
Reasoning about Codata

Ralf Hinze

Computing Laboratory, University of Oxford
Wolfson Building, Parks Road, Oxford, OX1 3QD, England

ralf.hinze@comlab.ox.ac.uk
http://www.comlab.ox.ac.uk/ralf.hinze/

Abstract. Programmers happily use induction to prove properties of
recursive programs. To show properties of corecursive programs they
employ coinduction, but perhaps less enthusiastically. Coinduction is of-
ten considered a rather low-level proof method, in particular, as it de-
parts quite radically from equational reasoning. Corecursive programs
are conveniently defined using recursion equations. Suitably restricted,
these equations possess unique solutions. Uniqueness gives rise to a sim-
ple and attractive proof technique, which essentially brings equational
reasoning to the coworld. We illustrate the approach using two major
examples: streams and infinite binary trees. Both coinductive types ex-
hibit a rich structure: they are applicative functors or idioms, and they
can be seen as memo-tables or tabulations. We show that definitions and
calculations benefit immensely from this additional structure.

1 Introduction

These lecture notes show how to use codata in modelling and programming and
how to reason about codata, with the main focus on the latter. Codata is the
dual of data, with an emphasis on observation rather than construction, and the
indefinite rather than the finite.

Data is captured by inductive datatypes, whose elements can be constructed
in a finite number of steps. Functional programming has been characterised as
data-oriented programming: new datatypes are introduced with ease; elements of
those types are analysed by recursive functions, conveniently defined by recursion
equations; data constructors can be used on the right-hand side of equations to
synthesise data and on the left-hand side to analyse data. Programmers happily
use equational reasoning and induction to prove properties of recursive programs.

Dually, codata is captured by coinductive datatypes, whose elements can be
deconstructed in a finite number of steps. Codata is synthesised using corecursive
programs. To show properties of corecursive programs, programmers employ
coinduction, but perhaps less enthusiastically. Coinduction is often considered
a rather low-level proof method, especially, as it departs quite radically from
equational reasoning. In these notes we introduce an alternative proof technique,
based on unique fixed points, that remedies these problems. But we are skipping
ahead.

2 Ralf Hinze

Though data is dual to codata, it is not equally appreciated. For instance, in
the seminal textbook on the “Algebra of Programming” [3] the authors denote
a single paragraph to codata, remarking “We shall not have any use for such
infinite data structures, however, and their discussion is therefore omitted.” We
hope to convince the reader that the notion of codata is equally valuable and
that it has a lot to offer, both for the working programmer and for the working
mathematician. For the programmer, it promises

– more elegant programs through a holistic or wholemeal approach,
– avoidance of case analysis,
– increased compositionality through separation of concerns.

For the mathematician, it promises

– more elegant proofs through a holistic or wholemeal approach,
– avoidance of index variables and subscripts,
– avoidance of case analysis and induction.

The simplest example of a coinductive type is the type of streams, where a
stream is an infinite sequence of elements. In a lazy functional language, such
as Haskell [31], streams are easy to define and many textbooks on Haskell re-
produce the folklore examples of Fibonacci or Hamming numbers defined by
recursion equations over streams. One has to be a bit careful in formulating a
recursion equation, basically avoiding that the sequence defined swallows its own
tail. However, if this care is exercised, the equation possesses a unique solution.
Uniqueness can be exploited to prove that two streams are equal: if they satisfy
the same recursion equation, then they are!

Let us illustrate the proof technique using a concrete example. Consider Fig-
ure 1, which displays a proof concerning a simple property of the Fibonacci num-
bers. The setting is very conventional, using a recurrence to define the Fibonacci
numbers and an inductive proof to establish the property. The formalisation
makes intensive use of the delimited Σ-notation. (Fourier introduced the nota-
tion in 1820, and it is reported to have taken the mathematical world by storm
[14].) Summation is a binder introducing an index variable that ranges over some
set. More often than not, the index variable then appears as a subscript referring
to an element of some other set or sequence. In Figure 1, summation introduces
the variable i , which is then used to index the Fibonacci sequence. Now, for
comparison, let us re-develop the proof in a coinductive setting.

The Fibonacci sequence is defined by a set of recursion equations.

fib = 0 ≺ fib′

fib′ = 1 ≺ fib′′

fib′′ = fib + fib′

The definitions that make this work are introduced in Section 3. For the mo-
ment, it suffices to know that ≺ prepends an element to a stream and that
the arithmetic operations are lifted point-wise to streams. Quite noticeable, in-
dex variables and subscripts are avoided by treating the sequence of Fibonacci
numbers as a single entity.

Reasoning about Codata 3

The Fibonacci numbers are defined by the recurrence

F0 = 0
F1 = 1
Fn+2 = Fn + Fn+1 .

The numbers satisfy a myriad of properties. For instance, if we add the first k
Fibonacci numbers, we obtain Fk+1 − 1. Let us prove this simple fact. We
show ∀n ∈ N . P (n), where P is given by

P (k) :⇐⇒
k−1X
i=0

Fi = Fk+1 − 1 .

The proof proceeds by induction. Basis: P (0).

−1X
i=0

Fi

= { empty sum }
0

= { arithmetic }
1− 1

= { definition of F1 }
F1 − 1

Inductive step: ∀n ∈ N . P (n) =⇒ P (n+ 1). Assume P (n), then

nX
i=0

Fi

= { split sum }
n−1X
i=0

Fi

!
+ Fn

= { ex hypothesi P (n) }
Fn+1 − 1 + Fn

= { arithmetic and definition of Fn+2 }
Fn+2 − 1 .

Fig. 1. A famous recurrence and an inductive proof.

4 Ralf Hinze

In the same spirit, summation is defined as a stream transformer or operator:
it takes an input stream to the stream of its partial sums. Summation Σ is
characterised by the following property.

Σ s = t ⇐⇒ t = 0 ≺ s + t

The equivalence captures the fact that summation is the unique solution of the
equation on the right-hand side.

The property of the Fibonacci numbers, adding the first k numbers yields
Fk+1− 1, is then captured by a simple stream equation: Σ fib = fib′− 1. Again,
neither binders nor index variables are required. (By contrast, the correspond-
ing statement in Figure 1 involves three binders: the universal quantifier intro-
duces n, the abstraction defining the predicate P introduces k, and the delimited
sum introduces i.) The proof is fairly straightforward. The characterisation of Σ
leaves us with the task of showing fib′ − 1 = 0 ≺ fib + fib′ − 1. We reason

fib′ − 1
= { definition of fib′ and fib′′ }

(1 ≺ fib + fib′)− 1
= { arithmetic }

0 ≺ fib + fib′ − 1 .

The fairly voluminous, inductive argument in Figure 1 is replaced by a simple
two-step calculation. It is the fact that summation is the unique solution of
Σ s = 0 ≺ s + Σ s that makes the proof fly. In a nutshell, the proof method
of unique fixed points brings equational reasoning to the coworld. Of course,
it is by no means restricted to streams and can be used equally well to prove
properties of infinite trees or the observational equivalence of instances of an
abstract datatype.

Objectives The primary goal of these lecture notes is to familiarise you with the
notion of codata. We shall make the ideas hinted above concrete using two major
running examples: streams and infinite binary trees. At the end of the course, you
should be able to capture sequences, iterative algorithms, infinite processes etc
using recursion equations, and you should be able to prove properties using the
unique fixed-point principle. Streams and infinite trees exhibit a rich structure:
they are idioms and tabulations. We investigate these notions in considerable
depth as they enable us to structure calculations more clearly.

Prerequisites We assume a basic knowledge of the functional programming lan-
guage Haskell [31] — we shall make use of kinds, datatypes, type classes and
lazy evaluation. Some knowledge of category theory is helpful, but not required.

Outline The rest of these notes are structured as follows. Section 2 reviews
the notion of an applicative functor or idiom. Section 3 introduces the type
of streams, our prime example of a coinductive datatype. Section 4 illustrates

Reasoning about Codata 5

capturing recurrences using streams and investigates the relationship between
streams and functions from the natural numbers. Section 5 applies the frame-
work to finite calculus, the discrete counterpart of infinite calculus, where finite
difference replaces the derivative and summation replaces integration. Section 6
introduces infinite trees, our second example of an inductive datatype, and dis-
cusses some applications. Both streams and infinite trees can be seen as tabu-
lations or memo-tables. Section 7 investigates the notion of tabulation in more
detail. Finally, Section 8 concludes. Related work is discussed at the end of each
section, where appropriate.

2 Background: Idioms

Most definitions we encounter later on make use of operations lifted to streams
or infinite trees. We obtain these liftings almost for free, as these datatypes are
so-called applicative functors or idioms [27].

infixl 9 �
class Idiom φ where

pure :: α→ φ α
(�) :: φ (α→ β)→ (φ α→ φ β)

The constructor class introduces an operation for embedding a value into an id-
iomatic structure, and an application operator that takes a structure of functions
to a function between structures. Consider as a simple example the dual-core id-
iom, which executes two programs in parallel.

data Pair α = Pair {outl :: α, outr :: α}
instance Idiom Pair where

pure a = Pair a a
u � v = Pair ((outl u) (outl v)) ((outr u) (outr v))

The method pure duplicates its argument; idiomatic apply takes a pair of func-
tions and a pair of arguments to a pair of results.

