Jumbo ML

Smooth Sailing to Module Mastery
Norman Ramsey, Tufts University

On July 31, 2014, I talked about Jumbo ML with a very vigor-
ous audience of researchers and teachers from Harvard and
Northeastern. Many interesting things are said, and my notes
are both distributed and collected at the end, in italics.

Problem, Part I: Teaching programming

A computer scientist should be able to prove theorems and
write programs. Most introductory instruction focuses on pro-
gramming. A great strength of this instruction is that students
actually build programs. But building requires materials: a
technology for teaching programming. And too often, we
ask students to use the same technology that industrial en-
gineers use. Unfortunately, when beginning students use an
industrial-strength programming language, the difficulties of
mastering the language divert students from intended learn-
ing outcomes. Beginning students should be provided with
a “teaching language” tailored to their needs. Using a suit-
able teaching language, the essential principles that are taught
in an introductory course should be clearly and easily made
manifest.

At present there is a thriving ecosystem of languages designed
for teaching absolute beginners, usually in middle school or
high school. One well-known example is Scratch. At the uni-
versity level, I am aware only of How fo Design Programs
and its three teaching languages Beginning Student Language,
Intermediate Student Language, and Advanced Student Lan-
guage. These languages ship with tools, a textbook, and a de-
sign method, and the result is very effective. They are a great
way to get students started with deep ideas about program-
ming. But they can only carry you so far: they are missing
much of what we’d like to teach in the second course.

Problem, Part II: The second course

To talk about the first and second courses in computing, ACM
curricula use the words “CS1” and “CS2.” Instructors gener-
ally agree that CS2 means some sort of course in basic data
structures, but they may differ on the details. I, too, view CS2
as a data-structure course, but I don’t view data structures as
foundational. I believe that data structures follow from two
more fundamental concerns: abstractions and cost models.
And the most critical abstraction is the module abstraction.
The fundamental ideas are laid out nicely in Butler Lampson’s
Hints for Computer System Design: programs are composed
of interfaces and implementations, interfaces define abstrac-
tions, and client code uses the abstraction. A good abstraction
provides not just a clean interface but also a perspicuous and
helpful cost model.

What do all these ideas have to do with data structures?
A data structure follows from a choice of abstraction and a
cost model. For example, if you want a bag abstraction with
fast access to the smallest element, you want a heap. Simi-
larly, if you want an ordered-list abstraction with fast inser-

tion anywhere but with removal only of the first element, you
also want a heap! My slogan is

Abstraction + Cost Model = Data Structure

With this organization in mind, here are my goals for CS2:

e Students will build programs from modules, will under-
stand how modules are connected, and will have an idea
how to solve large problems by connecting modules.

e Students will be able to estimate how much time and
space a program needs for its execution. Moreover, stu-
dents will be able to manage time and space costs by
shifting them to the most appropriate part of a system.

e Students will become comfortable with some data struc-
tures that are widely used in many modules. These data
structures are a common currency of late 20th-century
industrial computing culture, and they are very popu-
lar with phone screeners and job interviewers, as well
as programmers.

The role of Jumbo ML is to support these learning goals while
remaining as simple and as easy to learn as possible.

Language needs for CS2

What kind of language we want depends on what we want
students to learn. The key learning goals that affect my own
language choices are programming with abstraction, reason-
ing about costs, and understanding the decomposition of pro-
grams into modules.

Students will be able to build substantial programs only if they
can use abstraction. The most fundamental abstraction is pro-
cedural abstraction: students need to be able to call a proce-
dure (function, subroutine) knowing only its specification, not
its implementation. I call this specification a contract; other
writers use purpose statement or precondition and postcondi-
tion. If contracts are important, then we should lean toward
pure functional languages: contracts for pure code are much
simpler than contracts for impure code. (Try writing the spec-
ification for a mutable stack. Then try an immutable stack.)

