
Type- & Example-Driven
Program Synthesis

Steve Zdancewic
WG 2.8, August 2014

•  Joint work with
Peter-Michael Osera

CAVEATS
•  Work in progress

–  Similar work been done before
–  This is our attempt to understand some of the basic issues, maybe make some

advances

•  We have:
–  Some theory that describes our approach
–  A couple of (incompatible, likely buggy) implementations
–  Implementations that don’t (yet) agree with all of our theory

•  Feedback welcome!
–  Connections to things like Quickcheck, Agda, …?
–  Suggestions for application domains

Background: Program Synthesis
•  Recent Highlights:

–  Gulwani et al. (Spreadsheets, …)
–  Solar-Lazama et al. (Program Sketching)
–  Torlak (Rosette,…)

•  ExCAPE
–  Robotics control (synthesize plans)
–  Cache coherence protocols
–  Education (synthesize feedback based on buggy student code)
–  …

•  Syntax-guided Synthesis (SyGus) competition
–  Surprisingly effective “brute force” enumeration of program snippets by syntax

Inductive Program Synthesis
•  Summary: Use proof search to generate programs

•  Old idea: 1960’s, 70’s, 80’s
–  Application of theorem proving to problem solving. [Green 1969]
–  Synthesis: Dreams → Programs. [Manna & Waldinger 1979]
–  A deductive approach to program synthesis. [Manna & Waldinger 1980]

•  More modern incarnations:
–  Haskell’s Djinn [Augustsson 2008]
–  Escher [Albarghouthi, Gulwani, Kincaid 2013]
–  Synthesis modulo recursive functions [Kuncak et al. 2013]

•  Good recent survey
–  Inductive programming: A survey of program synthesis techniques.

 [Kitzelmann 2010]

DEMO

Our Approach
•  Apply ideas from intuitionistic theorem proving

–  Treat programs as proof terms
–  Search only for normal forms, not arbitrary terms
–  Use substructural logic (relevance)

•  Use concrete examples as a partial specification
•  Search for terms in order of the size of their ASTs

•  Intuition / Hope:
–  Simple (i.e. small), well-typed programs that satisfy a few well-chosen tests are

likely to be correct.

•  Start simple

(Hopeless?) Ideal Goals
•  Completeness

–  Enumerate in order of size all distinct programs that do not contradict the
examples

•  Soundness
–  Synthesized programs are well-typed
–  Synthesized programs should agree with the examples

(Realizable?) Goals
•  Completeness

–  Enumerate in order of size (a prefix of) all programs that do not contradict the
examples (after a “reasonable” amount of observation time)

–  May enumerate non-distinct (i.e. contextually equivalent) programs.

•  Soundness
–  Synthesized programs are well-typed
–  Synthesized programs (if they terminate in a “reasonable” time) should agree with

the examples

Simplifications (For Now)
•  Pure (except for divergence), functional programs

•  Simple, algebraic types and higher-order functions only
–  No polymorphism (though this would strongly constrain search)
–  Monomorphic programs are still interesting

•  Specification via examples, not logical properties
–  Good starting point
–  Probably not sufficient in the long run

•  Future work: relax these simplifications

(Simple) Target Language

•  Recursive, algebraic datatypes
•  Arbitrary recursion
•  Standard (monomorphic) type system

Proof System for Normal Forms
•  Factor terms into intro and elim forms:

•  Inference rules enforce the separation:

Strategies for Enumeration
•  Representation:

–  hash-consed locally nameless (closed = Debruijn)
–  terms keep track of their free variables (makes closing/substitution faster)

•  Memoize the generation functions

•  Relevance logic:
–  Fix and match introduce new variable bindings to the context: G, x:u ⊢ E : t
–  Memoization won’t work (the context changes)
–  Split the judgment into two parts

•  General rule that uses context arbitrarily
•  A “relevance” rule that requires a particular variable to be used at least once
•  Original rule recovered by: G, x:u ⊢ E : t = G ⊢ E : t + G, <x:u> ⊢ E:

Strategies for Pruning
•  Eliminate “redundant” matches:

•  Prune matches with redundant branches:

•  Question: How much impact does moving from lambda to fix have?

(Super) Exponential Growth

1	 2	 4	 8	 16	

c
los

ed
 no

rm
al

ter
m

s o
f ty

pe

 n
a
t

-
>

n
a
t

#nodes in AST

32	

1024	

32768	

1M	

35M	

Pushing Examples Around
•  Extend the language grammar with examples

–  Examples are first-class values
–  They can be given types
–  At function type, consist of input/output pairs:

•  “math” notation: X, ex ::= { ・ v1 v2 v3 = v, ・ u1 u2 u3 = u, …}

 e.g. { ・ sum 0 [] = 0, ・ sum 0 [1] = 1, …, }

Adding Examples to Typechecking

Synthesis contexts

Old: Constructors
without examples

New: Constructors
with examples

Pushing Examples Through Functions

Old: Functions
without examples

New: Functions
with examples

Examples through Elim Forms

New: Compatibility requirement – application must respect
the provided examples.

Compatibility
•  Evaluator: an abstract interpreter for the nonstandard language
•  + approximation to equivalence.

•  See inference rules.

Heuristics
•  May compromise completeness, but can greatly reduce search space.

•  Maximum number of evaluation steps for compatibility checking.
–  Prevents infinite loops
–  May miss correct programs

•  Size restrictions
•  Limit recursion to “well-behaved” subsets:

–  e.g. structural recursion

•  For the demo: Stop at first “good” program

Conclusions / Future
•  Program synthesis is experiencing a resurgence.

–  Some old ideas are new again
•  Fun to think about automatic program generation.

–  Many limitations too: sensitivity to particular examples

•  Future work:
–  Experiments:

•  i.e. can’t yet measure impact of “example pushing” on size of search space
–  Think about richer ways to “push” example information through the search.

•  might require “negative” constraints
–  Thing about richer specifications

•  something like Quickcheck properties
•  suites of related functions

–  Polymorphism? Dependency?
–  Interactivity?
–  Connect to other kinds of work (e.g. SMT-solver based approaches)