The type Pair can be seen as a very simple container type, which can accom-
modate exactly two elements. An alternative representation of a two-element
container is a function from the Booleans: Pair α ∼= Bool → α. Generalising
from Bool , we obtain the environment idiom ‘α→’ — the type ‘α→’ is actually
a monad, but we shall not make use of the additional structure.

instance Idiom (α→) where
pure a = λx → a
f � g = λx → (f x) (g x)

The idiom threads an environment, the argument x , through an idiomatic struc-
ture: pure discards the environment and � distributes it to its two arguments.
Interestingly, pure is the combinator K and ‘�’ is the combinator S from com-
binatory logic [7]. The combinators were re-discovered in the 1970s to form the
basis of an implementation technique for lazy functional languages [37].

Idioms abound, here are further examples of idioms and idiom transformers.

6 Ralf Hinze

– The constant type constructor Const A with

Const α β = α

is an idiom if A is a monoid.
– The identity type constructor is an idiom.

Id α = α

– Idioms are closed under type composition.

(φ · ψ) α = φ (ψ α)

– Idioms are closed under type pairing.

(φ ×̇ ψ) α = (φ α, ψ α)

The type constructor ×̇ lifts pairing to parametric datatypes, type construc-
tors of kind ?→ ?. The type Pair is isomorphic to Id ×̇ Id .

– Every monad is an idiom — but not the other way round.

Exercise 1. Define suitable datatypes to represent the idioms and idiom trans-
formers listed above. Then turn the types into instances of the Idiom class.

instance (Monoid α)⇒ Idiom (Const α)
instance Idiom Id
instance (Idiom φ, Idiom ψ)⇒ Idiom (φ · ψ)
instance (Idiom φ, Idiom ψ)⇒ Idiom (φ ×̇ ψ)

(Section 6.2 defines the Monoid type class.) ut

Using nested idiomatic applications, we can lift an arbitrary function point-
wise to an idiomatic structure. Here are generic combinators for lifting unary
and binary operations.

map :: (Idiom φ)⇒ (α→ β)→ (φ α→ φ β)
map f u = pure f � u
zip :: (Idiom φ)⇒ (α→ β → γ)→ (φ α→ φ β → φ γ)
zip g u v = pure g � u � v

Using zip we can, for instance, lift pairing to idioms.

infixl 6 ?
(?) :: (Idiom φ)⇒ φ α→ φ β → φ (α, β)
(?) = zip (,)

The quizzical ‘(,)’ is Haskell’s pairing constructor.

Reasoning about Codata 7

For convenience and conciseness of notation, we lift the arithmetic operations
to idioms. In Haskell, this is easily accomplished using the numeric type classes.
Here is an excerpt of the code.1

instance (Idiom φ,Num α)⇒ Num (φ α) where
(+) = zip (+)
(−) = zip (−)
(∗) = zip (∗)
negate = map negate -- unary minus
fromInteger i = pure (fromInteger i)

We shall make intensive use of overloading, going beyond Haskell’s predefined
numeric classes. For instance, we also lift exponentiation uv to idioms.

In these lecture notes, we mainly consider two idioms, streams and infinite
trees. In both cases, the familiar arithmetic laws also hold for the lifted operators.

Speaking of laws, every instance of Idiom must satisfy four laws:

pure id � u = u (identity)
pure (·) � u � v � w = u � (v � w) (composition)
pure f � pure x = pure (f x) (homomorphism)
u � pure x = pure (λf → f x) � u (interchange)

The first two laws imply the well-known functor laws: map preserves identity
and composition (hence the names of the idiom laws).

map id = id
map (f · g) = map f · map g

Every instance of Haskell’s Functor class should satisfy these two laws (map is
called fmap in Functor).

The interchange law allows us to swap pure and impure computations. This
move possibly brings together pure computations, which can subsequently be
merged using the homomorphism law. In fact, the idiom laws imply a normal
form: every idiomatic expression can be rewritten into the form pure f �u1 � · · · �
un, a pure function applied to impure arguments. Put differently, applicative
functors or idioms capture the notion of lifting: λu1 · · · un → pure f �u1�· · ·�un

is the lifted version of the nary function f (assuming that f is curried). For
instance, the environment idiom ‘α →’ captures lifting operators to function
spaces: zip (+) f g = pure (+) � f � g = S (S (K (+)) f) g = λx → f x + g x .

Every structure comes equipped with structure-preserving maps; so do id-
ioms: a polymorphic function h :: ∀α . φ α → ψ α is called an idiom homomor-
phism if and only if it preserves the idiomatic structure:

h (pure a) = pure a (1)
h (x � y) = h x � h y . (2)

1 Unfortunately, this does not quite work with the Standard Haskell libraries, as Num
has two super-classes, Eq and Show , which cannot sensibly be defined generically.

8 Ralf Hinze

The function pure ::∀α . α→ φ α itself is a homomorphism from the identity id-
iom Id to the idiom φ. Condition (2) for pure is equivalent to the homomorphism
law, hence its name.

2.1 Summary and Related Work

Idioms capture the notion of lifting. Using pure and � we can, in particular, lift
arithmetic operations point-wise to structures. The environment functor is the
paradigmatic example of an idiom; it captures lifting operations point-wise to
functions.

Categorically, idioms are lax monoidal functors [26] with strength. Program-
matically, idioms arose as an interface for parsing combinators [34]. McBride
and Paterson [27] introduced the notion to a wider audience. For the idioms we
consider in these notes, the lifted operators satisfy the same properties as the
‘unlifted’ ones. This does, however, not hold in general [21].

3 Streams

A stream is an infinite sequence of elements. Here are some examples of (initial
segments of) streams of natural numbers.

〈0, 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331, . . .〉
〈1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049, . . .〉
〈0, 0, 1, 1, 2, 4, 3, 9, 4, 16, 5, 25, 6, 36, 7, 49, . . .〉
〈0, 0, 2, 4, 8, 14, 24, 40, 66, 108, 176, 286, 464, 752, . . .〉
〈0, 1, 2, 6, 15, 40, 104, 273, 714, 1870, 4895, 12816, . . .〉

Exercise 2. Describe the streams using natural language. ut

Since Haskell is a lazy language, we can capture the type of streams as a
datatype: Stream α is like Haskell’s list data type [α], except that there is no
base constructor so we cannot construct a finite stream. The Stream type is not
an inductive type, but a coinductive type, whose semantics is given by a final
coalgebra [1].

data Stream α = Cons {head :: α, tail :: Stream α}
infixr 5 ≺
(≺) :: ∀α . α→ Stream α→ Stream α
a ≺ s = Cons a s

Streams are constructed using ≺, which prepends an element to a stream. They
are destructed using head , which yields the first element, and tail , which returns
the stream without the first element.

Reasoning about Codata 9

Streams are an idiom, which means that we can effortlessly lift functions to
streams:

instance Idiom Stream where
pure a = s where s = a ≺ s
s � t = (head s) (head t) ≺ (tail s) � (tail t) .

Using this vocabulary we are already able to define the usual suspects:
the natural numbers (A0014772), the factorial numbers (A000142), and the Fi-
bonacci numbers (A000045).

nat = 0 ≺ nat + 1
fac = 1 ≺ (nat + 1) ∗ fac
fib = 0 ≺ fib′

fib′ = 1 ≺ fib + fib′

Note that ≺ binds less tightly than +. For instance, 0 ≺ nat + 1 is grouped
0 ≺ (nat + 1). The definitions capture invariants. For instance, incrementing
the naturals by 1 and then prepending 0 yields again the naturals. Here is an
attempt to visualise the invariant:

0 1 2 3 4 5 6 7 8 9 · · · nat
+ + + + + + + + + + · · · +

0 1 1 1 1 1 1 1 1 1 1 · · · 0 ≺ 1

= = = = = = = = = = = · · · =

0 1 2 3 4 5 6 7 8 9 10 · · · nat .

The table makes explicit that 1 in nat +1 is actually an infinite sequence of ones
and that ‘+’ zips two streams using addition.

The four sequences are given by recursion equations adhering to a strict
scheme: each equation defines the head and the tail of the sequence, the latter
possibly in terms of the entire sequence. As an aside, we will use the convention
that the identifier x ′ denotes the tail of x , and x ′′ the tail of x ′. The Fibonacci
numbers provide an example of mutual recursion: fib′ refers to fib and vice versa.
Actually, in this case mutual recursion is not necessary, as a quick calculation
shows: fib′ = 1 ≺ fib + fib′ = (1 ≺ fib) + (0 ≺ fib′) = (1 ≺ fib) + fib. So, an
alternative definition is

fib = 0 ≺ fib + (1 ≺ fib) .

The table below visualises the definition.
0 1 1 2 3 5 8 13 21 34 · · · fib
+ + + + + + + + + + · · · +

0 1 0 1 1 2 3 5 8 13 21 · · · 0 ≺ 1 ≺ fib

= = = = = = = = = = = · · · =

0 1 1 2 3 5 8 13 21 34 55 · · · fib

2 Most if not all integer sequences defined in these lecture notes are recorded in Sloane’s
On-Line Encyclopedia of Integer Sequences [35]. Keys of the form Annnnnn refer
to entries in that database.

10 Ralf Hinze

The Fibonacci function is the folklore example of a function whose straightfor-
ward definition leads to a very inefficient program, see Exercise 9. By contrast,
the stream definition, fib, does not suffer from this problem: to determine the
nth element only max {n − 1, 0} additions are required.

It is fun to play with the sequences. Here is a short interactive session.

� fib
〈0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, . .〉
� nat ∗ nat
〈0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, . .〉
� fib′2 − fib ∗ fib′′

〈1,−1, 1,−1, 1,−1, 1,−1, 1,−1, 1,−1, 1,−1, 1, . .〉
� fib′2 − fib ∗ fib′′ (−1)nat

True

The part after the prompt, � , is the user’s input. The result of each submis-
sion is shown in the subsequent line. This document has been produced using
lhs2TEX [22]. The session displays the actual output of the Haskell interpreter,
generated automatically with lhs2TEX’s active features.

