured, thread-local way to reason about it.

PL-protocols are modeled after similar mechanisms in recent
SC concurrency logics [26], and as such, support a flexible combi-
nation of rely-guarantee (by abstractly characterizing interference
between threads), ghost state (by tracking the history of writes to
a location), and CSL-style resource invariants. GPS also offers two
other facilities for ghost instrumentation—ghosts and escrows—
which we explain in §3. The need for multiple mechanisms stems
from the fact that ghost state is not sound in general under a weak
memory semantics. Adapting ghost state to weak memory thus re-
quired us to isolate several different usage patterns that do remain
sound under weak memory assumptions.

GPS targets the recent C11 [16, 17] memory model, which of-
fers portable but fine-grained control over memory consistency
guarantees. To keep the presentation focused, we consider the
two most important consistency modes—nonatomic and release-
acquire (see §2). The logic is, however, sound under the full axioms
of C11. We have defined its semantics and proven its soundness di-
rectly in terms of the axioms of C11, as summarized in §5. The
supplementary materials [1] provide many further details, as well
as a Coq mechanization of the soundness proof of GPS.

To evaluate GPS, we have applied it to several challenging case
studies drawn from the Linux kernel and lock-free data structures,
as we describe in §4. We conclude in §6 with related work.

2. The C11 memory model

Memory models answer a seemingly simple question: when a
thread reads from a location, what values can it encounter?

• Sequential consistency (SC) provides an equally simple answer:
threads read the last value written. SC leads naturally to an
interleaving semantics of concurrency, where threads interact
through a global heap holding each location’s current value.

• In weaker consistency models, the “last value written” to a lo-
cation plays no special role—it may not even be well-defined.
Instead, threads can read out-of-date values reflecting the pos-
sible reorderings performed by the CPU or compiler.

The C11 memory model [16, 17] strikes a careful balance between
these extremes by offering a menu of consistency levels. Broadly,
memory operations are classified as either nonatomic (the default)
or atomic. Nonatomic accesses are intended for “normal data”,
while atomic accesses are used for synchronization.

Nonatomics are governed by a peculiar contract: the program-
mer can assume them to be SC, but must (under this assump-
tion!) never create a data race—roughly, a thread must never write
nonatomically if another thread might access the same location
concurrently. The lack of data races effectively prevents the pro-
gram from observing reorderings, so nonatomic accesses can enjoy
the full suite of compiler/CPU optimizations and still appear SC.

Atomics offer the opposite tradeoff: concurrent threads may
race to e.g., update a location atomically, but the memory model
provides weaker guarantees (and admits fewer optimizations) for
atomic accesses in general. The precise guarantees are determined
by an “ordering annotation”, ranging from SC to fully relaxed.
In this paper, we focus on the release-acquire ordering, which is
the primary building block for non-SC synchronization. As such,
we will use two ordering annotations, O 2 {at, na}, for atomic
(release-acquire) and nonatomic accesses, respectively.

Examples Before introducing C11 formally, we build some in-
tuition through two classic examples. The first is a simplified ver-
sion of Dekker’s algorithm, which provided the first solution to the
mutual-exclusion problem [10]:

[x]
at

:= 1
if [y]

at

== 0 then
/* crit. section */

[y]
at

:= 1
if [x]

at

== 0 then
/* crit. section */

We presume at the outset that x and y are pointers to distinct loca-
tions, both with initial value 0.2 The two threads race to announce
their intent to enter a critical section; each thread then checks
whether it announced first. In this simplified version, even under
SC, it is possible for both threads to lose. Unfortunately, in the C11
model, it is also possible for both threads to win! The intuition is
that C11 allows the reads to be performed before the writes have
become visible to all threads: the two threads can read stale values.

The second example illustrates a case where C11 atomics do
enforce some ordering. The goal is to pass a data structure from
one thread to another (here represented as a single value, 37):

[x]
na

:= 37;
[y]

at

:= 1;
repeat [y]

at

end;
[x]

na

Again, we presume x and y are pointers to distinct locations,
initially 0. The repeat construct executes an expression repeatedly
until its value is nonzero, so the second thread will “spin” until it
sees the write to y by the first thread. Unlike in Dekker’s algorithm,
here C11 will guarantee that the subsequent read from x will re-
turn 37. The key difference is that reading 1 from y yields positive
information about what the first thread has done: if an atomic (re-
lease) write by a given thread is seen by another thread, so is every-
thing that “happened before” the write, including all the writes that
appear prior to it in the thread’s code. Dekker’s algorithm, by con-
trast, draws conclusions from not seeing a write by another thread.

In general, then, release-acquire in C11 does not guarantee
that threads see the globally-latest write to a location, but it does
guarantee that (1) if a thread sees a particular write, it also sees
everything that happened before it, and (2) of the writes a thread
sees for a location, it can only read from the latest.

A final point about the message-passing example: its use of y
guarantees that the write to x by the first thread happens before—
not concurrently with—the read of x by the second thread. Thus
the code is data-race free, despite its nonatomic accesses to x.

Event graphs We now present the C11 model formally, follow-
ing Batty et al. [6] and subsequent simplifications [7, 27]. Our pre-
sentation makes several further simplifications due to our focus on
release-acquire atomics, but GPS is also sound for the full-blown
C11 axioms. The appendix includes more details [1].

Since weak memory models allow threads to see stale values,
they must track the history of an execution and use it to specify
the values a read can return. The C11 model takes the axiomatic
approach: it treats each step of a program execution as a node in a
graph, and then constrains the graph through a collection of global
axioms on several kinds of edges. Each node is labeled with one of
the following actions:

↵ ::= S | A(`..`0) | R(`, V,O) | W(`, V,O) | U(`, V, V)

The actions are Skip (no memory interaction), Allocate, Read,
Write, and atomic Update. Reads and writes record the location,
value read/written, and ordering annotation. An atomic update
U(`, Vo, Vn) simultaneously reads the value Vo from location ` and
updates it with the new value Vn (used for e.g., compare-and-set).

We assume an infinite set of event IDs; an action map A is then a
finite partial map from event IDs to actions, which defines the nodes

2 We are using here the program logic notation for pointer dereferencing,
[�], which avoids ambiguity with the ⇤ of separation logic.

2 2013/12/9

Dekker’s Algorithm

Under SC, both
threads can lose.

Under Rel/Acq, both
threads can also win!

😢

tion according to an abstract state transition system (§3). Although
seemingly focused on single locations, PL-protocols are in fact the
key to cross-location reasoning: by discovering that one location `
is in a state s in its protocol, one can learn that another location `0 is
at least in some state s

0 in its protocol. This kind of “transitive vis-
ibility” is at the heart of weak memory models, and PL-protocols
provide a structured, thread-local way to reason about it.

PL-protocols are modeled after similar mechanisms in recent
SC concurrency logics [26], and as such, support a flexible combi-
nation of rely-guarantee (by abstractly characterizing interference
between threads), ghost state (by tracking the history of writes to
a location), and CSL-style resource invariants. GPS also offers two
other facilities for ghost instrumentation—ghosts and escrows—
which we explain in §3. The need for multiple mechanisms stems
from the fact that ghost state is not sound in general under a weak
memory semantics. Adapting ghost state to weak memory thus re-
quired us to isolate several different usage patterns that do remain
sound under weak memory assumptions.

GPS targets the recent C11 [16, 17] memory model, which of-
fers portable but fine-grained control over memory consistency
guarantees. To keep the presentation focused, we consider the
two most important consistency modes—nonatomic and release-
acquire (see §2). The logic is, however, sound under the full axioms
of C11. We have defined its semantics and proven its soundness di-
rectly in terms of the axioms of C11, as summarized in §5. The
supplementary materials [1] provide many further details, as well
as a Coq mechanization of the soundness proof of GPS.

To evaluate GPS, we have applied it to several challenging case
studies drawn from the Linux kernel and lock-free data structures,
as we describe in §4. We conclude in §6 with related work.

2. The C11 memory model

Memory models answer a seemingly simple question: when a
thread reads from a location, what values can it encounter?

• Sequential consistency (SC) provides an equally simple answer:
threads read the last value written. SC leads naturally to an
interleaving semantics of concurrency, where threads interact
through a global heap holding each location’s current value.

• In weaker consistency models, the “last value written” to a lo-
cation plays no special role—it may not even be well-defined.
Instead, threads can read out-of-date values reflecting the pos-
sible reorderings performed by the CPU or compiler.

The C11 memory model [16, 17] strikes a careful balance between
these extremes by offering a menu of consistency levels. Broadly,
memory operations are classified as either nonatomic (the default)
or atomic. Nonatomic accesses are intended for “normal data”,
while atomic accesses are used for synchronization.

Nonatomics are governed by a peculiar contract: the program-
mer can assume them to be SC, but must (under this assump-
tion!) never create a data race—roughly, a thread must never write
nonatomically if another thread might access the same location
concurrently. The lack of data races effectively prevents the pro-
gram from observing reorderings, so nonatomic accesses can enjoy
the full suite of compiler/CPU optimizations and still appear SC.

Atomics offer the opposite tradeoff: concurrent threads may
race to e.g., update a location atomically, but the memory model
provides weaker guarantees (and admits fewer optimizations) for
atomic accesses in general. The precise guarantees are determined
by an “ordering annotation”, ranging from SC to fully relaxed.
In this paper, we focus on the release-acquire ordering, which is
the primary building block for non-SC synchronization. As such,
we will use two ordering annotations, O 2 {at, na}, for atomic
(release-acquire) and nonatomic accesses, respectively.

Examples Before introducing C11 formally, we build some in-
tuition through two classic examples. The first is a simplified ver-
sion of Dekker’s algorithm, which provided the first solution to the
mutual-exclusion problem [10]:

[x]
at

:= 1
if [y]

at

== 0 then
/* crit. section */

[y]
at

:= 1
if [x]

at

== 0 then
/* crit. section */

We presume at the outset that x and y are pointers to distinct loca-
tions, both with initial value 0.2 The two threads race to announce
their intent to enter a critical section; each thread then checks
whether it announced first. In this simplified version, even under
SC, it is possible for both threads to lose. Unfortunately, in the C11
model, it is also possible for both threads to win! The intuition is
that C11 allows the reads to be performed before the writes have
become visible to all threads: the two threads can read stale values.

The second example illustrates a case where C11 atomics do
enforce some ordering. The goal is to pass a data structure from
one thread to another (here represented as a single value, 37):

[x]
na

:= 37;
[y]

at

:= 1;
repeat [y]

at

end;
[x]

na

Again, we presume x and y are pointers to distinct locations,
initially 0. The repeat construct executes an expression repeatedly
until its value is nonzero, so the second thread will “spin” until it
sees the write to y by the first thread. Unlike in Dekker’s algorithm,
here C11 will guarantee that the subsequent read from x will re-
turn 37. The key difference is that reading 1 from y yields positive
information about what the first thread has done: if an atomic (re-
lease) write by a given thread is seen by another thread, so is every-
thing that “happened before” the write, including all the writes that
appear prior to it in the thread’s code. Dekker’s algorithm, by con-
trast, draws conclusions from not seeing a write by another thread.

In general, then, release-acquire in C11 does not guarantee
that threads see the globally-latest write to a location, but it does
guarantee that (1) if a thread sees a particular write, it also sees
everything that happened before it, and (2) of the writes a thread
sees for a location, it can only read from the latest.

A final point about the message-passing example: its use of y
guarantees that the write to x by the first thread happens before—
not concurrently with—the read of x by the second thread. Thus
the code is data-race free, despite its nonatomic accesses to x.

Event graphs We now present the C11 model formally, follow-
ing Batty et al. [6] and subsequent simplifications [7, 27]. Our pre-
sentation makes several further simplifications due to our focus on
release-acquire atomics, but GPS is also sound for the full-blown
C11 axioms. The appendix includes more details [1].

Since weak memory models allow threads to see stale values,
they must track the history of an execution and use it to specify
the values a read can return. The C11 model takes the axiomatic
approach: it treats each step of a program execution as a node in a
graph, and then constrains the graph through a collection of global
axioms on several kinds of edges. Each node is labeled with one of
the following actions:

↵ ::= S | A(`..`0) | R(`, V,O) | W(`, V,O) | U(`, V, V)

The actions are Skip (no memory interaction), Allocate, Read,
Write, and atomic Update. Reads and writes record the location,
value read/written, and ordering annotation. An atomic update
U(`, Vo, Vn) simultaneously reads the value Vo from location ` and
updates it with the new value Vn (used for e.g., compare-and-set).

We assume an infinite set of event IDs; an action map A is then a
finite partial map from event IDs to actions, which defines the nodes

2 We are using here the program logic notation for pointer dereferencing,
[�], which avoids ambiguity with the ⇤ of separation logic.

2 2013/12/9

Dekker’s Algorithm 😢

5. Related work
5.1 From SC reasoning to weak memory reasoning
As explained in the introduction, the various logical mecha-
nisms employed by GPS are not fundamentally new: they are
all either descendants or restrictions of mechanisms proposed
in prior logics for strong (SC) concurrency.

First and foremost, many recent SC logics support some
form of protocol for describing fine-grained invariants on
shared state; GPS’s per-location (PL) protocols are inspired
most directly by the protocols of CaReSL [37]. CaReSL’s
protocols take the form of state transition systems (STSs)
wherein each STS state is associated with an invariant
about some underlying shared state. The primary differ-
ence between GPS’s protocols and CaReSL’s protocols is
that CaReSL’s protocols are not restricted to governing the
contents of a single location: they may govern arbitrary heap
regions, and this additional flexibility renders them suitable
for verifying programs that assume sequential consistency.

For instance, the CaReSL protocol for verifying Dekker’s
algorithm (§2) would look something like this:

0, 0

1, 0

0, 1

1, 1

Here, each protocol state governs the contents of x and y
simultaneously. In the (1, 0) state the first thread has won the
race; in the (0, 1) state the second thread has won the race;
and in the (1, 1) state the race is over (and it is impossible
to tell who won). The verification of Dekker’s algorithm just
has to ensure that (a) each thread only makes state changes
according to the protocol, which is easy since updating x or
y from 0 to 1 is always legal according to the protocol, and
(b) each thread only accesses the shared resource once it has
observed the protocol being in its respective winning state.

In the weak memory setting, the kind of simultaneous
invariant represented by the above protocol, relating the
“current” states of x and y, is unsound because the updates to
x and y may appear in different orders to the first and second
threads. It is a key original insight in the design of GPS that
the soundness of CaReSL-style protocols for weak memory
can in fact be regained if we simply restrict them to governing
a single location at a time.

GPS’s support for ghost state is also inspired by CaReSL,
but the mechanisms are somewhat different. CaReSL supports
ghost state through “tokens”, which are coupled with its
protocol mechanism, whereas in GPS ghost state is handled
separately via ghost PCMs [14, 22, 25]. (In this paper, we
have only made use of simple token-like ghost PCMs, but the
“bounded ticket lock” example, shown in the appendix [1],
employs a much more interesting PCM.) GPS’s separation
of orthogonal mechanisms has the side benefit of removing
CaReSL’s “token purity” restriction—e.g., in the circular
buffer example from Section 4, we did not require any

side condition on the per-item predicate P (x), whereas an
analogous proof in CaReSL would have required that P (x)
be a “token-pure” (i.e., duplicable) assertion.

GPS’s escrows, P Q, can be viewed as yet another kind
of CaReSL-style protocol, restricted in a different way than
PL-protocols are. Escrows are essentially protocols with two
states: before and after the resource being held in escrow, Q,
has been exchanged for the escrow condition, P . Escrows are
sound in the weak memory setting because the only thread
that can observe anything at all about the protocol is the
thread that exchanges P for Q. Since that thread owns P , and
P is exclusive, it can deduce that the escrow is in the before
state, and therefore safely transition to the after state, without
any concern about the observations of other threads.

Although in the context of concurrency logics the escrow
mechanism is unusual, there is some precedent for it: escrows
are very similar to “exponential serialization”, a mechanism
proposed by Bugliesi et al. [7] as part of an affine type system
for verifying cryptographic protocols. Bugliesi et al. employ
this mechanism for much the same reasons we do—namely,
as a way of indirectly transferring control of an exclusive
resource from one thread to another across a duplicable,
“knowledge-only” channel. However, in their case the channel
takes the form of a cryptographic signing key, whereas for us
it is a shared memory location. Logically, the main difference
between escrows and exponential serialization is that the
precondition of escrow creation—i.e., that the escrow transfer
condition P is exclusive (P ⇤ P) false)—is something we
can prove easily within the logic of GPS. In contrast, since
the primitive affine predicates of Bugliesi et al.’s type system
have no underlying semantic interpretation, they can only
ensure the analogous exclusiveness condition via a complex
and syntactic “guardedness” check on typing contexts.

5.2 Relaxed Separation Logic (RSL)
The closest related work to GPS is the recent Relaxed Separa-
tion Logic (RSL) introduced by Vafeiadis and Narayan [38],
which is the only prior program logic for the C11 memory
model. The goal of RSL is to support simple reasoning about
release-acquire accesses in the style of Concurrent Separation
Logic (CSL) [30]. Unlike in GPS, it is possible in RSL for a
release write to directly transfer resource ownership to an ac-
quire read (e.g., in verifying the nonatomic message-passing
example, for which GPS required escrows). To manage such
transfers, RSL employs release/acquire permissions describ-
ing the resources to be transferred upon a write to a given
location. The choice of resources depends solely on the value
being written, and so any given value can only be used to
perform a transfer once per location.

GPS draws much inspiration from RSL, particularly in
its proof of soundness, whose structure is based closely
on RSL’s. There are many significant differences, however.
Most importantly, GPS offers a much more flexible way of
coordinating ownership and knowledge transfers between
threads—including rely-guarantee reasoning—through its

15 2014/8/4

tion according to an abstract state transition system (§3). Although
seemingly focused on single locations, PL-protocols are in fact the
key to cross-location reasoning: by discovering that one location `
is in a state s in its protocol, one can learn that another location `0 is
at least in some state s

0 in its protocol. This kind of “transitive vis-
ibility” is at the heart of weak memory models, and PL-protocols
provide a structured, thread-local way to reason about it.

PL-protocols are modeled after similar mechanisms in recent
SC concurrency logics [26], and as such, support a flexible combi-
nation of rely-guarantee (by abstractly characterizing interference
between threads), ghost state (by tracking the history of writes to
a location), and CSL-style resource invariants. GPS also offers two
other facilities for ghost instrumentation—ghosts and escrows—
which we explain in §3. The need for multiple mechanisms stems
from the fact that ghost state is not sound in general under a weak
memory semantics. Adapting ghost state to weak memory thus re-
quired us to isolate several different usage patterns that do remain
sound under weak memory assumptions.

GPS targets the recent C11 [16, 17] memory model, which of-
fers portable but fine-grained control over memory consistency
guarantees. To keep the presentation focused, we consider the
two most important consistency modes—nonatomic and release-
acquire (see §2). The logic is, however, sound under the full axioms
of C11. We have defined its semantics and proven its soundness di-
rectly in terms of the axioms of C11, as summarized in §5. The
supplementary materials [1] provide many further details, as well
as a Coq mechanization of the soundness proof of GPS.

To evaluate GPS, we have applied it to several challenging case
studies drawn from the Linux kernel and lock-free data structures,
as we describe in §4. We conclude in §6 with related work.

2. The C11 memory model

Memory models answer a seemingly simple question: when a
thread reads from a location, what values can it encounter?

• Sequential consistency (SC) provides an equally simple answer:
threads read the last value written. SC leads naturally to an
interleaving semantics of concurrency, where threads interact
through a global heap holding each location’s current value.

• In weaker consistency models, the “last value written” to a lo-
cation plays no special role—it may not even be well-defined.
Instead, threads can read out-of-date values reflecting the pos-
sible reorderings performed by the CPU or compiler.

The C11 memory model [16, 17] strikes a careful balance between
these extremes by offering a menu of consistency levels. Broadly,
memory operations are classified as either nonatomic (the default)
or atomic. Nonatomic accesses are intended for “normal data”,
while atomic accesses are used for synchronization.

Nonatomics are governed by a peculiar contract: the program-
mer can assume them to be SC, but must (under this assump-
tion!) never create a data race—roughly, a thread must never write
nonatomically if another thread might access the same location
concurrently. The lack of data races effectively prevents the pro-
gram from observing reorderings, so nonatomic accesses can enjoy
the full suite of compiler/CPU optimizations and still appear SC.

Atomics offer the opposite tradeoff: concurrent threads may
race to e.g., update a location atomically, but the memory model
provides weaker guarantees (and admits fewer optimizations) for
atomic accesses in general. The precise guarantees are determined
by an “ordering annotation”, ranging from SC to fully relaxed.
In this paper, we focus on the release-acquire ordering, which is
the primary building block for non-SC synchronization. As such,
we will use two ordering annotations, O 2 {at, na}, for atomic
(release-acquire) and nonatomic accesses, respectively.

Examples Before introducing C11 formally, we build some in-
tuition through two classic examples. The first is a simplified ver-
sion of Dekker’s algorithm, which provided the first solution to the
mutual-exclusion problem [10]:

[x]
at

:= 1
if [y]

at

== 0 then
/* crit. section */

[y]
at

:= 1
if [x]

at

== 0 then
/* crit. section */

We presume at the outset that x and y are pointers to distinct loca-
tions, both with initial value 0.2 The two threads race to announce
their intent to enter a critical section; each thread then checks
whether it announced first. In this simplified version, even under
SC, it is possible for both threads to lose. Unfortunately, in the C11
model, it is also possible for both threads to win! The intuition is
that C11 allows the reads to be performed before the writes have
become visible to all threads: the two threads can read stale values.

The second example illustrates a case where C11 atomics do
enforce some ordering. The goal is to pass a data structure from
one thread to another (here represented as a single value, 37):

[x]
na

:= 37;
[y]

at

:= 1;
repeat [y]

at

end;
[x]

na

Again, we presume x and y are pointers to distinct locations,
initially 0. The repeat construct executes an expression repeatedly
until its value is nonzero, so the second thread will “spin” until it
sees the write to y by the first thread. Unlike in Dekker’s algorithm,
here C11 will guarantee that the subsequent read from x will re-
turn 37. The key difference is that reading 1 from y yields positive
information about what the first thread has done: if an atomic (re-
lease) write by a given thread is seen by another thread, so is every-
thing that “happened before” the write, including all the writes that
appear prior to it in the thread’s code. Dekker’s algorithm, by con-
trast, draws conclusions from not seeing a write by another thread.

In general, then, release-acquire in C11 does not guarantee
that threads see the globally-latest write to a location, but it does
guarantee that (1) if a thread sees a particular write, it also sees
everything that happened before it, and (2) of the writes a thread
sees for a location, it can only read from the latest.

A final point about the message-passing example: its use of y
guarantees that the write to x by the first thread happens before—
not concurrently with—the read of x by the second thread. Thus
the code is data-race free, despite its nonatomic accesses to x.

Event graphs We now present the C11 model formally, follow-
ing Batty et al. [6] and subsequent simplifications [7, 27]. Our pre-
sentation makes several further simplifications due to our focus on
release-acquire atomics, but GPS is also sound for the full-blown
C11 axioms. The appendix includes more details [1].

Since weak memory models allow threads to see stale values,
they must track the history of an execution and use it to specify
the values a read can return. The C11 model takes the axiomatic
approach: it treats each step of a program execution as a node in a
graph, and then constrains the graph through a collection of global
axioms on several kinds of edges. Each node is labeled with one of
the following actions:

↵ ::= S | A(`..`0) | R(`, V,O) | W(`, V,O) | U(`, V, V)

The actions are Skip (no memory interaction), Allocate, Read,
Write, and atomic Update. Reads and writes record the location,
value read/written, and ordering annotation. An atomic update
U(`, Vo, Vn) simultaneously reads the value Vo from location ` and
updates it with the new value Vn (used for e.g., compare-and-set).

We assume an infinite set of event IDs; an action map A is then a
finite partial map from event IDs to actions, which defines the nodes

2 We are using here the program logic notation for pointer dereferencing,
[�], which avoids ambiguity with the ⇤ of separation logic.

2 2013/12/9

Dekker’s Algorithm 😢

5. Related work
5.1 From SC reasoning to weak memory reasoning
As explained in the introduction, the various logical mecha-
nisms employed by GPS are not fundamentally new: they are
all either descendants or restrictions of mechanisms proposed
in prior logics for strong (SC) concurrency.

First and foremost, many recent SC logics support some
form of protocol for describing fine-grained invariants on
shared state; GPS’s per-location (PL) protocols are inspired
most directly by the protocols of CaReSL [37]. CaReSL’s
protocols take the form of state transition systems (STSs)
wherein each STS state is associated with an invariant
about some underlying shared state. The primary differ-
ence between GPS’s protocols and CaReSL’s protocols is
that CaReSL’s protocols are not restricted to governing the
contents of a single location: they may govern arbitrary heap
regions, and this additional flexibility renders them suitable
for verifying programs that assume sequential consistency.

For instance, the CaReSL protocol for verifying Dekker’s
algorithm (§2) would look something like this:

0, 0

1, 0

0, 1

1, 1

Here, each protocol state governs the contents of x and y
simultaneously. In the (1, 0) state the first thread has won the
race; in the (0, 1) state the second thread has won the race;
and in the (1, 1) state the race is over (and it is impossible
to tell who won). The verification of Dekker’s algorithm just
has to ensure that (a) each thread only makes state changes
according to the protocol, which is easy since updating x or
y from 0 to 1 is always legal according to the protocol, and
(b) each thread only accesses the shared resource once it has
observed the protocol being in its respective winning state.

In the weak memory setting, the kind of simultaneous
invariant represented by the above protocol, relating the
“current” states of x and y, is unsound because the updates to
x and y may appear in different orders to the first and second
threads. It is a key original insight in the design of GPS that
the soundness of CaReSL-style protocols for weak memory
can in fact be regained if we simply restrict them to governing
a single location at a time.

GPS’s support for ghost state is also inspired by CaReSL,
but the mechanisms are somewhat different. CaReSL supports
ghost state through “tokens”, which are coupled with its
protocol mechanism, whereas in GPS ghost state is handled
separately via ghost PCMs [14, 22, 25]. (In this paper, we
have only made use of simple token-like ghost PCMs, but the
“bounded ticket lock” example, shown in the appendix [1],
employs a much more interesting PCM.) GPS’s separation
of orthogonal mechanisms has the side benefit of removing
CaReSL’s “token purity” restriction—e.g., in the circular
buffer example from Section 4, we did not require any

side condition on the per-item predicate P (x), whereas an
analogous proof in CaReSL would have required that P (x)
be a “token-pure” (i.e., duplicable) assertion.

GPS’s escrows, P Q, can be viewed as yet another kind
of CaReSL-style protocol, restricted in a different way than
PL-protocols are. Escrows are essentially protocols with two
states: before and after the resource being held in escrow, Q,
has been exchanged for the escrow condition, P . Escrows are
sound in the weak memory setting because the only thread
that can observe anything at all about the protocol is the
thread that exchanges P for Q. Since that thread owns P , and
P is exclusive, it can deduce that the escrow is in the before
state, and therefore safely transition to the after state, without
any concern about the observations of other threads.

Although in the context of concurrency logics the escrow
mechanism is unusual, there is some precedent for it: escrows
are very similar to “exponential serialization”, a mechanism
proposed by Bugliesi et al. [7] as part of an affine type system
for verifying cryptographic protocols. Bugliesi et al. employ
this mechanism for much the same reasons we do—namely,
as a way of indirectly transferring control of an exclusive
resource from one thread to another across a duplicable,
“knowledge-only” channel. However, in their case the channel
takes the form of a cryptographic signing key, whereas for us
it is a shared memory location. Logically, the main difference
between escrows and exponential serialization is that the
precondition of escrow creation—i.e., that the escrow transfer
condition P is exclusive (P ⇤ P) false)—is something we
can prove easily within the logic of GPS. In contrast, since
the primitive affine predicates of Bugliesi et al.’s type system
have no underlying semantic interpretation, they can only
ensure the analogous exclusiveness condition via a complex
and syntactic “guardedness” check on typing contexts.

5.2 Relaxed Separation Logic (RSL)
The closest related work to GPS is the recent Relaxed Separa-
tion Logic (RSL) introduced by Vafeiadis and Narayan [38],
which is the only prior program logic for the C11 memory
model. The goal of RSL is to support simple reasoning about
release-acquire accesses in the style of Concurrent Separation
Logic (CSL) [30]. Unlike in GPS, it is possible in RSL for a
release write to directly transfer resource ownership to an ac-
quire read (e.g., in verifying the nonatomic message-passing
example, for which GPS required escrows). To manage such
transfers, RSL employs release/acquire permissions describ-
ing the resources to be transferred upon a write to a given
location. The choice of resources depends solely on the value
being written, and so any given value can only be used to
perform a transfer once per location.

GPS draws much inspiration from RSL, particularly in
its proof of soundness, whose structure is based closely
on RSL’s. There are many significant differences, however.
Most importantly, GPS offers a much more flexible way of
coordinating ownership and knowledge transfers between
threads—including rely-guarantee reasoning—through its

15 2014/8/4

Unsound for weak memory!

“IRIW”

[x]at := 1 [y]at := 1
print [x]at
print [y]at

print [y]at
print [x]at

1

Both threads can print 1, 0

😢

No global total store ordering (unlike TSO)

tion according to an abstract state transition system (§3). Although
seemingly focused on single locations, PL-protocols are in fact the
key to cross-location reasoning: by discovering that one location `
is in a state s in its protocol, one can learn that another location `0 is
at least in some state s

0 in its protocol. This kind of “transitive vis-
ibility” is at the heart of weak memory models, and PL-protocols
provide a structured, thread-local way to reason about it.

PL-protocols are modeled after similar mechanisms in recent
SC concurrency logics [26], and as such, support a flexible combi-
nation of rely-guarantee (by abstractly characterizing interference
between threads), ghost state (by tracking the history of writes to
a location), and CSL-style resource invariants. GPS also offers two
other facilities for ghost instrumentation—ghosts and escrows—
which we explain in §3. The need for multiple mechanisms stems
from the fact that ghost state is not sound in general under a weak
memory semantics. Adapting ghost state to weak memory thus re-
quired us to isolate several different usage patterns that do remain
sound under weak memory assumptions.

GPS targets the recent C11 [16, 17] memory model, which of-
fers portable but fine-grained control over memory consistency
guarantees. To keep the presentation focused, we consider the
two most important consistency modes—nonatomic and release-
acquire (see §2). The logic is, however, sound under the full axioms
of C11. We have defined its semantics and proven its soundness di-
rectly in terms of the axioms of C11, as summarized in §5. The
supplementary materials [1] provide many further details, as well
as a Coq mechanization of the soundness proof of GPS.

To evaluate GPS, we have applied it to several challenging case
studies drawn from the Linux kernel and lock-free data structures,
as we describe in §4. We conclude in §6 with related work.

2. The C11 memory model

Memory models answer a seemingly simple question: when a
thread reads from a location, what values can it encounter?

• Sequential consistency (SC) provides an equally simple answer:
threads read the last value written. SC leads naturally to an
interleaving semantics of concurrency, where threads interact
through a global heap holding each location’s current value.

• In weaker consistency models, the “last value written” to a lo-
cation plays no special role—it may not even be well-defined.
Instead, threads can read out-of-date values reflecting the pos-
sible reorderings performed by the CPU or compiler.

The C11 memory model [16, 17] strikes a careful balance between
these extremes by offering a menu of consistency levels. Broadly,
memory operations are classified as either nonatomic (the default)
or atomic. Nonatomic accesses are intended for “normal data”,
while atomic accesses are used for synchronization.

Nonatomics are governed by a peculiar contract: the program-
mer can assume them to be SC, but must (under this assump-
tion!) never create a data race—roughly, a thread must never write
nonatomically if another thread might access the same location
concurrently. The lack of data races effectively prevents the pro-
gram from observing reorderings, so nonatomic accesses can enjoy
the full suite of compiler/CPU optimizations and still appear SC.

Atomics offer the opposite tradeoff: concurrent threads may
race to e.g., update a location atomically, but the memory model
provides weaker guarantees (and admits fewer optimizations) for
atomic accesses in general. The precise guarantees are determined
by an “ordering annotation”, ranging from SC to fully relaxed.
In this paper, we focus on the release-acquire ordering, which is
the primary building block for non-SC synchronization. As such,
we will use two ordering annotations, O 2 {at, na}, for atomic
(release-acquire) and nonatomic accesses, respectively.

Examples Before introducing C11 formally, we build some in-
tuition through two classic examples. The first is a simplified ver-
sion of Dekker’s algorithm, which provided the first solution to the
mutual-exclusion problem [10]:

[x]
at

:= 1
if [y]

at

== 0 then
/* crit. section */

[y]
at

:= 1
if [x]

at

== 0 then
/* crit. section */

We presume at the outset that x and y are pointers to distinct loca-
tions, both with initial value 0.2 The two threads race to announce
their intent to enter a critical section; each thread then checks
whether it announced first. In this simplified version, even under
SC, it is possible for both threads to lose. Unfortunately, in the C11
model, it is also possible for both threads to win! The intuition is
that C11 allows the reads to be performed before the writes have
become visible to all threads: the two threads can read stale values.

The second example illustrates a case where C11 atomics do
enforce some ordering. The goal is to pass a data structure from
one thread to another (here represented as a single value, 37):

[x]
na

:= 37;
[y]

at

:= 1;
repeat [y]

at

end;
[x]

na

Again, we presume x and y are pointers to distinct locations,
initially 0. The repeat construct executes an expression repeatedly
until its value is nonzero, so the second thread will “spin” until it
sees the write to y by the first thread. Unlike in Dekker’s algorithm,
here C11 will guarantee that the subsequent read from x will re-
turn 37. The key difference is that reading 1 from y yields positive
information about what the first thread has done: if an atomic (re-
lease) write by a given thread is seen by another thread, so is every-
thing that “happened before” the write, including all the writes that
appear prior to it in the thread’s code. Dekker’s algorithm, by con-
trast, draws conclusions from not seeing a write by another thread.

In general, then, release-acquire in C11 does not guarantee
that threads see the globally-latest write to a location, but it does
guarantee that (1) if a thread sees a particular write, it also sees
everything that happened before it, and (2) of the writes a thread
sees for a location, it can only read from the latest.

A final point about the message-passing example: its use of y
guarantees that the write to x by the first thread happens before—
not concurrently with—the read of x by the second thread. Thus
the code is data-race free, despite its nonatomic accesses to x.

Event graphs We now present the C11 model formally, follow-
ing Batty et al. [6] and subsequent simplifications [7, 27]. Our pre-
sentation makes several further simplifications due to our focus on
release-acquire atomics, but GPS is also sound for the full-blown
C11 axioms. The appendix includes more details [1].

