Normalizing Structured Graphs (ongoing work)

Eijiro Sumii Joint work with Kazuma Kikuchi

Tohoku University Sendai, Japan

What are Structured Graphs?

- Proposed by [Oliveira-Cook ICFP'12]
- Uses recursive bindings and PHOAS (parameterized higher-order abstract syntax) to represent trees with sharing and cycles
- E.g. (in OCaml-like syntax sorry!)
- let rec x = a[x] in x
- let rec y = c[] in b[y,y]

(What is PHOAS?)

- Actually, it doesn't quite matter for this talk
- Anyway, it is a way of representing bindings of the object language by that of the meta language

```
E.g.
type 'a lam =
Var of 'a
| Lam of 'a -> 'a lam
| App of 'a lam * 'a lam
```

General Definition

- type α sgraph =
 - Node of label * α sgraph list
- | LetRec of (α list -> α sgraph list) * α sgraph

(* PHOAS to represent

(mutually) recursive bindings *)

- | Var of α
- For readability, we use the ordinary syntax let rec ... in ... instead of LetRec, and also write l[g₁,...,g_n] for Node(l,[g1,...,gn])

What is the Problem?

 The structured graph representations are not unique (in fact, some are redundant)

E.g.

- let rec x = d[x] in a[]
 → a[]
- let rec x = d[] in a[x]
 → a[d[]]
- <u>let rec x = b[x] in</u> a[x]

 \rightarrow a[let rec x = b[x] in x]

Our Work: Normalizing Structured Graphs

- A set of rewriting rules that are confluent and terminating
- Trickier than you might think!

Our settings

- Nodes are identified by labels
- Graphs are rooted

let rec x = a[y] and y = b[x] in x

- let rec x = a[y] and y = b[x] in y
- Children of nodes are ordered

a[b[], c[]]

- ≠ a[c[], b[]]
- Graphs are identified up to bisimilarity

Graph Bisimilarity

- I[g₁,...,g_n] and I'[g'₁,...,g'_{n'}] are bisimilar if I=I', n=n', and each g_i and g'_i are bisimilar
- let rec x₁,...,x_n = g₁,...,g_n in g and g' are bisimilar if [h₁,...,h_n/x₁,...,x_n]g
 - (where each $h_i = \text{let rec } x_1, \dots, x_n = g_1, \dots, g_n \text{ in } g_i$)
 - and g' are bisimilar
 - Ditto for the inverse
 - N.B. Taking h_i = let rec x₁,...,x_n = g₁,...,g_n in x_i is <u>unsound</u>!

Reduction 1/3: Removing

- REMOVE-REC:
 - let rec ~x=~s in t → let rec ~y=~u in t
 - if {~x=~s} = {~y=~u} ⊎ {~z=~v}
 - and {~z=~v} ≠ Ø and ~z ∉ FV(~u, t)
 - ~x=~s stands for sequence like x₁=s₁,...,x_n=s_n
 - ~x stands for x_1, \dots, x_n and ~s for s_1, \dots, s_n etc.
- ERASE-REC: let rec in s \rightarrow s
- FUSE-REC: let rec ~x=~u in (let rec ~y=~v in s)
 - \rightarrow let rec x, y=u, v in s
 - Tricky for termination proof!

Reduction 2/3: Dropping

- DROP-REC-CHILD:
 - let rec ~x=~s in $I[t_1,...,t_i,...,t_n] \rightarrow$
 - let rec ~y=~u in l[t₁,...,(let rec ~z=~v in t_i),...,t_n]
 - if {~x=~s} = {~y=~u} ⊎ {~z=~v}
 - and $\{z=v\} \neq \emptyset$ and $z \notin FV(u, t\setminus t_i)$
- DROP-REC-DEF:
 - let rec x = s in t \rightarrow
 - let rec y₁=u₁,...,(let rec ~z=~v in u_i),...,y_n=u_n in t
 - if {~x=~s} = {~y=~u} ⊎ {~z=~v}
 - and $\{z=v\} \neq \emptyset$ and $z \notin FV(u \setminus u_i, t)$

Reduction 3/3: Inlining

- INILNE-REC-BODY:
 - let rec x=s in t \rightarrow
 - let rec $x = x = x_i = s_i$ in $[s_i/x_i]t$
 - if x_i ∉ FV(~s)
 and x_i appears at most once in t
- INLINE-REC-DEF:
 - let rec ~x=~s in t →
 - let rec ($x=x=x_i=s_i \setminus x_j=s_j$), $x_j=[s_i/x_i]s_j$ in t
 - if $x_i \notin FV(\sim s \setminus s_j, t)$
 - and x_i appears at most once in s_j

Reduction 4/3: Precongruence

• Usual precongruence rules CONG-REC-BODY, CONG-REC-DEF, and CONG-CHILD

Termination (tricky!)

- "Inductive lexical order" on Counts(t) = (Bind(t), TopBind(t), TopRec(t), Sub(t)) where
- Bind(t) counts the number of all = in t
 - for REMOVE-REC and INLINE-REC-*
- TopBind(t) counts only "top-level" = (neither under I[] nor on the rhs of =)
 for DROP-REC-*
- TopRec(t) counts top-level "let rec" (not =)
 for ERASE-REC and FUSE-REC
- Sub(t) recurses: Sub(x) = () Sub(l[t₁,...,t_n]) = (Counts(t₁),...,Counts(t_n)) Sub(let rec x₁=s₁,...,x_n=s_n in t) = (Counts(s₁),...,Counts(s_n),Counts(t))
 for CONG-*

Why the quadruple?

	Bind	TopBind	TopRec	Sub
REMOVE-REC	<	<	=	
ERASE-REC	=	=	<	
FUSE-REC	=	=	<	
DROP-REC-CHILD	=	<	=	
DROP-REC-DEF	=	<	=	
INLINE-REC-BODY	<	?	?	
INLINE-REC-DEF	<	<	=	
CONG-*	\leq	\leq	\leq	<

Confluence (relatively easy)

- Lemma: All critical pairs are locally confluent
- Proof: "Just" careful case analyses on pairs of the reduction rules, with set calculations of the side conditions on free variables

Preservation of Bisimilarity

- Conjecture: if $s \rightarrow t$, then s and t are bisimilar
- **Proof: To do**

An Open Question

- Any of the reduction rules are not specific to (structured) graphs
- Are they applicable to (or, better, useful for) (mutually) recursive programs in general?