Obviously, we cannot print out a sequence in full. The Show instance for
Stream only displays the first n elements. Likewise, we cannot test two streams
for equality: only checks whether the first n elements are equal. So, ‘equality’
is most useful for falsifying conjectures. For the purposes of these notes, n equals
15.

In Haskell, the same function can be defined in at least three different ways3.
The same is true of sequences: here are three different variants of the stream of
natural numbers — and there are more to come.

nat = 0 ≺ nat + 1
nat = 0 ≺ pure (+) � nat � pure 1
nat = 0 ≺ map (1+) nat

The definitions can be shown equivalent using the idiom laws. As an example,
the following calculation proves nat + 1 = map (1+) nat — the most difficult
part has been relegated to an exercise.

nat + 1
= { definition of + and fromInteger }

zip (+) nat (pure 1)
= { definition of zip }

pure (+) � nat � pure 1
= { Exercise 3 }

pure (+) � pure 1 � nat

3 See http://www.willamette.edu/~fruehr/haskell/evolution.html for an amus-
ing illustration of this fact using the factorial function as an example.

Reasoning about Codata 11

= { homomorphism law }
pure (1+) � nat

= { definition of map }
map (1+) nat

The proof exemplifies the typical style of reasoning: we transform the left-hand
side into the right-hand side by repeatedly replacing equals by equals. The com-
ments in curly braces justify the individual steps.

Exercise 3. Show s + 1 = 1 + s using solely the idiom laws. (First, make sure
that your understand why the laws are baptised ‘identity’, ‘composition’, ‘homo-
morphism’ and ‘interchange’. The text explains why.) Does lifted commutativity
s + t = t + s hold in every idiom? Conversely, what base-level identities can be
lifted through any idiom? The paper “Lifting Operators and Laws” [21] answers
these questions. ut

3.1 Interleaving

Another important operator is interleaving of two streams.

infixr 5 g
(g) :: ∀α . Stream α→ Stream α→ Stream α
s g t = head s ≺ t g tail s

Though the symbol is symmetric, g is not commutative. Neither is it associative.
Let us consider an example application. The above definition of the naturals is
based on the unary number system. Using interleaving, we can alternatively base
the sequence on the binary number system.

bin = 0 ≺ 2 ∗ bin + 1 g 2 ∗ bin + 2

Since g has lower precedence than the arithmetic operators, the right-hand side
of the equation above is grouped 0 ≺ ((2 ∗ bin + 1) g (2 ∗ bin + 2)).

Now that we have two, quite different definitions of the natural numbers, the
question naturally arises as to whether they are actually equal. Reassuringly,
the answer is yes. Proving the equality of streams or of stream operators is one
of our main activities in these lecture notes. However, we postpone a proof of
nat = bin, until we have the prerequisites at hand.

Many numeric sequences are actually interleavings in disguise: for instance,
(−1)nat = 1 g −1, nat div 2 = nat g nat , and nat mod 2 = 0 g 1.

The interleaving operator interacts nicely with lifting.

pure a g pure a = pure a
(s1 � s2) g (t1 � t2) = (s1 g t1) � (s2 g t2)

A simple consequence is (s g t) + 1 = s + 1 g t + 1 or, more generally,
map f (s g t) = map f s g map g t . The two laws show, in fact, that in-
terleaving is a homomorphism (from Pair · Stream to Stream). Interleaving is
even an isomorphism; the reader is encouraged to work out the details.

12 Ralf Hinze

Property (3) is also called abide law because of the following two-dimensional
way of writing the law, in which the two operators are written either above or
beside each other.

s1 � s2

g
t1 � t2

=
s1 s2

g � g
t1 t2

s1 | s2

——–
t1 | t2

=
s1 s2

—— ——
t1 t2

The two-dimensional arrangement is originally due to Hoare, the catchy name
is due to Bird [4]. The geometrical interpretation can be further emphasised by
writing the two operators | and −, like on the right-hand side [11].

Exercise 4. Try to capture the sequences listed in the introduction to Section 3
using stream equations. For the latter two puzzles experiment a little with the
Fibonacci sequences fib and fib′. Hint: Sloane’s On-Line Encyclopedia of Integer
Sequences lists most integer sequences one can think of. ut

Exercise 5. Turn the following verbal descriptions into streams.

1. The sequence of natural numbers divisible by 3.
2. The sequence of natural numbers not divisible by 3.
3. The sequence of cubes.
4. The sequence of all finite binary strings:

〈[], [0], [1], [0, 0], [1, 0], [0, 1], [1, 1], [0, 0, 0], [1, 0, 0], [0, 1, 0], . .〉 .

5. The bit-reversed positive numbers:

〈1, 2, 3, 4, 6, 5, 7, 8, 12, 10, 14, 9, 13, 11, 15, . .〉 .

The order of all bits, except the most significant one, in the binary expansion
of n is reversed. ut

3.2 Definitions and Proofs

Not every legal Haskell definition of type Stream τ actually defines a stream.
Two simple counterexamples are s1 = tail s1 and s2 = head s2 ≺ tail s2. Both of
them loop in Haskell; when viewed as stream equations they are ambiguous.4 In
fact, they admit infinitely many solutions: every constant stream is a solution of
the first equation, every stream is a solution of the second one. This situation is
undesirable from both a practical and a theoretical standpoint. Fortunately, it is
not hard to restrict the syntactic form of equations so that they possess unique
solutions. We insist that equations adhere to the following form:

x = h ≺ t ,

4 There is a slight mismatch between the theoretical framework of streams and the
Haskell implementation of streams. Since products are lifted in Haskell, Stream τ
additionally contains partial streams such as ⊥, a0 ≺ ⊥, a0 ≺ a1 ≺ ⊥ and so forth.
We simply ignore this extra complication here.

Reasoning about Codata 13

where x is an identifier of type Stream τ , h is a constant expression of type τ ,
and t is an expression of type Stream τ possibly referring to x or some other
stream identifier in the case of mutual recursion. However, neither h nor t may
contain head or tail .

If x is a parametrised stream or a stream operator,

x x1 . . . xn = h ≺ t

then h and t may use head xi or tail xi provided xi is of the right type. Apart
from that, no other uses of head or tail are permitted. Equations of this form
are called admissible.

For a formal account of these requirements, we refer the interested reader to
the paper “Streams and Unique Fixed Points” [18], which contains a constructive
proof that admissible equations indeed have unique solutions. Looking back, we
find that the definitions we have encountered so far, including those of pure, �
and g, are admissible.

If x = ϕ x is an admissible equation, we denote its unique solution by fix ϕ.
(The equation implicitly defines a function in x . A solution of the equation is a
fixed point of this function and vice versa.) The fact that the solution is unique
is captured by the following property.

fix ϕ = s ⇐⇒ ϕ s = s

Read from left to right it states that fix ϕ is indeed a solution of x = ϕ x . Read
from right to left it asserts that any solution is equal to fix ϕ. Now, if we want
to prove s = t where s = fix ϕ, then it suffices to show that ϕ t = t .

As a first example, let us prove the idiom homomorphism law.

pure f � pure a
= { definition of � }

(head (pure f)) (head (pure a)) ≺ tail (pure f) � tail (pure a)
= { definition of pure }

f a ≺ pure f � pure a

Consequently, pure f � pure a equals the unique solution of x = f a ≺ x , which
by definition is pure (f a).

That was easy. The next proof is not much harder. We show that the natural
numbers are even and odd numbers interleaved: nat = 2 ∗ nat g 2 ∗ nat + 1.

2 ∗ nat g 2 ∗ nat + 1
= { definition of nat }

2 ∗ (0 ≺ nat + 1) g 2 ∗ nat + 1
= { arithmetic }

(0 ≺ 2 ∗ nat + 2) g 2 ∗ nat + 1
= { definition of g }

0 ≺ 2 ∗ nat + 1 g 2 ∗ nat + 2

14 Ralf Hinze

= { arithmetic }
0 ≺ (2 ∗ nat g 2 ∗ nat + 1) + 1

Inspecting the second but last term, we note that the result furthermore implies
nat = 0 ≺ 2 ∗ nat + 1 g 2 ∗ nat + 2, which in turn proves nat = bin.

Now, if both s and t are given as fixed points, s = fix ϕ and t = fix ψ, then
there are at least four possibilities to prove s = t :

ϕ (ψ s) = ψ s =⇒ ψ s = s =⇒ s = t
ψ (ϕ t) = ϕ t =⇒ ϕ t = t =⇒ s = t .

We may be lucky and establish one of the equations. Unfortunately, there is no
success guarantee. The following approach is often more promising. We show
s = χ s and χ t = t . If χ has a unique fixed point, then s = t . The important
point is that we discover the function χ on the fly during the calculation. Proofs
in this style are laid out as follows.

s
= { why? }
χ s

⊂ { x = χ x has a unique solution }
χ t

= { why? }
t

The symbol ⊂ is meant to suggest a link connecting the upper and the lower
part. Overall, the proof establishes that s = t .

Let us illustrate the technique by proving Cassini’s identity : fib′2−fib∗fib′′ =
(−1)nat .

fib′2 − fib ∗ fib′′

= { definition of fib′′ and arithmetic }
fib′2 − (fib2 + fib ∗ fib′)

= { definition of fib and definition of fib′ }
1 ≺ (fib′′2 − (fib′2 + fib′ ∗ fib′′))

= { arithmetic }
1 ≺ (−1) ∗ (fib′2 − (fib′′ − fib′) ∗ fib′′)

= { fib′′ − fib′ = fib }
1 ≺ (−1) ∗ (fib′2 − fib ∗ fib′′)

⊂ { x = 1 ≺ (−1) ∗ x has a unique solution }
1 ≺ (−1) ∗ (−1)nat

= { definition of nat and arithmetic }
(−1)nat

Reasoning about Codata 15

When reading ⊂-proofs, it is easiest to start at both ends working towards the
link. Each part follows a typical pattern, which we will see time and time again:
starting with e we unfold the definitions obtaining e1 ≺ e2; then we try to
express e2 in terms of e.