Since weak memory models allow threads to see stale values,
they must track the history of an execution and use it to specify
the values a read can return. The C11 model takes the axiomatic
approach: it treats each step of a program execution as a node in a
graph, and then constrains the graph through a collection of global
axioms on several kinds of edges. Each node is labeled with one of
the following actions:

↵ ::= S | A(`..`0) | R(`, V,O) | W(`, V,O) | U(`, V, V)

The actions are Skip (no memory interaction), Allocate, Read,
Write, and atomic Update. Reads and writes record the location,
value read/written, and ordering annotation. An atomic update
U(`, Vo, Vn) simultaneously reads the value Vo from location ` and
updates it with the new value Vn (used for e.g., compare-and-set).

We assume an infinite set of event IDs; an action map A is then a
finite partial map from event IDs to actions, which defines the nodes

2 We are using here the program logic notation for pointer dereferencing,
[�], which avoids ambiguity with the ⇤ of separation logic.

2 2013/12/9

Message Passing 😎

tion according to an abstract state transition system (§3). Although
seemingly focused on single locations, PL-protocols are in fact the
key to cross-location reasoning: by discovering that one location `
is in a state s in its protocol, one can learn that another location `0 is
at least in some state s

0 in its protocol. This kind of “transitive vis-
ibility” is at the heart of weak memory models, and PL-protocols
provide a structured, thread-local way to reason about it.

PL-protocols are modeled after similar mechanisms in recent
SC concurrency logics [26], and as such, support a flexible combi-
nation of rely-guarantee (by abstractly characterizing interference
between threads), ghost state (by tracking the history of writes to
a location), and CSL-style resource invariants. GPS also offers two
other facilities for ghost instrumentation—ghosts and escrows—
which we explain in §3. The need for multiple mechanisms stems
from the fact that ghost state is not sound in general under a weak
memory semantics. Adapting ghost state to weak memory thus re-
quired us to isolate several different usage patterns that do remain
sound under weak memory assumptions.

GPS targets the recent C11 [16, 17] memory model, which of-
fers portable but fine-grained control over memory consistency
guarantees. To keep the presentation focused, we consider the
two most important consistency modes—nonatomic and release-
acquire (see §2). The logic is, however, sound under the full axioms
of C11. We have defined its semantics and proven its soundness di-
rectly in terms of the axioms of C11, as summarized in §5. The
supplementary materials [1] provide many further details, as well
as a Coq mechanization of the soundness proof of GPS.

To evaluate GPS, we have applied it to several challenging case
studies drawn from the Linux kernel and lock-free data structures,
as we describe in §4. We conclude in §6 with related work.

2. The C11 memory model

Memory models answer a seemingly simple question: when a
thread reads from a location, what values can it encounter?

• Sequential consistency (SC) provides an equally simple answer:
threads read the last value written. SC leads naturally to an
interleaving semantics of concurrency, where threads interact
through a global heap holding each location’s current value.

• In weaker consistency models, the “last value written” to a lo-
cation plays no special role—it may not even be well-defined.
Instead, threads can read out-of-date values reflecting the pos-
sible reorderings performed by the CPU or compiler.

The C11 memory model [16, 17] strikes a careful balance between
these extremes by offering a menu of consistency levels. Broadly,
memory operations are classified as either nonatomic (the default)
or atomic. Nonatomic accesses are intended for “normal data”,
while atomic accesses are used for synchronization.

Nonatomics are governed by a peculiar contract: the program-
mer can assume them to be SC, but must (under this assump-
tion!) never create a data race—roughly, a thread must never write
nonatomically if another thread might access the same location
concurrently. The lack of data races effectively prevents the pro-
gram from observing reorderings, so nonatomic accesses can enjoy
the full suite of compiler/CPU optimizations and still appear SC.

Atomics offer the opposite tradeoff: concurrent threads may
race to e.g., update a location atomically, but the memory model
provides weaker guarantees (and admits fewer optimizations) for
atomic accesses in general. The precise guarantees are determined
by an “ordering annotation”, ranging from SC to fully relaxed.
In this paper, we focus on the release-acquire ordering, which is
the primary building block for non-SC synchronization. As such,
we will use two ordering annotations, O 2 {at, na}, for atomic
(release-acquire) and nonatomic accesses, respectively.

Examples Before introducing C11 formally, we build some in-
tuition through two classic examples. The first is a simplified ver-
sion of Dekker’s algorithm, which provided the first solution to the
mutual-exclusion problem [10]:

[x]
at

:= 1
if [y]

at

== 0 then
/* crit. section */

[y]
at

:= 1
if [x]

at

== 0 then
/* crit. section */

We presume at the outset that x and y are pointers to distinct loca-
tions, both with initial value 0.2 The two threads race to announce
their intent to enter a critical section; each thread then checks
whether it announced first. In this simplified version, even under
SC, it is possible for both threads to lose. Unfortunately, in the C11
model, it is also possible for both threads to win! The intuition is
that C11 allows the reads to be performed before the writes have
become visible to all threads: the two threads can read stale values.

The second example illustrates a case where C11 atomics do
enforce some ordering. The goal is to pass a data structure from
one thread to another (here represented as a single value, 37):

[x]
na

:= 37;
[y]

at

:= 1;
repeat [y]

at

end;
[x]

na

Again, we presume x and y are pointers to distinct locations,
initially 0. The repeat construct executes an expression repeatedly
until its value is nonzero, so the second thread will “spin” until it
sees the write to y by the first thread. Unlike in Dekker’s algorithm,
here C11 will guarantee that the subsequent read from x will re-
turn 37. The key difference is that reading 1 from y yields positive
information about what the first thread has done: if an atomic (re-
lease) write by a given thread is seen by another thread, so is every-
thing that “happened before” the write, including all the writes that
appear prior to it in the thread’s code. Dekker’s algorithm, by con-
trast, draws conclusions from not seeing a write by another thread.

In general, then, release-acquire in C11 does not guarantee
that threads see the globally-latest write to a location, but it does
guarantee that (1) if a thread sees a particular write, it also sees
everything that happened before it, and (2) of the writes a thread
sees for a location, it can only read from the latest.

A final point about the message-passing example: its use of y
guarantees that the write to x by the first thread happens before—
not concurrently with—the read of x by the second thread. Thus
the code is data-race free, despite its nonatomic accesses to x.

Event graphs We now present the C11 model formally, follow-
ing Batty et al. [6] and subsequent simplifications [7, 27]. Our pre-
sentation makes several further simplifications due to our focus on
release-acquire atomics, but GPS is also sound for the full-blown
C11 axioms. The appendix includes more details [1].

Since weak memory models allow threads to see stale values,
they must track the history of an execution and use it to specify
the values a read can return. The C11 model takes the axiomatic
approach: it treats each step of a program execution as a node in a
graph, and then constrains the graph through a collection of global
axioms on several kinds of edges. Each node is labeled with one of
the following actions:

↵ ::= S | A(`..`0) | R(`, V,O) | W(`, V,O) | U(`, V, V)

The actions are Skip (no memory interaction), Allocate, Read,
Write, and atomic Update. Reads and writes record the location,
value read/written, and ordering annotation. An atomic update
U(`, Vo, Vn) simultaneously reads the value Vo from location ` and
updates it with the new value Vn (used for e.g., compare-and-set).

We assume an infinite set of event IDs; an action map A is then a
finite partial map from event IDs to actions, which defines the nodes

2 We are using here the program logic notation for pointer dereferencing,
[�], which avoids ambiguity with the ⇤ of separation logic.

2 2013/12/9

Message Passing

If a thread sees a write,
it sees everything that

“happened before” that write()

😎

tion according to an abstract state transition system (§3). Although
seemingly focused on single locations, PL-protocols are in fact the
key to cross-location reasoning: by discovering that one location `
is in a state s in its protocol, one can learn that another location `0 is
at least in some state s

0 in its protocol. This kind of “transitive vis-
ibility” is at the heart of weak memory models, and PL-protocols
provide a structured, thread-local way to reason about it.

PL-protocols are modeled after similar mechanisms in recent
SC concurrency logics [26], and as such, support a flexible combi-
nation of rely-guarantee (by abstractly characterizing interference
between threads), ghost state (by tracking the history of writes to
a location), and CSL-style resource invariants. GPS also offers two
other facilities for ghost instrumentation—ghosts and escrows—
which we explain in §3. The need for multiple mechanisms stems
from the fact that ghost state is not sound in general under a weak
memory semantics. Adapting ghost state to weak memory thus re-
quired us to isolate several different usage patterns that do remain
sound under weak memory assumptions.

GPS targets the recent C11 [16, 17] memory model, which of-
fers portable but fine-grained control over memory consistency
guarantees. To keep the presentation focused, we consider the
two most important consistency modes—nonatomic and release-
acquire (see §2). The logic is, however, sound under the full axioms
of C11. We have defined its semantics and proven its soundness di-
rectly in terms of the axioms of C11, as summarized in §5. The
supplementary materials [1] provide many further details, as well
as a Coq mechanization of the soundness proof of GPS.

To evaluate GPS, we have applied it to several challenging case
studies drawn from the Linux kernel and lock-free data structures,
as we describe in §4. We conclude in §6 with related work.

2. The C11 memory model

Memory models answer a seemingly simple question: when a
thread reads from a location, what values can it encounter?

• Sequential consistency (SC) provides an equally simple answer:
threads read the last value written. SC leads naturally to an
interleaving semantics of concurrency, where threads interact
through a global heap holding each location’s current value.

• In weaker consistency models, the “last value written” to a lo-
cation plays no special role—it may not even be well-defined.
Instead, threads can read out-of-date values reflecting the pos-
sible reorderings performed by the CPU or compiler.

The C11 memory model [16, 17] strikes a careful balance between
these extremes by offering a menu of consistency levels. Broadly,
memory operations are classified as either nonatomic (the default)
or atomic. Nonatomic accesses are intended for “normal data”,
while atomic accesses are used for synchronization.

Nonatomics are governed by a peculiar contract: the program-
mer can assume them to be SC, but must (under this assump-
tion!) never create a data race—roughly, a thread must never write
nonatomically if another thread might access the same location
concurrently. The lack of data races effectively prevents the pro-
gram from observing reorderings, so nonatomic accesses can enjoy
the full suite of compiler/CPU optimizations and still appear SC.

Atomics offer the opposite tradeoff: concurrent threads may
race to e.g., update a location atomically, but the memory model
provides weaker guarantees (and admits fewer optimizations) for
atomic accesses in general. The precise guarantees are determined
by an “ordering annotation”, ranging from SC to fully relaxed.
In this paper, we focus on the release-acquire ordering, which is
the primary building block for non-SC synchronization. As such,
we will use two ordering annotations, O 2 {at, na}, for atomic
(release-acquire) and nonatomic accesses, respectively.

Examples Before introducing C11 formally, we build some in-
tuition through two classic examples. The first is a simplified ver-
sion of Dekker’s algorithm, which provided the first solution to the
mutual-exclusion problem [10]:

[x]
at

:= 1
if [y]

at

== 0 then
/* crit. section */

[y]
at

:= 1
if [x]

at

== 0 then
/* crit. section */

We presume at the outset that x and y are pointers to distinct loca-
tions, both with initial value 0.2 The two threads race to announce
their intent to enter a critical section; each thread then checks
whether it announced first. In this simplified version, even under
SC, it is possible for both threads to lose. Unfortunately, in the C11
model, it is also possible for both threads to win! The intuition is
that C11 allows the reads to be performed before the writes have
become visible to all threads: the two threads can read stale values.

The second example illustrates a case where C11 atomics do
enforce some ordering. The goal is to pass a data structure from
one thread to another (here represented as a single value, 37):

[x]
na

:= 37;
[y]

at

:= 1;
repeat [y]

at

end;
[x]

na

Again, we presume x and y are pointers to distinct locations,
initially 0. The repeat construct executes an expression repeatedly
until its value is nonzero, so the second thread will “spin” until it
sees the write to y by the first thread. Unlike in Dekker’s algorithm,
here C11 will guarantee that the subsequent read from x will re-
turn 37. The key difference is that reading 1 from y yields positive
information about what the first thread has done: if an atomic (re-
lease) write by a given thread is seen by another thread, so is every-
thing that “happened before” the write, including all the writes that
appear prior to it in the thread’s code. Dekker’s algorithm, by con-
trast, draws conclusions from not seeing a write by another thread.

In general, then, release-acquire in C11 does not guarantee
that threads see the globally-latest write to a location, but it does
guarantee that (1) if a thread sees a particular write, it also sees
everything that happened before it, and (2) of the writes a thread
sees for a location, it can only read from the latest.

A final point about the message-passing example: its use of y
guarantees that the write to x by the first thread happens before—
not concurrently with—the read of x by the second thread. Thus
the code is data-race free, despite its nonatomic accesses to x.

Event graphs We now present the C11 model formally, follow-
ing Batty et al. [6] and subsequent simplifications [7, 27]. Our pre-
sentation makes several further simplifications due to our focus on
release-acquire atomics, but GPS is also sound for the full-blown
C11 axioms. The appendix includes more details [1].

Since weak memory models allow threads to see stale values,
they must track the history of an execution and use it to specify
the values a read can return. The C11 model takes the axiomatic
approach: it treats each step of a program execution as a node in a
graph, and then constrains the graph through a collection of global
axioms on several kinds of edges. Each node is labeled with one of
the following actions:

↵ ::= S | A(`..`0) | R(`, V,O) | W(`, V,O) | U(`, V, V)

The actions are Skip (no memory interaction), Allocate, Read,
Write, and atomic Update. Reads and writes record the location,
value read/written, and ordering annotation. An atomic update
U(`, Vo, Vn) simultaneously reads the value Vo from location ` and
updates it with the new value Vn (used for e.g., compare-and-set).

We assume an infinite set of event IDs; an action map A is then a
finite partial map from event IDs to actions, which defines the nodes

2 We are using here the program logic notation for pointer dereferencing,
[�], which avoids ambiguity with the ⇤ of separation logic.

2 2013/12/9

Message Passing

If a thread sees a write,
it sees everything that

“happened before” that write()

😎

Coherence

Cannot get 1, 2 and 2, 1

[x]at := 1 [y]at := 1
print [x]at
print [y]at

print [y]at
print [x]at

[x]at := 1 [x]at := 2
print [x]at
print [x]at

print [x]at
print [x]at

1

😎

Total store ordering at each independent location

Coherence

Cannot get 1, 2 and 2, 1

[x]at := 1 [y]at := 1
print [x]at
print [y]at

print [y]at
print [x]at

[x]at := 1 [x]at := 2
print [x]at
print [x]at

print [x]at
print [x]at

1

😎

Total store ordering at each independent location

Key Idea
Leverage per-location coherence
for sound per-location protocols

where it is placed in sb order after the thread’s previous event. The
mo order for G0 can arbitrarily extend the one for G, but because
it is a strict total order on writes, the extension will only add
relationships to the new node. The rf order can likewise only add
a read for the new node, which must read from some previously-
existing write. Finally, the new graph G0 is assumed to satisfy the
C11 axioms, constraining both the possible events and edges. The
validity of this semantics for C11 is discussed in the appendix [1].

We write JeK for the set of final values e can produce, starting
with a single-node event graph (where the start node is action S). If
at any point e creates a data race or memory error (defined formally
in the appendix [1]), then JeK = err; the C11 semantics leaves such
programs undefined. Any expression verified by GPS is guaranteed
to be data-race and memory-error free.

3. GPS: a logic for release-acquire consistency

The C11 memory model successfully serves as a contract between
compiler and programmer, making it possible—in principle—to re-
solve disputes (can a read of x here return 0?) by reference to global
axioms. These axioms—again, in principle—also support certain
intuitions about, e.g., transitive visibility. But, even with an exam-
ple as simple as one-shot message passing (§2), the intuitions are
not directly captured by the axioms. Rather, they emerge through
chains of subtle reasoning showing that certain edges must, or must
not, exist. Axiomatic reasoning is also relentlessly global: a read
event can potentially read from any write in the graph, so the ax-
ioms must be applied to each write to rule it in or out.

Our goal is to supplement the (release-acquire) C11 memory
model with a program logic that (1) captures intuitions about transi-
tive visibility more directly and (2) supports thread-local reasoning.
This section presents GPS, which achieves both goals through
• per-location protocols that abstract away event graphs, and
• ghosts and escrows, which govern logical permissions in the

style of recent separation logics.

Setup GPS is a separation logic for an expression language. Its
central judgment is the Hoare triple, {P} e {x. Q}, which says that
when given resources described by P , the expression e is memory
safe and data-race free. If, moreover, e terminates with a value V ,
it will do so with resources satisfying Q[V/x]. We will introduce
assertions P gradually. For now, we assume they include the basic
operators of multi-sorted first-order logic:
P ::= t = t | P ^ P | P _ P | P) P | 8X.P | 9X.P | · · ·

where ✓ ranges over sorts (for now, just Val) and t ranges over
terms. We write t : ✓ if t has sort ✓, and assume that variables X
are broken into classes by sort (`, x, y, z for variables of sort Val).

Per-location protocols We start with a twist on message passing:
[x]

at

:= 37;
[y]

at

:= 1;
· · · [x]

at

:= 37;
[y]

at

:= 1;
repeat [y]

at

end;
[x]

at

Intuitively, this variant, with multiple threads sending the same
same message (37), works for the same reason the original does:
transitive visibility. We want to articulate this common intuition in
a way that doesn’t depend on how many threads are sending the
message 37 or involve global reasoning about the event graph.

A tempting starting point is to simply say that the values that
x and y point to progress from (0, 0) to (37, 0) to (37, 1). Alas,
this kind of reasoning is unsound for weak memory in general: it
assumes that all threads will see writes to different locations in the
same order. In actuality, independent (i.e., hb-unrelated) writes to
different locations can appear to threads in different orders, which
is why Dekker’s algorithm fails. If we want thread-local reasoning,
we need an approach that accounts for what our thread may see,
while capturing the happens-before relationship between writes.

The key insight of GPS is that we can constrain the evolution
of values if we focus on one location at a time: mo provides a
linear order, seen by all threads, on the writes to a given location.
Toward this end, GPS provides per-location protocols, which are
state transition systems governing a single shared location. Using
protocols, we can express the changes to x and y independently:

x : 0 37 y : 0 1

These transition systems offer an abstraction of the event graph:
each state represents a set of write events, while edges represent mo

relationships between them. Thus, for x, we see that all of the writes
of 37 are mo-later than the initial write of 0. But these independent
constraints alone are not enough: we must ensure that y can only
be in state 1 if x is “known” to be in state 37.

In general, protocol states are abstract; the labels on the tran-
sition systems above are merely suggestive. Each state is given an
interpretation, which constrains the values that may be written to
the location in that state, but may also impose other constraints—
including, as we will see, constraints on other protocols. (Treating
states abstractly allows us to, in effect, associate a ghost variable
with each memory location, as §4 will show.)

Formally, we assume a sort State of protocol states, ranged over
by variables s. GPS is parameterized by (1) the grammar of terms
of sort State and (2) a set of protocol types (metavariable ⌧). For
each protocol type ⌧ , the user of the logic specifies:

• A transition relation v⌧ , which is a partial order on states.
• A state interpretation ⌧(s, z), which is a resource assertion in

which s and z appear free (i.e., it is a predicate on s and z). The
assertion represents what must be true of a value z for a thread
to be permitted to write it to the location in state s.

For the message passing example, we introduce a protocol type
Dat governing location x. Writing abstract states in bold, we say
0 v

Dat

0, 0 v

Dat

37, 37 v

Dat

37, and define

Dat(s, z) , (s = 0 ^ z = 0) _ (s = 37 ^ z = 37)

To give the protocol for y, however, we need a way of talking about
the protocol for x in its state interpretations. For this purpose, GPS
offers protocol assertions, ` : s ⌧ , which say that location ` is
governed by the protocol type ⌧ , and has been observed in state s,
thus giving a lower bound on the current protocol state.

We can now give the protocol for y. We introduce a protocol
type Flg(`) that is parameterized over a location ` (which we will
instantiate with x). Again writing abstract states in bold, we say
0 v

Flg

0, 0 v

Flg

1, 1 v

Flg

1, and

Flg(`)(s, z) , (s = 0 ^ z = 0)

_ (s = 1 ^ z = 1 ^ ` : 37 Dat)

Thus, to move to state 1 in Flg(x), a thread must (1) write 1 to
y and (2) have already observed that x : 37 Dat , which it can
ensure by first writing 37 to x itself.

What happens when a thread reads y? GPS supports the follow-
ing Hoare triple for atomic reads of a location `:5

8s0 w⌧ s. 8z. ⌧(s0, z)) Q
n

` : s ⌧
o

[`]
at

n

z. 9s0. ` : s0 ⌧ ^Q
o

The Hoare triple takes as a precondition some pre-existing knowl-
edge about `’s protocol. (For the message receiver, this knowledge
will be y : 0 Flg(x) .) The pre-existing knowledge gives a lower
bound on the possible writes the read could read from: they must
be at least as far as state s in the protocol.

5 This rule is sound only for the assertions we have introduced so far; the
general rule is given in “Ownership transfer through protocols”, below.

4 2013/12/9

Release/Acquire

where it is placed in sb order after the thread’s previous event. The
mo order for G0 can arbitrarily extend the one for G, but because
it is a strict total order on writes, the extension will only add
relationships to the new node. The rf order can likewise only add
a read for the new node, which must read from some previously-
existing write. Finally, the new graph G0 is assumed to satisfy the
C11 axioms, constraining both the possible events and edges. The
validity of this semantics for C11 is discussed in the appendix [1].

We write JeK for the set of final values e can produce, starting
with a single-node event graph (where the start node is action S). If
at any point e creates a data race or memory error (defined formally
in the appendix [1]), then JeK = err; the C11 semantics leaves such
programs undefined. Any expression verified by GPS is guaranteed
to be data-race and memory-error free.

3. GPS: a logic for release-acquire consistency

The C11 memory model successfully serves as a contract between
compiler and programmer, making it possible—in principle—to re-
solve disputes (can a read of x here return 0?) by reference to global
axioms. These axioms—again, in principle—also support certain
intuitions about, e.g., transitive visibility. But, even with an exam-
ple as simple as one-shot message passing (§2), the intuitions are
not directly captured by the axioms. Rather, they emerge through
chains of subtle reasoning showing that certain edges must, or must
not, exist. Axiomatic reasoning is also relentlessly global: a read
event can potentially read from any write in the graph, so the ax-
ioms must be applied to each write to rule it in or out.

Our goal is to supplement the (release-acquire) C11 memory
model with a program logic that (1) captures intuitions about transi-
tive visibility more directly and (2) supports thread-local reasoning.
This section presents GPS, which achieves both goals through
• per-location protocols that abstract away event graphs, and
• ghosts and escrows, which govern logical permissions in the

style of recent separation logics.

Setup GPS is a separation logic for an expression language. Its
central judgment is the Hoare triple, {P} e {x. Q}, which says that
when given resources described by P , the expression e is memory
safe and data-race free. If, moreover, e terminates with a value V ,
it will do so with resources satisfying Q[V/x]. We will introduce
assertions P gradually. For now, we assume they include the basic
operators of multi-sorted first-order logic:
P ::= t = t | P ^ P | P _ P | P) P | 8X.P | 9X.P | · · ·

where ✓ ranges over sorts (for now, just Val) and t ranges over
terms. We write t : ✓ if t has sort ✓, and assume that variables X
are broken into classes by sort (`, x, y, z for variables of sort Val).

Per-location protocols We start with a twist on message passing:
[x]

at

:= 37;
[y]

at

:= 1;
· · · [x]

at

:= 37;
[y]

at

:= 1;
repeat [y]

at

end;
[x]

at

Intuitively, this variant, with multiple threads sending the same
same message (37), works for the same reason the original does:
transitive visibility. We want to articulate this common intuition in
a way that doesn’t depend on how many threads are sending the
message 37 or involve global reasoning about the event graph.

A tempting starting point is to simply say that the values that
x and y point to progress from (0, 0) to (37, 0) to (37, 1). Alas,
this kind of reasoning is unsound for weak memory in general: it
assumes that all threads will see writes to different locations in the
same order. In actuality, independent (i.e., hb-unrelated) writes to
different locations can appear to threads in different orders, which
is why Dekker’s algorithm fails. If we want thread-local reasoning,
we need an approach that accounts for what our thread may see,
while capturing the happens-before relationship between writes.

The key insight of GPS is that we can constrain the evolution
of values if we focus on one location at a time: mo provides a
linear order, seen by all threads, on the writes to a given location.
Toward this end, GPS provides per-location protocols, which are
state transition systems governing a single shared location. Using
protocols, we can express the changes to x and y independently:

x : 0 37 y : 0 1

These transition systems offer an abstraction of the event graph:
each state represents a set of write events, while edges represent mo

relationships between them. Thus, for x, we see that all of the writes
of 37 are mo-later than the initial write of 0. But these independent
constraints alone are not enough: we must ensure that y can only
be in state 1 if x is “known” to be in state 37.

In general, protocol states are abstract; the labels on the tran-
sition systems above are merely suggestive. Each state is given an
interpretation, which constrains the values that may be written to
the location in that state, but may also impose other constraints—
including, as we will see, constraints on other protocols. (Treating
states abstractly allows us to, in effect, associate a ghost variable
with each memory location, as §4 will show.)

Formally, we assume a sort State of protocol states, ranged over
by variables s. GPS is parameterized by (1) the grammar of terms
of sort State and (2) a set of protocol types (metavariable ⌧). For
each protocol type ⌧ , the user of the logic specifies:

• A transition relation v⌧ , which is a partial order on states.
• A state interpretation ⌧(s, z), which is a resource assertion in

which s and z appear free (i.e., it is a predicate on s and z). The
assertion represents what must be true of a value z for a thread
to be permitted to write it to the location in state s.

For the message passing example, we introduce a protocol type
Dat governing location x. Writing abstract states in bold, we say
0 v

Dat

0, 0 v

Dat

37, 37 v

Dat

37, and define

Dat(s, z) , (s = 0 ^ z = 0) _ (s = 37 ^ z = 37)

To give the protocol for y, however, we need a way of talking about
the protocol for x in its state interpretations. For this purpose, GPS
offers protocol assertions, ` : s ⌧ , which say that location ` is
governed by the protocol type ⌧ , and has been observed in state s,
thus giving a lower bound on the current protocol state.

We can now give the protocol for y. We introduce a protocol
type Flg(`) that is parameterized over a location ` (which we will
instantiate with x). Again writing abstract states in bold, we say
0 v

Flg

0, 0 v

Flg

1, 1 v

Flg

1, and

Flg(`)(s, z) , (s = 0 ^ z = 0)

_ (s = 1 ^ z = 1 ^ ` : 37 Dat)

Thus, to move to state 1 in Flg(x), a thread must (1) write 1 to
y and (2) have already observed that x : 37 Dat , which it can
ensure by first writing 37 to x itself.

What happens when a thread reads y? GPS supports the follow-
ing Hoare triple for atomic reads of a location `:5

8s0 w⌧ s. 8z. ⌧(s0, z)) Q
n

` : s ⌧
o

[`]
at

n

z. 9s0. ` : s0 ⌧ ^Q
o

The Hoare triple takes as a precondition some pre-existing knowl-
edge about `’s protocol. (For the message receiver, this knowledge
will be y : 0 Flg(x) .) The pre-existing knowledge gives a lower
bound on the possible writes the read could read from: they must
be at least as far as state s in the protocol.

5 This rule is sound only for the assertions we have introduced so far; the
general rule is given in “Ownership transfer through protocols”, below.

4 2013/12/9

where it is placed in sb order after the thread’s previous event. The
mo order for G0 can arbitrarily extend the one for G, but because
it is a strict total order on writes, the extension will only add
relationships to the new node. The rf order can likewise only add
a read for the new node, which must read from some previously-
existing write. Finally, the new graph G0 is assumed to satisfy the
C11 axioms, constraining both the possible events and edges. The
validity of this semantics for C11 is discussed in the appendix [1].

We write JeK for the set of final values e can produce, starting
with a single-node event graph (where the start node is action S). If
at any point e creates a data race or memory error (defined formally
in the appendix [1]), then JeK = err; the C11 semantics leaves such
programs undefined. Any expression verified by GPS is guaranteed
to be data-race and memory-error free.

3. GPS: a logic for release-acquire consistency

The C11 memory model successfully serves as a contract between
compiler and programmer, making it possible—in principle—to re-
solve disputes (can a read of x here return 0?) by reference to global
axioms. These axioms—again, in principle—also support certain
intuitions about, e.g., transitive visibility. But, even with an exam-
ple as simple as one-shot message passing (§2), the intuitions are
not directly captured by the axioms. Rather, they emerge through
chains of subtle reasoning showing that certain edges must, or must
not, exist. Axiomatic reasoning is also relentlessly global: a read
event can potentially read from any write in the graph, so the ax-
ioms must be applied to each write to rule it in or out.

Our goal is to supplement the (release-acquire) C11 memory
model with a program logic that (1) captures intuitions about transi-
tive visibility more directly and (2) supports thread-local reasoning.
This section presents GPS, which achieves both goals through
• per-location protocols that abstract away event graphs, and
• ghosts and escrows, which govern logical permissions in the

style of recent separation logics.

Setup GPS is a separation logic for an expression language. Its
central judgment is the Hoare triple, {P} e {x. Q}, which says that
when given resources described by P , the expression e is memory
safe and data-race free. If, moreover, e terminates with a value V ,
it will do so with resources satisfying Q[V/x]. We will introduce
assertions P gradually. For now, we assume they include the basic
operators of multi-sorted first-order logic:
P ::= t = t | P ^ P | P _ P | P) P | 8X.P | 9X.P | · · ·

where ✓ ranges over sorts (for now, just Val) and t ranges over
terms. We write t : ✓ if t has sort ✓, and assume that variables X
are broken into classes by sort (`, x, y, z for variables of sort Val).

Per-location protocols We start with a twist on message passing:
[x]

at

:= 37;
[y]

at

:= 1;
· · · [x]

at

:= 37;
[y]

at

:= 1;
repeat [y]

at

end;
[x]

at

Intuitively, this variant, with multiple threads sending the same
same message (37), works for the same reason the original does:
transitive visibility. We want to articulate this common intuition in
a way that doesn’t depend on how many threads are sending the
message 37 or involve global reasoning about the event graph.

A tempting starting point is to simply say that the values that
x and y point to progress from (0, 0) to (37, 0) to (37, 1). Alas,
this kind of reasoning is unsound for weak memory in general: it
assumes that all threads will see writes to different locations in the
same order. In actuality, independent (i.e., hb-unrelated) writes to
different locations can appear to threads in different orders, which
is why Dekker’s algorithm fails. If we want thread-local reasoning,
we need an approach that accounts for what our thread may see,
while capturing the happens-before relationship between writes.

The key insight of GPS is that we can constrain the evolution
of values if we focus on one location at a time: mo provides a
linear order, seen by all threads, on the writes to a given location.
Toward this end, GPS provides per-location protocols, which are
state transition systems governing a single shared location. Using
protocols, we can express the changes to x and y independently:

x : 0 37 y : 0 1

These transition systems offer an abstraction of the event graph:
each state represents a set of write events, while edges represent mo

relationships between them. Thus, for x, we see that all of the writes
of 37 are mo-later than the initial write of 0. But these independent
constraints alone are not enough: we must ensure that y can only
be in state 1 if x is “known” to be in state 37.

In general, protocol states are abstract; the labels on the tran-
sition systems above are merely suggestive. Each state is given an
interpretation, which constrains the values that may be written to
the location in that state, but may also impose other constraints—
including, as we will see, constraints on other protocols. (Treating
states abstractly allows us to, in effect, associate a ghost variable
with each memory location, as §4 will show.)

Formally, we assume a sort State of protocol states, ranged over
by variables s. GPS is parameterized by (1) the grammar of terms
of sort State and (2) a set of protocol types (metavariable ⌧). For
each protocol type ⌧ , the user of the logic specifies:

• A transition relation v⌧ , which is a partial order on states.
• A state interpretation ⌧(s, z), which is a resource assertion in

which s and z appear free (i.e., it is a predicate on s and z). The
assertion represents what must be true of a value z for a thread
to be permitted to write it to the location in state s.

For the message passing example, we introduce a protocol type
Dat governing location x. Writing abstract states in bold, we say
0 v

Dat

0, 0 v

Dat

37, 37 v

Dat

37, and define

Dat(s, z) , (s = 0 ^ z = 0) _ (s = 37 ^ z = 37)

To give the protocol for y, however, we need a way of talking about
the protocol for x in its state interpretations. For this purpose, GPS
offers protocol assertions, ` : s ⌧ , which say that location ` is
governed by the protocol type ⌧ , and has been observed in state s,
thus giving a lower bound on the current protocol state.

We can now give the protocol for y. We introduce a protocol
type Flg(`) that is parameterized over a location ` (which we will
instantiate with x). Again writing abstract states in bold, we say
0 v

Flg

0, 0 v

Flg

1, 1 v

Flg

1, and

Flg(`)(s, z) , (s = 0 ^ z = 0)

_ (s = 1 ^ z = 1 ^ ` : 37 Dat)

Thus, to move to state 1 in Flg(x), a thread must (1) write 1 to
y and (2) have already observed that x : 37 Dat , which it can
ensure by first writing 37 to x itself.

What happens when a thread reads y? GPS supports the follow-
ing Hoare triple for atomic reads of a location `:5

8s0 w⌧ s. 8z. ⌧(s0, z)) Q
n

` : s ⌧
o

[`]
at

n

z. 9s0. ` : s0 ⌧ ^Q
o

The Hoare triple takes as a precondition some pre-existing knowl-
edge about `’s protocol. (For the message receiver, this knowledge
will be y : 0 Flg(x) .) The pre-existing knowledge gives a lower
bound on the possible writes the read could read from: they must
be at least as far as state s in the protocol.

5 This rule is sound only for the assertions we have introduced so far; the
general rule is given in “Ownership transfer through protocols”, below.

4 2013/12/9

Release/Acquire

where it is placed in sb order after the thread’s previous event. The
mo order for G0 can arbitrarily extend the one for G, but because
it is a strict total order on writes, the extension will only add
relationships to the new node. The rf order can likewise only add
a read for the new node, which must read from some previously-
existing write. Finally, the new graph G0 is assumed to satisfy the
C11 axioms, constraining both the possible events and edges. The
validity of this semantics for C11 is discussed in the appendix [1].

We write JeK for the set of final values e can produce, starting
with a single-node event graph (where the start node is action S). If
at any point e creates a data race or memory error (defined formally
in the appendix [1]), then JeK = err; the C11 semantics leaves such
programs undefined. Any expression verified by GPS is guaranteed
to be data-race and memory-error free.