If we want students to be able to reason about costs, then
the programming language needs a perspicuous cost model.
If this were the only criterion, I would teach the second course
in C, which enjoys a cost model of unparalleled perspicuity.
Among popular functional languages, Scheme probably has
the simplest cost model. Haskell’s cost model makes grown
persons weep.

Finally, if students need to understand how programs are de-
composed into modules, they should be able to look at inter-
faces. And I want interfaces to be separately compiled. A per-
son could limp along with C’s .h files, but I want to rule out
the lines taken by C++, Clu, Haskell, Oberon, Racket, and
a bunch of others, where all the compiler understands is an

Jumbo ML

Smooth Sailing to Module Mastery
Norman Ramsey, Tufts University

implementation, and certain parts of the implementation are
called public, exported, or provided. If we want students to
learn information hiding, they need to look at code that hides
information.

My colleagues and I are not aware of any available language
that meets all our criteria. Among the languages that are avail-
able, the best choice seems to be the dead research language
Standard ML:

o [t militates toward pure code but also supports impure
code and mutable abstractions.

e | wouldn’t call the cost model perspicuous, but at least
it’s discoverable.

e It provides first-class, separately compiled interfaces.

e While significantly simpler than its living relatives
Haskell and OCaml, it is nowhere near as simple as real
teaching languages. Fortunately, having taught using
Standard ML, I know some of the pitfalls.

What simplicity looks like: *SL

The teaching languages developed by the Racket team for
How to Design Programs are called Beginning Student Lan-
guage, Intermediate Student Language, and Advanced Stu-
dent Language. Individually they can be referred to as BSL,
ISL, and ASL; collectively they are referred to as *SL. The
quality of the language design bowls me over. Here is a sum-
mary:
e Data is either atomic, or it is defined by parts (product
type) or defined by choices (sum type). ISL adds arrow
types.

e There are just two syntactic categories: expression
(term) and definition.

e An expression is a variable, a literal, a function applica-
tion, or McCarthy’s cond. (There are also short-circuit
and and or forms.) There is no let-binding, and func-
tions have no local variables.

e A definition introduces a function, variable, or a struc-
ture. A structure definition introduce a type predicate, a
constructor function, and one selector function per field.

e A final “definition” form is check-expect, which is
actually a unit test. There are also variations check-
within and check-error.

In BSL, functions are second-class—they are not values.

ISL makes functions first class, and it adds 1ambda and local
forms. The local form, like the top-level definition forms,
seems to enjoy a combination of let-star and letrec semantics.

ASL adds mutation and sequencing. I haven’t studied it.

Irreducible complexity: types and modules

If I want separately compiled modules with static type check-
ing, I'm going to need a lot more syntactic forms.

What are we working with?

Values Modules

‘éb
i) Data Types Module types
§ type and module type
3 datatype definitions
2 definitions
g
g Computation Values Modules
< expressions module
= def and redef definitions

definitions

I’ll need these syntactic forms:
e Terms (expressions), to compute values
e Types, to classify terms

e Definitions, to associate names with terms, types, mod-
ules, and module types

e Declarations, to summarize definitions
e Modules, to collect definitions

e Module types, to collect declarations (and classify mod-
ules)

e Compilation units, to be the unit of compilation

In addition, to manage the construction of systems, I'll need
these concepts:

e Components, to group compilation units (think CM or
MLB)

e Programs, to be run

I'll talk loosely about a number of languages:
e The type language
e The term language
e The module language
e The component language

e An interactive language

Finally, I too plan on “language levels.”

e Basic Jumbo ML is the simplest possible language, for
beginners.

e Full Jumbo ML is all the shiny objects.

We’ll see if I can avoid intermediate layers.

Jumbo ML

Smooth Sailing to Module Mastery
Norman Ramsey, Tufts University

The most frequently used languages are the type language
and the term language. One of my goals is to make these
languages look different—in Haskell, they look too much the
same.

More on modules and components

Lots of discussion on modules and components. Some notes:

o Here are the key things I want from students:

— Learn to think in terms of interfaces and implemen-
tations.

— Program implementations against interfaces that
don’t exist yet.