So far, we have been concerned with proofs about streams. However, the
proof techniques apply equally well to parametric streams or stream operators!
As an example, let us prove the abide law by showing f = g where

f s1 s2 t1 t2 = (s1 � s2) g (t1 � t2) and g s1 s2 t1 t2 = (s1 g t1) � (s2 g t2) .

The proof is straightforward involving only bureaucratic steps.

f a b c d
= { definition of f }

(a � b) g (c � d)
= { definition of � and definition of g }

head a � head b ≺ (c � d) g (tail a � tail b)
= { definition of f }

head a � head b ≺ f c d (tail a) (tail b)
⊂ { x s1 s2 t1 t2 = head s1 � head s2 ≺ x t1 t2 (tail s1) (tail s2) }

head a � head b ≺ g c d (tail a) (tail b)
= { definition of g }

head a � head b ≺ (c g tail a) � (d g tail b)
= { definition of � and definition of g }

(a g c) � (b g d)
= { definition of g }

g a b c d

Henceforth, we leave the two functions implicit sparing ourselves two rolling and
two unrolling steps. On the downside, this makes the common pattern around
the link more difficult to spot.

Exercise 6. The parametric stream from is given by

from :: Nat → Stream Nat
from n = n ≺ from (n + 1) .

Show that from n + pure k = from (n + k) in at least two different ways. ut

Exercise 7. Prove the other idiom laws using the unique fixed-point principle.
ut

16 Ralf Hinze

3.3 Recursion and Iteration

The stream nat is constructed by repeatedly mapping a function over a stream.
We can capture this recursion scheme using a combinator, which implements
recursive or top-down constructions.

recurse :: ∀α . (α→ α)→ (α→ Stream α)
recurse f a = s

where s = a ≺ map f s

So, nat = recurse (+1) 0.
Alternatively, we can build a stream by repeatedly applying a given function

to a given initial seed. The combinator iterate captures this iterative or bottom-up
construction.

iterate :: ∀α . (α→ α)→ (α→ Stream α)
iterate f a = loop a

where loop x = x ≺ loop (f x)

So, iterate (+1) 0 is yet another definition of the naturals. The type α can be
seen as a type of states and the resulting stream as an enumeration of the state
space. One could argue that iterate is more natural than recurse. This intuition
is backed up by the fact that map g · iterate f is the unfold or anamorphism of
the Stream codatatype. Very briefly, the unfold is characterised by the following
universal property.

h = unfold g f ⇐⇒ head · h = g and tail · h = h · f

Read from left to right it states that unfold g f is a solution of the equations
head · h = g and tail · h = h · f . Read from right to left the property asserts
that unfold g f is the unique solution.

The functions iterate and recurse satisfy an important fusion law, which
amounts to the free theorem of ∀α . (α→ α)→ (α→ Stream α).

map h · recurse f1 = recurse f2 · h
⇑

h · f1 = f2 · h
⇓

map h · iterate f1 = iterate f2 · h

Here is a unique fixed-point proof of the first fusion law.

map h (iterate f1 a)
= { definition of iterate and map }

h a ≺ map h (iterate f1 (f1 a))
⊂ { x a = h a ≺ x (f1 a) has a unique solution }

h a ≺ iterate f2 (h (f1 a))

Reasoning about Codata 17

= { assumption: h · f1 = f2 · h }
h a ≺ iterate f2 (f2 (h a))

= { definition of iterate }
iterate f2 (h a)

The linking equation g a = h a ≺ g (f1 a) corresponds to the unfold for Stream,
which as we have noted can be defined in terms of map and iterate.

The fusion law implies map f · iterate f = iterate f · f , which is the key for
proving nat = iterate (+1) 0, or, more generally,

recurse f a = iterate f a .

We show that iterate f a is the unique solution of x = a ≺ map f x .

iterate f a
= { definition of iterate }

a ≺ iterate f (f a)
= { iterate fusion law: h = f1 = f2 = f }

a ≺ map f (iterate f a)

Exercise 8. When are iterate f a and iterate g b equal? As a simple example,
consider iterate (["hi"]++) [] and iterate (++["hi"]) []. Can you find sufficient
and necessary conditions? ut

3.4 Summary and Related Work

The type of streams is a simple example of a coinductive datatype. The type has
the structure of an idiom, which allows us to lift arbitrary functions to streams.
Streams can be conveniently defined using recursion equations. Admissible equa-
tions have unique solutions, which is the basis of the unique fixed-point principle.
For streams, recursive and iterative constructions coincide.

This section is based on the paper “Streams and Unique Fixed Points” [18],
which in turns draws from Rutten’s work on stream calculus [32, 33]. Rutten
introduces streams and stream operators using coinductive definitions, which he
calls behavioural differential equations. As an example, the Haskell definition of
lifted addition

s + t = head s + head t ≺ tail s + tail t

translates to

(s + t)(0) = s(0) + t(0) and (s + t)′ = s ′ + t ′ ,

where s(0) denotes the head of s, its initial value, and s ′ the tail of s, its stream
derivative. (The notation goes back to Hoare.) However, Rutten relies on coin-
duction as the main proof technique.

18 Ralf Hinze

Various proof methods for corecursive programs are discussed by Gibbons
and Hutton [13]. Interestingly, the technique of unique fixed points is not among
them. Unique fixed-point proofs are closely related to the principle of guarded
induction [6], which goes back to the work on process algebra [30]. Loosely speak-
ing, the guarded condition ensures that functions are productive by restricting
the context of a recursive call to one ore more constructors. For instance,

nat = 1 ≺ nat + 1

is not guarded as + is not a constructor. However, nat can be defined by
iterate (+1) 0 as iterate is guarded. The proof method then allows us to show
that iterate (+1) 0 is the unique solution of x = x ≺ x + 1 by constructing
a suitable proof transformer using guarded equations. Indeed, the central idea
underlying guarded induction is to express proofs as lazy functional programs.

4 Application: Recurrences

A recurrence or recurrence relation is a set of equations that defines a sequence,
a function from the natural numbers. It typically provides a boundary value
and an equation for the general value in terms of earlier ones, see Figure 1 for
an example. Using ≺ and g we can often capture a function from the natural
numbers by a single equation. Though functions from the naturals and streams
are in a one-to-one correspondence, a stream is usually easier to manipulate.
Before we consider concrete examples, we first explore tabulation in more depth.

4.1 Tabulation

In Section 2 we have noted in passing by that Pairs are in a one-to-one corre-
spondence to functions from the Booleans. Streams enjoy an analogous property,
they are in a one-to-one correspondence to functions from the natural numbers:

Stream α ∼= Nat → α ,

where the inductive datatype Nat is given by the Pseudo-Haskell definition

data Nat = 0 | Nat + 1 .

(Strictly speaking, this defines the unary numbers or Peano numerals, which
represent the natural numbers.) A stream can be seen as the tabulation of a
function from the natural numbers. Conversely, a function of type Nat → α can
be implemented by looking up a memo-table. Here are the functions that witness
the isomorphism.

tabulate :: ∀α . (Nat → α)→ Stream α
tabulate f = f 0 ≺ tabulate (f · (+1))
lookup :: ∀α . Stream α→ (Nat → α)
lookup s 0 = head s
lookup s (n + 1) = lookup (tail s) n

Reasoning about Codata 19

The functions lookup and tabulate are mutually inverse

lookup · tabulate = id
tabulate · lookup = id ,

and they satisfy the following naturality properties.

map f · tabulate = tabulate · (f ·)
(f ·) · lookup = lookup · map f

Note that post-composition (f ·) is the mapping function for the environment
idiom τ →. The laws are somewhat easier to memorise, if we write them in a
point-wise style.

map f (tabulate g) = tabulate (f · g)
f · lookup t = lookup (map f t)

A simple consequence of the first law is tabulate f = map f (tabulate id). Hence,
tabulate is fully determined by the image of the identity, which is the stream of
natural numbers (see below). So, one way of tabulating an arbitrary function is
to map the function over the stream of natural numbers.

The simplest recurrences are of the form a0 = k and an+1 = f(an), for some
natural number k and some function f on the naturals. As an example, the
recurrence below defines Tn , the minimum number of moves to solve the Tower
of Hanoï problem for n discs.

T0 = 0
Tn+1 = 2 ∗ Tn + 1

It is not hard to see that the stream defined

tower = 0 ≺ 2 ∗ tower + 1

implements the same sequence. In general, the recurrence a0 = k and an+1 =
f(an) is captured by the stream equation s = k ≺ map f s, or more succinctly
by recurse f k . Though fairly obvious, the relation is worth exploring.

On the face of it, the linear recurrence corresponds to the fold or catamor-
phism of the inductive type Nat .

fold :: ∀α . (α→ α)→ α→ (Nat → α)
fold s z 0 = z
fold s z (n + 1) = s (fold s z n)

Catamorphisms are dual to anamorphisms, enjoying a dual characterisation.

h = fold s z ⇐⇒ h 0 = z and h · (+1) = s · h

Some consequences of the universal property are the reflection law, fold (+1) 0 =
id , and the computation laws, fold s z 0 = z and fold s z · (+1) = s · fold s z .