3. GPS: a logic for release-acquire consistency

The C11 memory model successfully serves as a contract between
compiler and programmer, making it possible—in principle—to re-
solve disputes (can a read of x here return 0?) by reference to global
axioms. These axioms—again, in principle—also support certain
intuitions about, e.g., transitive visibility. But, even with an exam-
ple as simple as one-shot message passing (§2), the intuitions are
not directly captured by the axioms. Rather, they emerge through
chains of subtle reasoning showing that certain edges must, or must
not, exist. Axiomatic reasoning is also relentlessly global: a read
event can potentially read from any write in the graph, so the ax-
ioms must be applied to each write to rule it in or out.

Our goal is to supplement the (release-acquire) C11 memory
model with a program logic that (1) captures intuitions about transi-
tive visibility more directly and (2) supports thread-local reasoning.
This section presents GPS, which achieves both goals through
• per-location protocols that abstract away event graphs, and
• ghosts and escrows, which govern logical permissions in the

style of recent separation logics.

Setup GPS is a separation logic for an expression language. Its
central judgment is the Hoare triple, {P} e {x. Q}, which says that
when given resources described by P , the expression e is memory
safe and data-race free. If, moreover, e terminates with a value V ,
it will do so with resources satisfying Q[V/x]. We will introduce
assertions P gradually. For now, we assume they include the basic
operators of multi-sorted first-order logic:
P ::= t = t | P ^ P | P _ P | P) P | 8X.P | 9X.P | · · ·

where ✓ ranges over sorts (for now, just Val) and t ranges over
terms. We write t : ✓ if t has sort ✓, and assume that variables X
are broken into classes by sort (`, x, y, z for variables of sort Val).

Per-location protocols We start with a twist on message passing:
[x]

at

:= 37;
[y]

at

:= 1;
· · · [x]

at

:= 37;
[y]

at

:= 1;
repeat [y]

at

end;
[x]

at

Intuitively, this variant, with multiple threads sending the same
same message (37), works for the same reason the original does:
transitive visibility. We want to articulate this common intuition in
a way that doesn’t depend on how many threads are sending the
message 37 or involve global reasoning about the event graph.

A tempting starting point is to simply say that the values that
x and y point to progress from (0, 0) to (37, 0) to (37, 1). Alas,
this kind of reasoning is unsound for weak memory in general: it
assumes that all threads will see writes to different locations in the
same order. In actuality, independent (i.e., hb-unrelated) writes to
different locations can appear to threads in different orders, which
is why Dekker’s algorithm fails. If we want thread-local reasoning,
we need an approach that accounts for what our thread may see,
while capturing the happens-before relationship between writes.

The key insight of GPS is that we can constrain the evolution
of values if we focus on one location at a time: mo provides a
linear order, seen by all threads, on the writes to a given location.
Toward this end, GPS provides per-location protocols, which are
state transition systems governing a single shared location. Using
protocols, we can express the changes to x and y independently:

x : 0 37 y : 0 1

These transition systems offer an abstraction of the event graph:
each state represents a set of write events, while edges represent mo

relationships between them. Thus, for x, we see that all of the writes
of 37 are mo-later than the initial write of 0. But these independent
constraints alone are not enough: we must ensure that y can only
be in state 1 if x is “known” to be in state 37.

In general, protocol states are abstract; the labels on the tran-
sition systems above are merely suggestive. Each state is given an
interpretation, which constrains the values that may be written to
the location in that state, but may also impose other constraints—
including, as we will see, constraints on other protocols. (Treating
states abstractly allows us to, in effect, associate a ghost variable
with each memory location, as §4 will show.)

Formally, we assume a sort State of protocol states, ranged over
by variables s. GPS is parameterized by (1) the grammar of terms
of sort State and (2) a set of protocol types (metavariable ⌧). For
each protocol type ⌧ , the user of the logic specifies:

• A transition relation v⌧ , which is a partial order on states.
• A state interpretation ⌧(s, z), which is a resource assertion in

which s and z appear free (i.e., it is a predicate on s and z). The
assertion represents what must be true of a value z for a thread
to be permitted to write it to the location in state s.

For the message passing example, we introduce a protocol type
Dat governing location x. Writing abstract states in bold, we say
0 v

Dat

0, 0 v

Dat

37, 37 v

Dat

37, and define

Dat(s, z) , (s = 0 ^ z = 0) _ (s = 37 ^ z = 37)

To give the protocol for y, however, we need a way of talking about
the protocol for x in its state interpretations. For this purpose, GPS
offers protocol assertions, ` : s ⌧ , which say that location ` is
governed by the protocol type ⌧ , and has been observed in state s,
thus giving a lower bound on the current protocol state.

We can now give the protocol for y. We introduce a protocol
type Flg(`) that is parameterized over a location ` (which we will
instantiate with x). Again writing abstract states in bold, we say
0 v

Flg

0, 0 v

Flg

1, 1 v

Flg

1, and

Flg(`)(s, z) , (s = 0 ^ z = 0)

_ (s = 1 ^ z = 1 ^ ` : 37 Dat)

Thus, to move to state 1 in Flg(x), a thread must (1) write 1 to
y and (2) have already observed that x : 37 Dat , which it can
ensure by first writing 37 to x itself.

What happens when a thread reads y? GPS supports the follow-
ing Hoare triple for atomic reads of a location `:5

8s0 w⌧ s. 8z. ⌧(s0, z)) Q
n

` : s ⌧
o

[`]
at

n

z. 9s0. ` : s0 ⌧ ^Q
o

The Hoare triple takes as a precondition some pre-existing knowl-
edge about `’s protocol. (For the message receiver, this knowledge
will be y : 0 Flg(x) .) The pre-existing knowledge gives a lower
bound on the possible writes the read could read from: they must
be at least as far as state s in the protocol.

5 This rule is sound only for the assertions we have introduced so far; the
general rule is given in “Ownership transfer through protocols”, below.

4 2013/12/9

where it is placed in sb order after the thread’s previous event. The
mo order for G0 can arbitrarily extend the one for G, but because
it is a strict total order on writes, the extension will only add
relationships to the new node. The rf order can likewise only add
a read for the new node, which must read from some previously-
existing write. Finally, the new graph G0 is assumed to satisfy the
C11 axioms, constraining both the possible events and edges. The
validity of this semantics for C11 is discussed in the appendix [1].

We write JeK for the set of final values e can produce, starting
with a single-node event graph (where the start node is action S). If
at any point e creates a data race or memory error (defined formally
in the appendix [1]), then JeK = err; the C11 semantics leaves such
programs undefined. Any expression verified by GPS is guaranteed
to be data-race and memory-error free.

3. GPS: a logic for release-acquire consistency

The C11 memory model successfully serves as a contract between
compiler and programmer, making it possible—in principle—to re-
solve disputes (can a read of x here return 0?) by reference to global
axioms. These axioms—again, in principle—also support certain
intuitions about, e.g., transitive visibility. But, even with an exam-
ple as simple as one-shot message passing (§2), the intuitions are
not directly captured by the axioms. Rather, they emerge through
chains of subtle reasoning showing that certain edges must, or must
not, exist. Axiomatic reasoning is also relentlessly global: a read
event can potentially read from any write in the graph, so the ax-
ioms must be applied to each write to rule it in or out.

Our goal is to supplement the (release-acquire) C11 memory
model with a program logic that (1) captures intuitions about transi-
tive visibility more directly and (2) supports thread-local reasoning.
This section presents GPS, which achieves both goals through
• per-location protocols that abstract away event graphs, and
• ghosts and escrows, which govern logical permissions in the

style of recent separation logics.

Setup GPS is a separation logic for an expression language. Its
central judgment is the Hoare triple, {P} e {x. Q}, which says that
when given resources described by P , the expression e is memory
safe and data-race free. If, moreover, e terminates with a value V ,
it will do so with resources satisfying Q[V/x]. We will introduce
assertions P gradually. For now, we assume they include the basic
operators of multi-sorted first-order logic:
P ::= t = t | P ^ P | P _ P | P) P | 8X.P | 9X.P | · · ·

where ✓ ranges over sorts (for now, just Val) and t ranges over
terms. We write t : ✓ if t has sort ✓, and assume that variables X
are broken into classes by sort (`, x, y, z for variables of sort Val).

Per-location protocols We start with a twist on message passing:
[x]

at

:= 37;
[y]

at

:= 1;
· · · [x]

at

:= 37;
[y]

at

:= 1;
repeat [y]

at

end;
[x]

at

Intuitively, this variant, with multiple threads sending the same
same message (37), works for the same reason the original does:
transitive visibility. We want to articulate this common intuition in
a way that doesn’t depend on how many threads are sending the
message 37 or involve global reasoning about the event graph.

A tempting starting point is to simply say that the values that
x and y point to progress from (0, 0) to (37, 0) to (37, 1). Alas,
this kind of reasoning is unsound for weak memory in general: it
assumes that all threads will see writes to different locations in the
same order. In actuality, independent (i.e., hb-unrelated) writes to
different locations can appear to threads in different orders, which
is why Dekker’s algorithm fails. If we want thread-local reasoning,
we need an approach that accounts for what our thread may see,
while capturing the happens-before relationship between writes.

The key insight of GPS is that we can constrain the evolution
of values if we focus on one location at a time: mo provides a
linear order, seen by all threads, on the writes to a given location.
Toward this end, GPS provides per-location protocols, which are
state transition systems governing a single shared location. Using
protocols, we can express the changes to x and y independently:

x : 0 37 y : 0 1

These transition systems offer an abstraction of the event graph:
each state represents a set of write events, while edges represent mo

relationships between them. Thus, for x, we see that all of the writes
of 37 are mo-later than the initial write of 0. But these independent
constraints alone are not enough: we must ensure that y can only
be in state 1 if x is “known” to be in state 37.

In general, protocol states are abstract; the labels on the tran-
sition systems above are merely suggestive. Each state is given an
interpretation, which constrains the values that may be written to
the location in that state, but may also impose other constraints—
including, as we will see, constraints on other protocols. (Treating
states abstractly allows us to, in effect, associate a ghost variable
with each memory location, as §4 will show.)

Formally, we assume a sort State of protocol states, ranged over
by variables s. GPS is parameterized by (1) the grammar of terms
of sort State and (2) a set of protocol types (metavariable ⌧). For
each protocol type ⌧ , the user of the logic specifies:

• A transition relation v⌧ , which is a partial order on states.
• A state interpretation ⌧(s, z), which is a resource assertion in

which s and z appear free (i.e., it is a predicate on s and z). The
assertion represents what must be true of a value z for a thread
to be permitted to write it to the location in state s.

For the message passing example, we introduce a protocol type
Dat governing location x. Writing abstract states in bold, we say
0 v

Dat

0, 0 v

Dat

37, 37 v

Dat

37, and define

Dat(s, z) , (s = 0 ^ z = 0) _ (s = 37 ^ z = 37)

To give the protocol for y, however, we need a way of talking about
the protocol for x in its state interpretations. For this purpose, GPS
offers protocol assertions, ` : s ⌧ , which say that location ` is
governed by the protocol type ⌧ , and has been observed in state s,
thus giving a lower bound on the current protocol state.

We can now give the protocol for y. We introduce a protocol
type Flg(`) that is parameterized over a location ` (which we will
instantiate with x). Again writing abstract states in bold, we say
0 v

Flg

0, 0 v

Flg

1, 1 v

Flg

1, and

Flg(`)(s, z) , (s = 0 ^ z = 0)

_ (s = 1 ^ z = 1 ^ ` : 37 Dat)

Thus, to move to state 1 in Flg(x), a thread must (1) write 1 to
y and (2) have already observed that x : 37 Dat , which it can
ensure by first writing 37 to x itself.

What happens when a thread reads y? GPS supports the follow-
ing Hoare triple for atomic reads of a location `:5

8s0 w⌧ s. 8z. ⌧(s0, z)) Q
n

` : s ⌧
o

[`]
at

n

z. 9s0. ` : s0 ⌧ ^Q
o

The Hoare triple takes as a precondition some pre-existing knowl-
edge about `’s protocol. (For the message receiver, this knowledge
will be y : 0 Flg(x) .) The pre-existing knowledge gives a lower
bound on the possible writes the read could read from: they must
be at least as far as state s in the protocol.

5 This rule is sound only for the assertions we have introduced so far; the
general rule is given in “Ownership transfer through protocols”, below.

4 2013/12/9

where it is placed in sb order after the thread’s previous event. The
mo order for G0 can arbitrarily extend the one for G, but because
it is a strict total order on writes, the extension will only add
relationships to the new node. The rf order can likewise only add
a read for the new node, which must read from some previously-
existing write. Finally, the new graph G0 is assumed to satisfy the
C11 axioms, constraining both the possible events and edges. The
validity of this semantics for C11 is discussed in the appendix [1].

We write JeK for the set of final values e can produce, starting
with a single-node event graph (where the start node is action S). If
at any point e creates a data race or memory error (defined formally
in the appendix [1]), then JeK = err; the C11 semantics leaves such
programs undefined. Any expression verified by GPS is guaranteed
to be data-race and memory-error free.

3. GPS: a logic for release-acquire consistency

The C11 memory model successfully serves as a contract between
compiler and programmer, making it possible—in principle—to re-
solve disputes (can a read of x here return 0?) by reference to global
axioms. These axioms—again, in principle—also support certain
intuitions about, e.g., transitive visibility. But, even with an exam-
ple as simple as one-shot message passing (§2), the intuitions are
not directly captured by the axioms. Rather, they emerge through
chains of subtle reasoning showing that certain edges must, or must
not, exist. Axiomatic reasoning is also relentlessly global: a read
event can potentially read from any write in the graph, so the ax-
ioms must be applied to each write to rule it in or out.

Our goal is to supplement the (release-acquire) C11 memory
model with a program logic that (1) captures intuitions about transi-
tive visibility more directly and (2) supports thread-local reasoning.
This section presents GPS, which achieves both goals through
• per-location protocols that abstract away event graphs, and
• ghosts and escrows, which govern logical permissions in the

style of recent separation logics.

Setup GPS is a separation logic for an expression language. Its
central judgment is the Hoare triple, {P} e {x. Q}, which says that
when given resources described by P , the expression e is memory
safe and data-race free. If, moreover, e terminates with a value V ,
it will do so with resources satisfying Q[V/x]. We will introduce
assertions P gradually. For now, we assume they include the basic
operators of multi-sorted first-order logic:
P ::= t = t | P ^ P | P _ P | P) P | 8X.P | 9X.P | · · ·

where ✓ ranges over sorts (for now, just Val) and t ranges over
terms. We write t : ✓ if t has sort ✓, and assume that variables X
are broken into classes by sort (`, x, y, z for variables of sort Val).

Per-location protocols We start with a twist on message passing:
[x]

at

:= 37;
[y]

at

:= 1;
· · · [x]

at

:= 37;
[y]

at

:= 1;
repeat [y]

at

end;
[x]

at

Intuitively, this variant, with multiple threads sending the same
same message (37), works for the same reason the original does:
transitive visibility. We want to articulate this common intuition in
a way that doesn’t depend on how many threads are sending the
message 37 or involve global reasoning about the event graph.

A tempting starting point is to simply say that the values that
x and y point to progress from (0, 0) to (37, 0) to (37, 1). Alas,
this kind of reasoning is unsound for weak memory in general: it
assumes that all threads will see writes to different locations in the
same order. In actuality, independent (i.e., hb-unrelated) writes to
different locations can appear to threads in different orders, which
is why Dekker’s algorithm fails. If we want thread-local reasoning,
we need an approach that accounts for what our thread may see,
while capturing the happens-before relationship between writes.

The key insight of GPS is that we can constrain the evolution
of values if we focus on one location at a time: mo provides a
linear order, seen by all threads, on the writes to a given location.
Toward this end, GPS provides per-location protocols, which are
state transition systems governing a single shared location. Using
protocols, we can express the changes to x and y independently:

x : 0 37 y : 0 1

These transition systems offer an abstraction of the event graph:
each state represents a set of write events, while edges represent mo

relationships between them. Thus, for x, we see that all of the writes
of 37 are mo-later than the initial write of 0. But these independent
constraints alone are not enough: we must ensure that y can only
be in state 1 if x is “known” to be in state 37.

In general, protocol states are abstract; the labels on the tran-
sition systems above are merely suggestive. Each state is given an
interpretation, which constrains the values that may be written to
the location in that state, but may also impose other constraints—
including, as we will see, constraints on other protocols. (Treating
states abstractly allows us to, in effect, associate a ghost variable
with each memory location, as §4 will show.)

Formally, we assume a sort State of protocol states, ranged over
by variables s. GPS is parameterized by (1) the grammar of terms
of sort State and (2) a set of protocol types (metavariable ⌧). For
each protocol type ⌧ , the user of the logic specifies:

• A transition relation v⌧ , which is a partial order on states.
• A state interpretation ⌧(s, z), which is a resource assertion in

which s and z appear free (i.e., it is a predicate on s and z). The
assertion represents what must be true of a value z for a thread
to be permitted to write it to the location in state s.

For the message passing example, we introduce a protocol type
Dat governing location x. Writing abstract states in bold, we say
0 v

Dat

0, 0 v

Dat

37, 37 v

Dat

37, and define

Dat(s, z) , (s = 0 ^ z = 0) _ (s = 37 ^ z = 37)

To give the protocol for y, however, we need a way of talking about
the protocol for x in its state interpretations. For this purpose, GPS
offers protocol assertions, ` : s ⌧ , which say that location ` is
governed by the protocol type ⌧ , and has been observed in state s,
thus giving a lower bound on the current protocol state.

We can now give the protocol for y. We introduce a protocol
type Flg(`) that is parameterized over a location ` (which we will
instantiate with x). Again writing abstract states in bold, we say
0 v

Flg

0, 0 v

Flg

1, 1 v

Flg

1, and

Flg(`)(s, z) , (s = 0 ^ z = 0)

_ (s = 1 ^ z = 1 ^ ` : 37 Dat)

Thus, to move to state 1 in Flg(x), a thread must (1) write 1 to
y and (2) have already observed that x : 37 Dat , which it can
ensure by first writing 37 to x itself.

What happens when a thread reads y? GPS supports the follow-
ing Hoare triple for atomic reads of a location `:5

8s0 w⌧ s. 8z. ⌧(s0, z)) Q
n

` : s ⌧
o

[`]
at

n

z. 9s0. ` : s0 ⌧ ^Q
o

The Hoare triple takes as a precondition some pre-existing knowl-
edge about `’s protocol. (For the message receiver, this knowledge
will be y : 0 Flg(x) .) The pre-existing knowledge gives a lower
bound on the possible writes the read could read from: they must
be at least as far as state s in the protocol.

5 This rule is sound only for the assertions we have introduced so far; the
general rule is given in “Ownership transfer through protocols”, below.

4 2013/12/9

Release/Acquire

where it is placed in sb order after the thread’s previous event. The
mo order for G0 can arbitrarily extend the one for G, but because
it is a strict total order on writes, the extension will only add
relationships to the new node. The rf order can likewise only add
a read for the new node, which must read from some previously-
existing write. Finally, the new graph G0 is assumed to satisfy the
C11 axioms, constraining both the possible events and edges. The
validity of this semantics for C11 is discussed in the appendix [1].

We write JeK for the set of final values e can produce, starting
with a single-node event graph (where the start node is action S). If
at any point e creates a data race or memory error (defined formally
in the appendix [1]), then JeK = err; the C11 semantics leaves such
programs undefined. Any expression verified by GPS is guaranteed
to be data-race and memory-error free.

3. GPS: a logic for release-acquire consistency

The C11 memory model successfully serves as a contract between
compiler and programmer, making it possible—in principle—to re-
solve disputes (can a read of x here return 0?) by reference to global
axioms. These axioms—again, in principle—also support certain
intuitions about, e.g., transitive visibility. But, even with an exam-
ple as simple as one-shot message passing (§2), the intuitions are
not directly captured by the axioms. Rather, they emerge through
chains of subtle reasoning showing that certain edges must, or must
not, exist. Axiomatic reasoning is also relentlessly global: a read
event can potentially read from any write in the graph, so the ax-
ioms must be applied to each write to rule it in or out.

Our goal is to supplement the (release-acquire) C11 memory
model with a program logic that (1) captures intuitions about transi-
tive visibility more directly and (2) supports thread-local reasoning.
This section presents GPS, which achieves both goals through
• per-location protocols that abstract away event graphs, and
• ghosts and escrows, which govern logical permissions in the

style of recent separation logics.

Setup GPS is a separation logic for an expression language. Its
central judgment is the Hoare triple, {P} e {x. Q}, which says that
when given resources described by P , the expression e is memory
safe and data-race free. If, moreover, e terminates with a value V ,
it will do so with resources satisfying Q[V/x]. We will introduce
assertions P gradually. For now, we assume they include the basic
operators of multi-sorted first-order logic:
P ::= t = t | P ^ P | P _ P | P) P | 8X.P | 9X.P | · · ·

where ✓ ranges over sorts (for now, just Val) and t ranges over
terms. We write t : ✓ if t has sort ✓, and assume that variables X
are broken into classes by sort (`, x, y, z for variables of sort Val).

Per-location protocols We start with a twist on message passing:
[x]

at

:= 37;
[y]

at

:= 1;
· · · [x]

at

:= 37;
[y]

at

:= 1;
repeat [y]

at

end;
[x]

at

Intuitively, this variant, with multiple threads sending the same
same message (37), works for the same reason the original does:
transitive visibility. We want to articulate this common intuition in
a way that doesn’t depend on how many threads are sending the
message 37 or involve global reasoning about the event graph.

A tempting starting point is to simply say that the values that
x and y point to progress from (0, 0) to (37, 0) to (37, 1). Alas,
this kind of reasoning is unsound for weak memory in general: it
assumes that all threads will see writes to different locations in the
same order. In actuality, independent (i.e., hb-unrelated) writes to
different locations can appear to threads in different orders, which
is why Dekker’s algorithm fails. If we want thread-local reasoning,
we need an approach that accounts for what our thread may see,
while capturing the happens-before relationship between writes.

The key insight of GPS is that we can constrain the evolution
of values if we focus on one location at a time: mo provides a
linear order, seen by all threads, on the writes to a given location.
Toward this end, GPS provides per-location protocols, which are
state transition systems governing a single shared location. Using
protocols, we can express the changes to x and y independently:

x : 0 37 y : 0 1

These transition systems offer an abstraction of the event graph:
each state represents a set of write events, while edges represent mo

relationships between them. Thus, for x, we see that all of the writes
of 37 are mo-later than the initial write of 0. But these independent
constraints alone are not enough: we must ensure that y can only
be in state 1 if x is “known” to be in state 37.

In general, protocol states are abstract; the labels on the tran-
sition systems above are merely suggestive. Each state is given an
interpretation, which constrains the values that may be written to
the location in that state, but may also impose other constraints—
including, as we will see, constraints on other protocols. (Treating
states abstractly allows us to, in effect, associate a ghost variable
with each memory location, as §4 will show.)

Formally, we assume a sort State of protocol states, ranged over
by variables s. GPS is parameterized by (1) the grammar of terms
of sort State and (2) a set of protocol types (metavariable ⌧). For
each protocol type ⌧ , the user of the logic specifies:

• A transition relation v⌧ , which is a partial order on states.
• A state interpretation ⌧(s, z), which is a resource assertion in

which s and z appear free (i.e., it is a predicate on s and z). The
assertion represents what must be true of a value z for a thread
to be permitted to write it to the location in state s.

For the message passing example, we introduce a protocol type
Dat governing location x. Writing abstract states in bold, we say
0 v

Dat

0, 0 v

Dat

37, 37 v

Dat

37, and define

Dat(s, z) , (s = 0 ^ z = 0) _ (s = 37 ^ z = 37)

To give the protocol for y, however, we need a way of talking about
the protocol for x in its state interpretations. For this purpose, GPS
offers protocol assertions, ` : s ⌧ , which say that location ` is
governed by the protocol type ⌧ , and has been observed in state s,
thus giving a lower bound on the current protocol state.

We can now give the protocol for y. We introduce a protocol
type Flg(`) that is parameterized over a location ` (which we will
instantiate with x). Again writing abstract states in bold, we say
0 v

Flg

0, 0 v

Flg

1, 1 v

Flg

1, and

Flg(`)(s, z) , (s = 0 ^ z = 0)

_ (s = 1 ^ z = 1 ^ ` : 37 Dat)

Thus, to move to state 1 in Flg(x), a thread must (1) write 1 to
y and (2) have already observed that x : 37 Dat , which it can
ensure by first writing 37 to x itself.

What happens when a thread reads y? GPS supports the follow-
ing Hoare triple for atomic reads of a location `:5

8s0 w⌧ s. 8z. ⌧(s0, z)) Q
n

` : s ⌧
o

[`]
at

n

z. 9s0. ` : s0 ⌧ ^Q
o

The Hoare triple takes as a precondition some pre-existing knowl-
edge about `’s protocol. (For the message receiver, this knowledge
will be y : 0 Flg(x) .) The pre-existing knowledge gives a lower
bound on the possible writes the read could read from: they must
be at least as far as state s in the protocol.

5 This rule is sound only for the assertions we have introduced so far; the
general rule is given in “Ownership transfer through protocols”, below.

4 2013/12/9

where it is placed in sb order after the thread’s previous event. The
mo order for G0 can arbitrarily extend the one for G, but because
it is a strict total order on writes, the extension will only add
relationships to the new node. The rf order can likewise only add
a read for the new node, which must read from some previously-
existing write. Finally, the new graph G0 is assumed to satisfy the
C11 axioms, constraining both the possible events and edges. The
validity of this semantics for C11 is discussed in the appendix [1].

We write JeK for the set of final values e can produce, starting
with a single-node event graph (where the start node is action S). If
at any point e creates a data race or memory error (defined formally
in the appendix [1]), then JeK = err; the C11 semantics leaves such
programs undefined. Any expression verified by GPS is guaranteed
to be data-race and memory-error free.

3. GPS: a logic for release-acquire consistency

The C11 memory model successfully serves as a contract between
compiler and programmer, making it possible—in principle—to re-
solve disputes (can a read of x here return 0?) by reference to global
axioms. These axioms—again, in principle—also support certain
intuitions about, e.g., transitive visibility. But, even with an exam-
ple as simple as one-shot message passing (§2), the intuitions are
not directly captured by the axioms. Rather, they emerge through
chains of subtle reasoning showing that certain edges must, or must
not, exist. Axiomatic reasoning is also relentlessly global: a read
event can potentially read from any write in the graph, so the ax-
ioms must be applied to each write to rule it in or out.

Our goal is to supplement the (release-acquire) C11 memory
model with a program logic that (1) captures intuitions about transi-
tive visibility more directly and (2) supports thread-local reasoning.
This section presents GPS, which achieves both goals through
• per-location protocols that abstract away event graphs, and
• ghosts and escrows, which govern logical permissions in the

style of recent separation logics.

Setup GPS is a separation logic for an expression language. Its
central judgment is the Hoare triple, {P} e {x. Q}, which says that
when given resources described by P , the expression e is memory
safe and data-race free. If, moreover, e terminates with a value V ,
it will do so with resources satisfying Q[V/x]. We will introduce
assertions P gradually. For now, we assume they include the basic
operators of multi-sorted first-order logic:
P ::= t = t | P ^ P | P _ P | P) P | 8X.P | 9X.P | · · ·

where ✓ ranges over sorts (for now, just Val) and t ranges over
terms. We write t : ✓ if t has sort ✓, and assume that variables X
are broken into classes by sort (`, x, y, z for variables of sort Val).

Per-location protocols We start with a twist on message passing:
[x]

at

:= 37;
[y]

at

:= 1;
· · · [x]

at

:= 37;
[y]

at

:= 1;
repeat [y]

at

end;
[x]

at

Intuitively, this variant, with multiple threads sending the same
same message (37), works for the same reason the original does:
transitive visibility. We want to articulate this common intuition in
a way that doesn’t depend on how many threads are sending the
message 37 or involve global reasoning about the event graph.

A tempting starting point is to simply say that the values that
x and y point to progress from (0, 0) to (37, 0) to (37, 1). Alas,
this kind of reasoning is unsound for weak memory in general: it
assumes that all threads will see writes to different locations in the
same order. In actuality, independent (i.e., hb-unrelated) writes to
different locations can appear to threads in different orders, which
is why Dekker’s algorithm fails. If we want thread-local reasoning,
we need an approach that accounts for what our thread may see,
while capturing the happens-before relationship between writes.

The key insight of GPS is that we can constrain the evolution
of values if we focus on one location at a time: mo provides a
linear order, seen by all threads, on the writes to a given location.
Toward this end, GPS provides per-location protocols, which are
state transition systems governing a single shared location. Using
protocols, we can express the changes to x and y independently:

x : 0 37 y : 0 1

These transition systems offer an abstraction of the event graph:
each state represents a set of write events, while edges represent mo

relationships between them. Thus, for x, we see that all of the writes
of 37 are mo-later than the initial write of 0. But these independent
constraints alone are not enough: we must ensure that y can only
be in state 1 if x is “known” to be in state 37.

In general, protocol states are abstract; the labels on the tran-
sition systems above are merely suggestive. Each state is given an
interpretation, which constrains the values that may be written to
the location in that state, but may also impose other constraints—
including, as we will see, constraints on other protocols. (Treating
states abstractly allows us to, in effect, associate a ghost variable
with each memory location, as §4 will show.)

Formally, we assume a sort State of protocol states, ranged over
by variables s. GPS is parameterized by (1) the grammar of terms
of sort State and (2) a set of protocol types (metavariable ⌧). For
each protocol type ⌧ , the user of the logic specifies:

• A transition relation v⌧ , which is a partial order on states.
• A state interpretation ⌧(s, z), which is a resource assertion in

which s and z appear free (i.e., it is a predicate on s and z). The
assertion represents what must be true of a value z for a thread
to be permitted to write it to the location in state s.

For the message passing example, we introduce a protocol type
Dat governing location x. Writing abstract states in bold, we say
0 v

Dat

0, 0 v

Dat

37, 37 v

Dat

37, and define

Dat(s, z) , (s = 0 ^ z = 0) _ (s = 37 ^ z = 37)

To give the protocol for y, however, we need a way of talking about
the protocol for x in its state interpretations. For this purpose, GPS
offers protocol assertions, ` : s ⌧ , which say that location ` is
governed by the protocol type ⌧ , and has been observed in state s,
thus giving a lower bound on the current protocol state.

We can now give the protocol for y. We introduce a protocol
type Flg(`) that is parameterized over a location ` (which we will
instantiate with x). Again writing abstract states in bold, we say
0 v

Flg

0, 0 v

Flg

1, 1 v

Flg

1, and

Flg(`)(s, z) , (s = 0 ^ z = 0)

_ (s = 1 ^ z = 1 ^ ` : 37 Dat)

Thus, to move to state 1 in Flg(x), a thread must (1) write 1 to
y and (2) have already observed that x : 37 Dat , which it can
ensure by first writing 37 to x itself.

What happens when a thread reads y? GPS supports the follow-
ing Hoare triple for atomic reads of a location `:5

8s0 w⌧ s. 8z. ⌧(s0, z)) Q
n

` : s ⌧
o

[`]
at

n

z. 9s0. ` : s0 ⌧ ^Q
o

The Hoare triple takes as a precondition some pre-existing knowl-
edge about `’s protocol. (For the message receiver, this knowledge
will be y : 0 Flg(x) .) The pre-existing knowledge gives a lower
bound on the possible writes the read could read from: they must
be at least as far as state s in the protocol.

5 This rule is sound only for the assertions we have introduced so far; the
general rule is given in “Ownership transfer through protocols”, below.

4 2013/12/9

where it is placed in sb order after the thread’s previous event. The
mo order for G0 can arbitrarily extend the one for G, but because
it is a strict total order on writes, the extension will only add
relationships to the new node. The rf order can likewise only add
a read for the new node, which must read from some previously-
existing write. Finally, the new graph G0 is assumed to satisfy the
C11 axioms, constraining both the possible events and edges. The
validity of this semantics for C11 is discussed in the appendix [1].

We write JeK for the set of final values e can produce, starting
with a single-node event graph (where the start node is action S). If
at any point e creates a data race or memory error (defined formally
in the appendix [1]), then JeK = err; the C11 semantics leaves such
programs undefined. Any expression verified by GPS is guaranteed
to be data-race and memory-error free.

3. GPS: a logic for release-acquire consistency

The C11 memory model successfully serves as a contract between
compiler and programmer, making it possible—in principle—to re-
solve disputes (can a read of x here return 0?) by reference to global
axioms. These axioms—again, in principle—also support certain
intuitions about, e.g., transitive visibility. But, even with an exam-
ple as simple as one-shot message passing (§2), the intuitions are
not directly captured by the axioms. Rather, they emerge through
chains of subtle reasoning showing that certain edges must, or must
not, exist. Axiomatic reasoning is also relentlessly global: a read
event can potentially read from any write in the graph, so the ax-
ioms must be applied to each write to rule it in or out.

Our goal is to supplement the (release-acquire) C11 memory
model with a program logic that (1) captures intuitions about transi-
tive visibility more directly and (2) supports thread-local reasoning.
This section presents GPS, which achieves both goals through
• per-location protocols that abstract away event graphs, and
• ghosts and escrows, which govern logical permissions in the

style of recent separation logics.

Setup GPS is a separation logic for an expression language. Its
central judgment is the Hoare triple, {P} e {x. Q}, which says that
when given resources described by P , the expression e is memory
safe and data-race free. If, moreover, e terminates with a value V ,
it will do so with resources satisfying Q[V/x]. We will introduce
assertions P gradually. For now, we assume they include the basic
operators of multi-sorted first-order logic:
P ::= t = t | P ^ P | P _ P | P) P | 8X.P | 9X.P | · · ·

where ✓ ranges over sorts (for now, just Val) and t ranges over
terms. We write t : ✓ if t has sort ✓, and assume that variables X
are broken into classes by sort (`, x, y, z for variables of sort Val).

Per-location protocols We start with a twist on message passing:
[x]

at

:= 37;
[y]

at

:= 1;
· · · [x]

at

:= 37;
[y]

at

:= 1;
repeat [y]

at

end;
[x]

at

Intuitively, this variant, with multiple threads sending the same
same message (37), works for the same reason the original does:
transitive visibility. We want to articulate this common intuition in
a way that doesn’t depend on how many threads are sending the
message 37 or involve global reasoning about the event graph.

A tempting starting point is to simply say that the values that
x and y point to progress from (0, 0) to (37, 0) to (37, 1). Alas,
this kind of reasoning is unsound for weak memory in general: it
assumes that all threads will see writes to different locations in the
same order. In actuality, independent (i.e., hb-unrelated) writes to
different locations can appear to threads in different orders, which
is why Dekker’s algorithm fails. If we want thread-local reasoning,
we need an approach that accounts for what our thread may see,
while capturing the happens-before relationship between writes.