— Implement generic data structures.

Greg Morrisett suggests maybe to handle all generic stuff
in the core language, just by passing around extra type
and value parameters. You give up some type safety, but
maybe it’s worth it to simplify the language.

o [really like the units work. “Compound units” as de-
scribed by Scott Owens and Matthew Flatt sound like
exactly what I had in mind as components. But I need to
understand why that work has both “units” and “mod-
ules.”

e Matthias Felleisen says “don’t look to units for solu-
tions.” Need to follow up.

o Generativity rears its ugly head everywhere. MF says
it was a major issue in converting their code based to
Typed Racket (do I have this right?)

o Wouldn't it be great to eliminate functors? MF says that
units were his response to spending a year at CMU im-
mersed in functor-land.

e Greg Morrisett says functors are a poor man’s imita-

tion of dependent types. Maybe there is something to
be learned from recent progress in dependent types?

e A 2013 GPCE paper by Matthew Flatt describes
Racket’s “submodules,” which support testing (test)
and initialization (main). This looks more like a use-
ful core-language piece of infrastructure than like some-
thing I would want to expose to students.

e Matthias recommends Component Software by Clemens
Szyperski.

For Standard ML insiders

Here’s a short summary of what I've done:

e Signatures are now called “module types.” Structures
and functors are both just “modules.”

e A val declaration is permitted in a module, not just a
module type.

In a polymorphic type, forall is always explicit.

I’ve kept Standard ML’s idiosyncratic convention for no-
tating type variables, and I'm confident this is a good de-
cision. I've also kept Standard ML’s idiosyncratic way
of writing type application “backwards,” using postfix
application—but I’'m less confident that this is a good
decision.

Algebraic data types are now called “mixtures.”

In the value name space, the name of a value constructor
(and only a value constructor) begins with a colon or a
capital letter.

The initial language won’t have anonymous tuple or
record types. When anonymous tuples and records are
introduced, they’ll have restrictions and a different cost
semantics.

The initial language will support pattern matching only
in case expressions, not integrated into function defini-
tions. And only mixtures, not structures, will participate
in pattern matching.

There’s no polymorphic equality—not at any level.
No operators are overloaded.

Bignums will be standard, and double-precision floating-
point numbers will be available.

There’s no open. Some of the convenience can be recov-
ered using “from ... import

Legacy features like abstype and transparent signature
ascription are gone. The local form is gone; let people
make do with nested modules.

Multiple arguments are handled by Currying, as in
Haskell and OCaml.

The val and fun definition forms are combined into a
single new def form. I would also like a redef form.

I want to (somehow) support mutual recursion without
and.

The signature language is simplified: sharing constraints
and where type are subsumed by && (least upper
bound, from my ICFP’05 paper with Kathleen Fisher).

Lexical structure is simplified: alphanumeric and sym-
bolic characters are now on the same footing; identifiers
are delimited only by whitespace, brackets, and separa-
tors (comma and semicolon). Programs are written UTF-
8 and may include any character from Unicode’s Basic
Multilingual Plane.

Comments are terminated by end-of-line, as in Haskell.

There is an LL(1) grammar. The only syntactic form that
extends “as far to the right as possible” is the A form.
There are curly braces and semicolons.

Jumbo ML

Smooth Sailing to Module Mastery
Norman Ramsey, Tufts University

Jumbo ML type definitions

Atomic data becomes first-class: to the student, predefined
atomic data types look the same as the abstract types they
define.! A few predefined types will be pervasive (a concept
that is not first-class).

Product types (structures) look like this:

def-struct posn { x : int, y : int }

And we get this interface:

type posn

val Make-posn : int -> int -> posn
val posn-x : posn -> int

val posn-y : posn -> int

In the full language I would eventually like also to have

val Make-posn : { x : int, y : int } -> posn

The cost model includes heap allocation.
Asin C, def-struct is generative.