20 Ralf Hinze

Now, tabulating fold s z gives recurse s z (hence the name of the combina-
tor). The proof of this fact makes crucial use of tabulate’s naturality property.

tabulate (fold s z)
= { definition of tabulate }

fold s z 0 ≺ tabulate (fold s z · (+1))
= { computation laws }

z ≺ tabulate (s · fold s z)
= { naturality of tabulate }

z ≺ map s (tabulate (fold s z))

Consequently, there are, at least, three equivalent ways of expressing the linear
recurrence a0 = k and an+1 = f(an).

tabulate (fold f k) = recurse f k = iterate f k

Using the reflection law, this furthermore implies that nat is the tabulation of
the identity function:

tabulate id
= { reflection law: fold (+1) 0 = id }

tabulate (fold (+1) 0)
= { see above }

recurse (+1) 0 .

Exercise 9. The naîve implementation of the Fibonacci numbers is horribly in-
efficient.

F0 = 0
F1 = 1
Fn+2 = Fn + Fn+1

But, can you make this more precise? For instance, how many additions are
performed in order to compute Fn , or, how many recursive calls are made?
Express your findings as stream equations. Then try to relate the two streams
to examples we have encountered so far. ut

Exercise 10. Determine the number of binary strings of some given length that
do not contain adjacent zeros. Again, first try to come up with a system of
recursion equations and then try to relate the streams to known examples. ut

We already know that fib tabulates the Fibonacci function F. To sharpen our
calculational skills let us try to derive the stream definition from the recurrence
given in Exercise 9. The recurrence does not fit the simple scheme discussed
above, so we have to start afresh. The calculations are effortless if we make use

Reasoning about Codata 21

of the fact that tabulate is an idiom homomorphism between the environment
idiom Nat → and Stream.

tabulate (pure a) = pure a
tabulate (x � y) = tabulate x � tabulate y

Since tabulation and look-up are inverses, this implies that lookup is an idiom
homomorphism, as well.

lookup (pure a) = pure a
lookup (x � y) = lookup x � lookup y

Returning to the problem of tabulating F, it is useful to rewrite the last
equation of F in a point-free style: F · (+2) = F + F · (+1). The right-hand
side makes use of addition lifted to the environment idiom.

tabulate F
= { definition of tabulate }
F0 ≺ tabulate (F · (+1))

= { definition of tabulate and arithmetic }
F0 ≺ F1 ≺ tabulate (F · (+2))

= { definition of F }
0 ≺ 1 ≺ tabulate (F + F · (+1))

= { tabulate is an idiom homomorphism }
0 ≺ 1 ≺ tabulate F + tabulate (F · (+1))

= { definition of tabulate }
0 ≺ 1 ≺ tabulate F + tail (tabulate F)

The only non-trivial step is the second but last one, which uses tabulate (f +g) =
tabulate f + tabulate g , which in turn is syntactic sugar for tabulate (pure (+) �
f � g) = pure (+) � tabulate f � tabulate g . Since tabulate preserves the idiomatic
structure, the derivation goes through nicely. The resulting equation

fib = 0 ≺ 1 ≺ fib + tail fib

is equivalent to the definitions given in Section 3.
Tabulation and look-up allow us to switch swiftly between functions from the

naturals and streams. So, even if coinductive structures are not available in your
language of choice, you can still use stream calculus for program transformations.
The next exercise aims to illustrate this point by deriving an efficient iterative
implementation of F.

Exercise 11. Turn the Fibonacci sequence

fib = 0 ≺ fib + (1 ≺ fib)

into an iterative form: map g (iterate f a) = unfold g f . There are, at least, two
approaches:

22 Ralf Hinze

– Pair fib and fib′

fib ? fib′ ,

where (?) = zip (,) turns a pair of streams into a stream of pairs, see
Section 2.

– Use the fact that the tails of fib are linear combinations of fib and fib′.

i ∗ fib + j ∗ fib′

Hint: Express the tail of i ∗ fib + j ∗ fib′ as a linear combination of fib and
fib′ and then capture the corecursion using unfold .

Try to relate the two approaches. ut

Exercise 12. Turn the equation

x = (a ≺ map f x) + s

into an iterative form. Hint: You may find the function tails = iterate tail
useful. Try pairing x with tails s. As an aside, tails is the comultiplication of the
comonad Stream. ut

Exercise 13. Complete the proof that tabulate f = map f nat . ut

4.2 Bit-fiddling

Now, let us tackle a slightly more involved class of recurrences. The sequence
given by the ‘binary’ recurrence a0 = k, a2n+1 = f(an) and a2n+2 = g(an)
corresponds to the stream s = k ≺ map f s g map g s. We have already seen
an instance of this scheme in Section 3.

bin = 0 ≺ 2 ∗ bin + 1 g 2 ∗ bin + 2

Here, the parameters of the general scheme are instantiated by k = 0, f n =
2 ∗ n + 1 and g n = 2 ∗ n + 2. In other words, a is the identity and bin is its
tabulation: bin = tabulate id = nat . For the positive numbers, we can derive a
similar equation.

bin + 1
= { definition of bin }

(0 ≺ 2 ∗ bin + 1 g 2 ∗ bin + 2) + 1
= { abide law and arithmetic }

1 ≺ 2 ∗ (bin + 1) g 2 ∗ (bin + 1) + 1

We have calculated the definition below.

bin ′ = 1 ≺ 2 ∗ bin ′ g 2 ∗ bin ′ + 1

Since the equation has a unique solution, we know that bin ′ = bin + 1 = nat +
1 = nat ′. The definition of bin ′ captures a well-known recipe for generating the

Reasoning about Codata 23

positive numbers in binary: start with 1, then repeatedly shift the bits to the
right (lsb first), placing a 0 or a 1 in the left-most, least significant position.

Using a similar approach we can characterise the most significant bit of a
positive number (0 ≺ msb is A053644).

msb = 1 ≺ 2 ∗msb g 2 ∗msb

The most significant bit of 1 is 1, the most significant bit of both 2 ∗ bin ′ and
2 ∗ bin ′ + 1 is 2 ∗msb.

Another example along these lines is the 1s-counting sequence (A000120),
also known as the binary weight. The binary representation of the even number
2 ∗ nat has the same number of 1s as nat ; the odd number 2 ∗ nat + 1 has one 1
more. Hence, the sequence satisfies ones = ones g ones + 1. Adding two initial
values, we can turn the property into a definition.

ones = 0 ≺ ones ′

ones ′ = 1 ≺ ones ′ g ones ′ + 1

It is important to note that x = x g x + 1 does not have a unique solution.
However, all solutions are of the form ones + c.

Exercise 14. Prove this claim. Hint: Let s be a solution of x = x g x + 1. Show
that s − pure (head s) satisfies the definition of ones. ut

Let us inspect the sequences.

� msb
〈1, 2, 2, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, . .〉
� bin ′ −msb
〈0, 0, 1, 0, 1, 2, 3, 0, 1, 2, 3, 4, 5, 6, 7, . .〉
� ones
〈0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, . .〉

The sequence bin ′ − msb (A053645) exhibits a nice pattern; it describes the
distance to the largest power of two at most bin ′. In binary, this amounts to
removing the most significant bit.

Here is a sequence that every computer scientist should know: the binary
carry sequence or ruler function (A007814).

carry = 0 g carry + 1

(The form of the equation does not quite meet the requirements. We allow
ourselves some liberty, as a simple unfolding turns it into an admissible form:
carry = 0 ≺ carry + 1 g 0. The unfolding works as long as the first argument of
g is a sequence defined elsewhere.) Let us peek at some values.

� carry
〈0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, . .〉

The sequence gives the exponent of the largest power of two dividing bin ′, that
is, the number of leading zeros in the binary representation (lsb first). In other

24 Ralf Hinze

words, it specifies the running time of the binary increment. The table below
illustrates the relationship.

1
0 1
1 1
0 0 1
1 0 1
0 1 1
1 1 1
0 0 0 1
1 0 0 1
0 1 0 1
1 1 0 1
0 0 1 1
1 0 1 1
0 1 1 1
1 1 1 1
0 0 0 0 1

For emphasis, prefixes of zeros are underlined. There is also an intriguing con-
nection to infinite binary trees. If we turn the table by 90◦ to the left, we can
see the correspondence more clearly.

1 0
1

1
1

0
0

1
1

0
1

0
1

1
1

1
1

0
0

0
1

1
0

0
1

0
1

0
1

1
1

0
1

0
0

1
1

1
0

1
1

0
1

1
1

1
1

1
1

0
0

0
0

1

The lines correspond to the marks on a (binary) ruler; this is why carry is also
called the ruler function. If we connect each 0-prefix of length n with the nearest
0-prefix of length n + 1, we obtain the so-called sideways tree, an infinite tree,
which has no root, but extends infinitely upwards.

Exercise 15. Prove that the sequence given by a0 = k, a2n+1 = f(an) and
a2n+2 = g(an) corresponds to the stream s = k ≺ map f s g map g s. Hint:
Use nat = bin and Exercise 13. ut

4.3 Summary and Related Work

A stream tabulates a function from the naturals. Tabulation and look-up are
idiom isomorphisms between the environment idiom Nat → and Stream. Using
≺ and g we can capture ‘unary’ and ‘binary’ recurrences.

The section is also based on “Streams and Unique Fixed Points” [18].

5 Application: Finite Calculus

Let us move on to another application of streams: finite calculus. Finite calculus
is the discrete counterpart of infinite calculus, where finite difference replaces

Reasoning about Codata 25

the derivative and summation replaces integration. We shall see that difference
and summation can be easily recast as stream operators. The resulting calculus
is elegant and fun to use.

