


Programming Models
For Massively Parallel Computation
The Chaotic State of the Art
Jack B. Dennis
MIT Computer Science and Artificial Intelligence Laboratory







What is a Programming Model ?
	 Application Code
	 Program Libraries
	 OS Services
	 Compilers.

	 Runtime Software - Resource Management
	 Hardware: Processors, Memory, Networks

Iterface Defined by the
Programming Model







Multicore
Chip
	 A: Scratchpad
	 B: Cache
	 C: Virtual

 More Memory Levels
Managed by user software
Managed by hardware
Managed by OS / RT software
Local
Memory
 How Should On-Chip Memory be Managed
 ?
P




P











 System Architecture
	 Many multicore chips
	 Memory hierarchy

	 Goals:
	 Performance
	 Energy efficiency
	 Programmability

 - Composablity, Reuse, Portability







Parallel Programming Models
 Popular Models: OpenMP, Intel TBB, Cilk
MPI: The Message Passing Interface
	 Limited to Shared Memory System Configurations

	 Intended for Distributed Memory Systems
	 (Weakly) Scalable








The MPI Programming Model
	 Ideal View: Arbitrary interconnection of Program Modules communicating via message passing

MPI has become the de facto programming model for high performance computing.
	 Practical View: The Bulk Synchronous Parallel model of Valiant.

	 Why? Efficient utilization of processors and memory.







 The Big Question


How can a massively parallel system be designed to provide dynamic resource management, and still have high performance and energy efficiency ?
	 Users of high performance computing are demanding systems designed to support applications with changing needs for
	 Data and Program Objects
	 Memory and Processing Resources








Codelets and Data Blocks I
	 The unit for scheduling processing resources.
	 Contains a block of instructions executed to completion.
	 Activated by availability of input data objects.
	 Signals successor codelets when results are ready.

 Codelet:







Codelets and Data Blocks II
	 The unit for dynamic memory allocation.

 Data Block:
	 Unique Global Identifiers for codelets and data blocks
	 System supported virtual address space of Global Identifiers.
	 System supported creation and recovery of data blocks. (Garbage Collection).

Achieving flexibility of Resource Management:







 Some Ideas
	 Write once data blocks
	 No cache consistency issues
	 Enables reference count GC
	 Fixed size data blocks
	 Simplifies memory management

With these additions, the programming model becomes pure Lisp (Scheme) with large cells







 Resilience
	 A crucial furture problem due to tinier feature size:
	 Inceasing susceptibilty to “soft” failure (cosmic rays and latent radiation).
	 More intermittent faults from manufacturing variability.

Dynamic Resource Management and use of Codelets make it easier to add fault-detect/retry mechanisms to mask faults at the codelet level.