The key insight of GPS is that we can constrain the evolution
of values if we focus on one location at a time: mo provides a
linear order, seen by all threads, on the writes to a given location.
Toward this end, GPS provides per-location protocols, which are
state transition systems governing a single shared location. Using
protocols, we can express the changes to x and y independently:

x : 0 37 y : 0 1

These transition systems offer an abstraction of the event graph:
each state represents a set of write events, while edges represent mo

relationships between them. Thus, for x, we see that all of the writes
of 37 are mo-later than the initial write of 0. But these independent
constraints alone are not enough: we must ensure that y can only
be in state 1 if x is “known” to be in state 37.

In general, protocol states are abstract; the labels on the tran-
sition systems above are merely suggestive. Each state is given an
interpretation, which constrains the values that may be written to
the location in that state, but may also impose other constraints—
including, as we will see, constraints on other protocols. (Treating
states abstractly allows us to, in effect, associate a ghost variable
with each memory location, as §4 will show.)

Formally, we assume a sort State of protocol states, ranged over
by variables s. GPS is parameterized by (1) the grammar of terms
of sort State and (2) a set of protocol types (metavariable ⌧). For
each protocol type ⌧ , the user of the logic specifies:

• A transition relation v⌧ , which is a partial order on states.
• A state interpretation ⌧(s, z), which is a resource assertion in

which s and z appear free (i.e., it is a predicate on s and z). The
assertion represents what must be true of a value z for a thread
to be permitted to write it to the location in state s.

For the message passing example, we introduce a protocol type
Dat governing location x. Writing abstract states in bold, we say
0 v

Dat

0, 0 v

Dat

37, 37 v

Dat

37, and define

Dat(s, z) , (s = 0 ^ z = 0) _ (s = 37 ^ z = 37)

To give the protocol for y, however, we need a way of talking about
the protocol for x in its state interpretations. For this purpose, GPS
offers protocol assertions, ` : s ⌧ , which say that location ` is
governed by the protocol type ⌧ , and has been observed in state s,
thus giving a lower bound on the current protocol state.

We can now give the protocol for y. We introduce a protocol
type Flg(`) that is parameterized over a location ` (which we will
instantiate with x). Again writing abstract states in bold, we say
0 v

Flg

0, 0 v

Flg

1, 1 v

Flg

1, and

Flg(`)(s, z) , (s = 0 ^ z = 0)

_ (s = 1 ^ z = 1 ^ ` : 37 Dat)

Thus, to move to state 1 in Flg(x), a thread must (1) write 1 to
y and (2) have already observed that x : 37 Dat , which it can
ensure by first writing 37 to x itself.

What happens when a thread reads y? GPS supports the follow-
ing Hoare triple for atomic reads of a location `:5

8s0 w⌧ s. 8z. ⌧(s0, z)) Q
n

` : s ⌧
o

[`]
at

n

z. 9s0. ` : s0 ⌧ ^Q
o

The Hoare triple takes as a precondition some pre-existing knowl-
edge about `’s protocol. (For the message receiver, this knowledge
will be y : 0 Flg(x) .) The pre-existing knowledge gives a lower
bound on the possible writes the read could read from: they must
be at least as far as state s in the protocol.

5 This rule is sound only for the assertions we have introduced so far; the
general rule is given in “Ownership transfer through protocols”, below.

4 2013/12/9

x: 37

Release/Acquire

where it is placed in sb order after the thread’s previous event. The
mo order for G0 can arbitrarily extend the one for G, but because
it is a strict total order on writes, the extension will only add
relationships to the new node. The rf order can likewise only add
a read for the new node, which must read from some previously-
existing write. Finally, the new graph G0 is assumed to satisfy the
C11 axioms, constraining both the possible events and edges. The
validity of this semantics for C11 is discussed in the appendix [1].

We write JeK for the set of final values e can produce, starting
with a single-node event graph (where the start node is action S). If
at any point e creates a data race or memory error (defined formally
in the appendix [1]), then JeK = err; the C11 semantics leaves such
programs undefined. Any expression verified by GPS is guaranteed
to be data-race and memory-error free.

3. GPS: a logic for release-acquire consistency

The C11 memory model successfully serves as a contract between
compiler and programmer, making it possible—in principle—to re-
solve disputes (can a read of x here return 0?) by reference to global
axioms. These axioms—again, in principle—also support certain
intuitions about, e.g., transitive visibility. But, even with an exam-
ple as simple as one-shot message passing (§2), the intuitions are
not directly captured by the axioms. Rather, they emerge through
chains of subtle reasoning showing that certain edges must, or must
not, exist. Axiomatic reasoning is also relentlessly global: a read
event can potentially read from any write in the graph, so the ax-
ioms must be applied to each write to rule it in or out.

Our goal is to supplement the (release-acquire) C11 memory
model with a program logic that (1) captures intuitions about transi-
tive visibility more directly and (2) supports thread-local reasoning.
This section presents GPS, which achieves both goals through
• per-location protocols that abstract away event graphs, and
• ghosts and escrows, which govern logical permissions in the

style of recent separation logics.

Setup GPS is a separation logic for an expression language. Its
central judgment is the Hoare triple, {P} e {x. Q}, which says that
when given resources described by P , the expression e is memory
safe and data-race free. If, moreover, e terminates with a value V ,
it will do so with resources satisfying Q[V/x]. We will introduce
assertions P gradually. For now, we assume they include the basic
operators of multi-sorted first-order logic:
P ::= t = t | P ^ P | P _ P | P) P | 8X.P | 9X.P | · · ·

where ✓ ranges over sorts (for now, just Val) and t ranges over
terms. We write t : ✓ if t has sort ✓, and assume that variables X
are broken into classes by sort (`, x, y, z for variables of sort Val).

Per-location protocols We start with a twist on message passing:
[x]

at

:= 37;
[y]

at

:= 1;
· · · [x]

at

:= 37;
[y]

at

:= 1;
repeat [y]

at

end;
[x]

at

Intuitively, this variant, with multiple threads sending the same
same message (37), works for the same reason the original does:
transitive visibility. We want to articulate this common intuition in
a way that doesn’t depend on how many threads are sending the
message 37 or involve global reasoning about the event graph.

A tempting starting point is to simply say that the values that
x and y point to progress from (0, 0) to (37, 0) to (37, 1). Alas,
this kind of reasoning is unsound for weak memory in general: it
assumes that all threads will see writes to different locations in the
same order. In actuality, independent (i.e., hb-unrelated) writes to
different locations can appear to threads in different orders, which
is why Dekker’s algorithm fails. If we want thread-local reasoning,
we need an approach that accounts for what our thread may see,
while capturing the happens-before relationship between writes.

The key insight of GPS is that we can constrain the evolution
of values if we focus on one location at a time: mo provides a
linear order, seen by all threads, on the writes to a given location.
Toward this end, GPS provides per-location protocols, which are
state transition systems governing a single shared location. Using
protocols, we can express the changes to x and y independently:

x : 0 37 y : 0 1

These transition systems offer an abstraction of the event graph:
each state represents a set of write events, while edges represent mo

relationships between them. Thus, for x, we see that all of the writes
of 37 are mo-later than the initial write of 0. But these independent
constraints alone are not enough: we must ensure that y can only
be in state 1 if x is “known” to be in state 37.

In general, protocol states are abstract; the labels on the tran-
sition systems above are merely suggestive. Each state is given an
interpretation, which constrains the values that may be written to
the location in that state, but may also impose other constraints—
including, as we will see, constraints on other protocols. (Treating
states abstractly allows us to, in effect, associate a ghost variable
with each memory location, as §4 will show.)

Formally, we assume a sort State of protocol states, ranged over
by variables s. GPS is parameterized by (1) the grammar of terms
of sort State and (2) a set of protocol types (metavariable ⌧). For
each protocol type ⌧ , the user of the logic specifies:

• A transition relation v⌧ , which is a partial order on states.
• A state interpretation ⌧(s, z), which is a resource assertion in

which s and z appear free (i.e., it is a predicate on s and z). The
assertion represents what must be true of a value z for a thread
to be permitted to write it to the location in state s.

For the message passing example, we introduce a protocol type
Dat governing location x. Writing abstract states in bold, we say
0 v

Dat

0, 0 v

Dat

37, 37 v

Dat

37, and define

Dat(s, z) , (s = 0 ^ z = 0) _ (s = 37 ^ z = 37)

To give the protocol for y, however, we need a way of talking about
the protocol for x in its state interpretations. For this purpose, GPS
offers protocol assertions, ` : s ⌧ , which say that location ` is
governed by the protocol type ⌧ , and has been observed in state s,
thus giving a lower bound on the current protocol state.

We can now give the protocol for y. We introduce a protocol
type Flg(`) that is parameterized over a location ` (which we will
instantiate with x). Again writing abstract states in bold, we say
0 v

Flg

0, 0 v

Flg

1, 1 v

Flg

1, and

Flg(`)(s, z) , (s = 0 ^ z = 0)

_ (s = 1 ^ z = 1 ^ ` : 37 Dat)

Thus, to move to state 1 in Flg(x), a thread must (1) write 1 to
y and (2) have already observed that x : 37 Dat , which it can
ensure by first writing 37 to x itself.

What happens when a thread reads y? GPS supports the follow-
ing Hoare triple for atomic reads of a location `:5

8s0 w⌧ s. 8z. ⌧(s0, z)) Q
n

` : s ⌧
o

[`]
at

n

z. 9s0. ` : s0 ⌧ ^Q
o

The Hoare triple takes as a precondition some pre-existing knowl-
edge about `’s protocol. (For the message receiver, this knowledge
will be y : 0 Flg(x) .) The pre-existing knowledge gives a lower
bound on the possible writes the read could read from: they must
be at least as far as state s in the protocol.

5 This rule is sound only for the assertions we have introduced so far; the
general rule is given in “Ownership transfer through protocols”, below.

4 2013/12/9

where it is placed in sb order after the thread’s previous event. The
mo order for G0 can arbitrarily extend the one for G, but because
it is a strict total order on writes, the extension will only add
relationships to the new node. The rf order can likewise only add
a read for the new node, which must read from some previously-
existing write. Finally, the new graph G0 is assumed to satisfy the
C11 axioms, constraining both the possible events and edges. The
validity of this semantics for C11 is discussed in the appendix [1].

We write JeK for the set of final values e can produce, starting
with a single-node event graph (where the start node is action S). If
at any point e creates a data race or memory error (defined formally
in the appendix [1]), then JeK = err; the C11 semantics leaves such
programs undefined. Any expression verified by GPS is guaranteed
to be data-race and memory-error free.

3. GPS: a logic for release-acquire consistency

The C11 memory model successfully serves as a contract between
compiler and programmer, making it possible—in principle—to re-
solve disputes (can a read of x here return 0?) by reference to global
axioms. These axioms—again, in principle—also support certain
intuitions about, e.g., transitive visibility. But, even with an exam-
ple as simple as one-shot message passing (§2), the intuitions are
not directly captured by the axioms. Rather, they emerge through
chains of subtle reasoning showing that certain edges must, or must
not, exist. Axiomatic reasoning is also relentlessly global: a read
event can potentially read from any write in the graph, so the ax-
ioms must be applied to each write to rule it in or out.

Our goal is to supplement the (release-acquire) C11 memory
model with a program logic that (1) captures intuitions about transi-
tive visibility more directly and (2) supports thread-local reasoning.
This section presents GPS, which achieves both goals through
• per-location protocols that abstract away event graphs, and
• ghosts and escrows, which govern logical permissions in the

style of recent separation logics.

Setup GPS is a separation logic for an expression language. Its
central judgment is the Hoare triple, {P} e {x. Q}, which says that
when given resources described by P , the expression e is memory
safe and data-race free. If, moreover, e terminates with a value V ,
it will do so with resources satisfying Q[V/x]. We will introduce
assertions P gradually. For now, we assume they include the basic
operators of multi-sorted first-order logic:
P ::= t = t | P ^ P | P _ P | P) P | 8X.P | 9X.P | · · ·

where ✓ ranges over sorts (for now, just Val) and t ranges over
terms. We write t : ✓ if t has sort ✓, and assume that variables X
are broken into classes by sort (`, x, y, z for variables of sort Val).

Per-location protocols We start with a twist on message passing:
[x]

at

:= 37;
[y]

at

:= 1;
· · · [x]

at

:= 37;
[y]

at

:= 1;
repeat [y]

at

end;
[x]

at

Intuitively, this variant, with multiple threads sending the same
same message (37), works for the same reason the original does:
transitive visibility. We want to articulate this common intuition in
a way that doesn’t depend on how many threads are sending the
message 37 or involve global reasoning about the event graph.

A tempting starting point is to simply say that the values that
x and y point to progress from (0, 0) to (37, 0) to (37, 1). Alas,
this kind of reasoning is unsound for weak memory in general: it
assumes that all threads will see writes to different locations in the
same order. In actuality, independent (i.e., hb-unrelated) writes to
different locations can appear to threads in different orders, which
is why Dekker’s algorithm fails. If we want thread-local reasoning,
we need an approach that accounts for what our thread may see,
while capturing the happens-before relationship between writes.

The key insight of GPS is that we can constrain the evolution
of values if we focus on one location at a time: mo provides a
linear order, seen by all threads, on the writes to a given location.
Toward this end, GPS provides per-location protocols, which are
state transition systems governing a single shared location. Using
protocols, we can express the changes to x and y independently:

x : 0 37 y : 0 1

These transition systems offer an abstraction of the event graph:
each state represents a set of write events, while edges represent mo

relationships between them. Thus, for x, we see that all of the writes
of 37 are mo-later than the initial write of 0. But these independent
constraints alone are not enough: we must ensure that y can only
be in state 1 if x is “known” to be in state 37.

In general, protocol states are abstract; the labels on the tran-
sition systems above are merely suggestive. Each state is given an
interpretation, which constrains the values that may be written to
the location in that state, but may also impose other constraints—
including, as we will see, constraints on other protocols. (Treating
states abstractly allows us to, in effect, associate a ghost variable
with each memory location, as §4 will show.)

Formally, we assume a sort State of protocol states, ranged over
by variables s. GPS is parameterized by (1) the grammar of terms
of sort State and (2) a set of protocol types (metavariable ⌧). For
each protocol type ⌧ , the user of the logic specifies:

• A transition relation v⌧ , which is a partial order on states.
• A state interpretation ⌧(s, z), which is a resource assertion in

which s and z appear free (i.e., it is a predicate on s and z). The
assertion represents what must be true of a value z for a thread
to be permitted to write it to the location in state s.

For the message passing example, we introduce a protocol type
Dat governing location x. Writing abstract states in bold, we say
0 v

Dat

0, 0 v

Dat

37, 37 v

Dat

37, and define

Dat(s, z) , (s = 0 ^ z = 0) _ (s = 37 ^ z = 37)

To give the protocol for y, however, we need a way of talking about
the protocol for x in its state interpretations. For this purpose, GPS
offers protocol assertions, ` : s ⌧ , which say that location ` is
governed by the protocol type ⌧ , and has been observed in state s,
thus giving a lower bound on the current protocol state.

We can now give the protocol for y. We introduce a protocol
type Flg(`) that is parameterized over a location ` (which we will
instantiate with x). Again writing abstract states in bold, we say
0 v

Flg

0, 0 v

Flg

1, 1 v

Flg

1, and

Flg(`)(s, z) , (s = 0 ^ z = 0)

_ (s = 1 ^ z = 1 ^ ` : 37 Dat)

Thus, to move to state 1 in Flg(x), a thread must (1) write 1 to
y and (2) have already observed that x : 37 Dat , which it can
ensure by first writing 37 to x itself.

What happens when a thread reads y? GPS supports the follow-
ing Hoare triple for atomic reads of a location `:5

8s0 w⌧ s. 8z. ⌧(s0, z)) Q
n

` : s ⌧
o

[`]
at

n

z. 9s0. ` : s0 ⌧ ^Q
o

The Hoare triple takes as a precondition some pre-existing knowl-
edge about `’s protocol. (For the message receiver, this knowledge
will be y : 0 Flg(x) .) The pre-existing knowledge gives a lower
bound on the possible writes the read could read from: they must
be at least as far as state s in the protocol.

5 This rule is sound only for the assertions we have introduced so far; the
general rule is given in “Ownership transfer through protocols”, below.

4 2013/12/9

x: 37

Protocol name: data

Protocol name: flag

where it is placed in sb order after the thread’s previous event. The
mo order for G0 can arbitrarily extend the one for G, but because
it is a strict total order on writes, the extension will only add
relationships to the new node. The rf order can likewise only add
a read for the new node, which must read from some previously-
existing write. Finally, the new graph G0 is assumed to satisfy the
C11 axioms, constraining both the possible events and edges. The
validity of this semantics for C11 is discussed in the appendix [1].

We write JeK for the set of final values e can produce, starting
with a single-node event graph (where the start node is action S). If
at any point e creates a data race or memory error (defined formally
in the appendix [1]), then JeK = err; the C11 semantics leaves such
programs undefined. Any expression verified by GPS is guaranteed
to be data-race and memory-error free.

3. GPS: a logic for release-acquire consistency

The C11 memory model successfully serves as a contract between
compiler and programmer, making it possible—in principle—to re-
solve disputes (can a read of x here return 0?) by reference to global
axioms. These axioms—again, in principle—also support certain
intuitions about, e.g., transitive visibility. But, even with an exam-
ple as simple as one-shot message passing (§2), the intuitions are
not directly captured by the axioms. Rather, they emerge through
chains of subtle reasoning showing that certain edges must, or must
not, exist. Axiomatic reasoning is also relentlessly global: a read
event can potentially read from any write in the graph, so the ax-
ioms must be applied to each write to rule it in or out.

Our goal is to supplement the (release-acquire) C11 memory
model with a program logic that (1) captures intuitions about transi-
tive visibility more directly and (2) supports thread-local reasoning.
This section presents GPS, which achieves both goals through
• per-location protocols that abstract away event graphs, and
• ghosts and escrows, which govern logical permissions in the

style of recent separation logics.

Setup GPS is a separation logic for an expression language. Its
central judgment is the Hoare triple, {P} e {x. Q}, which says that
when given resources described by P , the expression e is memory
safe and data-race free. If, moreover, e terminates with a value V ,
it will do so with resources satisfying Q[V/x]. We will introduce
assertions P gradually. For now, we assume they include the basic
operators of multi-sorted first-order logic:
P ::= t = t | P ^ P | P _ P | P) P | 8X.P | 9X.P | · · ·

where ✓ ranges over sorts (for now, just Val) and t ranges over
terms. We write t : ✓ if t has sort ✓, and assume that variables X
are broken into classes by sort (`, x, y, z for variables of sort Val).

Per-location protocols We start with a twist on message passing:
[x]

at

:= 37;
[y]

at

:= 1;
· · · [x]

at

:= 37;
[y]

at

:= 1;
repeat [y]

at

end;
[x]

at

Intuitively, this variant, with multiple threads sending the same
same message (37), works for the same reason the original does:
transitive visibility. We want to articulate this common intuition in
a way that doesn’t depend on how many threads are sending the
message 37 or involve global reasoning about the event graph.

A tempting starting point is to simply say that the values that
x and y point to progress from (0, 0) to (37, 0) to (37, 1). Alas,
this kind of reasoning is unsound for weak memory in general: it
assumes that all threads will see writes to different locations in the
same order. In actuality, independent (i.e., hb-unrelated) writes to
different locations can appear to threads in different orders, which
is why Dekker’s algorithm fails. If we want thread-local reasoning,
we need an approach that accounts for what our thread may see,
while capturing the happens-before relationship between writes.

The key insight of GPS is that we can constrain the evolution
of values if we focus on one location at a time: mo provides a
linear order, seen by all threads, on the writes to a given location.
Toward this end, GPS provides per-location protocols, which are
state transition systems governing a single shared location. Using
protocols, we can express the changes to x and y independently:

x : 0 37 y : 0 1

These transition systems offer an abstraction of the event graph:
each state represents a set of write events, while edges represent mo

relationships between them. Thus, for x, we see that all of the writes
of 37 are mo-later than the initial write of 0. But these independent
constraints alone are not enough: we must ensure that y can only
be in state 1 if x is “known” to be in state 37.

In general, protocol states are abstract; the labels on the tran-
sition systems above are merely suggestive. Each state is given an
interpretation, which constrains the values that may be written to
the location in that state, but may also impose other constraints—
including, as we will see, constraints on other protocols. (Treating
states abstractly allows us to, in effect, associate a ghost variable
with each memory location, as §4 will show.)

Formally, we assume a sort State of protocol states, ranged over
by variables s. GPS is parameterized by (1) the grammar of terms
of sort State and (2) a set of protocol types (metavariable ⌧). For
each protocol type ⌧ , the user of the logic specifies:

• A transition relation v⌧ , which is a partial order on states.
• A state interpretation ⌧(s, z), which is a resource assertion in

which s and z appear free (i.e., it is a predicate on s and z). The
assertion represents what must be true of a value z for a thread
to be permitted to write it to the location in state s.

For the message passing example, we introduce a protocol type
Dat governing location x. Writing abstract states in bold, we say
0 v

Dat

0, 0 v

Dat

37, 37 v

Dat

37, and define

Dat(s, z) , (s = 0 ^ z = 0) _ (s = 37 ^ z = 37)

To give the protocol for y, however, we need a way of talking about
the protocol for x in its state interpretations. For this purpose, GPS
offers protocol assertions, ` : s ⌧ , which say that location ` is
governed by the protocol type ⌧ , and has been observed in state s,
thus giving a lower bound on the current protocol state.

We can now give the protocol for y. We introduce a protocol
type Flg(`) that is parameterized over a location ` (which we will
instantiate with x). Again writing abstract states in bold, we say
0 v

Flg

0, 0 v

Flg

1, 1 v

Flg

1, and

Flg(`)(s, z) , (s = 0 ^ z = 0)

_ (s = 1 ^ z = 1 ^ ` : 37 Dat)

Thus, to move to state 1 in Flg(x), a thread must (1) write 1 to
y and (2) have already observed that x : 37 Dat , which it can
ensure by first writing 37 to x itself.

What happens when a thread reads y? GPS supports the follow-
ing Hoare triple for atomic reads of a location `:5

8s0 w⌧ s. 8z. ⌧(s0, z)) Q
n

` : s ⌧
o

[`]
at

n

z. 9s0. ` : s0 ⌧ ^Q
o

The Hoare triple takes as a precondition some pre-existing knowl-
edge about `’s protocol. (For the message receiver, this knowledge
will be y : 0 Flg(x) .) The pre-existing knowledge gives a lower
bound on the possible writes the read could read from: they must
be at least as far as state s in the protocol.

5 This rule is sound only for the assertions we have introduced so far; the
general rule is given in “Ownership transfer through protocols”, below.

4 2013/12/9

where it is placed in sb order after the thread’s previous event. The
mo order for G0 can arbitrarily extend the one for G, but because
it is a strict total order on writes, the extension will only add
relationships to the new node. The rf order can likewise only add
a read for the new node, which must read from some previously-
existing write. Finally, the new graph G0 is assumed to satisfy the
C11 axioms, constraining both the possible events and edges. The
validity of this semantics for C11 is discussed in the appendix [1].

We write JeK for the set of final values e can produce, starting
with a single-node event graph (where the start node is action S). If
at any point e creates a data race or memory error (defined formally
in the appendix [1]), then JeK = err; the C11 semantics leaves such
programs undefined. Any expression verified by GPS is guaranteed
to be data-race and memory-error free.

3. GPS: a logic for release-acquire consistency

The C11 memory model successfully serves as a contract between
compiler and programmer, making it possible—in principle—to re-
solve disputes (can a read of x here return 0?) by reference to global
axioms. These axioms—again, in principle—also support certain
intuitions about, e.g., transitive visibility. But, even with an exam-
ple as simple as one-shot message passing (§2), the intuitions are
not directly captured by the axioms. Rather, they emerge through
chains of subtle reasoning showing that certain edges must, or must
not, exist. Axiomatic reasoning is also relentlessly global: a read
event can potentially read from any write in the graph, so the ax-
ioms must be applied to each write to rule it in or out.

Our goal is to supplement the (release-acquire) C11 memory
model with a program logic that (1) captures intuitions about transi-
tive visibility more directly and (2) supports thread-local reasoning.
This section presents GPS, which achieves both goals through
• per-location protocols that abstract away event graphs, and
• ghosts and escrows, which govern logical permissions in the

style of recent separation logics.

Setup GPS is a separation logic for an expression language. Its
central judgment is the Hoare triple, {P} e {x. Q}, which says that
when given resources described by P , the expression e is memory
safe and data-race free. If, moreover, e terminates with a value V ,
it will do so with resources satisfying Q[V/x]. We will introduce
assertions P gradually. For now, we assume they include the basic
operators of multi-sorted first-order logic:
P ::= t = t | P ^ P | P _ P | P) P | 8X.P | 9X.P | · · ·

where ✓ ranges over sorts (for now, just Val) and t ranges over
terms. We write t : ✓ if t has sort ✓, and assume that variables X
are broken into classes by sort (`, x, y, z for variables of sort Val).

Per-location protocols We start with a twist on message passing:
[x]

at

:= 37;
[y]

at

:= 1;
· · · [x]

at

:= 37;
[y]

at

:= 1;
repeat [y]

at

end;
[x]

at

Intuitively, this variant, with multiple threads sending the same
same message (37), works for the same reason the original does:
transitive visibility. We want to articulate this common intuition in
a way that doesn’t depend on how many threads are sending the
message 37 or involve global reasoning about the event graph.

A tempting starting point is to simply say that the values that
x and y point to progress from (0, 0) to (37, 0) to (37, 1). Alas,
this kind of reasoning is unsound for weak memory in general: it
assumes that all threads will see writes to different locations in the
same order. In actuality, independent (i.e., hb-unrelated) writes to
different locations can appear to threads in different orders, which
is why Dekker’s algorithm fails. If we want thread-local reasoning,
we need an approach that accounts for what our thread may see,
while capturing the happens-before relationship between writes.

The key insight of GPS is that we can constrain the evolution
of values if we focus on one location at a time: mo provides a
linear order, seen by all threads, on the writes to a given location.
Toward this end, GPS provides per-location protocols, which are
state transition systems governing a single shared location. Using
protocols, we can express the changes to x and y independently:

x : 0 37 y : 0 1

These transition systems offer an abstraction of the event graph:
each state represents a set of write events, while edges represent mo

relationships between them. Thus, for x, we see that all of the writes
of 37 are mo-later than the initial write of 0. But these independent
constraints alone are not enough: we must ensure that y can only
be in state 1 if x is “known” to be in state 37.

In general, protocol states are abstract; the labels on the tran-
sition systems above are merely suggestive. Each state is given an
interpretation, which constrains the values that may be written to
the location in that state, but may also impose other constraints—
including, as we will see, constraints on other protocols. (Treating
states abstractly allows us to, in effect, associate a ghost variable
with each memory location, as §4 will show.)

Formally, we assume a sort State of protocol states, ranged over
by variables s. GPS is parameterized by (1) the grammar of terms
of sort State and (2) a set of protocol types (metavariable ⌧). For
each protocol type ⌧ , the user of the logic specifies:

• A transition relation v⌧ , which is a partial order on states.
• A state interpretation ⌧(s, z), which is a resource assertion in

which s and z appear free (i.e., it is a predicate on s and z). The
assertion represents what must be true of a value z for a thread
to be permitted to write it to the location in state s.

For the message passing example, we introduce a protocol type
Dat governing location x. Writing abstract states in bold, we say
0 v

Dat

0, 0 v

Dat

37, 37 v

Dat

37, and define

Dat(s, z) , (s = 0 ^ z = 0) _ (s = 37 ^ z = 37)

To give the protocol for y, however, we need a way of talking about
the protocol for x in its state interpretations. For this purpose, GPS
offers protocol assertions, ` : s ⌧ , which say that location ` is
governed by the protocol type ⌧ , and has been observed in state s,
thus giving a lower bound on the current protocol state.

We can now give the protocol for y. We introduce a protocol
type Flg(`) that is parameterized over a location ` (which we will
instantiate with x). Again writing abstract states in bold, we say
0 v

Flg

0, 0 v

Flg

1, 1 v

Flg

1, and

Flg(`)(s, z) , (s = 0 ^ z = 0)

_ (s = 1 ^ z = 1 ^ ` : 37 Dat)

Thus, to move to state 1 in Flg(x), a thread must (1) write 1 to
y and (2) have already observed that x : 37 Dat , which it can
ensure by first writing 37 to x itself.

What happens when a thread reads y? GPS supports the follow-
ing Hoare triple for atomic reads of a location `:5

8s0 w⌧ s. 8z. ⌧(s0, z)) Q
n

` : s ⌧
o

[`]
at

n

z. 9s0. ` : s0 ⌧ ^Q
o

The Hoare triple takes as a precondition some pre-existing knowl-
edge about `’s protocol. (For the message receiver, this knowledge
will be y : 0 Flg(x) .) The pre-existing knowledge gives a lower
bound on the possible writes the read could read from: they must
be at least as far as state s in the protocol.

5 This rule is sound only for the assertions we have introduced so far; the
general rule is given in “Ownership transfer through protocols”, below.

4 2013/12/9

x: 37

Protocol name: data

Protocol name: flag

data(0, z) ≙ z = 0
data(37, z) ≙ z = 37

where it is placed in sb order after the thread’s previous event. The
mo order for G0 can arbitrarily extend the one for G, but because
it is a strict total order on writes, the extension will only add
relationships to the new node. The rf order can likewise only add
a read for the new node, which must read from some previously-
existing write. Finally, the new graph G0 is assumed to satisfy the
C11 axioms, constraining both the possible events and edges. The
validity of this semantics for C11 is discussed in the appendix [1].

We write JeK for the set of final values e can produce, starting
with a single-node event graph (where the start node is action S). If
at any point e creates a data race or memory error (defined formally
in the appendix [1]), then JeK = err; the C11 semantics leaves such
programs undefined. Any expression verified by GPS is guaranteed
to be data-race and memory-error free.

3. GPS: a logic for release-acquire consistency

The C11 memory model successfully serves as a contract between
compiler and programmer, making it possible—in principle—to re-
solve disputes (can a read of x here return 0?) by reference to global
axioms. These axioms—again, in principle—also support certain
intuitions about, e.g., transitive visibility. But, even with an exam-
ple as simple as one-shot message passing (§2), the intuitions are
not directly captured by the axioms. Rather, they emerge through
chains of subtle reasoning showing that certain edges must, or must
not, exist. Axiomatic reasoning is also relentlessly global: a read
event can potentially read from any write in the graph, so the ax-
ioms must be applied to each write to rule it in or out.

Our goal is to supplement the (release-acquire) C11 memory
model with a program logic that (1) captures intuitions about transi-
tive visibility more directly and (2) supports thread-local reasoning.
This section presents GPS, which achieves both goals through
• per-location protocols that abstract away event graphs, and
• ghosts and escrows, which govern logical permissions in the

style of recent separation logics.

Setup GPS is a separation logic for an expression language. Its
central judgment is the Hoare triple, {P} e {x. Q}, which says that
when given resources described by P , the expression e is memory
safe and data-race free. If, moreover, e terminates with a value V ,
it will do so with resources satisfying Q[V/x]. We will introduce
assertions P gradually. For now, we assume they include the basic
operators of multi-sorted first-order logic:
P ::= t = t | P ^ P | P _ P | P) P | 8X.P | 9X.P | · · ·

where ✓ ranges over sorts (for now, just Val) and t ranges over
terms. We write t : ✓ if t has sort ✓, and assume that variables X
are broken into classes by sort (`, x, y, z for variables of sort Val).

Per-location protocols We start with a twist on message passing:
[x]

at

:= 37;
[y]

at

:= 1;
· · · [x]

at

:= 37;
[y]

at

:= 1;
repeat [y]

at

end;
[x]

at

Intuitively, this variant, with multiple threads sending the same
same message (37), works for the same reason the original does:
transitive visibility. We want to articulate this common intuition in
a way that doesn’t depend on how many threads are sending the
message 37 or involve global reasoning about the event graph.

A tempting starting point is to simply say that the values that
x and y point to progress from (0, 0) to (37, 0) to (37, 1). Alas,
this kind of reasoning is unsound for weak memory in general: it
assumes that all threads will see writes to different locations in the
same order. In actuality, independent (i.e., hb-unrelated) writes to
different locations can appear to threads in different orders, which
is why Dekker’s algorithm fails. If we want thread-local reasoning,
we need an approach that accounts for what our thread may see,
while capturing the happens-before relationship between writes.

The key insight of GPS is that we can constrain the evolution
of values if we focus on one location at a time: mo provides a
linear order, seen by all threads, on the writes to a given location.
Toward this end, GPS provides per-location protocols, which are
state transition systems governing a single shared location. Using
protocols, we can express the changes to x and y independently:

x : 0 37 y : 0 1

These transition systems offer an abstraction of the event graph:
each state represents a set of write events, while edges represent mo

relationships between them. Thus, for x, we see that all of the writes
of 37 are mo-later than the initial write of 0. But these independent
constraints alone are not enough: we must ensure that y can only
be in state 1 if x is “known” to be in state 37.

In general, protocol states are abstract; the labels on the tran-
sition systems above are merely suggestive. Each state is given an
interpretation, which constrains the values that may be written to
the location in that state, but may also impose other constraints—
including, as we will see, constraints on other protocols. (Treating
states abstractly allows us to, in effect, associate a ghost variable
with each memory location, as §4 will show.)

Formally, we assume a sort State of protocol states, ranged over
by variables s. GPS is parameterized by (1) the grammar of terms
of sort State and (2) a set of protocol types (metavariable ⌧). For
each protocol type ⌧ , the user of the logic specifies:

• A transition relation v⌧ , which is a partial order on states.
• A state interpretation ⌧(s, z), which is a resource assertion in

which s and z appear free (i.e., it is a predicate on s and z). The
assertion represents what must be true of a value z for a thread
to be permitted to write it to the location in state s.

For the message passing example, we introduce a protocol type
Dat governing location x. Writing abstract states in bold, we say
0 v

Dat

0, 0 v

Dat

37, 37 v

Dat

37, and define

Dat(s, z) , (s = 0 ^ z = 0) _ (s = 37 ^ z = 37)

To give the protocol for y, however, we need a way of talking about
the protocol for x in its state interpretations. For this purpose, GPS
offers protocol assertions, ` : s ⌧ , which say that location ` is
governed by the protocol type ⌧ , and has been observed in state s,
thus giving a lower bound on the current protocol state.

We can now give the protocol for y. We introduce a protocol
type Flg(`) that is parameterized over a location ` (which we will
instantiate with x). Again writing abstract states in bold, we say
0 v

Flg

0, 0 v

Flg

1, 1 v

Flg

1, and

Flg(`)(s, z) , (s = 0 ^ z = 0)

_ (s = 1 ^ z = 1 ^ ` : 37 Dat)

Thus, to move to state 1 in Flg(x), a thread must (1) write 1 to
y and (2) have already observed that x : 37 Dat , which it can
ensure by first writing 37 to x itself.