Sum types (mixtures) look like this:

def-mix shape = { CIRCLE : circle -> shape
; SQUARE : square -> shape
; RECTANGLE :
X

And some code:

val area-of-shape : shape -> double
def area-of-shape s =
case s of

{ CIRCLE ¢ => Math.pi * circle-radius c * circle-radius c

; SQUARE sq =>
Math.asDouble (square-side sq * square-side sq)
; RECTANGLE r =>

Math.asDouble (rectangle-width r * rectangle-height r)

}

As in ML, def-mix is generative.

IT’m not sure how to bootstrap an implementation.

rectangle -> shape

Parametric polymorphism:

def-mix ’a my-list = { EMPTY : ’a my-list
; CONS : ’a -> ’a my-list -> ’a my-list
}

-- tycon my-list :: * => *

-- val EMPTY : forall ’a . ’a my-list

-- val CONS : forall ’a . ’a -> ’a my-list -> ’a my-list

Or maybe this is better?

def-mix my-list -- :: * => %
= { EMPTY : forall ’a . ’a my-list
; CONS : forall ’a . ’a -> ’a my-list -> ’a my-list
}
Questions:

e Does it matter that field names in structures are treated
wildly inconsistently with constructor names in mix-
tures? (I'm unhappy with the way field names are han-
dled in Standard ML record types, in OCaml record
types, and in Haskell record notation. So I'm willing
to try things that might look strange.)

e Type definitions need to communicate the types of
fields, constructors, selector functions—and maybe they
should also communicate the kinds of type constructors.
I’m committed to writing out the types of value construc-
tors, but not the types of selector functions. Is this OK?
Reasonable? What are my choices? Is there a sweet
spot?

Grammar:
def = def-type [lype—parameters] type-name = type
| def-mix [type-parameters| type-name =
{[;] con-name : type

{; con-name [: type]} [;]
}

| def-struct [type-parameters} type-name =
{[;] val-name : type
{; val-name : type} [;]
b

Jumbo ML value definitions

def = val val-name : type
| def val-name [type-parameters| { val-name} = exp
| redef val-name [type-parameters| { val-name} = exp

The idea is to use def for everything, except when using a
sequence of bindings in let-star form, to teach something re-
sembling mutation. Technically,

e With def, the value being defined is visible on the right-
hand side (and thus supports recursion).

Jumbo ML

Smooth Sailing to Module Mastery
Norman Ramsey, Tufts University

exp = val-name
| con-name
(name)
literal

(A val-name {val-name} => exp)

|

|

|

| [[exp{, exp}]] List
|

|

|

Variable, e.g., %, y, ...

Value constructor, e.g., ONE, NOTHING, ...
Potentially infix name used as expression
Literal constant, e.g., 7, "hello", ...

“Hole” that has not yet been filled in with code
Function, e.g., (\ n => n + 1)

exp | exp (Curried) function application
exp infix-name exp Infix function application
case exp Case analysis

of { [,] case-pat => exp
{ ; case-pat => exp} [,]
}
| cond exp
of {[;] exp => exp
{; exp => exp} [,]

Case analysis

}
| local{ {def}}inexp
| exp : type Type assertion

Expression with local definitions

Figure 1: Grammar of Jumbo ML core expressions (basic version)

e With redef, the value being defined is not visible on the
right-hand side (and thus supports rebinding of a previ-
ously bound name).

How all this works with val and with mutual recursion is not
clear to me—I need to look at PLT Redex and their semantics
for define in *SL.

Greg Morrisett pointed out that it should be fine to write in-
complete code with a val declaration and no definition—this
would correspond to defining the thing to a hole. Greg’s pro-
posal is consistent with my desire for students to be able to
code against things that haven’t been implemented yet.