5.1 Finite Difference

A common type of puzzle asks the reader to continue a given sequence of num-
bers. A first routine step towards solving the puzzle is to calculate the difference
of subsequent elements. This stream operator, finite difference or forward differ-
ence, enjoys a simple, non-recursive definition.

∆ :: (Num α)⇒ Stream α→ Stream α
∆ s = tail s − s

Here are some examples (A000079, A094267, A003215, A033428).

� ∆ 2nat

〈1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, . .〉
� ∆ carry
〈1,−1, 2,−2, 1,−1, 3,−3, 1,−1, 2,−2, 1,−1, 4, . .〉
� ∆ nat3

〈1, 7, 19, 37, 61, 91, 127, 169, 217, 271, 331, 397, 469, 547, . .〉
� 3 ∗ nat2

〈0, 3, 12, 27, 48, 75, 108, 147, 192, 243, 300, 363, 432, 507, 588, . .〉

Infinite calculus has an attractive rule for the derivative of a power: (xn+1) d
dx =

(n+ 1)xn. Unfortunately, the last two examples show that finite difference does
not interact well with ordinary powers: ∆ nat3 is by no means 3 ∗ nat2. An
alternative power that blends nicely with ∆ is the falling factorial power defined

x 0 = 1
xn+1 = x ∗ (x − 1)n .

As usual, we lift the operator to streams: sn = map (λx → xn) s. The new
power satisfies s ∗ (s − 1)n = sn+1 = sn ∗ (s − n). Hence, finite calculus has a
handy rule to match the one for the derivative of a power.

∆ (natn+1) = (pure n + 1) ∗ natn

The proof is entirely straightforward.

∆ (natn+1)
= { definition of ∆ }

tail (natn+1)− natn+1

= { definition of nat }
(nat + 1)n+1 − natn+1

= { s ∗ (s − 1)n = sn+1 = sn ∗ (s − n) }
(nat + 1) ∗ natn − natn ∗ (nat − pure n)

= { arithmetic }
(pure n + 1) ∗ natn

26 Ralf Hinze

Table 1. Converting between powers and falling factorial powers.

x0 = x0

x1 = x1

x2 = x2 + x1

x3 = x3 + 3 ∗ x2 + x1

x4 = x4 + 6 ∗ x3 + 7 ∗ x2 + x1

x0 = x0

x1 = x1

x2 = x2 − x1

x3 = x3 − 3 ∗ x2 + 2 ∗ x1

x4 = x4 − 6 ∗ x3 + 11 ∗ x2 − 6 ∗ x1

The following session shows that falling factorial powers behave as expected.

� nat3

〈0, 0, 0, 6, 24, 60, 120, 210, 336, 504, 720, 990, 1320, 1716, 2184, . .〉
� ∆ (nat3)
〈0, 0, 6, 18, 36, 60, 90, 126, 168, 216, 270, 330, 396, 468, 546, . .〉
� 3 ∗ nat2

〈0, 0, 6, 18, 36, 60, 90, 126, 168, 216, 270, 330, 396, 468, 546, . .〉
One can convert mechanically between powers and falling factorial powers

using Stirling numbers [14]. The details are beyond the scope of these lecture
notes. For reference, Table 1 displays the correspondence up to the fourth power.

Table 2 lists the rules for finite differences. First of all, ∆ is a linear opera-
tor : it distributes over sums. The stream 2nat is the discrete analogue of ex as
∆ 2nat = 2nat . The product rule is similar to the product rule of infinite calculus
except for an occurrence of tail on the right-hand side.

∆ (s ∗ t)
= { definition of ∆ and definition of ∗ }

tail s ∗ tail t − s ∗ t
= { arithmetic }

s ∗ tail t − s ∗ t + tail s ∗ tail t − s ∗ tail t
= { distributivity }

s ∗ (tail t − t) + (tail s − s) ∗ tail t
= { definition of ∆ }

s ∗∆ t +∆ s ∗ tail t

Exercise 16. The product rule ∆ (s ∗ t) = s ∗ ∆ t + ∆ s ∗ tail t is somewhat
asymmetric. Can you find a symmetric variant? Prove it correct. ut

5.2 Summation

Finite difference∆ has a right-inverse: the anti-difference or summation operator
Σ. We can easily derive its definition.

∆ (Σ s) = s

Reasoning about Codata 27

Table 2. Laws for finite difference (c and n are constant streams).

∆ (tail s) = tail (∆ s)
∆ (a ≺ s) = head s − a ≺ ∆ s
∆ (s g t) = (t − s) g (tail s − t)
∆ n = 0
∆ (n ∗ s) = n ∗∆ s

∆ (s + t) = ∆ s +∆ t
∆ (s ∗ t) = s ∗∆ t +∆ s ∗ tail t
∆ cnat = (c − 1) ∗ cnat

∆ (natn+1) = (n + 1) ∗ natn

⇐⇒ { definition of ∆ }
tail (Σ s)−Σ s = s

⇐⇒ { arithmetic }
tail (Σ s) = s +Σ s

Setting head (Σ s) = 0, we obtain

Σ :: (Num α)⇒ Stream α→ Stream α
Σ s = t where t = 0 ≺ s + t .

We have additionally applied λ-dropping [8], turning the higher-order equation
Σ s = 0 ≺ s + Σ s defining Σ into a first-order equation t = 0 ≺ s + t
defining t = Σ s with s fixed. The firstification of the definition enables sharing
of computations as illustrated below.

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 · · · t

= = = = = = = = = = = · · · =

0 s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 · · · 0 ≺ s
+ + + + + + + + + + · · · +
t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 · · · t

Here are some applications of summation (A004520, A000290, A011371, 0 ≺
A000330 and 0 ≺ A036799).

� Σ (0 g 1)
〈0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, . .〉
� Σ (2 ∗ nat + 1)
〈0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, . .〉
� Σ carry
〈0, 0, 1, 1, 3, 3, 4, 4, 7, 7, 8, 8, 10, 10, 11, . .〉
� Σ nat2

〈0, 0, 1, 5, 14, 30, 55, 91, 140, 204, 285, 385, 506, 650, 819, . .〉
� Σ (nat ∗ 2nat)
〈0, 0, 2, 10, 34, 98, 258, 642, 1538, 3586, 8194, 18434, 40962, 90114, . .〉

The definition of Σ suggests an unusual approach for determining the sum
of a sequence: if we observe that a stream satisfies t = 0 ≺ s + t , then we may
conclude that Σ s = t . The step makes use of the fact that Σ s is the unique
solution of its defining equation. For example, Σ 1 = nat as nat = 0 ≺ nat + 1,

28 Ralf Hinze

Σ (2 ∗ nat + 1) = nat2 as nat2 = 0 ≺ nat2 + 2 ∗ nat + 1, and Σ (1 ≺ fib) = fib
as fib = 0 ≺ (1 ≺ fib) + fib. This is summation by happenstance.

Of course, if we already know the sum, we can use the definition to verify
our conjecture. As an example, let us prove Σ fib′2 = fib ∗ fib′ — the elements
of this sequence are known as the golden rectangle numbers (A001654).

fib ∗ fib′

= { definition of fib and definition of fib′ }
(0 ≺ fib′) ∗ (1 ≺ fib + fib′)

= { arithmetic }
0 ≺ fib′2 + fib ∗ fib′

The unique fixed-point proof avoids the inelegant case analysis of a traditional
inductive proof.

The Fundamental Theorem of finite calculus relates ∆ and Σ.

t = ∆ s ⇐⇒ Σ t = s − pure (head s)

The implication from right to left is easy to show using ∆ (Σ t) = t and ∆ c = 0.
For the reverse direction, we reason

Σ (∆ s)
= { definition of Σ }

0 ≺ Σ (∆ s) +∆ s
⊂ { x = 0 ≺ x +∆ s has a unique solution }

0 ≺ s − pure (head s) +∆ s
= { definition of ∆ and arithmetic }

(head s ≺ tail s)− pure (head s)
= { extensionality: s = head s ≺ tail s }

s − pure (head s) .

For instance, Σ 2nat = 2nat − 1, since 2nat = ∆ 2nat and head (2nat) = 1.
Using the Fundamental Theorem we can transform the rules in Table 2

into rules for summation, see Table 3. As an example, the rule for products,
summation by parts, can be derived from the product rule of ∆. Let c =
pure (head (s ∗ t)), then

s ∗∆ t +∆ s ∗ tail t = ∆ (s ∗ t)
⇐⇒ { Fundamental Theorem }

Σ (s ∗∆ t +∆ s ∗ tail t) = s ∗ t − c
⇐⇒ { Σ is linear }

Σ (s ∗∆ t) +Σ (∆ s ∗ tail t) = s ∗ t − c
⇐⇒ { arithmetic }

Σ (s ∗∆ t) = s ∗ t −Σ (∆ s ∗ tail t)− c .

Reasoning about Codata 29

Table 3. Laws for summation (c and n are constant streams).

Σ (tail s) = tail (Σ s)− pure (head s)
Σ (a ≺ s) = 0 ≺ pure a +Σ s
Σ (s g t) = u g (s + u)

where u = Σ s +Σ t
Σ (s ∗∆ t) = s ∗ t −Σ (∆ s ∗ tail t)

− pure (head (s ∗ t))

Σ n = n ∗ nat
Σ (n ∗ s) = n ∗Σ s
Σ (s + t) = Σ s +Σ t
Σ cnat = (cnat − 1) / (c − 1)
Σ (natn) = natn+1 / (n + 1)

Unlike the others, this law is not compositional: Σ (s ∗ t) is not given in terms
of Σ s and Σ t , a situation familiar from infinite calculus.

