
Normalizing Structured Graphs
(ongoing work)

Eijiro Sumii
Joint work with Kazuma Kikuchi

Tohoku University
Sendai, Japan

What are Structured Graphs?
•Proposed by [Oliveira-Cook ICFP'12]
•Uses recursive bindings and PHOAS

(parameterized higher-order abstract syntax)
to represent trees with sharing and cycles

E.g. (in OCaml-like syntax - sorry!)
• let rec x = a[x] in x
• let rec y = c[] in b[y,y]

(What is PHOAS?)
•Actually, it doesn't quite matter for this talk
•Anyway, it is a way of representing bindings

of the object language by that of the meta
language

E.g.
type 'a lam =
| Var of 'a
| Lam of 'a -> 'a lam
| App of 'a lam * 'a lam

General Definition
type α sgraph =
| Node of label * α sgraph list
| LetRec of (α list -> α sgraph list) * α sgraph

(* PHOAS to represent
(mutually) recursive bindings *)

| Var of α

• For readability, we use the ordinary syntax
let rec ... in ... instead of LetRec, and also
write l[g1,...,gn] for Node(l,[g1,...,gn])

What is the Problem?
• The structured graph representations are not

unique (in fact, some are redundant)

E.g.
• let rec x = d[x] in a[]
→ a[]
• let rec x = d[] in a[x]
→ a[d[]]
• let rec x = b[x] in a[x]
→ a[let rec x = b[x] in x]

Our Work:
Normalizing Structured Graphs
•A set of rewriting rules that are confluent and

terminating
• Trickier than you might think!

Our settings
•Nodes are identified by labels
•Graphs are rooted

let rec x = a[y] and y = b[x] in x
≠ let rec x = a[y] and y = b[x] in y

•Children of nodes are ordered
a[b[], c[]]

≠ a[c[], b[]]

•Graphs are identified up to bisimilarity

Graph Bisimilarity
• l[g1,...,gn] and l'[g'1,...,g'n'] are bisimilar if l=l',

n=n', and each gi and g'i are bisimilar
• let rec x1,...,xn = g1,...,gn in g and g' are

bisimilar if [h1,...,hn/x1,...,xn]g
(where each hi = let rec x1,...,xn = g1,...,gn in gi)
and g' are bisimilar
• Ditto for the inverse
• N.B. Taking hi = let rec x1,...,xn = g1,...,gn in xi is

unsound!

Reduction 1/3: Removing
•REMOVE-REC:

let rec ~x=~s in t → let rec ~y=~u in t
if {~x=~s} = {~y=~u} ⊎ {~z=~v}
and {~z=~v} ≠ ∅ and ~z ∉ FV(~u, t)
• ~x=~s stands for sequence like x1=s1,...,xn=sn

• ~x stands for x1,...,xn and ~s for s1,...,sn etc.

• ERASE-REC: let rec in s → s
• FUSE-REC: let rec ~x=~u in (let rec ~y=~v in s)

→ let rec ~x,~y=~u,~v in s
• Tricky for termination proof!

Reduction 2/3: Dropping
•DROP-REC-CHILD:

let rec ~x=~s in l[t1,...,ti,...,tn] →
let rec ~y=~u in l[t1,...,(let rec ~z=~v in ti),...,tn]
if {~x=~s} = {~y=~u} ⊎ {~z=~v}
and {~z=~v} ≠ ∅ and ~z ∉ FV(~u, ~t∖ti)
•DROP-REC-DEF:

let rec ~x=~s in t →
let rec y1=u1,...,(let rec ~z=~v in ui),...,yn=un in t
if {~x=~s} = {~y=~u} ⊎ {~z=~v}
and {~z=~v} ≠ ∅ and ~z ∉ FV(~u∖ui, t)

Reduction 3/3: Inlining
• INILNE-REC-BODY:

let rec ~x=~s in t →
let rec ~x=~s∖xi=si in [si/xi]t
if xi ∉ FV(~s)
and xi appears at most once in t
• INLINE-REC-DEF:

let rec ~x=~s in t →
let rec (~x=~s∖xi=si∖xj=sj), xj=[si/xi]sj in t
if xi ∉ FV(~s∖sj, t)
and xi appears at most once in sj

Reduction 4/3: Precongruence
•Usual precongruence rules CONG-REC-BODY,

CONG-REC-DEF, and CONG-CHILD

Termination (tricky!)
"Inductive lexical order" on Counts(t) =
(Bind(t), TopBind(t), TopRec(t), Sub(t)) where
• Bind(t) counts the number of all = in t

• for REMOVE-REC and INLINE-REC-*

• TopBind(t) counts only "top-level" =
(neither under l[] nor on the rhs of =)
• for DROP-REC-*

• TopRec(t) counts top-level "let rec" (not =)
• for ERASE-REC and FUSE-REC

• Sub(t) recurses: Sub(x) = ()

Sub(l[t1,...,tn]) = (Counts(t1),...,Counts(tn))
Sub(let rec x1=s1,...,xn=sn in t) = (Counts(s1),...,Counts(sn),Counts(t))

• for CONG-*

Why the quadruple?
Bind TopBind TopRec Sub

REMOVE-REC ＜ ＜ ＝

ERASE-REC ＝ ＝ ＜

FUSE-REC ＝ ＝ ＜

DROP-REC-CHILD ＝ ＜ ＝

DROP-REC-DEF ＝ ＜ ＝

INLINE-REC-BODY ＜ ？ ？

INLINE-REC-DEF ＜ ＜ ＝

CONG-* ≦ ≦ ≦ ＜

Confluence (relatively easy)

Lemma: All critical pairs are locally confluent

Proof: "Just" careful case analyses on pairs of
the reduction rules, with set calculations of the
side conditions on free variables

Preservation of Bisimilarity

Conjecture: if s → t, then s and t are bisimilar

Proof: To do

An Open Question
•Any of the reduction rules are not specific to

(structured) graphs
•Are they applicable to (or, better, useful for)

(mutually) recursive programs in general?

