Normalizing Structured Graphs
(ongoing work)

Eijiro Sumii
Joint work with Kazuma Kikuchi

Tohoku University
Sendai, Japan

What are Structured Graphs?

* Proposed by [Oliveira-Cook ICFP'12]

* Uses recursive bindings and PHOAS
(parameterized higher-order abstract syntax)
to represent trees with sharing and cycles

E.g. (in OCaml-like syntax - sorry!)
*let rec x = a[x] in x
*let recy =c[] in b[y,y]

(What is PHOAS?)

* Actually, it doesn't quite matter for this talk
* Anyway, it is a way of representing bindings
of the object language by that of the meta

language

E.g.
type 'alam =
Var of 'a
| Lam of 'a ->'a lam
| App of 'alam * 'a lam

General Definition

type a sgraph =
Node of label * a sgraph list
| LetRec of (a list -> a sgraph list) * a sgraph
(* PHOAS to represent
(mutually) recursive bindings *)
| Var of a

* For readability, we use the ordinary syntax
let rec ... in ... instead of LetRec, and also
write l[g,,...,g.] for Node(l,[g1,...,gn])

What is the Problem?

* The structured graph representations are not
unique (in fact, some are redundant)

E.g.

e letrecx =d[x]in a[]
- a[]

e letrec x=d[] in a[x]
- a[d[]]

* let rec x = b[x] in a[x]
- a[let rec x = b[x] in x]

Our Work:
Normalizing Structured Graphs

* A set of rewriting rules that are confluent and
terminating
* Trickier than you might think!

Our settings

* Nodes are identified by labels
* Graphs are rooted
let rec x = a[y] and y = b[x] in x
letrecx=aly]andy=Db[x]iny
* Children of nodes are ordered
a[b[], c[]]
alc[], b[]]

* Graphs are identified up to bisimilarity

Graph Bisimilarity

°l[g,,..-,8,] and I'[g",,...,8'] are bisimilar if I=I',
n=n', and each g. and g, are bisimilar
*let rec x,,...,X, = &,,...,8,in gand g’ are
bisimilar if [h,,...,h_/x,,...,x_]g
(where each h. = let rec x,,...,x. = g,,...,8, in g)
and g' are bisimilar
* Ditto for the inverse
* N.B. Taking h, = let rec x,,...,X,, = 8,,...,8, In X; iS
unsound!

Reduction 1/3: Removing

* REMOVE-REC:
let rec "x="sint - letrec~“y="uint
if {~"x="s}={"y="u} W {~z="v}
and {~z=~v}# @ and ~z & FV(~u, t)
* *x="s stands for sequence like x,=s,,...,X.=S_
* ~x stands for x,,...,x, and ~s for s,,...,s, etc.
* ERASE-REC: letrec ins = s
* FUSE-REC: let rec “x="uin (let rec “y="vin s)
- let rec ~x,~y="u,~vins
* Tricky for termination proof!

Reduction 2/3: Dropping

* DROP-REC-CHILD:
let rec “x="s in I[t,,...,t,...,.t] =
let rec “y="uin I[t,,...,(let rec “z="v in t),...,t]
if {~"x="s}={"y="u} W {~z="v}
and {~z="v}# @ and ~z & FV(~u, ~t\t)
* DROP-REC-DEF:
let rec *x="sint =
let rec y,=u,,...,(let rec “~z="vin u),...,y =u_int
if {~"x="s}={vy="u} W {~z="v}
and {~z="v}# @ and ~z & FV(~u\u, t)

Reduction 3/3: Inlining

* INILNE-REC-BODY:
let rec “x="sint =
let rec “x="s\x:=s: in [s./x:]t
if x. & FV(~s)
and x: appears at most oncein t
* INLINE-REC-DEF:
let rec “x="sint =
let rec ("x="s\x;=s;\x;=s;), X;=[s;/x;]s; in t
if x; € FV(~s\s;, t)
and x; appears at most once in s;

Reduction 4/3: Precongruence

* Usual precongruence rules CONG-REC-BODY,
CONG-REC-DEF, and CONG-CHILD

Termination (tricky!)

"Inductive lexical order"” on Counts(t) =
(Bind(t), TopBind(t), TopRec(t), Sub(t)) where
e Bind(t) counts the numberofall =int
 for REMOVE-REC and INLINE-REC-*
* TopBind(t) counts only "top-level" =
(neither under I[] nor on the rhs of =)
* for DROP-REC-*
* TopRec(t) counts top-level "let rec"” (not =)
* for ERASE-REC and FUSE-REC

e Sub(t) recurses: sub(x) = ()
Sub(l[t,,...,t,]) = (Counts(t,),...,Counts(t,))
Sub(let rec x,=s,,...,x,=s, in t) = (Counts(s,),...,Counts(s,),Counts(t))
» for CONG-*

Why the quadruple?

REMOVE-REC
ERASE-REC
FUSE-REC
DROP-REC-CHILD
DROP-REC-DEF
INLINE-REC-BODY
INLINE-REC-DEF
CONG-*

IANAN A

N\

INA D A A

I A A

IA

Confluence (relatively easy)

Lemma: All critical pairs are locally confluent

Proof: "Just" careful case analyses on pairs of
the reduction rules, with set calculations of the
side conditions on free variables

Preservation of Bisimilarity

Conjecture: if s > t, then s and t are bisimilar

Proof: To do

An Open Question

* Any of the reduction rules are not specific to
(structured) graphs

* Are they applicable to (or, better, useful for)
(mutually) recursive programs in general?