Unit tests, property-based testing

def = check val exp : type
| check exp expect exp [within exp]
| check exp errors
| check exp raises exp
| check-property
[forall val-name : type {, val-name : type}] exp

(Dubious)

Expression forms

See Figure 1

Declarations forms

For use in module types:

decl = [mutable] type [type-parameters] type-name
| type [type—parameters] type-name = type
val val-name : type
exn con-name [: type]
module mod-name : module-type
infix precedence val-name {val-name }
nonfix val-name {val-name }
property
[forall val-name : type {, val-name : type} .| exp
| property
[forall val-name : type {, val-name : type} .| exp raises

module-type = { {decl} }
| module-type-name
| module-type && module-type

def = module type module-type-name = module-type

The Harvard audience seemed to want a lot more about prop-
erties and testing, but the only concrete suggestion I under-
stood was from Matthias Felleisen, who wants more then just
QuickCheck properties—he wants things that look like logic.
I think I might be there. Matthias also says that Mike Sper-
ber has some stuff in DMdA that does logical reasoning with
properties. I hope to follow up on this.

Greg Morrisett wants a module type to be a component of a
module. If so, then what is its type? I agree that managing the
name space of module types would be good, but I'm not sure
about the solution. Maybe only in bare modules?

Jumbo ML

Smooth Sailing to Module Mastery
Norman Ramsey, Tufts University

The tough decisions

Shall I be pure or impure? BSL and ISL are both pure lan-
guages. And supposedly one of the big lessons from Haskell
was Purity is Good, Laziness Not So Much. I think the rea-
sonable choices are as follows:

e Code is impure but there is a well-defined order of eval-
uation.

e All code is pure; effects are encapsulated by a paramet-
ric abstraction called the /0 monad. The IO monad is
supported by do-notation.

After discussion, it seems clear that purity is the way to go.
For me, the deciding factor is that I would rather teach the
10 monad than have to teach the value restriction. Greg Mor-
risett suggested that as an alternative to the 10 monad, I might
look for a simple type-and-effect system. This idea needs fol-
lowing up. Greg also says there are interesting ideas in Idris.

If code is pure, it’s not clear if there should be a well-defined
order of evaluation: if we leave the order of evaluation unde-
fined, it complicates the cost model but creates opportunities
for code improvement.

Another issue with pure code: we lose the ability for each
module to run its own initialization code at startup. That abil-
ity is mighty handy. How should we regain it? (How do the
Haskell people live without it?)

Exceptions Here are some approaches to exceptions,
roughly from most libertarian to least libertarian:

e ML-style exceptions: no support in the type system; ex-
ceptions may be raised anywhere and caught anywhere;
no hope of understanding large systems even with so-
phisticated static analysis. (Almost certainly not appro-
priate for Jumbo ML.)

Exceptions can be used to signal corner cases in abstrac-
tions (e.g., least element of an empty heap), or even for
arbitrary control flow.

e Liskov-style exceptions: The exceptions raised by a
function are part of its type. If f calls g, then f must
catch any exception raised by g, or the result is treated as
fatal.

Exceptions are used primarily to signal corner cases in
abstractions.

e Haskell-style exceptions: an exception may be raised
anywhere and caught anywhere on the stack, but the ex-
ception may be caught only in the IO monad. Because
there is no defined order of evaluation, the semantics of
exceptions is deliberately imprecise.

Exceptions are used only to prevent a would-be “fatal”
error from knocking out a program entirely. They are

not used to signal corner cases in abstractions; that work
is done using a Maybe (option) type or other sum type.

e Go-style exceptions: Used rarely to signal dire condi-
tions; raising one must remove at least one frame from
the call stack. Corner cases are signaled using “error
codes.”

e No exceptions at all—only checked run-time errors.

I really believed Barbara Liskov’s story about the role of ex-
ceptions in abstract data types. But in practice, the real story
about exceptions has not played out so well. Discuss.

Also a huge discussion here:
o Greg Morrisett likes the maybe/option type.

e Matthias Felleisen likes the control operator—a modular
way to connect two procedures that are far separated on
the stack.

e Greg says it’s not modular at all—too hard to rea-
son about the state of the system when an exception is
caught. Look at the proof rule.

e MF counters that he has used exceptions in IDEs and
teachpacks—exactly where he has to interact with un-
known student code that he doesn’t control. I have an
invitation to see some examples.

e Some consensus that it’s a bad idea to conflate Liskov-
style exceptions (least element of an empty heap) with
“oh shit, I don’t know what to do” exceptions.

e Some consensus that the real role of exceptions should
be to keep the world from coming down when something
goes horribly wrong. NR suggests perhaps we should be
using the Erlang model instead.