What happens when a thread reads y? GPS supports the follow-
ing Hoare triple for atomic reads of a location `:5

8s0 w⌧ s. 8z. ⌧(s0, z)) Q
n

` : s ⌧
o

[`]
at

n

z. 9s0. ` : s0 ⌧ ^Q
o

The Hoare triple takes as a precondition some pre-existing knowl-
edge about `’s protocol. (For the message receiver, this knowledge
will be y : 0 Flg(x) .) The pre-existing knowledge gives a lower
bound on the possible writes the read could read from: they must
be at least as far as state s in the protocol.

5 This rule is sound only for the assertions we have introduced so far; the
general rule is given in “Ownership transfer through protocols”, below.

4 2013/12/9

where it is placed in sb order after the thread’s previous event. The
mo order for G0 can arbitrarily extend the one for G, but because
it is a strict total order on writes, the extension will only add
relationships to the new node. The rf order can likewise only add
a read for the new node, which must read from some previously-
existing write. Finally, the new graph G0 is assumed to satisfy the
C11 axioms, constraining both the possible events and edges. The
validity of this semantics for C11 is discussed in the appendix [1].

We write JeK for the set of final values e can produce, starting
with a single-node event graph (where the start node is action S). If
at any point e creates a data race or memory error (defined formally
in the appendix [1]), then JeK = err; the C11 semantics leaves such
programs undefined. Any expression verified by GPS is guaranteed
to be data-race and memory-error free.

3. GPS: a logic for release-acquire consistency

The C11 memory model successfully serves as a contract between
compiler and programmer, making it possible—in principle—to re-
solve disputes (can a read of x here return 0?) by reference to global
axioms. These axioms—again, in principle—also support certain
intuitions about, e.g., transitive visibility. But, even with an exam-
ple as simple as one-shot message passing (§2), the intuitions are
not directly captured by the axioms. Rather, they emerge through
chains of subtle reasoning showing that certain edges must, or must
not, exist. Axiomatic reasoning is also relentlessly global: a read
event can potentially read from any write in the graph, so the ax-
ioms must be applied to each write to rule it in or out.

Our goal is to supplement the (release-acquire) C11 memory
model with a program logic that (1) captures intuitions about transi-
tive visibility more directly and (2) supports thread-local reasoning.
This section presents GPS, which achieves both goals through
• per-location protocols that abstract away event graphs, and
• ghosts and escrows, which govern logical permissions in the

style of recent separation logics.

Setup GPS is a separation logic for an expression language. Its
central judgment is the Hoare triple, {P} e {x. Q}, which says that
when given resources described by P , the expression e is memory
safe and data-race free. If, moreover, e terminates with a value V ,
it will do so with resources satisfying Q[V/x]. We will introduce
assertions P gradually. For now, we assume they include the basic
operators of multi-sorted first-order logic:
P ::= t = t | P ^ P | P _ P | P) P | 8X.P | 9X.P | · · ·

where ✓ ranges over sorts (for now, just Val) and t ranges over
terms. We write t : ✓ if t has sort ✓, and assume that variables X
are broken into classes by sort (`, x, y, z for variables of sort Val).

Per-location protocols We start with a twist on message passing:
[x]

at

:= 37;
[y]

at

:= 1;
· · · [x]

at

:= 37;
[y]

at

:= 1;
repeat [y]

at

end;
[x]

at

Intuitively, this variant, with multiple threads sending the same
same message (37), works for the same reason the original does:
transitive visibility. We want to articulate this common intuition in
a way that doesn’t depend on how many threads are sending the
message 37 or involve global reasoning about the event graph.

A tempting starting point is to simply say that the values that
x and y point to progress from (0, 0) to (37, 0) to (37, 1). Alas,
this kind of reasoning is unsound for weak memory in general: it
assumes that all threads will see writes to different locations in the
same order. In actuality, independent (i.e., hb-unrelated) writes to
different locations can appear to threads in different orders, which
is why Dekker’s algorithm fails. If we want thread-local reasoning,
we need an approach that accounts for what our thread may see,
while capturing the happens-before relationship between writes.

The key insight of GPS is that we can constrain the evolution
of values if we focus on one location at a time: mo provides a
linear order, seen by all threads, on the writes to a given location.
Toward this end, GPS provides per-location protocols, which are
state transition systems governing a single shared location. Using
protocols, we can express the changes to x and y independently:

x : 0 37 y : 0 1

These transition systems offer an abstraction of the event graph:
each state represents a set of write events, while edges represent mo

relationships between them. Thus, for x, we see that all of the writes
of 37 are mo-later than the initial write of 0. But these independent
constraints alone are not enough: we must ensure that y can only
be in state 1 if x is “known” to be in state 37.

In general, protocol states are abstract; the labels on the tran-
sition systems above are merely suggestive. Each state is given an
interpretation, which constrains the values that may be written to
the location in that state, but may also impose other constraints—
including, as we will see, constraints on other protocols. (Treating
states abstractly allows us to, in effect, associate a ghost variable
with each memory location, as §4 will show.)

Formally, we assume a sort State of protocol states, ranged over
by variables s. GPS is parameterized by (1) the grammar of terms
of sort State and (2) a set of protocol types (metavariable ⌧). For
each protocol type ⌧ , the user of the logic specifies:

• A transition relation v⌧ , which is a partial order on states.
• A state interpretation ⌧(s, z), which is a resource assertion in

which s and z appear free (i.e., it is a predicate on s and z). The
assertion represents what must be true of a value z for a thread
to be permitted to write it to the location in state s.

For the message passing example, we introduce a protocol type
Dat governing location x. Writing abstract states in bold, we say
0 v

Dat

0, 0 v

Dat

37, 37 v

Dat

37, and define

Dat(s, z) , (s = 0 ^ z = 0) _ (s = 37 ^ z = 37)

To give the protocol for y, however, we need a way of talking about
the protocol for x in its state interpretations. For this purpose, GPS
offers protocol assertions, ` : s ⌧ , which say that location ` is
governed by the protocol type ⌧ , and has been observed in state s,
thus giving a lower bound on the current protocol state.

We can now give the protocol for y. We introduce a protocol
type Flg(`) that is parameterized over a location ` (which we will
instantiate with x). Again writing abstract states in bold, we say
0 v

Flg

0, 0 v

Flg

1, 1 v

Flg

1, and

Flg(`)(s, z) , (s = 0 ^ z = 0)

_ (s = 1 ^ z = 1 ^ ` : 37 Dat)

Thus, to move to state 1 in Flg(x), a thread must (1) write 1 to
y and (2) have already observed that x : 37 Dat , which it can
ensure by first writing 37 to x itself.

What happens when a thread reads y? GPS supports the follow-
ing Hoare triple for atomic reads of a location `:5

8s0 w⌧ s. 8z. ⌧(s0, z)) Q
n

` : s ⌧
o

[`]
at

n

z. 9s0. ` : s0 ⌧ ^Q
o

The Hoare triple takes as a precondition some pre-existing knowl-
edge about `’s protocol. (For the message receiver, this knowledge
will be y : 0 Flg(x) .) The pre-existing knowledge gives a lower
bound on the possible writes the read could read from: they must
be at least as far as state s in the protocol.

5 This rule is sound only for the assertions we have introduced so far; the
general rule is given in “Ownership transfer through protocols”, below.

4 2013/12/9

x: 37

Protocol name: data

Protocol name: flag

data(0, z) ≙ z = 0
data(37, z) ≙ z = 37

flag(0, z) ≙ z = 0
flag(1, z) ≙ z = 1 ⋀

x: 37 data

Resources vs. Knowledge

{P} e {x. Q}
{P ⇤R} e {x. Q ⇤R}

{P} e {x. Q} 8x. {Q} e0 {y. R}
{P} let x = e in e0 {y. R}

{Q} e {true}
{P ⇤Q} fork e {P}

{P} e {x. (x = 0 ^ P) _ (x 6= 0 ^Q)}
{P} repeat e end {x. Q}

P 0 V P {P} e {x. Q} 8x. Q V Q0
�

P 0 e
�

x. Q0
P) Q

P V Q

P V Q

P ⇤R V Q ⇤R

Figure 2. A selection of basic logical rules for GPS

The premise of the rule then quantifies, abstractly, over the write
we might be reading from: it must have moved to some future state
s0 in the protocol, and have written some value z such that ⌧(s0, z)
holds. From all such possible writes, we derive a common assertion
Q—but note that s0 and z can appear in Q, so it can tie together the
value read and the state observed.

Altogether, we have:
n

y : 0 Flg(x)
o

[y]
at

(

z. y : 0 Flg(x) ^ z = 0

_ y : 1 Flg(x) ^ z = 1 ^ x : 37 Dat

)

So if a thread reads 1 from y, it learns a lower bound on the protocol
state for x. If it subsequently reads x, it is guaranteed to see 37.

Before describing the rest of GPS, we briefly consider the con-
nection to the C11 model. GPS assertions say what is known at
each point in a thread’s code, with each such point corresponding
to a node in the event graph. A thread will only be able to claim
` : s ⌧ if a write moving ` to (abstract) state s happens before the

corresponding node in the event graph. But because writes to ` in
mo order correspond to moves within the protocol, the thread can
subsequently read only from a write in some state s0 w⌧ s. Finally,
PL-protocols have allowed us not just to abstract away from the
event graph, but also to reason thread-locally: the thread receiving
the message does not need to know anything about the code/events
of the sending threads except that they follow the protocols.

Physical resources GPS makes the simplifying assumption that
each location is either always used nonatomically (i.e., for data),
or always used atomically (i.e., for synchronization). Atomic loca-
tions can be freely shared between threads, which can only make
protocol assertions about them; since protocol assertions are just
lower bounds, they are invariant under interference from other
threads. Nonatomic locations, on the other hand, must be treated
as resources to ensure that only one thread can write to them at a
time, in order to avoid data races. GPS thus includes the assertions

P ::= · · · | uninit(`) | ` ,! v | P ⇤ P

which resemble traditional separation logic, except that locations
begin uninitialized. The heap assertion ` ,! v means that ` is
classified as nonatomic, and currently points to value v. We thus
get the usual separation logic axioms for nonatomic locations:

{true} alloc(n) {x. uninit(x) ⇤ · · · ⇤ uninit(x+ n� 1)}
{uninit(`) _ ` ,! �} [`]

na

:= v {` ,! v}
{` ,! v} [`]

na

{x. x = v ⇤ ` ,! v}
The separating conjunction P ⇤ Q requires that resources claimed
by P are disjoint from those of Q, e.g.,

uninit(`) ⇤ uninit(`0)) ` 6= `0 ` ,! v ⇤

`0 : s ⌧
) ` 6= `0

but since atomic locations are shared, separation enforces only that
different observations about the state of `’s protocol are coherent:

` : s ⌧
⇤

` : s0 ⌧ 0
) ⌧ = ⌧ 0

^ (sv⌧ s
0

_ s0 v⌧ s)

In addition to these axioms, GPS supports the usual rules for a
concurrent separation logic; see Figure 2.

Ghost resources Our earlier presentation of protocols implicitly
assumed that all threads can make the same moves within a pro-
tocol. But we often want to say that only certain threads have the
right to make a particular move. To do so, we add non-physical
resources—ghosts—to GPS. These purely logical resources are
used to express arbitrary notions of permission that can be divided
amongst threads. Here we explain what ghosts are; the subsequent
subsections explain how they are used together with protocols.

Following recent work in separation logic [11, 18, 19], we
model ghosts as partial commutative monoids (PCMs). In partic-
ular, GPS is parameterized by a collection of PCMs µ, such that

• There is a sort PCMµ for each µ,
• Terms of sort PCMµ include the unit "µ and composition ·µ.

The unit represents the empty permission, while t·µ t0 combines the
permissions t and t0. In general, we do not want all compositions to
be defined: we want certain permissions to be exclusive. So com-
position is a partial function, but is commutative and associative
where defined (and "µ ·µ t = t for any t).

Within the logic, we add ghost assertions, � : t µ , which
claim ownership of the ghost permission t drawn from some
PCM µ. Since we may want to use many instances of a partic-
ular PCM, ghosts have an identity �. Being nonphysical, ghosts
are manipulated entirely through the rule of consequence, which is
generalized to allow ghost moves V, rather than just implications;
see Figure 2. These moves allow new ghosts t to appear out of thin
air, with a fresh identity: true V 9�. � : t µ . Once a ghost is
created, it can be split apart using ⇤, as follows:

� : t ·µ t0 µ
,

� : t µ
⇤

� : t0 µ

We take � : t ·µ t0 µ to be false if t ·µ t0 is undefined.
A very simple but useful kind of permission is a token, which is

meant to be owned by exactly one thread at a time. We can model
this as a PCM, Tok, with two elements, " and ⇧ (the token), with
" · ⇧ = ⇧ = ⇧ · ". We leave the composition ⇧ · ⇧ undefined, so that

� : ⇧ Tok

⇤

� : ⇧ Tok

) false

Hence, GPS ensures the token for ghost � cannot be owned twice.
(We use this PCM in an example at the end of the section.)

Taking stock: resource ownership versus knowledge We have
now seen the full complement of resource ownership assertions
(physical and ghost) provided by GPS, with ⇤ combining or sepa-
rating them. Ownership can be divided by the fork rule (Figure 2),
which allows the parent thread to donate some of its resources to the
child thread. But we will also need to transfer ownership between
already-running threads—while ensuring, of course, that claims of
ownership are not duplicated in the process. GPS provides two
mechanisms for doing so, one physical and the other nonphysical,
described in the next two subsections.

Both mechanisms rely on a fundamental distinction between
assertions possibly involving resource ownership (like ` ,! v)
and assertions only involving knowledge (like t = t0). GPS has
a modality ⇤ for knowledge, where ⇤P holds if P is true and does
not depend on resource ownership. Knowledge includes assertions
that are “pure” in the parlance of separation logic, like equalities on
terms, but it also includes protocol observations:

t = t0) ⇤(t = t0) ` : s ⌧
) ⇤ ` : s ⌧

Knowledge does not include ownership: ⇤(` ,! v)) false. But
knowledge can be shared freely, while resource ownership must be
carefully managed to avoid duplication. Thus, we have

⇤P) P ⇤P , ⇤P ⇤⇤P

5 2013/12/9

{P} e {x. Q}
{P ⇤R} e {x. Q ⇤R}

{P} e {x. Q} 8x. {Q} e0 {y. R}
{P} let x = e in e0 {y. R}

{Q} e {true}
{P ⇤Q} fork e {P}

{P} e {x. (x = 0 ^ P) _ (x 6= 0 ^Q)}
{P} repeat e end {x. Q}

P 0 V P {P} e {x. Q} 8x. Q V Q0
�

P 0 e
�

x. Q0
P) Q

P V Q

P V Q

P ⇤R V Q ⇤R

Figure 2. A selection of basic logical rules for GPS

The premise of the rule then quantifies, abstractly, over the write
we might be reading from: it must have moved to some future state
s0 in the protocol, and have written some value z such that ⌧(s0, z)
holds. From all such possible writes, we derive a common assertion
Q—but note that s0 and z can appear in Q, so it can tie together the
value read and the state observed.

Altogether, we have:
n

y : 0 Flg(x)
o

[y]
at

(

z. y : 0 Flg(x) ^ z = 0

_ y : 1 Flg(x) ^ z = 1 ^ x : 37 Dat

)

So if a thread reads 1 from y, it learns a lower bound on the protocol
state for x. If it subsequently reads x, it is guaranteed to see 37.

Before describing the rest of GPS, we briefly consider the con-
nection to the C11 model. GPS assertions say what is known at
each point in a thread’s code, with each such point corresponding
to a node in the event graph. A thread will only be able to claim
` : s ⌧ if a write moving ` to (abstract) state s happens before the

corresponding node in the event graph. But because writes to ` in
mo order correspond to moves within the protocol, the thread can
subsequently read only from a write in some state s0 w⌧ s. Finally,
PL-protocols have allowed us not just to abstract away from the
event graph, but also to reason thread-locally: the thread receiving
the message does not need to know anything about the code/events
of the sending threads except that they follow the protocols.

Physical resources GPS makes the simplifying assumption that
each location is either always used nonatomically (i.e., for data),
or always used atomically (i.e., for synchronization). Atomic loca-
tions can be freely shared between threads, which can only make
protocol assertions about them; since protocol assertions are just
lower bounds, they are invariant under interference from other
threads. Nonatomic locations, on the other hand, must be treated
as resources to ensure that only one thread can write to them at a
time, in order to avoid data races. GPS thus includes the assertions

P ::= · · · | uninit(`) | ` ,! v | P ⇤ P

which resemble traditional separation logic, except that locations
begin uninitialized. The heap assertion ` ,! v means that ` is
classified as nonatomic, and currently points to value v. We thus
get the usual separation logic axioms for nonatomic locations:

{true} alloc(n) {x. uninit(x) ⇤ · · · ⇤ uninit(x+ n� 1)}
{uninit(`) _ ` ,! �} [`]

na

:= v {` ,! v}
{` ,! v} [`]

na

{x. x = v ⇤ ` ,! v}
The separating conjunction P ⇤ Q requires that resources claimed
by P are disjoint from those of Q, e.g.,

uninit(`) ⇤ uninit(`0)) ` 6= `0 ` ,! v ⇤

`0 : s ⌧
) ` 6= `0

but since atomic locations are shared, separation enforces only that
different observations about the state of `’s protocol are coherent:

` : s ⌧
⇤

` : s0 ⌧ 0
) ⌧ = ⌧ 0

^ (sv⌧ s
0

_ s0 v⌧ s)

In addition to these axioms, GPS supports the usual rules for a
concurrent separation logic; see Figure 2.

Ghost resources Our earlier presentation of protocols implicitly
assumed that all threads can make the same moves within a pro-
tocol. But we often want to say that only certain threads have the
right to make a particular move. To do so, we add non-physical
resources—ghosts—to GPS. These purely logical resources are
used to express arbitrary notions of permission that can be divided
amongst threads. Here we explain what ghosts are; the subsequent
subsections explain how they are used together with protocols.

Following recent work in separation logic [11, 18, 19], we
model ghosts as partial commutative monoids (PCMs). In partic-
ular, GPS is parameterized by a collection of PCMs µ, such that

• There is a sort PCMµ for each µ,
• Terms of sort PCMµ include the unit "µ and composition ·µ.

The unit represents the empty permission, while t·µ t0 combines the
permissions t and t0. In general, we do not want all compositions to
be defined: we want certain permissions to be exclusive. So com-
position is a partial function, but is commutative and associative
where defined (and "µ ·µ t = t for any t).

Within the logic, we add ghost assertions, � : t µ , which
claim ownership of the ghost permission t drawn from some
PCM µ. Since we may want to use many instances of a partic-
ular PCM, ghosts have an identity �. Being nonphysical, ghosts
are manipulated entirely through the rule of consequence, which is
generalized to allow ghost moves V, rather than just implications;
see Figure 2. These moves allow new ghosts t to appear out of thin
air, with a fresh identity: true V 9�. � : t µ . Once a ghost is
created, it can be split apart using ⇤, as follows:

� : t ·µ t0 µ
,

� : t µ
⇤

� : t0 µ

We take � : t ·µ t0 µ to be false if t ·µ t0 is undefined.
A very simple but useful kind of permission is a token, which is

meant to be owned by exactly one thread at a time. We can model
this as a PCM, Tok, with two elements, " and ⇧ (the token), with
" · ⇧ = ⇧ = ⇧ · ". We leave the composition ⇧ · ⇧ undefined, so that

� : ⇧ Tok

⇤

� : ⇧ Tok

) false

Hence, GPS ensures the token for ghost � cannot be owned twice.
(We use this PCM in an example at the end of the section.)

Taking stock: resource ownership versus knowledge We have
now seen the full complement of resource ownership assertions
(physical and ghost) provided by GPS, with ⇤ combining or sepa-
rating them. Ownership can be divided by the fork rule (Figure 2),
which allows the parent thread to donate some of its resources to the
child thread. But we will also need to transfer ownership between
already-running threads—while ensuring, of course, that claims of
ownership are not duplicated in the process. GPS provides two
mechanisms for doing so, one physical and the other nonphysical,
described in the next two subsections.

Both mechanisms rely on a fundamental distinction between
assertions possibly involving resource ownership (like ` ,! v)
and assertions only involving knowledge (like t = t0). GPS has
a modality ⇤ for knowledge, where ⇤P holds if P is true and does
not depend on resource ownership. Knowledge includes assertions
that are “pure” in the parlance of separation logic, like equalities on
terms, but it also includes protocol observations:

t = t0) ⇤(t = t0) ` : s ⌧
) ⇤ ` : s ⌧

Knowledge does not include ownership: ⇤(` ,! v)) false. But
knowledge can be shared freely, while resource ownership must be
carefully managed to avoid duplication. Thus, we have

⇤P) P ⇤P , ⇤P ⇤⇤P

5 2013/12/9

Lower bound;
No stability check!

}

Resources vs. Knowledge

{P} e {x. Q}
{P ⇤R} e {x. Q ⇤R}

{P} e {x. Q} 8x. {Q} e0 {y. R}
{P} let x = e in e0 {y. R}

{Q} e {true}
{P ⇤Q} fork e {P}

{P} e {x. (x = 0 ^ P) _ (x 6= 0 ^Q)}
{P} repeat e end {x. Q}

P 0 V P {P} e {x. Q} 8x. Q V Q0
�

P 0 e
�

x. Q0
P) Q

P V Q

P V Q

P ⇤R V Q ⇤R

Figure 2. A selection of basic logical rules for GPS

The premise of the rule then quantifies, abstractly, over the write
we might be reading from: it must have moved to some future state
s0 in the protocol, and have written some value z such that ⌧(s0, z)
holds. From all such possible writes, we derive a common assertion
Q—but note that s0 and z can appear in Q, so it can tie together the
value read and the state observed.

Altogether, we have:
n

y : 0 Flg(x)
o

[y]
at

(

z. y : 0 Flg(x) ^ z = 0

_ y : 1 Flg(x) ^ z = 1 ^ x : 37 Dat

)

So if a thread reads 1 from y, it learns a lower bound on the protocol
state for x. If it subsequently reads x, it is guaranteed to see 37.

Before describing the rest of GPS, we briefly consider the con-
nection to the C11 model. GPS assertions say what is known at
each point in a thread’s code, with each such point corresponding
to a node in the event graph. A thread will only be able to claim
` : s ⌧ if a write moving ` to (abstract) state s happens before the

corresponding node in the event graph. But because writes to ` in
mo order correspond to moves within the protocol, the thread can
subsequently read only from a write in some state s0 w⌧ s. Finally,
PL-protocols have allowed us not just to abstract away from the
event graph, but also to reason thread-locally: the thread receiving
the message does not need to know anything about the code/events
of the sending threads except that they follow the protocols.

Physical resources GPS makes the simplifying assumption that
each location is either always used nonatomically (i.e., for data),
or always used atomically (i.e., for synchronization). Atomic loca-
tions can be freely shared between threads, which can only make
protocol assertions about them; since protocol assertions are just
lower bounds, they are invariant under interference from other
threads. Nonatomic locations, on the other hand, must be treated
as resources to ensure that only one thread can write to them at a
time, in order to avoid data races. GPS thus includes the assertions

P ::= · · · | uninit(`) | ` ,! v | P ⇤ P

which resemble traditional separation logic, except that locations
begin uninitialized. The heap assertion ` ,! v means that ` is
classified as nonatomic, and currently points to value v. We thus
get the usual separation logic axioms for nonatomic locations:

{true} alloc(n) {x. uninit(x) ⇤ · · · ⇤ uninit(x+ n� 1)}
{uninit(`) _ ` ,! �} [`]

na

:= v {` ,! v}
{` ,! v} [`]

na

{x. x = v ⇤ ` ,! v}
The separating conjunction P ⇤ Q requires that resources claimed
by P are disjoint from those of Q, e.g.,

uninit(`) ⇤ uninit(`0)) ` 6= `0 ` ,! v ⇤

`0 : s ⌧
) ` 6= `0

but since atomic locations are shared, separation enforces only that
different observations about the state of `’s protocol are coherent:

` : s ⌧
⇤

` : s0 ⌧ 0
) ⌧ = ⌧ 0

^ (sv⌧ s
0

_ s0 v⌧ s)

In addition to these axioms, GPS supports the usual rules for a
concurrent separation logic; see Figure 2.

Ghost resources Our earlier presentation of protocols implicitly
assumed that all threads can make the same moves within a pro-
tocol. But we often want to say that only certain threads have the
right to make a particular move. To do so, we add non-physical
resources—ghosts—to GPS. These purely logical resources are
used to express arbitrary notions of permission that can be divided
amongst threads. Here we explain what ghosts are; the subsequent
subsections explain how they are used together with protocols.

Following recent work in separation logic [11, 18, 19], we
model ghosts as partial commutative monoids (PCMs). In partic-
ular, GPS is parameterized by a collection of PCMs µ, such that

• There is a sort PCMµ for each µ,
• Terms of sort PCMµ include the unit "µ and composition ·µ.

The unit represents the empty permission, while t·µ t0 combines the
permissions t and t0. In general, we do not want all compositions to
be defined: we want certain permissions to be exclusive. So com-
position is a partial function, but is commutative and associative
where defined (and "µ ·µ t = t for any t).

Within the logic, we add ghost assertions, � : t µ , which
claim ownership of the ghost permission t drawn from some
PCM µ. Since we may want to use many instances of a partic-
ular PCM, ghosts have an identity �. Being nonphysical, ghosts
are manipulated entirely through the rule of consequence, which is
generalized to allow ghost moves V, rather than just implications;
see Figure 2. These moves allow new ghosts t to appear out of thin
air, with a fresh identity: true V 9�. � : t µ . Once a ghost is
created, it can be split apart using ⇤, as follows:

� : t ·µ t0 µ
,

� : t µ
⇤

� : t0 µ

We take � : t ·µ t0 µ to be false if t ·µ t0 is undefined.
A very simple but useful kind of permission is a token, which is

meant to be owned by exactly one thread at a time. We can model
this as a PCM, Tok, with two elements, " and ⇧ (the token), with
" · ⇧ = ⇧ = ⇧ · ". We leave the composition ⇧ · ⇧ undefined, so that

� : ⇧ Tok

⇤

� : ⇧ Tok

) false

Hence, GPS ensures the token for ghost � cannot be owned twice.
(We use this PCM in an example at the end of the section.)

Taking stock: resource ownership versus knowledge We have
now seen the full complement of resource ownership assertions
(physical and ghost) provided by GPS, with ⇤ combining or sepa-
rating them. Ownership can be divided by the fork rule (Figure 2),
which allows the parent thread to donate some of its resources to the
child thread. But we will also need to transfer ownership between
already-running threads—while ensuring, of course, that claims of
ownership are not duplicated in the process. GPS provides two
mechanisms for doing so, one physical and the other nonphysical,
described in the next two subsections.

Both mechanisms rely on a fundamental distinction between
assertions possibly involving resource ownership (like ` ,! v)
and assertions only involving knowledge (like t = t0). GPS has
a modality ⇤ for knowledge, where ⇤P holds if P is true and does
not depend on resource ownership. Knowledge includes assertions
that are “pure” in the parlance of separation logic, like equalities on
terms, but it also includes protocol observations:

t = t0) ⇤(t = t0) ` : s ⌧
) ⇤ ` : s ⌧

Knowledge does not include ownership: ⇤(` ,! v)) false. But
knowledge can be shared freely, while resource ownership must be
carefully managed to avoid duplication. Thus, we have

⇤P) P ⇤P , ⇤P ⇤⇤P

5 2013/12/9

{P} e {x. Q}
{P ⇤R} e {x. Q ⇤R}

{P} e {x. Q} 8x. {Q} e0 {y. R}
{P} let x = e in e0 {y. R}

{Q} e {true}
{P ⇤Q} fork e {P}

{P} e {x. (x = 0 ^ P) _ (x 6= 0 ^Q)}
{P} repeat e end {x. Q}

P 0 V P {P} e {x. Q} 8x. Q V Q0
�

P 0 e
�

x. Q0
P) Q

P V Q

P V Q

P ⇤R V Q ⇤R

Figure 2. A selection of basic logical rules for GPS

The premise of the rule then quantifies, abstractly, over the write
we might be reading from: it must have moved to some future state
s0 in the protocol, and have written some value z such that ⌧(s0, z)
holds. From all such possible writes, we derive a common assertion
Q—but note that s0 and z can appear in Q, so it can tie together the
value read and the state observed.

Altogether, we have:
n

y : 0 Flg(x)
o

[y]
at

(

z. y : 0 Flg(x) ^ z = 0

_ y : 1 Flg(x) ^ z = 1 ^ x : 37 Dat

)

So if a thread reads 1 from y, it learns a lower bound on the protocol
state for x. If it subsequently reads x, it is guaranteed to see 37.

Before describing the rest of GPS, we briefly consider the con-
nection to the C11 model. GPS assertions say what is known at
each point in a thread’s code, with each such point corresponding
to a node in the event graph. A thread will only be able to claim
` : s ⌧ if a write moving ` to (abstract) state s happens before the

corresponding node in the event graph. But because writes to ` in
mo order correspond to moves within the protocol, the thread can
subsequently read only from a write in some state s0 w⌧ s. Finally,
PL-protocols have allowed us not just to abstract away from the
event graph, but also to reason thread-locally: the thread receiving
the message does not need to know anything about the code/events
of the sending threads except that they follow the protocols.

Physical resources GPS makes the simplifying assumption that
each location is either always used nonatomically (i.e., for data),
or always used atomically (i.e., for synchronization). Atomic loca-
tions can be freely shared between threads, which can only make
protocol assertions about them; since protocol assertions are just
lower bounds, they are invariant under interference from other
threads. Nonatomic locations, on the other hand, must be treated
as resources to ensure that only one thread can write to them at a
time, in order to avoid data races. GPS thus includes the assertions

P ::= · · · | uninit(`) | ` ,! v | P ⇤ P

which resemble traditional separation logic, except that locations
begin uninitialized. The heap assertion ` ,! v means that ` is
classified as nonatomic, and currently points to value v. We thus
get the usual separation logic axioms for nonatomic locations:

{true} alloc(n) {x. uninit(x) ⇤ · · · ⇤ uninit(x+ n� 1)}
{uninit(`) _ ` ,! �} [`]

na

:= v {` ,! v}
{` ,! v} [`]

na

{x. x = v ⇤ ` ,! v}
The separating conjunction P ⇤ Q requires that resources claimed
by P are disjoint from those of Q, e.g.,

uninit(`) ⇤ uninit(`0)) ` 6= `0 ` ,! v ⇤

`0 : s ⌧
) ` 6= `0

but since atomic locations are shared, separation enforces only that
different observations about the state of `’s protocol are coherent:

` : s ⌧
⇤

` : s0 ⌧ 0
) ⌧ = ⌧ 0

^ (sv⌧ s
0

_ s0 v⌧ s)

In addition to these axioms, GPS supports the usual rules for a
concurrent separation logic; see Figure 2.

Ghost resources Our earlier presentation of protocols implicitly
assumed that all threads can make the same moves within a pro-
tocol. But we often want to say that only certain threads have the
right to make a particular move. To do so, we add non-physical
resources—ghosts—to GPS. These purely logical resources are
used to express arbitrary notions of permission that can be divided
amongst threads. Here we explain what ghosts are; the subsequent
subsections explain how they are used together with protocols.

Following recent work in separation logic [11, 18, 19], we
model ghosts as partial commutative monoids (PCMs). In partic-
ular, GPS is parameterized by a collection of PCMs µ, such that

• There is a sort PCMµ for each µ,
• Terms of sort PCMµ include the unit "µ and composition ·µ.

The unit represents the empty permission, while t·µ t0 combines the
permissions t and t0. In general, we do not want all compositions to
be defined: we want certain permissions to be exclusive. So com-
position is a partial function, but is commutative and associative
where defined (and "µ ·µ t = t for any t).

Within the logic, we add ghost assertions, � : t µ , which
claim ownership of the ghost permission t drawn from some
PCM µ. Since we may want to use many instances of a partic-
ular PCM, ghosts have an identity �. Being nonphysical, ghosts
are manipulated entirely through the rule of consequence, which is
generalized to allow ghost moves V, rather than just implications;
see Figure 2. These moves allow new ghosts t to appear out of thin
air, with a fresh identity: true V 9�. � : t µ . Once a ghost is
created, it can be split apart using ⇤, as follows:

� : t ·µ t0 µ
,

� : t µ
⇤

� : t0 µ

We take � : t ·µ t0 µ to be false if t ·µ t0 is undefined.
A very simple but useful kind of permission is a token, which is

meant to be owned by exactly one thread at a time. We can model
this as a PCM, Tok, with two elements, " and ⇧ (the token), with
" · ⇧ = ⇧ = ⇧ · ". We leave the composition ⇧ · ⇧ undefined, so that

� : ⇧ Tok

⇤

� : ⇧ Tok

) false

Hence, GPS ensures the token for ghost � cannot be owned twice.
(We use this PCM in an example at the end of the section.)

Taking stock: resource ownership versus knowledge We have
now seen the full complement of resource ownership assertions
(physical and ghost) provided by GPS, with ⇤ combining or sepa-
rating them. Ownership can be divided by the fork rule (Figure 2),
which allows the parent thread to donate some of its resources to the
child thread. But we will also need to transfer ownership between
already-running threads—while ensuring, of course, that claims of
ownership are not duplicated in the process. GPS provides two
mechanisms for doing so, one physical and the other nonphysical,
described in the next two subsections.

