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Quine’s New Foundations

A simplified reworking of Whitehead and Russell’s explicitly typed set theory.

Key Ideas:

1. The axiom of comprehension is restricted to stratified formulas.

2. Stratification of a formula is an implicit, inferred property (essentially,
the existence of a consistent typing of variables occurring in subformulas
of the form x 2 y).

Thus Quine is to Whitehead and Russell as Curry is to Church.
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Stratified Formulas in NF
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Quine, 1937:

The rule is imposed, finally, that (↵ 2 �) is to be a formula
only if the values of � are of next higher type than those of
↵; otherwise (↵ 2 �) is reckoned as neither true nor false, but
meaningless.

In all contexts the types appropriate to the several variables
are actually left unspecified; the context remains systematically
ambiguous, in the sense that the types of its variables may be
construed in any fashion conformaable to the requirement that
“2” connect variables only of consecutively ascending types. An
expression which would be a formula under our original scheme
will hence be rejected as meaningless by the theory of types only
if there is now way whatever of so assigning types to the variables
as to conform to this requirement on “2”.

Formulas passing this test will be called stratified.

Key Idea: The axiom of comprehension is restricted to stratified formulas.

An alternate syntactic way of characterizing stratified formulas is as follows:
(Newman calls this a “direct criteria for stratification”.)

An 2-chain of � is an expression ↵1 2 ↵2 2 ↵3 · · · 2 ↵n(n > 1)
such that each segment ↵i 2 ↵i+1 occurs in �. Now � is stratified
if it has no 2-chains with like initial and like terminal variables
but unlike lengths.

Whitehead and Russell = Church, Quine = Curry.

Newman

The su�xes used in logic to indicate di↵erences of type may
be regarded either as belonging to the formalism itself, or as being
part of the machinery for deciding which rows of symbols (without
su�xes) are to be admitted as significant.
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Syntactic test for stratification in NF

Quine gives a syntactic way of characterizing stratified formulas as follows:

An 2-chain of � is an expression ↵1 2 ↵2 2 ↵3 · · · 2 ↵n (n > 1)
such that each segment ↵i 2 ↵i+1 occurs in �. Now � is stratified
if it has no 2-chains with like initial and like terminal variables
but unlike lengths.

This was shown to be incorrect by Bernays, but Newman gives a correct
replacement, namely that there are no 2-chains ↵1 2 ↵2 2 ↵3 · · · 2 ↵1 (n > 1)
where the first and last variables are the same.

Newman also gives an algorithm for deciding whether a formula of NF is
stratified as an example of a very general and abstract scheme that also can
be applied to the untyped lambda calculus. And he shows that stratification
is equivalent to typability, for appropriate notions of typability.
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Newman, 1943

The paper begins with the statement:

The su�xes used in logic to indicate di↵erences of type may be
regarded either as belonging to the formalism itself, or as being
part of the machinery for deciding which rows of symbols (without
su�xes) are to be admitted as significant.

Again, Church vs Curry typing!
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Newman’s Algorithm for �-calculus

Start with a pure lambda calculus expression, possibly containing free vari-
ables. Assume all bound variables are di↵erent from one another and from
the free variables.

Name each compound subexpression by breaking the expression into a set of
equations. (Variables name themselves.)

Example

u(ux) =) M = uP P = (ux)
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Define two binary relations >d and >r on expression names:

X = PM =)
P >d M

P >r X

t(P ) = t(M) ! t(X)

X = �x.M =)
X >d x

X >r M

t(X) = t(x) ! t(M)

Here we are viewing expression metavariables as standing for both the subex-
pression, and its type.
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Define ⇠ as the equivalence closure of the relation ⇠0 defined by:

P >d M

P >d N
=) M ⇠0 N (domain of common function)

P >r M

P >r N
=) M ⇠0 N (range of common function)

M >d X, N >d X

M >r Y, N >r Y
=) M ⇠0 N (same domain and range)

The relation ⇠ corresponds roughly to unification.

Let [M ] be the ⇠ equivalence class of M .

Defn: [M ] >d [N ] if M >d N

Let > = >d [ >r

An expression is stratified if there are no > cycles.

In other words, if >⇤ is a strict partial order.

Theorem 4. An expression is typable if and only if it is stratified.
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Define ⇠ as the equivalence closure of the relation ⇠0 defined by:

P >d M

P >d N
=) M ⇠0 N (domain of common function)

P >r M

P >r N
=) M ⇠0 N (range of common function)

M >d X, N >d X

M >r Y, N >r Y
=) M ⇠0 N (same domain and range)

The relation ⇠ corresponds roughly to unification.

Let [M ] be the ⇠ equivalence class of M .

Defn: [M ] >d [N ] if M >d N

Let > = >d [ >r

An expression is stratified if there are no > cycles.

In other words, if >⇤ is a strict partial order. This corresponds to the occur-
rence check in unification.

Theorem 4. An expression is typable if and only if it is stratified.
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Example 1: M = u(ux)

M = uP, P = ux (1)

u >r M, u >d P, u >r P, u >d x (2)

u >r M, u >r P =) M ⇠ P (3)

Replace P by M in (2) and eliminate duplicates:

u >r M, u >d M, u >d x (4)

u >d M, u >d x =) x ⇠ M (5)

Replace M by x in (4) and eliminate duplicates:

u >r x, u >d x (6)

No >-cycles, hence u(ux) is stratified, hence typable.
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Example 2: M = �x.ux

M = �x.P, P = ux (1)

M >r P, u >r P, M >d x, u >d x (2)

(2) implies u ⇠ M (common ranges and domains), so replace M with u.

u >r P, u >d x (3)

No >-cycles, therefore �x.ux is stratified, hence typable.
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Example 3: M = xx

M = xx (1)

x >r M, x >d x (2)

x >d x is a >-cycle, hence xx is not stratified, hence not typable.
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Type Inference

The proof of su�ciency (i.e., stratified implies typable) for Theorem 4
implicitly determines a procedure for constructing a type for a stratified
term. We can start by assigning distinct type variables to the >-minimal
expressions, and then work back through the >d and >r relations to assign
types to the rest of the subterms, with all members of a ⇠-equivalence class
assigned the same type.
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