Things aren’t looking good for exceptions. More notes:

e The good thing about Liskov’s worldview is that I know
how to teach it to students. But maybe that worldview is
obsolete?

e [I’'m not sure if the “disaster recovery” worldview actu-
ally fits in my vision for the second course.

o Let’s not forget that Hanson is lurking in the third course.

Mutability Should mutable data be handled with an ab-
straction (ref) as in Standard ML, or by marking some struc-
ture fields as mutable (as in OCaml) or the entire structure
as mutable (cf ASL)? I lean toward making things mutable
explicitly, for two reasons:

e [t gives students more control over the cost model (mu-
tability is decoupled from allocation).

e Although the language design is less parsimonious, I'm
hoping it will be easier for students to learn if the idea of

Jumbo ML

Smooth Sailing to Module Mastery
Norman Ramsey, Tufts University

mutability is present in the language and not just hidden
behind an abstraction.

Composing definitions Standard ML has a very simple
story about composing definitions: if d; and d, are defini-
tions, then the sequential composition dj;d; is also a defini-
tion. This is a story with sad consequences:

e] can’t see any clean way to incorporate type signatures,
e.g.,

val rev : forall ’a . ’a list -> ’a list
def rev xs = case xs of { NIL -> NIL
; CONS x xs -> rev xs @ [x] }

e Mutual recursion requires the unholy and connective,
which students consistently have trouble with.

One alternative is Haskell definitions, where everything has
letrec semantics. This alternative makes less sense for an ea-
ger language.

I’d like to understand better how *SL work, because they
seem to have the best of both worlds: for zero-order values,
definition before use, but for functions, letrec semantics.

Modules Help! I'm drowning in a sea of modules papers.
Here’s what I know:

e Module types are great—they are not tied by name to an
implementation, and they describe what we mean by an
abstraction.

e Being able to combine abstract and manifest types in one
module type is also great. Many researchers call this
property translucency.

e To create generic, reusable modules, Standard ML uses
functors. But specifying the arguments to a functor is
hard for students: students can rarely diagnose the need
for sharing constraints, and where type is a complete
disaster.”

e | probably want to choose from this menu:
— Classic MacQueen-style functors
— Mixin modules

— Flatt/Owens-style units

Unfortunately, what I know is dominated by what I don’t
know.

e Which of the several dozen core calculi proposed by
Derek Dreyer would be a good foundation stone for a
module system?

>The where type construct uses an equals sign to equate two types, but
the expressions denoting the types are elaborated in different environments.
To say that students don’t understand the need for where type int = int
is to touch only the tip of the iceberg.

e How does one go from a core calculus to a working lan-
guage design?

e Could some of the problems of classic functors be miti-
gated by a compiler that would, at appropriate moments,
suggest sharing constraints that could be inserted?

e Why are there so many modules papers? Do I need any-
thing from these papers beyond type soundness?

e Do I need recursive modules or units? Would they be
good for students?

e Could some of these questions be answered by thinking
in terms of components, not modules?

Components Most of the big, successful, statically typed
languages I've worked with (Haskell, Standard ML, C) have
got a notion of a thing that goes beyond the module or the
compilation unit. And in all cases that thing is extralinguis-
tic. Jumbo ML will include a language for describing compo-
nents. Think of this language as something like a CM file or a
MLton MLB file, not so much like a Cabal package descrip-
tion. I’'m confident of the basic structure:

e A compilation unit, containing one or more modules
and/or module types, is a (degenerate) component.

e The composition of a group of components is also a com-
ponent.