Both mechanisms rely on a fundamental distinction between
assertions possibly involving resource ownership (like ` ,! v)
and assertions only involving knowledge (like t = t0). GPS has
a modality ⇤ for knowledge, where ⇤P holds if P is true and does
not depend on resource ownership. Knowledge includes assertions
that are “pure” in the parlance of separation logic, like equalities on
terms, but it also includes protocol observations:

t = t0) ⇤(t = t0) ` : s ⌧
) ⇤ ` : s ⌧

Knowledge does not include ownership: ⇤(` ,! v)) false. But
knowledge can be shared freely, while resource ownership must be
carefully managed to avoid duplication. Thus, we have

⇤P) P ⇤P , ⇤P ⇤⇤P

5 2013/12/9

[x]at := 1 [y]at := 1
print [x]at
print [y]at

print [y]at
print [x]at

[x]at := 1 [x]at := 2
print [x]at
print [x]at

print [x]at
print [x]at

{true} allocna(v) {x. x ,! v} {` ,! �} [`]na := v {` ,! v} {` ,! v} [`]na {x. x = v ⇤ ` ,! v}

{P} e {x. Q}
{P ⇤R} e {x. Q ⇤R}

{P1} e1 {Q1} {P2} e2 {Q2}
{P1 ⇤ P2} e1 k e2 {Q1 ⇤Q2}

8s0 w
⌧

s. 8z. ⌧(s0, z)) ⇤Q

n

` : s ⌧

o

[`]at
n

z. 9s0. ` : s0 ⌧ ⇤⇤Q

o

P) ⌧(s00, v) ⇤Q 8s0 w
⌧

s. ⌧(s0,�) ⇤ P) s

00 w
⌧

s

0
n

` : s ⌧ ⇤ P
o

[`]at := v
n

` : s00 ⌧ ⇤Q
o

8s0 w
⌧

s. ⌧(s0, v
o

) ⇤ P V 9s00 w
⌧

s

0
. ⌧(s00, v

n

) ⇤Q
8s00 w

⌧

s. 8y 6= v

o

. ⌧(s00, y) ⇤ P) ⇤R

n

` : s ⌧ ⇤ P
o

CAS(`, v
o

, v

n

)
n

z. 9s00. ` : s00 ⌧ ⇤ ((z = 1 ⇤Q) _ (z = 0 ⇤ P ⇤⇤R))
o

⇤P) ⇤P ⇤ P

1

Operation Gain Lose

Read Knowledge -

Write - Resources

CAS: Success Resources Resources

CAS: Failure Knowledge -

Operation Gain Lose

Read Knowledge -

Write - Resources

CAS: Success Resources Resources

CAS: Failure Knowledge -

Acquire Reads

[x]at := 1 [y]at := 1
print [x]at
print [y]at

print [y]at
print [x]at

[x]at := 1 [x]at := 2
print [x]at
print [x]at

print [x]at
print [x]at

{true} allocna(v) {x. x ,! v} {` ,! �} [`]na := v {` ,! v} {` ,! v} [`]na {x. x = v ⇤ ` ,! v}

{P} e {x. Q}
{P ⇤R} e {x. Q ⇤R}

{P1} e1 {Q1} {P2} e2 {Q2}
{P1 ⇤ P2} e1 k e2 {Q1 ⇤Q2}

8s0 w
⌧

s. 8z. ⌧(s0, z)) ⇤Q

n

` : s ⌧

o

[`]at
n

z. 9s0. ` : s0 ⌧ ⇤⇤Q

o

P) ⌧(s00, v) ⇤Q 8s0 w
⌧

s. ⌧(s0,�) ⇤ P) s

00 w
⌧

s

0
n

` : s ⌧ ⇤ P
o

[`]at := v
n

` : s00 ⌧ ⇤Q
o

8s0 w
⌧

s. ⌧(s0, v
o

) ⇤ P V 9s00 w
⌧

s

0
. ⌧(s00, v

n

) ⇤Q
8s00 w

⌧

s. 8y 6= v

o

. ⌧(s00, y) ⇤ P) ⇤R

n

` : s ⌧ ⇤ P
o

CAS(`, v
o

, v

n

)
n

z. 9s00. ` : s00 ⌧ ⇤ ((z = 1 ⇤Q) _ (z = 0 ⇤ P ⇤⇤R))
o

⇤P) ⇤P ⇤ P

1

Acquire Reads

[x]at := 1 [y]at := 1
print [x]at
print [y]at

print [y]at
print [x]at

[x]at := 1 [x]at := 2
print [x]at
print [x]at

print [x]at
print [x]at

{true} allocna(v) {x. x ,! v} {` ,! �} [`]na := v {` ,! v} {` ,! v} [`]na {x. x = v ⇤ ` ,! v}

{P} e {x. Q}
{P ⇤R} e {x. Q ⇤R}

{P1} e1 {Q1} {P2} e2 {Q2}
{P1 ⇤ P2} e1 k e2 {Q1 ⇤Q2}

8s0 w
⌧

s. 8z. ⌧(s0, z)) ⇤Q

n

` : s ⌧

o

[`]at
n

z. 9s0. ` : s0 ⌧ ⇤⇤Q

o

P) ⌧(s00, v) ⇤Q 8s0 w
⌧

s. ⌧(s0,�) ⇤ P) s

00 w
⌧

s

0
n

` : s ⌧ ⇤ P
o

[`]at := v
n

` : s00 ⌧ ⇤Q
o

8s0 w
⌧

s. ⌧(s0, v
o

) ⇤ P V 9s00 w
⌧

s

0
. ⌧(s00, v

n

) ⇤Q
8s00 w

⌧

s. 8y 6= v

o

. ⌧(s00, y) ⇤ P) ⇤R

n

` : s ⌧ ⇤ P
o

CAS(`, v
o

, v

n

)
n

z. 9s00. ` : s00 ⌧ ⇤ ((z = 1 ⇤Q) _ (z = 0 ⇤ P ⇤⇤R))
o

⇤P) ⇤P ⇤ P

1

Lower bound

}

Acquire Reads

[x]at := 1 [y]at := 1
print [x]at
print [y]at

print [y]at
print [x]at

[x]at := 1 [x]at := 2
print [x]at
print [x]at

print [x]at
print [x]at

{true} allocna(v) {x. x ,! v} {` ,! �} [`]na := v {` ,! v} {` ,! v} [`]na {x. x = v ⇤ ` ,! v}

{P} e {x. Q}
{P ⇤R} e {x. Q ⇤R}

{P1} e1 {Q1} {P2} e2 {Q2}
{P1 ⇤ P2} e1 k e2 {Q1 ⇤Q2}

8s0 w
⌧

s. 8z. ⌧(s0, z)) ⇤Q

n

` : s ⌧

o

[`]at
n

z. 9s0. ` : s0 ⌧ ⇤⇤Q

o

P) ⌧(s00, v) ⇤Q 8s0 w
⌧

s. ⌧(s0,�) ⇤ P) s

00 w
⌧

s

0
n

` : s ⌧ ⇤ P
o

[`]at := v
n

` : s00 ⌧ ⇤Q
o

8s0 w
⌧

s. ⌧(s0, v
o

) ⇤ P V 9s00 w
⌧

s

0
. ⌧(s00, v

n

) ⇤Q
8s00 w

⌧

s. 8y 6= v

o

. ⌧(s00, y) ⇤ P) ⇤R

n

` : s ⌧ ⇤ P
o

CAS(`, v
o

, v

n

)
n

z. 9s00. ` : s00 ⌧ ⇤ ((z = 1 ⇤Q) _ (z = 0 ⇤ P ⇤⇤R))
o

⇤P) ⇤P ⇤ P

1

Lower bound

}
New state{

Acquire Reads

[x]at := 1 [y]at := 1
print [x]at
print [y]at

print [y]at
print [x]at

[x]at := 1 [x]at := 2
print [x]at
print [x]at

print [x]at
print [x]at

{true} allocna(v) {x. x ,! v} {` ,! �} [`]na := v {` ,! v} {` ,! v} [`]na {x. x = v ⇤ ` ,! v}

{P} e {x. Q}
{P ⇤R} e {x. Q ⇤R}

{P1} e1 {Q1} {P2} e2 {Q2}
{P1 ⇤ P2} e1 k e2 {Q1 ⇤Q2}

8s0 w
⌧

s. 8z. ⌧(s0, z)) ⇤Q

n

` : s ⌧

o

[`]at
n

z. 9s0. ` : s0 ⌧ ⇤⇤Q

o

P) ⌧(s00, v) ⇤Q 8s0 w
⌧

s. ⌧(s0,�) ⇤ P) s

00 w
⌧

s

0
n

` : s ⌧ ⇤ P
o

[`]at := v
n

` : s00 ⌧ ⇤Q
o

8s0 w
⌧

s. ⌧(s0, v
o

) ⇤ P V 9s00 w
⌧

s

0
. ⌧(s00, v

n

) ⇤Q
8s00 w

⌧

s. 8y 6= v

o

. ⌧(s00, y) ⇤ P) ⇤R

n

` : s ⌧ ⇤ P
o

CAS(`, v
o

, v

n

)
n

z. 9s00. ` : s00 ⌧ ⇤ ((z = 1 ⇤Q) _ (z = 0 ⇤ P ⇤⇤R))
o

⇤P) ⇤P ⇤ P

1

Lower bound

}
New state{ Interpretation{

Acquire Reads

[x]at := 1 [y]at := 1
print [x]at
print [y]at

print [y]at
print [x]at

[x]at := 1 [x]at := 2
print [x]at
print [x]at

print [x]at
print [x]at

{true} allocna(v) {x. x ,! v} {` ,! �} [`]na := v {` ,! v} {` ,! v} [`]na {x. x = v ⇤ ` ,! v}

{P} e {x. Q}
{P ⇤R} e {x. Q ⇤R}

{P1} e1 {Q1} {P2} e2 {Q2}
{P1 ⇤ P2} e1 k e2 {Q1 ⇤Q2}

8s0 w
⌧

s. 8z. ⌧(s0, z)) ⇤Q

n

` : s ⌧

o

[`]at
n

z. 9s0. ` : s0 ⌧ ⇤⇤Q

o

P) ⌧(s00, v) ⇤Q 8s0 w
⌧

s. ⌧(s0,�) ⇤ P) s

00 w
⌧

s

0
n

` : s ⌧ ⇤ P
o

[`]at := v
n

` : s00 ⌧ ⇤Q
o

8s0 w
⌧

s. ⌧(s0, v
o

) ⇤ P V 9s00 w
⌧

s

0
. ⌧(s00, v

n

) ⇤Q
8s00 w

⌧

s. 8y 6= v

o

. ⌧(s00, y) ⇤ P) ⇤R

n

` : s ⌧ ⇤ P
o

CAS(`, v
o

, v

n

)
n

z. 9s00. ` : s00 ⌧ ⇤ ((z = 1 ⇤Q) _ (z = 0 ⇤ P ⇤⇤R))
o

⇤P) ⇤P ⇤ P

1

Lower bound

}
New state{ Interpretation{

Gained
knowledge{

Acquire Reads

[x]at := 1 [y]at := 1
print [x]at
print [y]at

print [y]at
print [x]at

[x]at := 1 [x]at := 2
print [x]at
print [x]at

print [x]at
print [x]at

{true} allocna(v) {x. x ,! v} {` ,! �} [`]na := v {` ,! v} {` ,! v} [`]na {x. x = v ⇤ ` ,! v}

{P} e {x. Q}
{P ⇤R} e {x. Q ⇤R}

{P1} e1 {Q1} {P2} e2 {Q2}
{P1 ⇤ P2} e1 k e2 {Q1 ⇤Q2}

8s0 w
⌧

s. 8z. ⌧(s0, z)) ⇤Q

n

` : s ⌧

o

[`]at
n

z. 9s0. ` : s0 ⌧ ⇤⇤Q

o

P) ⌧(s00, v) ⇤Q 8s0 w
⌧

s. ⌧(s0,�) ⇤ P) s

00 w
⌧

s

0
n

` : s ⌧ ⇤ P
o

[`]at := v
n

` : s00 ⌧ ⇤Q
o

8s0 w
⌧

s. ⌧(s0, v
o

) ⇤ P V 9s00 w
⌧

s

0
. ⌧(s00, v

n

) ⇤Q
8s00 w

⌧

s. 8y 6= v

o

. ⌧(s00, y) ⇤ P) ⇤R

n

` : s ⌧ ⇤ P
o

CAS(`, v
o

, v

n

)
n

z. 9s00. ` : s00 ⌧ ⇤ ((z = 1 ⇤Q) _ (z = 0 ⇤ P ⇤⇤R))
o

⇤P) ⇤P ⇤ P

1

Lower bound

}
New state{ Interpretation{

New lower bound

}

Gained
knowledge{

where it is placed in sb order after the thread’s previous event. The
mo order for G0 can arbitrarily extend the one for G, but because
it is a strict total order on writes, the extension will only add
relationships to the new node. The rf order can likewise only add
a read for the new node, which must read from some previously-
existing write. Finally, the new graph G0 is assumed to satisfy the
C11 axioms, constraining both the possible events and edges. The
validity of this semantics for C11 is discussed in the appendix [1].

We write JeK for the set of final values e can produce, starting
with a single-node event graph (where the start node is action S). If
at any point e creates a data race or memory error (defined formally
in the appendix [1]), then JeK = err; the C11 semantics leaves such
programs undefined. Any expression verified by GPS is guaranteed
to be data-race and memory-error free.

3. GPS: a logic for release-acquire consistency

The C11 memory model successfully serves as a contract between
compiler and programmer, making it possible—in principle—to re-
solve disputes (can a read of x here return 0?) by reference to global
axioms. These axioms—again, in principle—also support certain
intuitions about, e.g., transitive visibility. But, even with an exam-
ple as simple as one-shot message passing (§2), the intuitions are
not directly captured by the axioms. Rather, they emerge through
chains of subtle reasoning showing that certain edges must, or must
not, exist. Axiomatic reasoning is also relentlessly global: a read
event can potentially read from any write in the graph, so the ax-
ioms must be applied to each write to rule it in or out.

Our goal is to supplement the (release-acquire) C11 memory
model with a program logic that (1) captures intuitions about transi-
tive visibility more directly and (2) supports thread-local reasoning.
This section presents GPS, which achieves both goals through
• per-location protocols that abstract away event graphs, and
• ghosts and escrows, which govern logical permissions in the

style of recent separation logics.

Setup GPS is a separation logic for an expression language. Its
central judgment is the Hoare triple, {P} e {x. Q}, which says that
when given resources described by P , the expression e is memory
safe and data-race free. If, moreover, e terminates with a value V ,
it will do so with resources satisfying Q[V/x]. We will introduce
assertions P gradually. For now, we assume they include the basic
operators of multi-sorted first-order logic:
P ::= t = t | P ^ P | P _ P | P) P | 8X.P | 9X.P | · · ·

where ✓ ranges over sorts (for now, just Val) and t ranges over
terms. We write t : ✓ if t has sort ✓, and assume that variables X
are broken into classes by sort (`, x, y, z for variables of sort Val).

Per-location protocols We start with a twist on message passing:
[x]

at

:= 37;
[y]

at

:= 1;
· · · [x]

at

:= 37;
[y]

at

:= 1;
repeat [y]

at

end;
[x]

at

Intuitively, this variant, with multiple threads sending the same
same message (37), works for the same reason the original does:
transitive visibility. We want to articulate this common intuition in
a way that doesn’t depend on how many threads are sending the
message 37 or involve global reasoning about the event graph.

A tempting starting point is to simply say that the values that
x and y point to progress from (0, 0) to (37, 0) to (37, 1). Alas,
this kind of reasoning is unsound for weak memory in general: it
assumes that all threads will see writes to different locations in the
same order. In actuality, independent (i.e., hb-unrelated) writes to
different locations can appear to threads in different orders, which
is why Dekker’s algorithm fails. If we want thread-local reasoning,
we need an approach that accounts for what our thread may see,
while capturing the happens-before relationship between writes.

The key insight of GPS is that we can constrain the evolution
of values if we focus on one location at a time: mo provides a
linear order, seen by all threads, on the writes to a given location.
Toward this end, GPS provides per-location protocols, which are
state transition systems governing a single shared location. Using
protocols, we can express the changes to x and y independently:

x : 0 37 y : 0 1

These transition systems offer an abstraction of the event graph:
each state represents a set of write events, while edges represent mo

relationships between them. Thus, for x, we see that all of the writes
of 37 are mo-later than the initial write of 0. But these independent
constraints alone are not enough: we must ensure that y can only
be in state 1 if x is “known” to be in state 37.

In general, protocol states are abstract; the labels on the tran-
sition systems above are merely suggestive. Each state is given an
interpretation, which constrains the values that may be written to
the location in that state, but may also impose other constraints—
including, as we will see, constraints on other protocols. (Treating
states abstractly allows us to, in effect, associate a ghost variable
with each memory location, as §4 will show.)

Formally, we assume a sort State of protocol states, ranged over
by variables s. GPS is parameterized by (1) the grammar of terms
of sort State and (2) a set of protocol types (metavariable ⌧). For
each protocol type ⌧ , the user of the logic specifies:

• A transition relation v⌧ , which is a partial order on states.
• A state interpretation ⌧(s, z), which is a resource assertion in

which s and z appear free (i.e., it is a predicate on s and z). The
assertion represents what must be true of a value z for a thread
to be permitted to write it to the location in state s.

For the message passing example, we introduce a protocol type
Dat governing location x. Writing abstract states in bold, we say
0 v

Dat

0, 0 v

Dat

37, 37 v

Dat

37, and define

Dat(s, z) , (s = 0 ^ z = 0) _ (s = 37 ^ z = 37)

To give the protocol for y, however, we need a way of talking about
the protocol for x in its state interpretations. For this purpose, GPS
offers protocol assertions, ` : s ⌧ , which say that location ` is
governed by the protocol type ⌧ , and has been observed in state s,
thus giving a lower bound on the current protocol state.

We can now give the protocol for y. We introduce a protocol
type Flg(`) that is parameterized over a location ` (which we will
instantiate with x). Again writing abstract states in bold, we say
0 v

Flg

0, 0 v

Flg

1, 1 v

Flg

1, and

Flg(`)(s, z) , (s = 0 ^ z = 0)

_ (s = 1 ^ z = 1 ^ ` : 37 Dat)

Thus, to move to state 1 in Flg(x), a thread must (1) write 1 to
y and (2) have already observed that x : 37 Dat , which it can
ensure by first writing 37 to x itself.

What happens when a thread reads y? GPS supports the follow-
ing Hoare triple for atomic reads of a location `:5

8s0 w⌧ s. 8z. ⌧(s0, z)) Q
n

` : s ⌧
o

[`]
at

n

z. 9s0. ` : s0 ⌧ ^Q
o

The Hoare triple takes as a precondition some pre-existing knowl-
edge about `’s protocol. (For the message receiver, this knowledge
will be y : 0 Flg(x) .) The pre-existing knowledge gives a lower
bound on the possible writes the read could read from: they must
be at least as far as state s in the protocol.

5 This rule is sound only for the assertions we have introduced so far; the
general rule is given in “Ownership transfer through protocols”, below.

4 2013/12/9

where it is placed in sb order after the thread’s previous event. The
mo order for G0 can arbitrarily extend the one for G, but because
it is a strict total order on writes, the extension will only add
relationships to the new node. The rf order can likewise only add
a read for the new node, which must read from some previously-
existing write. Finally, the new graph G0 is assumed to satisfy the
C11 axioms, constraining both the possible events and edges. The
validity of this semantics for C11 is discussed in the appendix [1].

We write JeK for the set of final values e can produce, starting
with a single-node event graph (where the start node is action S). If
at any point e creates a data race or memory error (defined formally
in the appendix [1]), then JeK = err; the C11 semantics leaves such
programs undefined. Any expression verified by GPS is guaranteed
to be data-race and memory-error free.

3. GPS: a logic for release-acquire consistency

The C11 memory model successfully serves as a contract between
compiler and programmer, making it possible—in principle—to re-
solve disputes (can a read of x here return 0?) by reference to global
axioms. These axioms—again, in principle—also support certain
intuitions about, e.g., transitive visibility. But, even with an exam-
ple as simple as one-shot message passing (§2), the intuitions are
not directly captured by the axioms. Rather, they emerge through
chains of subtle reasoning showing that certain edges must, or must
not, exist. Axiomatic reasoning is also relentlessly global: a read
event can potentially read from any write in the graph, so the ax-
ioms must be applied to each write to rule it in or out.

Our goal is to supplement the (release-acquire) C11 memory
model with a program logic that (1) captures intuitions about transi-
tive visibility more directly and (2) supports thread-local reasoning.
This section presents GPS, which achieves both goals through
• per-location protocols that abstract away event graphs, and
• ghosts and escrows, which govern logical permissions in the

style of recent separation logics.

Setup GPS is a separation logic for an expression language. Its
central judgment is the Hoare triple, {P} e {x. Q}, which says that
when given resources described by P , the expression e is memory
safe and data-race free. If, moreover, e terminates with a value V ,
it will do so with resources satisfying Q[V/x]. We will introduce
assertions P gradually. For now, we assume they include the basic
operators of multi-sorted first-order logic:
P ::= t = t | P ^ P | P _ P | P) P | 8X.P | 9X.P | · · ·

where ✓ ranges over sorts (for now, just Val) and t ranges over
terms. We write t : ✓ if t has sort ✓, and assume that variables X
are broken into classes by sort (`, x, y, z for variables of sort Val).

Per-location protocols We start with a twist on message passing:
[x]

at

:= 37;
[y]

at

:= 1;
· · · [x]

at

:= 37;
[y]

at

:= 1;
repeat [y]

at

end;
[x]

at

Intuitively, this variant, with multiple threads sending the same
same message (37), works for the same reason the original does:
transitive visibility. We want to articulate this common intuition in
a way that doesn’t depend on how many threads are sending the
message 37 or involve global reasoning about the event graph.

A tempting starting point is to simply say that the values that
x and y point to progress from (0, 0) to (37, 0) to (37, 1). Alas,
this kind of reasoning is unsound for weak memory in general: it
assumes that all threads will see writes to different locations in the
same order. In actuality, independent (i.e., hb-unrelated) writes to
different locations can appear to threads in different orders, which
is why Dekker’s algorithm fails. If we want thread-local reasoning,
we need an approach that accounts for what our thread may see,
while capturing the happens-before relationship between writes.

The key insight of GPS is that we can constrain the evolution
of values if we focus on one location at a time: mo provides a
linear order, seen by all threads, on the writes to a given location.
Toward this end, GPS provides per-location protocols, which are
state transition systems governing a single shared location. Using
protocols, we can express the changes to x and y independently:

x : 0 37 y : 0 1

These transition systems offer an abstraction of the event graph:
each state represents a set of write events, while edges represent mo

relationships between them. Thus, for x, we see that all of the writes
of 37 are mo-later than the initial write of 0. But these independent
constraints alone are not enough: we must ensure that y can only
be in state 1 if x is “known” to be in state 37.

In general, protocol states are abstract; the labels on the tran-
sition systems above are merely suggestive. Each state is given an
interpretation, which constrains the values that may be written to
the location in that state, but may also impose other constraints—
including, as we will see, constraints on other protocols. (Treating
states abstractly allows us to, in effect, associate a ghost variable
with each memory location, as §4 will show.)

Formally, we assume a sort State of protocol states, ranged over
by variables s. GPS is parameterized by (1) the grammar of terms
of sort State and (2) a set of protocol types (metavariable ⌧). For
each protocol type ⌧ , the user of the logic specifies:

• A transition relation v⌧ , which is a partial order on states.
• A state interpretation ⌧(s, z), which is a resource assertion in

which s and z appear free (i.e., it is a predicate on s and z). The
assertion represents what must be true of a value z for a thread
to be permitted to write it to the location in state s.

For the message passing example, we introduce a protocol type
Dat governing location x. Writing abstract states in bold, we say
0 v

Dat

0, 0 v

Dat

37, 37 v

Dat

37, and define

Dat(s, z) , (s = 0 ^ z = 0) _ (s = 37 ^ z = 37)

To give the protocol for y, however, we need a way of talking about
the protocol for x in its state interpretations. For this purpose, GPS
offers protocol assertions, ` : s ⌧ , which say that location ` is
governed by the protocol type ⌧ , and has been observed in state s,
thus giving a lower bound on the current protocol state.

We can now give the protocol for y. We introduce a protocol
type Flg(`) that is parameterized over a location ` (which we will
instantiate with x). Again writing abstract states in bold, we say
0 v

Flg

0, 0 v

Flg

1, 1 v

Flg

1, and

Flg(`)(s, z) , (s = 0 ^ z = 0)

_ (s = 1 ^ z = 1 ^ ` : 37 Dat)

Thus, to move to state 1 in Flg(x), a thread must (1) write 1 to
y and (2) have already observed that x : 37 Dat , which it can
ensure by first writing 37 to x itself.

What happens when a thread reads y? GPS supports the follow-
ing Hoare triple for atomic reads of a location `:5

8s0 w⌧ s. 8z. ⌧(s0, z)) Q
n

` : s ⌧
o

[`]
at

n

z. 9s0. ` : s0 ⌧ ^Q
o

The Hoare triple takes as a precondition some pre-existing knowl-
edge about `’s protocol. (For the message receiver, this knowledge
will be y : 0 Flg(x) .) The pre-existing knowledge gives a lower
bound on the possible writes the read could read from: they must
be at least as far as state s in the protocol.

5 This rule is sound only for the assertions we have introduced so far; the
general rule is given in “Ownership transfer through protocols”, below.

4 2013/12/9

where it is placed in sb order after the thread’s previous event. The
mo order for G0 can arbitrarily extend the one for G, but because
it is a strict total order on writes, the extension will only add
relationships to the new node. The rf order can likewise only add
a read for the new node, which must read from some previously-
existing write. Finally, the new graph G0 is assumed to satisfy the
C11 axioms, constraining both the possible events and edges. The
validity of this semantics for C11 is discussed in the appendix [1].

We write JeK for the set of final values e can produce, starting
with a single-node event graph (where the start node is action S). If
at any point e creates a data race or memory error (defined formally
in the appendix [1]), then JeK = err; the C11 semantics leaves such
programs undefined. Any expression verified by GPS is guaranteed
to be data-race and memory-error free.

3. GPS: a logic for release-acquire consistency

The C11 memory model successfully serves as a contract between
compiler and programmer, making it possible—in principle—to re-
solve disputes (can a read of x here return 0?) by reference to global
axioms. These axioms—again, in principle—also support certain
intuitions about, e.g., transitive visibility. But, even with an exam-
ple as simple as one-shot message passing (§2), the intuitions are
not directly captured by the axioms. Rather, they emerge through
chains of subtle reasoning showing that certain edges must, or must
not, exist. Axiomatic reasoning is also relentlessly global: a read
event can potentially read from any write in the graph, so the ax-
ioms must be applied to each write to rule it in or out.

Our goal is to supplement the (release-acquire) C11 memory
model with a program logic that (1) captures intuitions about transi-
tive visibility more directly and (2) supports thread-local reasoning.
This section presents GPS, which achieves both goals through
• per-location protocols that abstract away event graphs, and
• ghosts and escrows, which govern logical permissions in the

style of recent separation logics.

Setup GPS is a separation logic for an expression language. Its
central judgment is the Hoare triple, {P} e {x. Q}, which says that
when given resources described by P , the expression e is memory
safe and data-race free. If, moreover, e terminates with a value V ,
it will do so with resources satisfying Q[V/x]. We will introduce
assertions P gradually. For now, we assume they include the basic
operators of multi-sorted first-order logic:
P ::= t = t | P ^ P | P _ P | P) P | 8X.P | 9X.P | · · ·

where ✓ ranges over sorts (for now, just Val) and t ranges over
terms. We write t : ✓ if t has sort ✓, and assume that variables X
are broken into classes by sort (`, x, y, z for variables of sort Val).

Per-location protocols We start with a twist on message passing:
[x]

at

:= 37;
[y]

at

:= 1;
· · · [x]

at

:= 37;
[y]

at

:= 1;
repeat [y]

at

end;
[x]

at

Intuitively, this variant, with multiple threads sending the same
same message (37), works for the same reason the original does:
transitive visibility. We want to articulate this common intuition in
a way that doesn’t depend on how many threads are sending the
message 37 or involve global reasoning about the event graph.

A tempting starting point is to simply say that the values that
x and y point to progress from (0, 0) to (37, 0) to (37, 1). Alas,
this kind of reasoning is unsound for weak memory in general: it
assumes that all threads will see writes to different locations in the
same order. In actuality, independent (i.e., hb-unrelated) writes to
different locations can appear to threads in different orders, which
is why Dekker’s algorithm fails. If we want thread-local reasoning,
we need an approach that accounts for what our thread may see,
while capturing the happens-before relationship between writes.

The key insight of GPS is that we can constrain the evolution
of values if we focus on one location at a time: mo provides a
linear order, seen by all threads, on the writes to a given location.
Toward this end, GPS provides per-location protocols, which are
state transition systems governing a single shared location. Using
protocols, we can express the changes to x and y independently:

x : 0 37 y : 0 1

These transition systems offer an abstraction of the event graph:
each state represents a set of write events, while edges represent mo

relationships between them. Thus, for x, we see that all of the writes
of 37 are mo-later than the initial write of 0. But these independent
constraints alone are not enough: we must ensure that y can only
be in state 1 if x is “known” to be in state 37.

In general, protocol states are abstract; the labels on the tran-
sition systems above are merely suggestive. Each state is given an
interpretation, which constrains the values that may be written to
the location in that state, but may also impose other constraints—
including, as we will see, constraints on other protocols. (Treating
states abstractly allows us to, in effect, associate a ghost variable
with each memory location, as §4 will show.)

Formally, we assume a sort State of protocol states, ranged over
by variables s. GPS is parameterized by (1) the grammar of terms
of sort State and (2) a set of protocol types (metavariable ⌧). For
each protocol type ⌧ , the user of the logic specifies:

• A transition relation v⌧ , which is a partial order on states.
• A state interpretation ⌧(s, z), which is a resource assertion in

which s and z appear free (i.e., it is a predicate on s and z). The
assertion represents what must be true of a value z for a thread
to be permitted to write it to the location in state s.

For the message passing example, we introduce a protocol type
Dat governing location x. Writing abstract states in bold, we say
0 v

Dat

0, 0 v

Dat

37, 37 v

Dat

37, and define

Dat(s, z) , (s = 0 ^ z = 0) _ (s = 37 ^ z = 37)

To give the protocol for y, however, we need a way of talking about
the protocol for x in its state interpretations. For this purpose, GPS
offers protocol assertions, ` : s ⌧ , which say that location ` is
governed by the protocol type ⌧ , and has been observed in state s,
thus giving a lower bound on the current protocol state.

We can now give the protocol for y. We introduce a protocol
type Flg(`) that is parameterized over a location ` (which we will
instantiate with x). Again writing abstract states in bold, we say
0 v

Flg

0, 0 v

Flg

1, 1 v

Flg

1, and

Flg(`)(s, z) , (s = 0 ^ z = 0)

_ (s = 1 ^ z = 1 ^ ` : 37 Dat)

Thus, to move to state 1 in Flg(x), a thread must (1) write 1 to
y and (2) have already observed that x : 37 Dat , which it can
ensure by first writing 37 to x itself.

What happens when a thread reads y? GPS supports the follow-
ing Hoare triple for atomic reads of a location `:5

8s0 w⌧ s. 8z. ⌧(s0, z)) Q
n

` : s ⌧
o

[`]
at

n

z. 9s0. ` : s0 ⌧ ^Q
o

The Hoare triple takes as a precondition some pre-existing knowl-
edge about `’s protocol. (For the message receiver, this knowledge
will be y : 0 Flg(x) .) The pre-existing knowledge gives a lower
bound on the possible writes the read could read from: they must
be at least as far as state s in the protocol.

5 This rule is sound only for the assertions we have introduced so far; the
general rule is given in “Ownership transfer through protocols”, below.

4 2013/12/9

x: 37

Release/Acquire

where it is placed in sb order after the thread’s previous event. The
mo order for G0 can arbitrarily extend the one for G, but because
it is a strict total order on writes, the extension will only add
relationships to the new node. The rf order can likewise only add
a read for the new node, which must read from some previously-
existing write. Finally, the new graph G0 is assumed to satisfy the
C11 axioms, constraining both the possible events and edges. The
validity of this semantics for C11 is discussed in the appendix [1].

We write JeK for the set of final values e can produce, starting
with a single-node event graph (where the start node is action S). If
at any point e creates a data race or memory error (defined formally
in the appendix [1]), then JeK = err; the C11 semantics leaves such
programs undefined. Any expression verified by GPS is guaranteed
to be data-race and memory-error free.

3. GPS: a logic for release-acquire consistency

The C11 memory model successfully serves as a contract between
compiler and programmer, making it possible—in principle—to re-
solve disputes (can a read of x here return 0?) by reference to global
axioms. These axioms—again, in principle—also support certain
intuitions about, e.g., transitive visibility. But, even with an exam-
ple as simple as one-shot message passing (§2), the intuitions are
not directly captured by the axioms. Rather, they emerge through
chains of subtle reasoning showing that certain edges must, or must
not, exist. Axiomatic reasoning is also relentlessly global: a read
event can potentially read from any write in the graph, so the ax-
ioms must be applied to each write to rule it in or out.

Our goal is to supplement the (release-acquire) C11 memory
model with a program logic that (1) captures intuitions about transi-
tive visibility more directly and (2) supports thread-local reasoning.
This section presents GPS, which achieves both goals through
• per-location protocols that abstract away event graphs, and
• ghosts and escrows, which govern logical permissions in the

style of recent separation logics.

Setup GPS is a separation logic for an expression language. Its
central judgment is the Hoare triple, {P} e {x. Q}, which says that
when given resources described by P , the expression e is memory
safe and data-race free. If, moreover, e terminates with a value V ,
it will do so with resources satisfying Q[V/x]. We will introduce
assertions P gradually. For now, we assume they include the basic
operators of multi-sorted first-order logic:
P ::= t = t | P ^ P | P _ P | P) P | 8X.P | 9X.P | · · ·

where ✓ ranges over sorts (for now, just Val) and t ranges over
terms. We write t : ✓ if t has sort ✓, and assume that variables X
are broken into classes by sort (`, x, y, z for variables of sort Val).

Per-location protocols We start with a twist on message passing:
[x]

at

:= 37;
[y]

at

:= 1;
· · · [x]

at

:= 37;
[y]

at

:= 1;
repeat [y]

at

end;
[x]

at

Intuitively, this variant, with multiple threads sending the same
same message (37), works for the same reason the original does:
transitive visibility. We want to articulate this common intuition in
a way that doesn’t depend on how many threads are sending the
message 37 or involve global reasoning about the event graph.

A tempting starting point is to simply say that the values that
x and y point to progress from (0, 0) to (37, 0) to (37, 1). Alas,
this kind of reasoning is unsound for weak memory in general: it
assumes that all threads will see writes to different locations in the
same order. In actuality, independent (i.e., hb-unrelated) writes to
different locations can appear to threads in different orders, which
is why Dekker’s algorithm fails. If we want thread-local reasoning,
we need an approach that accounts for what our thread may see,
while capturing the happens-before relationship between writes.

The key insight of GPS is that we can constrain the evolution
of values if we focus on one location at a time: mo provides a
linear order, seen by all threads, on the writes to a given location.
Toward this end, GPS provides per-location protocols, which are
state transition systems governing a single shared location. Using
protocols, we can express the changes to x and y independently:

x : 0 37 y : 0 1

These transition systems offer an abstraction of the event graph:
each state represents a set of write events, while edges represent mo

relationships between them. Thus, for x, we see that all of the writes
of 37 are mo-later than the initial write of 0. But these independent
constraints alone are not enough: we must ensure that y can only
be in state 1 if x is “known” to be in state 37.