Here is an alternative proof of Σ fib = fib′ − 1 that uses some of the laws in
Table 3.

fib = 0 ≺ fib + (1 ≺ fib)
⇐⇒ { summation by happenstance }

Σ (1 ≺ fib) = fib
⇐⇒ { summation law }

0 ≺ 1 +Σ fib = fib
=⇒ { s1 = s2 =⇒ tail s1 = tail s2 }

1 +Σ fib = fib′

⇐⇒ { arithmetic }
Σ fib = fib′ − 1

Using the rules we can mechanically calculate summations of polynomials.
The main effort goes into converting between ordinary and falling factorial pow-
ers. Here is a formula for the sum of the first n squares, the square pyramidal
numbers (0 ≺ A000330).

Σ nat2

= { converting to falling factorial powers }
Σ (nat2 + nat1)

= { summation laws }
1
3 ∗ nat3 + 1

2 ∗ nat2

= { converting to ordinary powers }
1
3 ∗ (nat3 − 3 ∗ nat2 + 2 ∗ nat) + 1

2 ∗ (nat2 − nat)
= { arithmetic }

1
6 ∗ (nat − 1) ∗ nat ∗ (2 ∗ nat − 1)

Calculating the summation of a product, say, Σ (nat ∗ 2nat) is often more
involved. Recall that the rule for products, summation by parts, is imperfect:

30 Ralf Hinze

to be able to apply it, we have to spot a difference among the factors. In the
expression above, there is an obvious candidate: cnat . Let us see how it goes.

Σ (nat ∗ 2nat)
= { ∆ 2nat = 2nat }
Σ (nat ∗∆ 2nat)

= { summation by parts }
nat ∗ 2nat −Σ (∆ nat ∗ tail 2nat)

= { ∆ nat = 1, and definition of nat }
nat ∗ 2nat − 2 ∗Σ 2nat

= { summation law }
nat ∗ 2nat − 2 ∗ (2nat − 1)

= { arithmetic }
(nat − 2) ∗ 2nat + 2

As a final example, let us tackle a sum that involves the interleaving opera-
tor: Σ carry (A011371). The sum is important, as it determines the amortised
running time of the binary increment. Let us experiment (A011371, A000120).

� Σ carry
〈0, 0, 1, 1, 3, 3, 4, 4, 7, 7, 8, 8, 10, 10, 11, . .〉
� nat −Σ carry
〈0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, . .〉
� nat > Σ carry
True

We observe that the sum is always at most nat , which would imply that the
amortised running time, Σ carry / nat , is constant. This is nice, but can we
actually quantify the difference? Let us approach the problem from a different
angle. The binary increment changes the number of 1s, so we might hope to relate
carry to ones. The increment flips the leading 1s to 0s and flips the first 0 to 1.
Since carry defines the number of leading 0s, we obtain the following alternative
definition of ones.

ones = 0 ≺ ones + 1− carry

We omit the proof that both definitions are indeed equal. (If you want to try,
use a ⊂-proof.) Now, we can invoke the summation by happenstance rule.

ones = 0 ≺ ones + (1− carry)
⇐⇒ { summation by happenstance }

Σ (1− carry) = ones
⇐⇒ { arithmetic }

Σ carry = nat − ones

Voilà. We have found a closed form for Σ carry .

Reasoning about Codata 31

Exercise 17. Derive the sum rule Σ (s + t) = Σ s + Σ t from the sum rule
∆ (s + t) = ∆ s +∆ t using the Fundamental Theorem. ut

Exercise 18. Work outΣ nat3 using the summation laws and the correspondence
between powers and falling factorial powers. ut

Exercise 19. Here is an alternative definition of Σ

Σ s = 0 ≺ pure (head s) +Σ (tail s) ,

which uses a second-order fixed point. The code implements the naîve way of
summing: the ith element is computed using i additions not reusing any previous
results. Prove that the two definitions of Σ are equivalent. ut

Exercise 20. Generalise the derivation of Σ (nat ∗ 2nat) to Σ (nat ∗ cnat), where
c is a constant stream. ut

5.3 Summary and Related Work

Finite calculus serves as an elegant application of corecursive definitions and
the unique fixed-point principle. Index variables and subscripts are avoided by
taking a holistic view treating sequences as a single entity.

Again, most of the material has been taken from “Streams and Unique
Fixed Points” [18]. Two further corecursion schemes for stream-generating func-
tions, scans and convolutions, are introduced in a recent paper [20]. The pa-
per also presents a novel proof of Moessner’s theorem. Scans generalise sum-
mation, convolution generalises the product of power series. Very briefly, a se-
quence of numbers, a0, a1, a2 . . . , can be used to represent a power series,
a0 + a1z + a2z

2 + a3z
3 + · · ·, in some formal variable z. In fact, many papers

on streams emphasise the ‘power series’ view of streams, most notably, [24, 28,
29]. Interestingly, the papers use lazy lists to represent streams, resulting in
additional code to cover the empty list.

6 Infinite Trees

Streams are a lovely example of a coinductive datatype, but there is, of course,
the danger of overspecialisation. To counteract this danger, we look at a second
example in this section: infinite binary trees (trees for short). Trees are in many
respects similar to streams, but, as we shall see, there are also some impor-
tant differences. In a nutshell, streams relate to trees in the same way as unary
numbers (Peano numerals) relate to binary numbers (bit strings).

Figure 2 displays the first five levels of an infinite binary tree that contains
all the naturals. It is a fractal object, in the sense that parts of it are similar
to the whole. The tree can be transformed into its left subtree by first doubling
and then incrementing the elements (which is why the subtree contains exactly
the odd numbers). To obtain the right subtree, we have to interchange the order
of the two steps: the elements are first incremented and then doubled (which

32 Ralf Hinze

explains why the subtree contains exactly the even numbers greater than 0).
This description can be nicely captured by a corecursive definition:

nat = Node 0 ((2 ∗ nat) + 1) (2 ∗ (nat + 1)) .

(We re-use some of the identifiers introduced in the previous sections to denote
infinite trees. In case of ambiguity, we employ qualified names.) As to be ex-
pected, the operations are lifted point-wise to trees. Like streams, trees are an
idiom. But we are skipping ahead.

0

1

3

7

15 23

11

19 27

5

9

17 25

13

21 29

2

4

8

16 24

12

20 28

6

10

18 26

14

22 30

Fig. 2. The tree of natural numbers.

The type Tree α is a coinductive datatype. Its definition is similar to the stan-
dard textbook definition of binary trees, except that there is no base constructor,
so we cannot build a finite tree.

data Tree α = Node {root :: α, left :: Tree α, right :: Tree α}

Trees are constructed using Node. They are destructed using root , which yields
the label of the root node, and left and right , which return the left and the right
subtree, respectively.

As mentioned above, trees are an idiom, which means that we can effortlessly
lift functions to trees:

instance Idiom Tree where
pure a = t where t = Node a t t
t � u = Node ((root t) (root u)) (left t � left u) (right t � right u) .

Recall that pure, map and zip and the arithmetic operations are overloaded to
work with an arbitrary idiom. By virtue of the above instance declaration we can
use them for infinite trees, as well. Here is variation of nat that captures a well-
known recipe for generating the positive numbers: start with 1, then repeatedly
double the number, adding 0 or 1 to the result.

pos = Node 1 (2 ∗ pos + 0) (2 ∗ pos + 1)

Reasoning about Codata 33

6.1 Definitions and Proofs

As for streams, we can restrict the syntactic form of equations so that they
possess unique solutions. As admissible equation is of the form

x x1 . . . xn = Node a l r ,

where x is an identifier of type τ1 → · · · → τn → Tree τ , a is a constant
expression of type τ , and l and r are expressions of type Tree τ possibly referring
to x or some other tree operator in the case of mutual recursion. The expressions
may use root xi, left xi or right xi provided xi is of the right type. Apart from
that, no other uses of the projection functions are permitted.

Admissible equations have unique solutions. Hence we can adopt the unique
fixed-point principle to prove that two infinite trees are equal: if they satisfy
the same recursion equation, then they are. The proof of nat + 1 = pos below
illustrates the principle: we show that nat + 1 satisfies the recursion equation of
pos.

nat + 1
= { definition of nat }

(Node 0 ((2 ∗ nat) + 1) (2 ∗ (nat + 1))) + 1
= { arithmetic }

Node 1 (2 ∗ (nat + 1) + 0) (2 ∗ (nat + 1) + 1)

Like for streams, the familiar arithmetic laws also hold for the lifted operators.

Exercise 21. There are essentially two ways of generating an infinite tree that
contains all bit strings (lists of zeros and ones).

lbits = Node [] (map ([0]++) lbits) (map ([1]++) lbits)
rbits = Node [] (map (++[0]) rbits) (map (++[1]) rbits)

Show that map reverse lbits = rbits using the unique fixed-point principle. How
are lbits and rbits related to nat and pos? ut

6.2 Recursion and Iteration

The combinator recurse captures recursive or top-down tree constructions; the
functions f and g are repeatedly mapped over the whole tree:

recurse :: ∀α . (α→ α)→ (α→ α)→ (α→ Tree α)
recurse f g a = t

where t = Node a (map f t) (map g t) .

Thus, an alternative definition of nat is recurse (λn → 2∗n+1) (λn → 2∗n+2) 0.
We can also construct a tree in an iterative or bottom-up fashion; the functions

f and g are repeatedly applied to the given initial seed a:

iterate :: ∀α . (α→ α)→ (α→ α)→ (α→ Tree α)
iterate f g a = loop a

where loop x = Node x (loop (f x)) (loop (g x)) .