Here are some unanswered questions:

e Within a group of components, how are import/export
relations resolved?

e Does a component have a type (which presumably would
say something about imports and exports)?

e How would I go about instantiating a single component
in multiple ways, with different imports and exports?

e What theorems should I hope to prove about compo-
nents?

Ad hoc polymorphism In the glorious future, Jumbo ML
will surely have some form of overloading inspired by
Haskell’s type classes and connected in some clean way to
module types. But there is no way I am inflicting that on be-
ginners. This position leaves me with several problems:

e Inacheck ... expect ..., how should the compiler
be expected to check for equality?

e In a property, how should sample inputs be generated
and shrunk? I know I want a clone of QuickCheck, but
I also want checkable properties to be linguistic con-
structs, so I'll need linguistic support?

e In an interactive system, how should values be shown?

e Should arithmetic operators be overloaded?

Jumbo ML

Smooth Sailing to Module Mastery
Norman Ramsey, Tufts University

The only question I can answer is the last: no operators will
be overloaded. People can import from standard modules Int
or Double; Jumbo ML will support lightweight simple re-
naming of imported identifiers using as. Unlike Haskell or
Modula-3, Jumbo ML won’t restrict as to rename only mod-
ules; you’ll be able to rename imported identifiers as well.

I’'m not sure the rest of these issues are worth discussing—I
think somebody has to do the preliminary work of developing
some detailed proposals.

Candy: anonymous tuple and record types By remov-
ing anonymous tuple types, I eliminate an arbitrary decision
students would otherwise have to make (should my function
be Curried or tupled). By removing anonymous record types,
I eliminate the whole circus around “unresolved flex records.”
But in the full language, I'm thinking of bringing back these
constructs, but as second-class citizens:

e There are no “values” of tuple type or record type.
More specifically, you can’t let-bind anything of tuple
or record types. If an expression on a right-hand side has
a tuple or record type, then a let-binding must use pat-
tern matching to name the individual components. The
idea is a clean, cheap way to allow a function to return
multiple values.

e The cost model of a tuple or record type says that no
heap allocation is required: the components of a tuple
or record are allocated into machine registers or on the
stack.

e A tuple or record type can’t be used to instantiate a type
variable or to define an abstract type.

e A record type could be used as a the argument type of a
function—especially a constructor function for a product
type. This usage would give us named parameters.

So, mostly syntactic sugar. Does it taste sweet?

Matthias Felleisen tells me that I have reinvented “values”
from Common Lisp and Scheme, and that they are a wart.

Notes

Items from discussions:

e [fwe want to teach students about interfaces and imple-
mentations, we must be sure we are teaching them the
solution to a problem they have actually encountered.
A foundation should be laid in the first course, but still,
how do we welcome them to the deep end of the pool?

e Matthias Felleisen teaches a 4th course called “hell”
which does something similar to what Jim Waldo does
in having one group use another’s implementation of an
agreed-upon interface—in plural.

o Greg Morrisett points out that ML datatypes and pattern

matching militate against abstraction. Much discussion
ensues. Some ideas:

— Decouple “sum type” from “generative” from “re-
cursive.” One possible model is Modula-3, where
recursion is the only option and generativity is han-
dled through explicit branding.

— Matthias Felleisen suggests to “take away the
candy” and eliminate pattern matching entirely.
I've already put substantial restrictions on pattern
matching. Have to figure out more what this might
look like. (It could turn out to look just like Typed
Racket!)

Someone suggested being able to test open terms.

MF emphasizes that I have a decision to make: do I just
want a new language, or do I want to create a medium in
which I can easily sculpt new languages on demand. If
I want a medium (and I do), Matthew Flatt is the guy to
talk to. If I just want a language, anybody at Northeast-
ern can get me started with #lang.

MF says the two tools they have for experiments are
#lang and Redex. David Van Horn has got an interest-
ing talk/paper/demo about how to do this; look I didn’t
quite catch the subject matter, but something called PCF
is a followup.

If I understand correctly, Greg wants tuples and records
to be syntactic sugar. Would like the basics to be unit,
pair, and “either” types.