In general, protocol states are abstract; the labels on the tran-
sition systems above are merely suggestive. Each state is given an
interpretation, which constrains the values that may be written to
the location in that state, but may also impose other constraints—
including, as we will see, constraints on other protocols. (Treating
states abstractly allows us to, in effect, associate a ghost variable
with each memory location, as §4 will show.)

Formally, we assume a sort State of protocol states, ranged over
by variables s. GPS is parameterized by (1) the grammar of terms
of sort State and (2) a set of protocol types (metavariable ⌧). For
each protocol type ⌧ , the user of the logic specifies:

• A transition relation v⌧ , which is a partial order on states.
• A state interpretation ⌧(s, z), which is a resource assertion in

which s and z appear free (i.e., it is a predicate on s and z). The
assertion represents what must be true of a value z for a thread
to be permitted to write it to the location in state s.

For the message passing example, we introduce a protocol type
Dat governing location x. Writing abstract states in bold, we say
0 v

Dat

0, 0 v

Dat

37, 37 v

Dat

37, and define

Dat(s, z) , (s = 0 ^ z = 0) _ (s = 37 ^ z = 37)

To give the protocol for y, however, we need a way of talking about
the protocol for x in its state interpretations. For this purpose, GPS
offers protocol assertions, ` : s ⌧ , which say that location ` is
governed by the protocol type ⌧ , and has been observed in state s,
thus giving a lower bound on the current protocol state.

We can now give the protocol for y. We introduce a protocol
type Flg(`) that is parameterized over a location ` (which we will
instantiate with x). Again writing abstract states in bold, we say
0 v

Flg

0, 0 v

Flg

1, 1 v

Flg

1, and

Flg(`)(s, z) , (s = 0 ^ z = 0)

_ (s = 1 ^ z = 1 ^ ` : 37 Dat)

Thus, to move to state 1 in Flg(x), a thread must (1) write 1 to
y and (2) have already observed that x : 37 Dat , which it can
ensure by first writing 37 to x itself.

What happens when a thread reads y? GPS supports the follow-
ing Hoare triple for atomic reads of a location `:5

8s0 w⌧ s. 8z. ⌧(s0, z)) Q
n

` : s ⌧
o

[`]
at

n

z. 9s0. ` : s0 ⌧ ^Q
o

The Hoare triple takes as a precondition some pre-existing knowl-
edge about `’s protocol. (For the message receiver, this knowledge
will be y : 0 Flg(x) .) The pre-existing knowledge gives a lower
bound on the possible writes the read could read from: they must
be at least as far as state s in the protocol.

5 This rule is sound only for the assertions we have introduced so far; the
general rule is given in “Ownership transfer through protocols”, below.

4 2013/12/9

where it is placed in sb order after the thread’s previous event. The
mo order for G0 can arbitrarily extend the one for G, but because
it is a strict total order on writes, the extension will only add
relationships to the new node. The rf order can likewise only add
a read for the new node, which must read from some previously-
existing write. Finally, the new graph G0 is assumed to satisfy the
C11 axioms, constraining both the possible events and edges. The
validity of this semantics for C11 is discussed in the appendix [1].

We write JeK for the set of final values e can produce, starting
with a single-node event graph (where the start node is action S). If
at any point e creates a data race or memory error (defined formally
in the appendix [1]), then JeK = err; the C11 semantics leaves such
programs undefined. Any expression verified by GPS is guaranteed
to be data-race and memory-error free.

3. GPS: a logic for release-acquire consistency

The C11 memory model successfully serves as a contract between
compiler and programmer, making it possible—in principle—to re-
solve disputes (can a read of x here return 0?) by reference to global
axioms. These axioms—again, in principle—also support certain
intuitions about, e.g., transitive visibility. But, even with an exam-
ple as simple as one-shot message passing (§2), the intuitions are
not directly captured by the axioms. Rather, they emerge through
chains of subtle reasoning showing that certain edges must, or must
not, exist. Axiomatic reasoning is also relentlessly global: a read
event can potentially read from any write in the graph, so the ax-
ioms must be applied to each write to rule it in or out.

Our goal is to supplement the (release-acquire) C11 memory
model with a program logic that (1) captures intuitions about transi-
tive visibility more directly and (2) supports thread-local reasoning.
This section presents GPS, which achieves both goals through
• per-location protocols that abstract away event graphs, and
• ghosts and escrows, which govern logical permissions in the

style of recent separation logics.

Setup GPS is a separation logic for an expression language. Its
central judgment is the Hoare triple, {P} e {x. Q}, which says that
when given resources described by P , the expression e is memory
safe and data-race free. If, moreover, e terminates with a value V ,
it will do so with resources satisfying Q[V/x]. We will introduce
assertions P gradually. For now, we assume they include the basic
operators of multi-sorted first-order logic:
P ::= t = t | P ^ P | P _ P | P) P | 8X.P | 9X.P | · · ·

where ✓ ranges over sorts (for now, just Val) and t ranges over
terms. We write t : ✓ if t has sort ✓, and assume that variables X
are broken into classes by sort (`, x, y, z for variables of sort Val).

Per-location protocols We start with a twist on message passing:
[x]

at

:= 37;
[y]

at

:= 1;
· · · [x]

at

:= 37;
[y]

at

:= 1;
repeat [y]

at

end;
[x]

at

Intuitively, this variant, with multiple threads sending the same
same message (37), works for the same reason the original does:
transitive visibility. We want to articulate this common intuition in
a way that doesn’t depend on how many threads are sending the
message 37 or involve global reasoning about the event graph.

A tempting starting point is to simply say that the values that
x and y point to progress from (0, 0) to (37, 0) to (37, 1). Alas,
this kind of reasoning is unsound for weak memory in general: it
assumes that all threads will see writes to different locations in the
same order. In actuality, independent (i.e., hb-unrelated) writes to
different locations can appear to threads in different orders, which
is why Dekker’s algorithm fails. If we want thread-local reasoning,
we need an approach that accounts for what our thread may see,
while capturing the happens-before relationship between writes.

The key insight of GPS is that we can constrain the evolution
of values if we focus on one location at a time: mo provides a
linear order, seen by all threads, on the writes to a given location.
Toward this end, GPS provides per-location protocols, which are
state transition systems governing a single shared location. Using
protocols, we can express the changes to x and y independently:

x : 0 37 y : 0 1

These transition systems offer an abstraction of the event graph:
each state represents a set of write events, while edges represent mo

relationships between them. Thus, for x, we see that all of the writes
of 37 are mo-later than the initial write of 0. But these independent
constraints alone are not enough: we must ensure that y can only
be in state 1 if x is “known” to be in state 37.

In general, protocol states are abstract; the labels on the tran-
sition systems above are merely suggestive. Each state is given an
interpretation, which constrains the values that may be written to
the location in that state, but may also impose other constraints—
including, as we will see, constraints on other protocols. (Treating
states abstractly allows us to, in effect, associate a ghost variable
with each memory location, as §4 will show.)

Formally, we assume a sort State of protocol states, ranged over
by variables s. GPS is parameterized by (1) the grammar of terms
of sort State and (2) a set of protocol types (metavariable ⌧). For
each protocol type ⌧ , the user of the logic specifies:

• A transition relation v⌧ , which is a partial order on states.
• A state interpretation ⌧(s, z), which is a resource assertion in

which s and z appear free (i.e., it is a predicate on s and z). The
assertion represents what must be true of a value z for a thread
to be permitted to write it to the location in state s.

For the message passing example, we introduce a protocol type
Dat governing location x. Writing abstract states in bold, we say
0 v

Dat

0, 0 v

Dat

37, 37 v

Dat

37, and define

Dat(s, z) , (s = 0 ^ z = 0) _ (s = 37 ^ z = 37)

To give the protocol for y, however, we need a way of talking about
the protocol for x in its state interpretations. For this purpose, GPS
offers protocol assertions, ` : s ⌧ , which say that location ` is
governed by the protocol type ⌧ , and has been observed in state s,
thus giving a lower bound on the current protocol state.

We can now give the protocol for y. We introduce a protocol
type Flg(`) that is parameterized over a location ` (which we will
instantiate with x). Again writing abstract states in bold, we say
0 v

Flg

0, 0 v

Flg

1, 1 v

Flg

1, and

Flg(`)(s, z) , (s = 0 ^ z = 0)

_ (s = 1 ^ z = 1 ^ ` : 37 Dat)

Thus, to move to state 1 in Flg(x), a thread must (1) write 1 to
y and (2) have already observed that x : 37 Dat , which it can
ensure by first writing 37 to x itself.

What happens when a thread reads y? GPS supports the follow-
ing Hoare triple for atomic reads of a location `:5

8s0 w⌧ s. 8z. ⌧(s0, z)) Q
n

` : s ⌧
o

[`]
at

n

z. 9s0. ` : s0 ⌧ ^Q
o

The Hoare triple takes as a precondition some pre-existing knowl-
edge about `’s protocol. (For the message receiver, this knowledge
will be y : 0 Flg(x) .) The pre-existing knowledge gives a lower
bound on the possible writes the read could read from: they must
be at least as far as state s in the protocol.

5 This rule is sound only for the assertions we have introduced so far; the
general rule is given in “Ownership transfer through protocols”, below.

4 2013/12/9

where it is placed in sb order after the thread’s previous event. The
mo order for G0 can arbitrarily extend the one for G, but because
it is a strict total order on writes, the extension will only add
relationships to the new node. The rf order can likewise only add
a read for the new node, which must read from some previously-
existing write. Finally, the new graph G0 is assumed to satisfy the
C11 axioms, constraining both the possible events and edges. The
validity of this semantics for C11 is discussed in the appendix [1].

We write JeK for the set of final values e can produce, starting
with a single-node event graph (where the start node is action S). If
at any point e creates a data race or memory error (defined formally
in the appendix [1]), then JeK = err; the C11 semantics leaves such
programs undefined. Any expression verified by GPS is guaranteed
to be data-race and memory-error free.

3. GPS: a logic for release-acquire consistency

The C11 memory model successfully serves as a contract between
compiler and programmer, making it possible—in principle—to re-
solve disputes (can a read of x here return 0?) by reference to global
axioms. These axioms—again, in principle—also support certain
intuitions about, e.g., transitive visibility. But, even with an exam-
ple as simple as one-shot message passing (§2), the intuitions are
not directly captured by the axioms. Rather, they emerge through
chains of subtle reasoning showing that certain edges must, or must
not, exist. Axiomatic reasoning is also relentlessly global: a read
event can potentially read from any write in the graph, so the ax-
ioms must be applied to each write to rule it in or out.

Our goal is to supplement the (release-acquire) C11 memory
model with a program logic that (1) captures intuitions about transi-
tive visibility more directly and (2) supports thread-local reasoning.
This section presents GPS, which achieves both goals through
• per-location protocols that abstract away event graphs, and
• ghosts and escrows, which govern logical permissions in the

style of recent separation logics.

Setup GPS is a separation logic for an expression language. Its
central judgment is the Hoare triple, {P} e {x. Q}, which says that
when given resources described by P , the expression e is memory
safe and data-race free. If, moreover, e terminates with a value V ,
it will do so with resources satisfying Q[V/x]. We will introduce
assertions P gradually. For now, we assume they include the basic
operators of multi-sorted first-order logic:
P ::= t = t | P ^ P | P _ P | P) P | 8X.P | 9X.P | · · ·

where ✓ ranges over sorts (for now, just Val) and t ranges over
terms. We write t : ✓ if t has sort ✓, and assume that variables X
are broken into classes by sort (`, x, y, z for variables of sort Val).

Per-location protocols We start with a twist on message passing:
[x]

at

:= 37;
[y]

at

:= 1;
· · · [x]

at

:= 37;
[y]

at

:= 1;
repeat [y]

at

end;
[x]

at

Intuitively, this variant, with multiple threads sending the same
same message (37), works for the same reason the original does:
transitive visibility. We want to articulate this common intuition in
a way that doesn’t depend on how many threads are sending the
message 37 or involve global reasoning about the event graph.

A tempting starting point is to simply say that the values that
x and y point to progress from (0, 0) to (37, 0) to (37, 1). Alas,
this kind of reasoning is unsound for weak memory in general: it
assumes that all threads will see writes to different locations in the
same order. In actuality, independent (i.e., hb-unrelated) writes to
different locations can appear to threads in different orders, which
is why Dekker’s algorithm fails. If we want thread-local reasoning,
we need an approach that accounts for what our thread may see,
while capturing the happens-before relationship between writes.

The key insight of GPS is that we can constrain the evolution
of values if we focus on one location at a time: mo provides a
linear order, seen by all threads, on the writes to a given location.
Toward this end, GPS provides per-location protocols, which are
state transition systems governing a single shared location. Using
protocols, we can express the changes to x and y independently:

x : 0 37 y : 0 1

These transition systems offer an abstraction of the event graph:
each state represents a set of write events, while edges represent mo

relationships between them. Thus, for x, we see that all of the writes
of 37 are mo-later than the initial write of 0. But these independent
constraints alone are not enough: we must ensure that y can only
be in state 1 if x is “known” to be in state 37.

In general, protocol states are abstract; the labels on the tran-
sition systems above are merely suggestive. Each state is given an
interpretation, which constrains the values that may be written to
the location in that state, but may also impose other constraints—
including, as we will see, constraints on other protocols. (Treating
states abstractly allows us to, in effect, associate a ghost variable
with each memory location, as §4 will show.)

Formally, we assume a sort State of protocol states, ranged over
by variables s. GPS is parameterized by (1) the grammar of terms
of sort State and (2) a set of protocol types (metavariable ⌧). For
each protocol type ⌧ , the user of the logic specifies:

• A transition relation v⌧ , which is a partial order on states.
• A state interpretation ⌧(s, z), which is a resource assertion in

which s and z appear free (i.e., it is a predicate on s and z). The
assertion represents what must be true of a value z for a thread
to be permitted to write it to the location in state s.

For the message passing example, we introduce a protocol type
Dat governing location x. Writing abstract states in bold, we say
0 v

Dat

0, 0 v

Dat

37, 37 v

Dat

37, and define

Dat(s, z) , (s = 0 ^ z = 0) _ (s = 37 ^ z = 37)

To give the protocol for y, however, we need a way of talking about
the protocol for x in its state interpretations. For this purpose, GPS
offers protocol assertions, ` : s ⌧ , which say that location ` is
governed by the protocol type ⌧ , and has been observed in state s,
thus giving a lower bound on the current protocol state.

We can now give the protocol for y. We introduce a protocol
type Flg(`) that is parameterized over a location ` (which we will
instantiate with x). Again writing abstract states in bold, we say
0 v

Flg

0, 0 v

Flg

1, 1 v

Flg

1, and

Flg(`)(s, z) , (s = 0 ^ z = 0)

_ (s = 1 ^ z = 1 ^ ` : 37 Dat)

Thus, to move to state 1 in Flg(x), a thread must (1) write 1 to
y and (2) have already observed that x : 37 Dat , which it can
ensure by first writing 37 to x itself.

What happens when a thread reads y? GPS supports the follow-
ing Hoare triple for atomic reads of a location `:5

8s0 w⌧ s. 8z. ⌧(s0, z)) Q
n

` : s ⌧
o

[`]
at

n

z. 9s0. ` : s0 ⌧ ^Q
o

The Hoare triple takes as a precondition some pre-existing knowl-
edge about `’s protocol. (For the message receiver, this knowledge
will be y : 0 Flg(x) .) The pre-existing knowledge gives a lower
bound on the possible writes the read could read from: they must
be at least as far as state s in the protocol.

5 This rule is sound only for the assertions we have introduced so far; the
general rule is given in “Ownership transfer through protocols”, below.

4 2013/12/9

x: 37

Release/Acquire

[y]AT

y: 0 flag{ }

flag(0, z) ≙ z = 0
flag(1, z) ≙ z = 1 ⋀

x: 37 data

[y]AT

y: 0 flag{ }

y: 1 flag x: 37 data

{
}*

z.

*z = 1
y: 0 flag*z = 0

⋁

flag(0, z) ≙ z = 0
flag(1, z) ≙ z = 1 ⋀

x: 37 data

[x]AT

x: 37 data{ }
data(0, z) ≙ z = 0
data(37, z) ≙ z = 37

[x]AT

x: 37 data{ }

x: 37 data{ }*z. z = 37

data(0, z) ≙ z = 0
data(37, z) ≙ z = 37

Operation Gain Lose

Read Knowledge -

Write - Resources

CAS: Success Resources Resources

CAS: Failure Knowledge -

Ownership Transfer

How can we verify this ownership transfer  
if the read of y can only gain knowledge?

tion according to an abstract state transition system (§3). Although
seemingly focused on single locations, PL-protocols are in fact the
key to cross-location reasoning: by discovering that one location `
is in a state s in its protocol, one can learn that another location `0 is
at least in some state s

0 in its protocol. This kind of “transitive vis-
ibility” is at the heart of weak memory models, and PL-protocols
provide a structured, thread-local way to reason about it.

PL-protocols are modeled after similar mechanisms in recent
SC concurrency logics [26], and as such, support a flexible combi-
nation of rely-guarantee (by abstractly characterizing interference
between threads), ghost state (by tracking the history of writes to
a location), and CSL-style resource invariants. GPS also offers two
other facilities for ghost instrumentation—ghosts and escrows—
which we explain in §3. The need for multiple mechanisms stems
from the fact that ghost state is not sound in general under a weak
memory semantics. Adapting ghost state to weak memory thus re-
quired us to isolate several different usage patterns that do remain
sound under weak memory assumptions.

GPS targets the recent C11 [16, 17] memory model, which of-
fers portable but fine-grained control over memory consistency
guarantees. To keep the presentation focused, we consider the
two most important consistency modes—nonatomic and release-
acquire (see §2). The logic is, however, sound under the full axioms
of C11. We have defined its semantics and proven its soundness di-
rectly in terms of the axioms of C11, as summarized in §5. The
supplementary materials [1] provide many further details, as well
as a Coq mechanization of the soundness proof of GPS.

To evaluate GPS, we have applied it to several challenging case
studies drawn from the Linux kernel and lock-free data structures,
as we describe in §4. We conclude in §6 with related work.

2. The C11 memory model

Memory models answer a seemingly simple question: when a
thread reads from a location, what values can it encounter?

• Sequential consistency (SC) provides an equally simple answer:
threads read the last value written. SC leads naturally to an
interleaving semantics of concurrency, where threads interact
through a global heap holding each location’s current value.

• In weaker consistency models, the “last value written” to a lo-
cation plays no special role—it may not even be well-defined.
Instead, threads can read out-of-date values reflecting the pos-
sible reorderings performed by the CPU or compiler.

The C11 memory model [16, 17] strikes a careful balance between
these extremes by offering a menu of consistency levels. Broadly,
memory operations are classified as either nonatomic (the default)
or atomic. Nonatomic accesses are intended for “normal data”,
while atomic accesses are used for synchronization.

Nonatomics are governed by a peculiar contract: the program-
mer can assume them to be SC, but must (under this assump-
tion!) never create a data race—roughly, a thread must never write
nonatomically if another thread might access the same location
concurrently. The lack of data races effectively prevents the pro-
gram from observing reorderings, so nonatomic accesses can enjoy
the full suite of compiler/CPU optimizations and still appear SC.

Atomics offer the opposite tradeoff: concurrent threads may
race to e.g., update a location atomically, but the memory model
provides weaker guarantees (and admits fewer optimizations) for
atomic accesses in general. The precise guarantees are determined
by an “ordering annotation”, ranging from SC to fully relaxed.
In this paper, we focus on the release-acquire ordering, which is
the primary building block for non-SC synchronization. As such,
we will use two ordering annotations, O 2 {at, na}, for atomic
(release-acquire) and nonatomic accesses, respectively.

Examples Before introducing C11 formally, we build some in-
tuition through two classic examples. The first is a simplified ver-
sion of Dekker’s algorithm, which provided the first solution to the
mutual-exclusion problem [10]:

[x]
at

:= 1
if [y]

at

== 0 then
/* crit. section */

[y]
at

:= 1
if [x]

at

== 0 then
/* crit. section */

We presume at the outset that x and y are pointers to distinct loca-
tions, both with initial value 0.2 The two threads race to announce
their intent to enter a critical section; each thread then checks
whether it announced first. In this simplified version, even under
SC, it is possible for both threads to lose. Unfortunately, in the C11
model, it is also possible for both threads to win! The intuition is
that C11 allows the reads to be performed before the writes have
become visible to all threads: the two threads can read stale values.

The second example illustrates a case where C11 atomics do
enforce some ordering. The goal is to pass a data structure from
one thread to another (here represented as a single value, 37):

[x]
na

:= 37;
[y]

at

:= 1;
repeat [y]

at

end;
[x]

na

Again, we presume x and y are pointers to distinct locations,
initially 0. The repeat construct executes an expression repeatedly
until its value is nonzero, so the second thread will “spin” until it
sees the write to y by the first thread. Unlike in Dekker’s algorithm,
here C11 will guarantee that the subsequent read from x will re-
turn 37. The key difference is that reading 1 from y yields positive
information about what the first thread has done: if an atomic (re-
lease) write by a given thread is seen by another thread, so is every-
thing that “happened before” the write, including all the writes that
appear prior to it in the thread’s code. Dekker’s algorithm, by con-
trast, draws conclusions from not seeing a write by another thread.

In general, then, release-acquire in C11 does not guarantee
that threads see the globally-latest write to a location, but it does
guarantee that (1) if a thread sees a particular write, it also sees
everything that happened before it, and (2) of the writes a thread
sees for a location, it can only read from the latest.

A final point about the message-passing example: its use of y
guarantees that the write to x by the first thread happens before—
not concurrently with—the read of x by the second thread. Thus
the code is data-race free, despite its nonatomic accesses to x.

Event graphs We now present the C11 model formally, follow-
ing Batty et al. [6] and subsequent simplifications [7, 27]. Our pre-
sentation makes several further simplifications due to our focus on
release-acquire atomics, but GPS is also sound for the full-blown
C11 axioms. The appendix includes more details [1].

Since weak memory models allow threads to see stale values,
they must track the history of an execution and use it to specify
the values a read can return. The C11 model takes the axiomatic
approach: it treats each step of a program execution as a node in a
graph, and then constrains the graph through a collection of global
axioms on several kinds of edges. Each node is labeled with one of
the following actions:

↵ ::= S | A(`..`0) | R(`, V,O) | W(`, V,O) | U(`, V, V)

The actions are Skip (no memory interaction), Allocate, Read,
Write, and atomic Update. Reads and writes record the location,
value read/written, and ordering annotation. An atomic update
U(`, Vo, Vn) simultaneously reads the value Vo from location ` and
updates it with the new value Vn (used for e.g., compare-and-set).

We assume an infinite set of event IDs; an action map A is then a
finite partial map from event IDs to actions, which defines the nodes

2 We are using here the program logic notation for pointer dereferencing,
[�], which avoids ambiguity with the ⇤ of separation logic.

2 2013/12/9

Ownership Transfer

How can we verify this ownership transfer  
if the read of y can only gain knowledge?

tion according to an abstract state transition system (§3). Although
seemingly focused on single locations, PL-protocols are in fact the
key to cross-location reasoning: by discovering that one location `
is in a state s in its protocol, one can learn that another location `0 is
at least in some state s

0 in its protocol. This kind of “transitive vis-
ibility” is at the heart of weak memory models, and PL-protocols
provide a structured, thread-local way to reason about it.

PL-protocols are modeled after similar mechanisms in recent
SC concurrency logics [26], and as such, support a flexible combi-
nation of rely-guarantee (by abstractly characterizing interference
between threads), ghost state (by tracking the history of writes to
a location), and CSL-style resource invariants. GPS also offers two
other facilities for ghost instrumentation—ghosts and escrows—
which we explain in §3. The need for multiple mechanisms stems
from the fact that ghost state is not sound in general under a weak
memory semantics. Adapting ghost state to weak memory thus re-
quired us to isolate several different usage patterns that do remain
sound under weak memory assumptions.

GPS targets the recent C11 [16, 17] memory model, which of-
fers portable but fine-grained control over memory consistency
guarantees. To keep the presentation focused, we consider the
two most important consistency modes—nonatomic and release-
acquire (see §2). The logic is, however, sound under the full axioms
of C11. We have defined its semantics and proven its soundness di-
rectly in terms of the axioms of C11, as summarized in §5. The
supplementary materials [1] provide many further details, as well
as a Coq mechanization of the soundness proof of GPS.

To evaluate GPS, we have applied it to several challenging case
studies drawn from the Linux kernel and lock-free data structures,
as we describe in §4. We conclude in §6 with related work.

2. The C11 memory model

Memory models answer a seemingly simple question: when a
thread reads from a location, what values can it encounter?

• Sequential consistency (SC) provides an equally simple answer:
threads read the last value written. SC leads naturally to an
interleaving semantics of concurrency, where threads interact
through a global heap holding each location’s current value.

• In weaker consistency models, the “last value written” to a lo-
cation plays no special role—it may not even be well-defined.
Instead, threads can read out-of-date values reflecting the pos-
sible reorderings performed by the CPU or compiler.

The C11 memory model [16, 17] strikes a careful balance between
these extremes by offering a menu of consistency levels. Broadly,
memory operations are classified as either nonatomic (the default)
or atomic. Nonatomic accesses are intended for “normal data”,
while atomic accesses are used for synchronization.

Nonatomics are governed by a peculiar contract: the program-
mer can assume them to be SC, but must (under this assump-
tion!) never create a data race—roughly, a thread must never write
nonatomically if another thread might access the same location
concurrently. The lack of data races effectively prevents the pro-
gram from observing reorderings, so nonatomic accesses can enjoy
the full suite of compiler/CPU optimizations and still appear SC.

Atomics offer the opposite tradeoff: concurrent threads may
race to e.g., update a location atomically, but the memory model
provides weaker guarantees (and admits fewer optimizations) for
atomic accesses in general. The precise guarantees are determined
by an “ordering annotation”, ranging from SC to fully relaxed.
In this paper, we focus on the release-acquire ordering, which is
the primary building block for non-SC synchronization. As such,
we will use two ordering annotations, O 2 {at, na}, for atomic
(release-acquire) and nonatomic accesses, respectively.

Examples Before introducing C11 formally, we build some in-
tuition through two classic examples. The first is a simplified ver-
sion of Dekker’s algorithm, which provided the first solution to the
mutual-exclusion problem [10]:

[x]
at

:= 1
if [y]

at

== 0 then
/* crit. section */

[y]
at

:= 1
if [x]

at

== 0 then
/* crit. section */

We presume at the outset that x and y are pointers to distinct loca-
tions, both with initial value 0.2 The two threads race to announce
their intent to enter a critical section; each thread then checks
whether it announced first. In this simplified version, even under
SC, it is possible for both threads to lose. Unfortunately, in the C11
model, it is also possible for both threads to win! The intuition is
that C11 allows the reads to be performed before the writes have
become visible to all threads: the two threads can read stale values.

The second example illustrates a case where C11 atomics do
enforce some ordering. The goal is to pass a data structure from
one thread to another (here represented as a single value, 37):

[x]
na

:= 37;
[y]

at

:= 1;
repeat [y]

at

end;
[x]

na

Again, we presume x and y are pointers to distinct locations,
initially 0. The repeat construct executes an expression repeatedly
until its value is nonzero, so the second thread will “spin” until it
sees the write to y by the first thread. Unlike in Dekker’s algorithm,
here C11 will guarantee that the subsequent read from x will re-
turn 37. The key difference is that reading 1 from y yields positive
information about what the first thread has done: if an atomic (re-
lease) write by a given thread is seen by another thread, so is every-
thing that “happened before” the write, including all the writes that
appear prior to it in the thread’s code. Dekker’s algorithm, by con-
trast, draws conclusions from not seeing a write by another thread.

In general, then, release-acquire in C11 does not guarantee
that threads see the globally-latest write to a location, but it does
guarantee that (1) if a thread sees a particular write, it also sees
everything that happened before it, and (2) of the writes a thread
sees for a location, it can only read from the latest.

A final point about the message-passing example: its use of y
guarantees that the write to x by the first thread happens before—
not concurrently with—the read of x by the second thread. Thus
the code is data-race free, despite its nonatomic accesses to x.

Event graphs We now present the C11 model formally, follow-
ing Batty et al. [6] and subsequent simplifications [7, 27]. Our pre-
sentation makes several further simplifications due to our focus on
release-acquire atomics, but GPS is also sound for the full-blown
C11 axioms. The appendix includes more details [1].

Since weak memory models allow threads to see stale values,
they must track the history of an execution and use it to specify
the values a read can return. The C11 model takes the axiomatic
approach: it treats each step of a program execution as a node in a
graph, and then constrains the graph through a collection of global
axioms on several kinds of edges. Each node is labeled with one of
the following actions:

↵ ::= S | A(`..`0) | R(`, V,O) | W(`, V,O) | U(`, V, V)

The actions are Skip (no memory interaction), Allocate, Read,
Write, and atomic Update. Reads and writes record the location,
value read/written, and ordering annotation. An atomic update
U(`, Vo, Vn) simultaneously reads the value Vo from location ` and
updates it with the new value Vn (used for e.g., compare-and-set).

We assume an infinite set of event IDs; an action map A is then a
finite partial map from event IDs to actions, which defines the nodes

2 We are using here the program logic notation for pointer dereferencing,
[�], which avoids ambiguity with the ⇤ of separation logic.

2 2013/12/9

Key Idea
Allow implicit resource transfers

through escrows

Ghost Resources

[x]at := 1 [y]at := 1
print [x]at
print [y]at

print [y]at
print [x]at

[x]at := 1 [x]at := 2
print [x]at
print [x]at

print [x]at
print [x]at

{true} allocna(v) {x. x ,! v} {` ,! �} [`]na := v {` ,! v} {` ,! v} [`]na {x. x = v ⇤ ` ,! v}

{P} e {x. Q}
{P ⇤R} e {x. Q ⇤R}

{P1} e1 {Q1} {P2} e2 {Q2}
{P1 ⇤ P2} e1 k e2 {Q1 ⇤Q2}

8s0 w
⌧

s. 8z. ⌧(s0, z)) ⇤Q
n

` : s ⌧

o

[`]at

n

z. 9s0. ` : s

0
⌧ ⇤⇤Q

o

P) ⌧(s

00
, v) ⇤Q 8s0 w

⌧

s. ⌧(s

0
,�) ⇤ P) s

00 w
⌧

s

0
n

` : s ⌧ ⇤ P
o

[`]at := v

n

` : s

00
⌧ ⇤Q

o

8s0 w
⌧

s. ⌧(s

0
, v

o

) ⇤ P V 9s00 w
⌧

s

0
. ⌧(s

00
, v

n

) ⇤Q
8s00 w

⌧

s. 8y 6= v

o

. ⌧(s

00
, y) ⇤ P) ⇤R

n

` : s ⌧ ⇤ P
o

CAS(`, v

o

, v

n

)

n

z. 9s00. ` : s

00
⌧ ⇤ ((z = 1 ⇤Q) _ (z = 0 ⇤ P ⇤⇤R))

o

⇤P) ⇤P ⇤ P

8s0 w
⌧

s. ⌧(s

0
, v

o

) ⇤ P) 9s00 w
⌧

s

0
. ⌧(s

00
, v

n

) ⇤Q
8s00 w

⌧

s. 8y 6= v

o

. ⌧(s

00
, y) ⇤ P) ⇤R

n

` : s ⌧ ⇤ P
o

CAS(`, v

o

, v

n

)

(

z. 9s00. ` : s

00
⌧ ⇤

((z = 1 ⇤Q) _ (z = 0 ⇤ P ⇤⇤R))

)

{P} e {x. Q}
{P} e {x. Q ⇤ 9i. Token(i)}

R ⇤R) false {P} e {x. Q}
{P} e {x. [R Q]}

{R} e {x. Q}
{P ⇤ [P R]} e {x. Q}

1

[x]at := 1 [y]at := 1
print [x]at
print [y]at

print [y]at
print [x]at

[x]at := 1 [x]at := 2
print [x]at
print [x]at

print [x]at
print [x]at

{true} allocna(v) {x. x ,! v} {` ,! �} [`]na := v {` ,! v} {` ,! v} [`]na {x. x = v ⇤ ` ,! v}

{P} e {x. Q}
{P ⇤R} e {x. Q ⇤R}

{P1} e1 {Q1} {P2} e2 {Q2}
{P1 ⇤ P2} e1 k e2 {Q1 ⇤Q2}

8s0 w
⌧

s. 8z. ⌧(s0, z)) ⇤Q
n

` : s ⌧

o

[`]at

n

z. 9s0. ` : s

0
⌧ ⇤⇤Q

o

P) ⌧(s

00
, v) ⇤Q 8s0 w

⌧

s. ⌧(s

0
,�) ⇤ P) s

00 w
⌧

s

0
n

` : s ⌧ ⇤ P
o

[`]at := v

n

` : s

00
⌧ ⇤Q

o

8s0 w
⌧

s. ⌧(s

0
, v

o

) ⇤ P V 9s00 w
⌧

s

0
. ⌧(s

00
, v

n

) ⇤Q
8s00 w

⌧

s. 8y 6= v

o

. ⌧(s

00
, y) ⇤ P) ⇤R

n

` : s ⌧ ⇤ P
o

CAS(`, v

o

, v

n

)

n

z. 9s00. ` : s

00
⌧ ⇤ ((z = 1 ⇤Q) _ (z = 0 ⇤ P ⇤⇤R))

o

⇤P) ⇤P ⇤ P

8s0 w
⌧

s. ⌧(s

0
, v

o

) ⇤ P) 9s00 w
⌧

s

0
. ⌧(s

00
, v

n

) ⇤Q
8s00 w

⌧

s. 8y 6= v

o

. ⌧(s

00
, y) ⇤ P) ⇤R

n

` : s ⌧ ⇤ P
o

CAS(`, v

o

, v

n

)

(

z. 9s00. ` : s

00
⌧ ⇤

((z = 1 ⇤Q) _ (z = 0 ⇤ P ⇤⇤R))

)

{P} e {x. Q}
{P} e {x. Q ⇤ 9i. Token(i)}

Token(i) ⇤ Token(i)) false
R ⇤R) false {P} e {x. Q}

{P} e {x. [R Q]}

{R} e {x. Q}
{P ⇤ [P R]} e {x. Q}

1

Escrows

[x]at := 1 [y]at := 1
print [x]at
print [y]at

print [y]at
print [x]at

[x]at := 1 [x]at := 2
print [x]at
print [x]at

print [x]at
print [x]at

{true} allocna(v) {x. x ,! v} {` ,! �} [`]na := v {` ,! v} {` ,! v} [`]na {x. x = v ⇤ ` ,! v}

{P} e {x. Q}
{P ⇤R} e {x. Q ⇤R}

{P1} e1 {Q1} {P2} e2 {Q2}
{P1 ⇤ P2} e1 k e2 {Q1 ⇤Q2}

8s0 w
⌧

s. 8z. ⌧(s0, z)) ⇤Q
n

` : s ⌧

o

[`]at

n

z. 9s0. ` : s

0
⌧ ⇤⇤Q

o

P) ⌧(s

00
, v) ⇤Q 8s0 w

⌧

s. ⌧(s

0
,�) ⇤ P) s

00 w
⌧

s

0
n

` : s ⌧ ⇤ P
o

[`]at := v

n

` : s

00
⌧ ⇤Q

o

8s0 w
⌧

s. ⌧(s

0
, v

o

) ⇤ P V 9s00 w
⌧

s

0
. ⌧(s

00
, v

n

) ⇤Q
8s00 w

⌧

s. 8y 6= v

o

. ⌧(s

00
, y) ⇤ P) ⇤R

n

` : s ⌧ ⇤ P
o

CAS(`, v

o

, v

n

)

n

z. 9s00. ` : s

00
⌧ ⇤ ((z = 1 ⇤Q) _ (z = 0 ⇤ P ⇤⇤R))

o

⇤P) ⇤P ⇤ P

8s0 w
⌧

s. ⌧(s

0
, v

o

) ⇤ P) 9s00 w
⌧

s

0
. ⌧(s

00
, v

n

) ⇤Q
8s00 w

⌧

s. 8y 6= v

o

. ⌧(s

00
, y) ⇤ P) ⇤R

n

` : s ⌧ ⇤ P
o

CAS(`, v

o

, v

n

)

(

z. 9s00. ` : s

00
⌧ ⇤

((z = 1 ⇤Q) _ (z = 0 ⇤ P ⇤⇤R))

)

{P} e {x. Q}
{P} e {x. Q ⇤ 9i. Token(i)}

Token(i) ⇤ Token(i)) false
R ⇤R) false {P} e {x. Q}

{P} e {x. [R Q]}

{R} e {x. Q}
{P ⇤ [P R]} e {x. Q}

1

Creation

Escrows

[x]at := 1 [y]at := 1
print [x]at
print [y]at

print [y]at
print [x]at

[x]at := 1 [x]at := 2
print [x]at
print [x]at

print [x]at
print [x]at

{true} allocna(v) {x. x ,! v} {` ,! �} [`]na := v {` ,! v} {` ,! v} [`]na {x. x = v ⇤ ` ,! v}

{P} e {x. Q}
{P ⇤R} e {x. Q ⇤R}

{P1} e1 {Q1} {P2} e2 {Q2}
{P1 ⇤ P2} e1 k e2 {Q1 ⇤Q2}

8s0 w
⌧

s. 8z. ⌧(s0, z)) ⇤Q
n

` : s ⌧

o

[`]at

n

z. 9s0. ` : s

0
⌧ ⇤⇤Q

o

P) ⌧(s

00
, v) ⇤Q 8s0 w

⌧

s. ⌧(s

0
,�) ⇤ P) s

00 w
⌧

s

0
n

` : s ⌧ ⇤ P
o

[`]at := v

n

` : s

00
⌧ ⇤Q

o

8s0 w
⌧

s. ⌧(s

0
, v

o

) ⇤ P V 9s00 w
⌧

s

0
. ⌧(s

00
, v

n

) ⇤Q
8s00 w

⌧

s. 8y 6= v

o

. ⌧(s

00
, y) ⇤ P) ⇤R

n

` : s ⌧ ⇤ P
o

CAS(`, v

o

, v

n

)

n

z. 9s00. ` : s

00
⌧ ⇤ ((z = 1 ⇤Q) _ (z = 0 ⇤ P ⇤⇤R))

o

⇤P) ⇤P ⇤ P

8s0 w
⌧

s. ⌧(s

0
, v

o

) ⇤ P) 9s00 w
⌧

s

0
. ⌧(s

00
, v

n

) ⇤Q
8s00 w

⌧

s. 8y 6= v

o

. ⌧(s

00
, y) ⇤ P) ⇤R

n

` : s ⌧ ⇤ P
o

CAS(`, v

o

, v

n

)

(

z. 9s00. ` : s

00
⌧ ⇤

((z = 1 ⇤Q) _ (z = 0 ⇤ P ⇤⇤R))

)

{P} e {x. Q}
{P} e {x. Q ⇤ 9i. Token(i)}

Token(i) ⇤ Token(i)) false
R ⇤R) false {P} e {x. Q}

{P} e {x. [R Q]}

{R} e {x. Q}
{P ⇤ [P R]} e {x. Q}

1

Creation

Condition{

Escrows

[x]at := 1 [y]at := 1
print [x]at
print [y]at

print [y]at
print [x]at

[x]at := 1 [x]at := 2
print [x]at
print [x]at

print [x]at
print [x]at

{true} allocna(v) {x. x ,! v} {` ,! �} [`]na := v {` ,! v} {` ,! v} [`]na {x. x = v ⇤ ` ,! v}

{P} e {x. Q}
{P ⇤R} e {x. Q ⇤R}

{P1} e1 {Q1} {P2} e2 {Q2}
{P1 ⇤ P2} e1 k e2 {Q1 ⇤Q2}

8s0 w
⌧

s. 8z. ⌧(s0, z)) ⇤Q
n

` : s ⌧

o

[`]at

n

z. 9s0. ` : s

0
⌧ ⇤⇤Q

o

P) ⌧(s

00
, v) ⇤Q 8s0 w

⌧

s. ⌧(s

0
,�) ⇤ P) s

00 w
⌧

s

0
n

` : s ⌧ ⇤ P
o

[`]at := v

n

` : s

00
⌧ ⇤Q

o

8s0 w
⌧

s. ⌧(s

0
, v

o

) ⇤ P V 9s00 w
⌧

s

0
. ⌧(s

00
, v

n

) ⇤Q
8s00 w

⌧

s. 8y 6= v

o

. ⌧(s

00
, y) ⇤ P) ⇤R

n

` : s ⌧ ⇤ P
o

CAS(`, v

o

, v

n

)

n

z. 9s00. ` : s

00
⌧ ⇤ ((z = 1 ⇤Q) _ (z = 0 ⇤ P ⇤⇤R))

o

⇤P) ⇤P ⇤ P

8s0 w
⌧

s. ⌧(s

0
, v

o

) ⇤ P) 9s00 w
⌧

s

0
. ⌧(s

00
, v

n

) ⇤Q
8s00 w

⌧

s. 8y 6= v

o

. ⌧(s

00
, y) ⇤ P) ⇤R

n

` : s ⌧ ⇤ P
o

CAS(`, v

o

, v

n

)

(

z. 9s00. ` : s

00
⌧ ⇤

((z = 1 ⇤Q) _ (z = 0 ⇤ P ⇤⇤R))

)

{P} e {x. Q}
{P} e {x. Q ⇤ 9i. Token(i)}

Token(i) ⇤ Token(i)) false
R ⇤R) false {P} e {x. Q}

{P} e {x. [R Q]}

{R} e {x. Q}
{P ⇤ [P R]} e {x. Q}

1

Creation

Condition{
Fulfillment

[x]at := 1 [y]at := 1
print [x]at
print [y]at

print [y]at
print [x]at

[x]at := 1 [x]at := 2
print [x]at
print [x]at

print [x]at
print [x]at

{true} allocna(v) {x. x ,! v} {` ,! �} [`]na := v {` ,! v} {` ,! v} [`]na {x. x = v ⇤ ` ,! v}

{P} e {x. Q}
{P ⇤R} e {x. Q ⇤R}

{P1} e1 {Q1} {P2} e2 {Q2}
{P1 ⇤ P2} e1 k e2 {Q1 ⇤Q2}

8s0 w
⌧

s. 8z. ⌧(s0, z)) ⇤Q
n

` : s ⌧

o

[`]at

n

z. 9s0. ` : s

0
⌧ ⇤⇤Q

o

P) ⌧(s

00
, v) ⇤Q 8s0 w

⌧

s. ⌧(s

0
,�) ⇤ P) s

00 w
⌧

s

0
n

` : s ⌧ ⇤ P
o

[`]at := v

n

` : s

00
⌧ ⇤Q

o

8s0 w
⌧

s. ⌧(s

0
, v

o

) ⇤ P V 9s00 w
⌧

s

0
. ⌧(s

00
, v

n

) ⇤Q
8s00 w

⌧

s. 8y 6= v

o

. ⌧(s

00
, y) ⇤ P) ⇤R

n

` : s ⌧ ⇤ P
o

CAS(`, v

o

, v

n

)

n

z. 9s00. ` : s

00
⌧ ⇤ ((z = 1 ⇤Q) _ (z = 0 ⇤ P ⇤⇤R))

o

⇤P) ⇤P ⇤ P

8s0 w
⌧

s. ⌧(s

0
, v

o

) ⇤ P) 9s00 w
⌧

s

0
. ⌧(s

00
, v

n

) ⇤Q
8s00 w

⌧

s. 8y 6= v

o

. ⌧(s

00
, y) ⇤ P) ⇤R

n

` : s ⌧ ⇤ P
o

CAS(`, v

o

, v

n

)

(

z. 9s00. ` : s

00
⌧ ⇤

((z = 1 ⇤Q) _ (z = 0 ⇤ P ⇤⇤R))

)

{P} e {x. Q}
{P} e {x. Q ⇤ 9i. Token(i)}

Token(i) ⇤ Token(i)) false
R ⇤R) false {P} e {x. Q}

{P} e {x. [R Q]}

{P} e {x. Q}
{R ⇤ [R P]} e {x. Q}

[R P]) ⇤[R P]

0

B

@

9i, j > 0.

x : i ⇤ y : j ⇤
✓

Token(x) ⇤ i = j

_ Token(y) ⇤ i 6= j

◆

1

C

A

 P

1

Escrows

[x]at := 1 [y]at := 1
print [x]at
print [y]at

print [y]at
print [x]at

[x]at := 1 [x]at := 2
print [x]at
print [x]at

print [x]at
print [x]at

{true} allocna(v) {x. x ,! v} {` ,! �} [`]na := v {` ,! v} {` ,! v} [`]na {x. x = v ⇤ ` ,! v}

{P} e {x. Q}
{P ⇤R} e {x. Q ⇤R}

{P1} e1 {Q1} {P2} e2 {Q2}
{P1 ⇤ P2} e1 k e2 {Q1 ⇤Q2}

8s0 w
⌧

s. 8z. ⌧(s0, z)) ⇤Q
n

` : s ⌧

o

[`]at

n

z. 9s0. ` : s

0
⌧ ⇤⇤Q

o

P) ⌧(s

00
, v) ⇤Q 8s0 w

⌧

s. ⌧(s

0
,�) ⇤ P) s

00 w
⌧

s

0
n

` : s ⌧ ⇤ P
o

[`]at := v

n

` : s

00
⌧ ⇤Q

o

8s0 w
⌧

s. ⌧(s

0
, v

o

) ⇤ P V 9s00 w
⌧

s

0
. ⌧(s

00
, v

n

) ⇤Q
8s00 w

⌧

s. 8y 6= v

o

. ⌧(s

00
, y) ⇤ P) ⇤R

n

` : s ⌧ ⇤ P
o

CAS(`, v

o

, v

n

)

n

z. 9s00. ` : s

00
⌧ ⇤ ((z = 1 ⇤Q) _ (z = 0 ⇤ P ⇤⇤R))

o

⇤P) ⇤P ⇤ P

8s0 w
⌧

s. ⌧(s

0
, v

o

) ⇤ P) 9s00 w
⌧

s

0
. ⌧(s

00
, v

n

) ⇤Q
8s00 w

⌧

s. 8y 6= v

o

. ⌧(s

00
, y) ⇤ P) ⇤R

n

` : s ⌧ ⇤ P
o

CAS(`, v

o

, v

n

)

(

z. 9s00. ` : s

00
⌧ ⇤

((z = 1 ⇤Q) _ (z = 0 ⇤ P ⇤⇤R))

)

{P} e {x. Q}
{P} e {x. Q ⇤ 9i. Token(i)}

Token(i) ⇤ Token(i)) false
R ⇤R) false {P} e {x. Q}

{P} e {x. [R Q]}

{R} e {x. Q}
{P ⇤ [P R]} e {x. Q}

1

Creation

Condition{
Fulfillment

[x]at := 1 [y]at := 1
print [x]at
print [y]at

print [y]at
print [x]at

[x]at := 1 [x]at := 2
print [x]at
print [x]at

print [x]at
print [x]at

{true} allocna(v) {x. x ,! v} {` ,! �} [`]na := v {` ,! v} {` ,! v} [`]na {x. x = v ⇤ ` ,! v}

{P} e {x. Q}
{P ⇤R} e {x. Q ⇤R}

{P1} e1 {Q1} {P2} e2 {Q2}
{P1 ⇤ P2} e1 k e2 {Q1 ⇤Q2}

8s0 w
⌧

s. 8z. ⌧(s0, z)) ⇤Q
n

` : s ⌧

o

[`]at

n

z. 9s0. ` : s

0
⌧ ⇤⇤Q

o

P) ⌧(s

00
, v) ⇤Q 8s0 w

⌧

s. ⌧(s

0
,�) ⇤ P) s

00 w
⌧

s

0
n

` : s ⌧ ⇤ P
o

[`]at := v

n

` : s

00
⌧ ⇤Q

o

8s0 w
⌧

s. ⌧(s

0
, v

o

) ⇤ P V 9s00 w
⌧

s

0
. ⌧(s

00
, v

n

) ⇤Q
8s00 w

⌧

s. 8y 6= v

o

. ⌧(s

00
, y) ⇤ P) ⇤R

n

` : s ⌧ ⇤ P
o

CAS(`, v

o

, v

n

)

n

z. 9s00. ` : s

00
⌧ ⇤ ((z = 1 ⇤Q) _ (z = 0 ⇤ P ⇤⇤R))

o

⇤P) ⇤P ⇤ P

8s0 w
⌧

s. ⌧(s

0
, v

o

) ⇤ P) 9s00 w
⌧

s

0
. ⌧(s

00
, v

n

) ⇤Q
8s00 w

⌧

s. 8y 6= v

o

. ⌧(s

00
, y) ⇤ P) ⇤R

n

` : s ⌧ ⇤ P
o

CAS(`, v

o

, v

n

)

(

z. 9s00. ` : s

00
⌧ ⇤

((z = 1 ⇤Q) _ (z = 0 ⇤ P ⇤⇤R))

)

{P} e {x. Q}
{P} e {x. Q ⇤ 9i. Token(i)}

Token(i) ⇤ Token(i)) false
R ⇤R) false {P} e {x. Q}

{P} e {x. [R Q]}

{P} e {x. Q}
{R ⇤ [R P]} e {x. Q}

[R P]) ⇤[R P]

0

B

@

9i, j > 0.

x : i ⇤ y : j ⇤
✓

Token(x) ⇤ i = j

_ Token(y) ⇤ i 6= j

◆

1

C

A

 P

1

Knowledge

[x]at := 1 [y]at := 1
print [x]at
print [y]at

print [y]at
print [x]at

[x]at := 1 [x]at := 2
print [x]at
print [x]at

print [x]at
print [x]at

{true} allocna(v) {x. x ,! v} {` ,! �} [`]na := v {` ,! v} {` ,! v} [`]na {x. x = v ⇤ ` ,! v}

{P} e {x. Q}
{P ⇤R} e {x. Q ⇤R}

{P1} e1 {Q1} {P2} e2 {Q2}
{P1 ⇤ P2} e1 k e2 {Q1 ⇤Q2}

8s0 w
⌧

s. 8z. ⌧(s0, z)) ⇤Q
n

` : s ⌧

o

[`]at

n

z. 9s0. ` : s

0
⌧ ⇤⇤Q

o

P) ⌧(s

00
, v) ⇤Q 8s0 w

⌧

s. ⌧(s

0
,�) ⇤ P) s

00 w
⌧

s

0
n

` : s ⌧ ⇤ P
o

[`]at := v

n

` : s

00
⌧ ⇤Q

o

8s0 w
⌧

s. ⌧(s

0
, v

o

) ⇤ P V 9s00 w
⌧

s

0
. ⌧(s

00
, v

n

) ⇤Q
8s00 w

⌧

s. 8y 6= v

o

. ⌧(s

00
, y) ⇤ P) ⇤R

n

` : s ⌧ ⇤ P
o

CAS(`, v

o

, v

n

)

n

z. 9s00. ` : s

00
⌧ ⇤ ((z = 1 ⇤Q) _ (z = 0 ⇤ P ⇤⇤R))

o

⇤P) ⇤P ⇤ P

8s0 w
⌧

s. ⌧(s

0
, v

o

) ⇤ P) 9s00 w
⌧

s

0
. ⌧(s

00
, v

n

) ⇤Q
8s00 w

⌧

s. 8y 6= v

o

. ⌧(s

00
, y) ⇤ P) ⇤R

n

` : s ⌧ ⇤ P
o

CAS(`, v

o

, v

n

)

(

z. 9s00. ` : s

00
⌧ ⇤

((z = 1 ⇤Q) _ (z = 0 ⇤ P ⇤⇤R))

)

{P} e {x. Q}
{P} e {x. Q ⇤ 9i. Token(i)}

Token(i) ⇤ Token(i)) false
R ⇤R) false {P} e {x. Q}

{P} e {x. [R Q]}

{P} e {x. Q}
{R ⇤ [R P]} e {x. Q}

[R P]) ⇤[R P]

0

B

@

9i, j > 0.

x : i ⇤ y : j ⇤
✓

Token(x) ⇤ i = j

_ Token(y) ⇤ i 6= j

◆

1

C

A

 P

1

be unsound if there were two copies of the second thread
operating concurrently.) However, since the second thread
does not use CAS, it cannot transfer ownership of x directly
out of y’s protocol—some additional mechanism is needed.

Thus we are led to the final concept in GPS: escrows.5
The idea is that a thread may indirectly transfer a resource to
another thread by placing it “under escrow”: it is then inac-
cessible to any thread until some exclusive, logical condition
is met, at which point the thread meeting the condition gains
ownership of it. GPS is parameterized over a set of escrow
types (metavariable �) and definitions, written � : P Q.
Here Q represents the resource to be placed under escrow,
while P represents the transfer condition, which must be
exclusive (P ⇤ P) false) to ensure that ownership of Q is
only transferred out of the escrow to one receiving thread.

Escrows are created and used via ghost moves, where the
assertion [�] says that an escrow of type � is known to exist:

� : P Q

QV [�]

� : P Q

P ^ [�]V Q
[�]) ⇤[�]

The first rule allows Q to be put under escrow; ownership
is lost, in exchange for the knowledge [�]—and because
[�] is knowledge, it can be learned about through reading.
When later extracting the resource Q from the escrow [�],
the condition P is consumed; this fact, together with the
exclusivity of P , ensures that an escrow can only be used to
transfer ownership once.

Returning to the message-passing example, the idea is to
define an escrow type, XE(�), which governs the transfer of
the resource x ,! 37. The escrow type is parameterized by �,
which is the name of an exclusive ghost token, � : ⇧ Tok ,
that will be used to guard the escrow (i.e., as its transfer
condition). The second thread will start out as the (unique)
owner of this token, but then exchange it for ownership of x.
Formally, we define XE(�) as follows:

XE(�) : � : ⇧ Tok x ,! 37

We then define a single protocol governing y, namely YP(�),
with states 0 and 1 and transition relation , and the following
state interpretations:

YP(�)(0, z) , z = 0

YP(�)(1, z) , z = 1 ⇤ [XE(�)]

This protocol enforces that y progresses from 0 to 1, and
when it is set to 1, the escrow XE(�) must exist. Thus, before
the first thread sets y to 1, it must first transfer the resource
x ,! 37 into the escrow XE(�) so that it can then pass
the knowledge of this escrow’s existence into the protocol.
Once the second thread receives this knowledge from the
protocol (by reading y as 1), it can trade in its ghost token for
ownership of the resource x ,! 37, as desired. This reasoning
is summarized in the proof outline in Figure 4 (omitting the
Tok type in the ghost assertions for brevity).
5 As we discuss in Section 5, escrows are closely related to Bugliesi et al.’s
notion of “exponential serialization” [7].

n

x ,! 0 ⇤ y : 0 YP(�)
o

[x]
na

:= 37;
n

x ,! 37 ⇤ y : 0 YP(�)
o

n

[XE(�)] ⇤ y : 0 YP(�)
o

[y]
at

:= 1;
n

y : 1 YP(�)
o

n

� : ⇧ ⇤ y : 0 YP(�)
o

repeat [y]
at

end;
(

� : ⇧ ⇤ y : 1 YP(�)

⇤ [XE(�)]

)

�

x ,! 37

[x]
na

�

z. z = 37 ⇤ x ,! 37

Figure 4. Proof outline for nonatomic message-passing

A more challenging application of escrows Although the
above example succinctly illustrates the basic idea of escrows,
it is perhaps not the most compelling one, given that it can be
handled by other means in prior logics (such as RSL [38]).

We therefore turn now to an interesting synchronization
algorithm (suggested to us by Ernie Cohen), whose GPS
verification demonstrates an elegant use of escrows and
which, to our knowledge, is beyond the reach of prior logics:

[x]
at

:= choose(1, 2);
repeat [y]

at

end;
if [x]

at

== [y]
at

then

/* crit. section */

[y]
at

:= choose(1, 2);
repeat [x]

at

end;
if [x]

at

!= [y]
at

then

/* crit. section */

The goal of this algorithm is to guarantee mutual exclusion
using release-acquire atomics, but without using CAS. The
idea is that each thread sets its respective variable (x or y)
to either 1 or 2 (using a nondeterministic choice operator,
choose) and then checks the value chosen by the other thread.
This enables the threads to synchronize implicitly based on a
logical condition: the first thread wins if the values pointed
to by x and y are equal, and the second wins if they are not.

Implicit in the algorithm is the invariant that once each
thread sets its variable to 1 or 2, it will not change it further.
As a consequence, unlike in Dekker’s algorithm (§2), each
thread in Cohen’s algorithm relies only on positive informa-
tion about the progress of the other thread—e.g., has y been
set to some nonzero value yet and, if so, what?—in order to
determine if it has won the race. Intuitively, it is this restric-
tion to positive reasoning that makes Cohen’s algorithm work
under release-acquire semantics while Dekker’s doesn’t.

We now sketch the verification of Cohen’s algorithm
(full details are given in the appendix [1]). Suppose that the
winning thread should gain exclusive access to some shared
resource P . To verify Cohen’s algorithm, our basic idea is
to place P under an escrow PE at the beginning (prior to
the execution of either thread). The transfer condition for
this escrow will be defined so as to be satisfiable only by
whichever thread wins the race. Thus, once that thread knows
it has won, it can unlock the escrow and gain access to P .

Formally, at the beginning of the proof, four tokens will be
created and passed to the two threads: the first thread (which
sets x) will be given the tokens �x

1 : ⇧ and �x
2 : ⇧ , and the

second thread (which sets y) will be given the tokens �y
1 : ⇧

and �y
2 : ⇧ . The �

1

’s will be used to guard access to the

10 2014/8/4

be unsound if there were two copies of the second thread
operating concurrently.) However, since the second thread
does not use CAS, it cannot transfer ownership of x directly
out of y’s protocol—some additional mechanism is needed.

Thus we are led to the final concept in GPS: escrows.5
The idea is that a thread may indirectly transfer a resource to
another thread by placing it “under escrow”: it is then inac-
cessible to any thread until some exclusive, logical condition
is met, at which point the thread meeting the condition gains
ownership of it. GPS is parameterized over a set of escrow
types (metavariable �) and definitions, written � : P Q.
Here Q represents the resource to be placed under escrow,
while P represents the transfer condition, which must be
exclusive (P ⇤ P) false) to ensure that ownership of Q is
only transferred out of the escrow to one receiving thread.

Escrows are created and used via ghost moves, where the
assertion [�] says that an escrow of type � is known to exist:

� : P Q

QV [�]

� : P Q

P ^ [�]V Q
[�]) ⇤[�]

The first rule allows Q to be put under escrow; ownership
is lost, in exchange for the knowledge [�]—and because
[�] is knowledge, it can be learned about through reading.
When later extracting the resource Q from the escrow [�],
the condition P is consumed; this fact, together with the
exclusivity of P , ensures that an escrow can only be used to
transfer ownership once.

Returning to the message-passing example, the idea is to
define an escrow type, XE(�), which governs the transfer of
the resource x ,! 37. The escrow type is parameterized by �,
which is the name of an exclusive ghost token, � : ⇧ Tok ,
that will be used to guard the escrow (i.e., as its transfer
condition). The second thread will start out as the (unique)
owner of this token, but then exchange it for ownership of x.
Formally, we define XE(�) as follows:

XE(�) : � : ⇧ Tok x ,! 37

We then define a single protocol governing y, namely YP(�),
with states 0 and 1 and transition relation , and the following
state interpretations:

YP(�)(0, z) , z = 0

YP(�)(1, z) , z = 1 ⇤ [XE(�)]

This protocol enforces that y progresses from 0 to 1, and
when it is set to 1, the escrow XE(�) must exist. Thus, before
the first thread sets y to 1, it must first transfer the resource
x ,! 37 into the escrow XE(�) so that it can then pass
the knowledge of this escrow’s existence into the protocol.
Once the second thread receives this knowledge from the
protocol (by reading y as 1), it can trade in its ghost token for
ownership of the resource x ,! 37, as desired. This reasoning
is summarized in the proof outline in Figure 4 (omitting the
Tok type in the ghost assertions for brevity).
5 As we discuss in Section 5, escrows are closely related to Bugliesi et al.’s
notion of “exponential serialization” [7].

n

x ,! 0 ⇤ y : 0 YP(�)
o

[x]
na

:= 37;
n

x ,! 37 ⇤ y : 0 YP(�)
o

n

[XE(�)] ⇤ y : 0 YP(�)
o

[y]
at

:= 1;
n

y : 1 YP(�)
o

n

� : ⇧ ⇤ y : 0 YP(�)
o

repeat [y]
at

end;
(

� : ⇧ ⇤ y : 1 YP(�)

⇤ [XE(�)]

)

�

x ,! 37

[x]
na

�

z. z = 37 ⇤ x ,! 37

Figure 4. Proof outline for nonatomic message-passing

A more challenging application of escrows Although the
above example succinctly illustrates the basic idea of escrows,
it is perhaps not the most compelling one, given that it can be
handled by other means in prior logics (such as RSL [38]).

We therefore turn now to an interesting synchronization
algorithm (suggested to us by Ernie Cohen), whose GPS
verification demonstrates an elegant use of escrows and
which, to our knowledge, is beyond the reach of prior logics:

[x]
at

:= choose(1, 2);
repeat [y]

at

end;
if [x]

at

== [y]
at

then

/* crit. section */

[y]
at

:= choose(1, 2);
repeat [x]

at

end;
if [x]

at

!= [y]
at

then

/* crit. section */

The goal of this algorithm is to guarantee mutual exclusion
using release-acquire atomics, but without using CAS. The
idea is that each thread sets its respective variable (x or y)
to either 1 or 2 (using a nondeterministic choice operator,
choose) and then checks the value chosen by the other thread.
This enables the threads to synchronize implicitly based on a
logical condition: the first thread wins if the values pointed
to by x and y are equal, and the second wins if they are not.

Implicit in the algorithm is the invariant that once each
thread sets its variable to 1 or 2, it will not change it further.
As a consequence, unlike in Dekker’s algorithm (§2), each
thread in Cohen’s algorithm relies only on positive informa-
tion about the progress of the other thread—e.g., has y been
set to some nonzero value yet and, if so, what?—in order to
determine if it has won the race. Intuitively, it is this restric-
tion to positive reasoning that makes Cohen’s algorithm work
under release-acquire semantics while Dekker’s doesn’t.

We now sketch the verification of Cohen’s algorithm
(full details are given in the appendix [1]). Suppose that the
winning thread should gain exclusive access to some shared
resource P . To verify Cohen’s algorithm, our basic idea is
to place P under an escrow PE at the beginning (prior to
the execution of either thread). The transfer condition for
this escrow will be defined so as to be satisfiable only by
whichever thread wins the race. Thus, once that thread knows
it has won, it can unlock the escrow and gain access to P .

Formally, at the beginning of the proof, four tokens will be
created and passed to the two threads: the first thread (which
sets x) will be given the tokens �x

1 : ⇧ and �x
2 : ⇧ , and the

second thread (which sets y) will be given the tokens �y
1 : ⇧

and �y
2 : ⇧ . The �

1

’s will be used to guard access to the

10 2014/8/4

be unsound if there were two copies of the second thread
operating concurrently.) However, since the second thread
does not use CAS, it cannot transfer ownership of x directly
out of y’s protocol—some additional mechanism is needed.

Thus we are led to the final concept in GPS: escrows.5
The idea is that a thread may indirectly transfer a resource to
another thread by placing it “under escrow”: it is then inac-
cessible to any thread until some exclusive, logical condition
is met, at which point the thread meeting the condition gains
ownership of it. GPS is parameterized over a set of escrow
types (metavariable �) and definitions, written � : P Q.
Here Q represents the resource to be placed under escrow,
while P represents the transfer condition, which must be
exclusive (P ⇤ P) false) to ensure that ownership of Q is
only transferred out of the escrow to one receiving thread.

Escrows are created and used via ghost moves, where the
assertion [�] says that an escrow of type � is known to exist:

� : P Q

QV [�]

� : P Q

P ^ [�]V Q
[�]) ⇤[�]

The first rule allows Q to be put under escrow; ownership
is lost, in exchange for the knowledge [�]—and because
[�] is knowledge, it can be learned about through reading.
When later extracting the resource Q from the escrow [�],
the condition P is consumed; this fact, together with the
exclusivity of P , ensures that an escrow can only be used to
transfer ownership once.

Returning to the message-passing example, the idea is to
define an escrow type, XE(�), which governs the transfer of
the resource x ,! 37. The escrow type is parameterized by �,
which is the name of an exclusive ghost token, � : ⇧ Tok ,
that will be used to guard the escrow (i.e., as its transfer
condition). The second thread will start out as the (unique)
owner of this token, but then exchange it for ownership of x.
Formally, we define XE(�) as follows:

XE(�) : � : ⇧ Tok x ,! 37

We then define a single protocol governing y, namely YP(�),
with states 0 and 1 and transition relation , and the following
state interpretations:

YP(�)(0, z) , z = 0

YP(�)(1, z) , z = 1 ⇤ [XE(�)]

This protocol enforces that y progresses from 0 to 1, and
when it is set to 1, the escrow XE(�) must exist. Thus, before
the first thread sets y to 1, it must first transfer the resource
x ,! 37 into the escrow XE(�) so that it can then pass
the knowledge of this escrow’s existence into the protocol.
Once the second thread receives this knowledge from the
protocol (by reading y as 1), it can trade in its ghost token for
ownership of the resource x ,! 37, as desired. This reasoning
is summarized in the proof outline in Figure 4 (omitting the
Tok type in the ghost assertions for brevity).
5 As we discuss in Section 5, escrows are closely related to Bugliesi et al.’s
notion of “exponential serialization” [7].

n

x ,! 0 ⇤ y : 0 YP(�)
o

[x]
na

:= 37;
n

x ,! 37 ⇤ y : 0 YP(�)
o

n

[XE(�)] ⇤ y : 0 YP(�)
o

[y]
at

:= 1;
n

y : 1 YP(�)
o

n

� : ⇧ ⇤ y : 0 YP(�)
o

repeat [y]
at

end;
(

� : ⇧ ⇤ y : 1 YP(�)

⇤ [XE(�)]

)

�

x ,! 37

[x]
na

�

z. z = 37 ⇤ x ,! 37

Figure 4. Proof outline for nonatomic message-passing

A more challenging application of escrows Although the
above example succinctly illustrates the basic idea of escrows,
it is perhaps not the most compelling one, given that it can be
handled by other means in prior logics (such as RSL [38]).

We therefore turn now to an interesting synchronization
algorithm (suggested to us by Ernie Cohen), whose GPS
verification demonstrates an elegant use of escrows and
which, to our knowledge, is beyond the reach of prior logics:

[x]
at

:= choose(1, 2);
repeat [y]

at

end;
if [x]

at

== [y]
at

then

/* crit. section */

[y]
at

:= choose(1, 2);
repeat [x]

at

end;
if [x]

at

!= [y]
at

then

/* crit. section */

The goal of this algorithm is to guarantee mutual exclusion
using release-acquire atomics, but without using CAS. The
idea is that each thread sets its respective variable (x or y)
to either 1 or 2 (using a nondeterministic choice operator,
choose) and then checks the value chosen by the other thread.
This enables the threads to synchronize implicitly based on a
logical condition: the first thread wins if the values pointed
to by x and y are equal, and the second wins if they are not.

Implicit in the algorithm is the invariant that once each
thread sets its variable to 1 or 2, it will not change it further.
As a consequence, unlike in Dekker’s algorithm (§2), each
thread in Cohen’s algorithm relies only on positive informa-
tion about the progress of the other thread—e.g., has y been
set to some nonzero value yet and, if so, what?—in order to
determine if it has won the race. Intuitively, it is this restric-
tion to positive reasoning that makes Cohen’s algorithm work
under release-acquire semantics while Dekker’s doesn’t.

We now sketch the verification of Cohen’s algorithm
(full details are given in the appendix [1]). Suppose that the
winning thread should gain exclusive access to some shared
resource P . To verify Cohen’s algorithm, our basic idea is
to place P under an escrow PE at the beginning (prior to
the execution of either thread). The transfer condition for
this escrow will be defined so as to be satisfiable only by
whichever thread wins the race. Thus, once that thread knows
it has won, it can unlock the escrow and gain access to P .

Formally, at the beginning of the proof, four tokens will be
created and passed to the two threads: the first thread (which
sets x) will be given the tokens �x

1 : ⇧ and �x
2 : ⇧ , and the

second thread (which sets y) will be given the tokens �y
1 : ⇧

and �y
2 : ⇧ . The �

1

’s will be used to guard access to the

10 2014/8/4

Soundness

Soundness
…ask Viktor!

• Label hb (happens-before) edges with
resources/knowledge

• “Concurrent” edges ⇒ compatible labels

• For each location, mo simulated by protocol

Principles of the Model

The Big
Picture

What We’ve Done
• Extends Viktor’s previous RSL logic

• Release-acquire protocols

• Ghost state and escrows

• Case studies:

• Michael-Scott queue

• Linux bounded ticket lock

• Linux circular buffer

• Complete soundness proof in Coq!

What We’ve Done
• Extends Viktor’s previous RSL logic

• Release-acquire protocols

• Ghost state and escrows

• Case studies:

• Michael-Scott queue

• Linux bounded ticket lock

• Linux circular buffer

• Complete soundness proof in Coq!

Takeaway
Separation logic can make sense

of (a form of) weak memory!

What We Want to Do
• Full C11:

• Add release/consume

• Add relaxed reads

• Relaxed writes appear broken

• Refinement reasoning

• Weak data structure specifications