34 Ralf Hinze

The type α can be seen as a type of states and the infinite tree as an enumeration
of the state space.

We have overloaded the names recurse and iterate to denote operations both
on streams and on trees. The abuse of language is justified as both sets of
operations satisfy similar laws. For instance, map h · iterate f g is the unfold of
the Tree codatatype. Furthermore, both recurse and iterate satisfy a fusion law:

map h · recurse f1 g1 = recurse f2 g2 · h
⇑

h · f1 = f2 · h ∧ h · g1 = g2 · h
⇓

map h · iterate f1 g1 = iterate f2 g2 · h .

Exercise 22. Prove the fusion laws, and then use fusion to give an alternative
proof of map reverse lbits = rbits. ut

How are recurse f g a and iterate f g a related? Contrary to the situation for
streams, they are certainly not equal. Consider Figure 3, which displays the trees
recurse ([0]++) ([1]++) [] and iterate ([0]++) ([1]++) []. Since f and g are applied
in different orders — inside out and outside in — each level of recurse f g a
is the bit-reversal permutation of the corresponding level of iterate f g a. For
brevity’s sake, one tree is called the bit-reversal permutation tree of the other.
Exercises 21 and 22 explain the term bit-reversal permutation: a bit string can
be seen as a path into an infinite tree — this is the central theme of Section 6.3
— following the reversed path leads to the permuted element.

Now, can we transform an instance of recurse into an instance of iterate?
Yes, if the two functions are pre- or post-multiplications of elements of some
given monoid. Let us introduce a suitable type class:

infixr 5 ◦
class Monoid α where
ε :: α
(◦) :: α→ α→ α .

The recursion-iteration lemma then states

recurse (a◦) (b◦) ε = iterate (◦a) (◦b) ε , (3)

where a and b are elements of some monoid (M , ◦, ε). To establish the lemma, we
show that iterate (◦a) (◦b) ε satisfies the defining equation of recurse (a◦) (b◦) ε,
that is t = Node ε (map (a◦) t) (map (b◦) t):

iterate (◦a) (◦b) ε
= { definition of iterate }

Node ε (iterate (◦a) (◦b) (ε ◦ a)) (iterate (◦a) (◦b) (ε ◦ b))
= { ε ◦ x = x = x ◦ ε }

Node ε (iterate (◦a) (◦b) (a ◦ ε)) (iterate (◦a) (◦b) (b ◦ ε))

Reasoning about Codata 35

[]

[0]

[0,0]

[0,0,0] [0,0,1]

[0,1]

[0,1,0] [0,1,1]

[1]

[1,0]

[1,0,0] [1,0,1]

[1,1]

[1,1,0] [1,1,1]

(a) recurse ([0]++) ([1]++) []

[]

[0]

[0,0]

[0,0,0] [1,0,0]

[1,0]

[0,1,0] [1,1,0]

[1]

[0,1]

[0,0,1] [1,0,1]

[1,1]

[0,1,1] [1,1,1]

(b) iterate ([0]++) ([1]++) []

Fig. 3. A tree that contains all bit strings and its bit-reversal permutation tree.

= { fusion: (x◦) · (◦y) = (◦y) · (x◦) }
Node ε (map (a◦) (iterate (◦a) (◦b) ε)) (map (b◦) (iterate (◦a) (◦b) ε)) .

As an example, recurse ([0]++) ([1]++) [] = iterate (++[0]) (++[1]) []; both
expressions construct the infinite tree of all bit strings, shown in Figure 3 (a).

At first sight, it seems that the applicability of the lemma is somewhat ham-
pered by the requirement on the form of the two arguments. However, since
endomorphisms, functions of type τ → τ for some τ , form a monoid, we can eas-
ily rewrite an arbitrary instance of recurse into the required form (� is function
application below, the ‘apply’ of the identity idiom):

recurse f g a
= { identity }

recurse f g ((�a) id)
= { fusion: (�x) · (f ·) = f · (�x) }

map (�a) (recurse (f ·) (g ·) id)
= { definition of map }

pure (�a) � recurse (f ·) (g ·) id
= { interchange law }

recurse (f ·) (g ·) id � pure a

36 Ralf Hinze

= { recursion-iteration lemma }
iterate (· f) (· g) id � pure a .

(Note that we cannot ‘un-fuse’ the final expression.) This transformation turns a
recursive construction into an iterative one, where functions serve as the internal
state. One could argue the resulting construction is not really iterative (after all,
the functions involved create a chain of closures). However, often we can provide
a concrete representation of these functions, for instance, as a matrix, see the
paper “The Bird tree” [19] for an example along these lines.

6.3 Tabulation

Like streams, infinite trees are a tabulation: they are in a one-to-one correspon-
dence to functions from the binary numbers:

Tree α ∼= Bin → α ,

where the datatype Bin is given by

data Bin = Nil | One Bin | Two Bin .

(The type is isomorphic to the type of lists of bits, that we have used in the
previous section. For the purposes of this section, a tailor-made datatype is
preferable.) A tree can be seen as the tabulation of a function from the binary
numbers. Conversely, a function of type Bin → α can be implemented by looking
up a memo-table. Here are the functions that witness the isomorphism.

tabulate :: ∀α . (Bin → α)→ Tree α
tabulate f = Node (f Nil) (tabulate (f · One)) (tabulate (f · Two))
lookup :: ∀α . Tree α→ (Bin → α)
lookup t Nil = root t
lookup t (One b) = lookup (left t) b
lookup t (Two b) = lookup (right t) b

Again, we have overloaded the names to also denote operations on trees. (Exer-
cise 24 asks you to capture the overloading using type classes.) This is justified
as the new functions satisfy exactly the same properties as the old ones: they
are mutually inverse and they are natural in the value type α. Tabulating the
identity yields the infinite tree of binary numbers:

tabulate id
= { definition of tabulate }

Node Nil (tabulate One) (tabulate Two)
= { naturality of tabulate }

Node Nil (map One (tabulate id)) (map Two (tabulate id)) .

Consequently, tabulate id = bin where bin is given by

bin = Node Nil (map One bin) (map Two bin) .

Reasoning about Codata 37

Modulo the representation of binary numbers, bin is equivalent to nat , lbits and
rbits.

In Section 4.1 we have discussed at length how to tabulate functions. For
variety, we consider the opposite problem here, namely, how to turn an infinite
tree into a recursive or iterative algorithm. To this end, we require the fold or
catamorphism for the inductive datatype Bin.

fold :: ∀α . (α→ α)→ (α→ α)→ α→ (Bin → α)
fold one two nil Nil = nil
fold one two nil (One b) = one (fold one two nil b)
fold one two nil (Two b) = two (fold one two nil b)

The naming of identifiers makes explicit that a fold replaces constructors by
functions. Like for streams, tabulation relates fold to recurse. Conversely, un-
tabulating a recursive construction yields a fold.

tabulate (fold one two nil) = recurse one two nil
lookup (recurse one two nil) = fold one two nil

As an example, let us derive a recursive algorithm for fast exponentiation.
Let c be a constant. We seek an efficient implementation of (pure c)nat . Let us
calculate.

(pure c)nat

= { definition of nat }
Node c0 (pure c)(2∗nat)+1 (pure c)2∗(nat+1)

= { laws of exponentials }
Node 1 (((pure c)nat)2 ∗ pure c) ((pure c)nat ∗ pure c)2

Consequently, (pure c)nat = recurse (λx → x 2 ∗ c) (λx → (x ∗ c)2) 1 or equiva-
lently lookup (pure c)nat = fold (λx → x 2 ∗ c) (λx → (x ∗ c)2) 1. The derivation
can be readily generalised to an arbitrary monoid. For instance, 2 × 2 matri-
ces with matrix multiplication form a monoid, so the program can be used to
calculate the Fibonacci numbers in logarithmic time:(

0 1
1 1

)n

=
(
Fn−1 Fn

Fn Fn+1

)
,

with F−1 = 1.
Can we also derive an iterative algorithm for fast exponentiation? There are,

at least, two choices: we can use the recursion-iteration lemma (see the previous
section) and go higher-order, or we can use the bit-reversal permutation lemma
(introduced below) and do some bit-fiddling.

Very briefly, the first approach yields

lookup (recurse f g a) n
= { Section 6.2 }

38 Ralf Hinze

lookup (iterate (· f) (· g) id � pure a) n
= { lookup is an idiom homomorphism }

(lookup (iterate (· f) (· g) id) � lookup (pure a)) n
= { environment idiom }

lookup (iterate (· f) (· g) id) n a .

We build up an infinite tree of functions, look-up the function at position n and
then apply it to a.

For the second approach, recall that recurse f g a is the bit-reversal per-
mutation tree of iterate f g a. One way to formulate this relationship is via
lookup:

lookup (recurse f g a) = lookup (iterate f g a) · reverse , (4)

where reverse mirrors a binary number. The proof of Equation (4), dubbed
the bit-reversal permutation lemma, proceeds smoothly if we turn Bin into an
instance of Num, Enum and Monoid . Then tabulate can be written more per-
spicuously as

tabulate f = Node (f ε) (tabulate (f · (1◦))) (tabulate (f · (2◦))) .

Equation (4) calls for an inductive proof. We can circumvent induction by ap-
plying tabulate to both sides of the equation. Let h = lookup (iterate f g a), we
show that tabulate (h · reverse) satisfies the recursion equation of recurse f g a.

tabulate (h · reverse)
= { definition of tabulate and (h · reverse) ε = a }

Node a (tabulate (h · reverse · (1◦))) (tabulate (h · reverse · (2◦)))
= { definition of reverse }

Node a (tabulate (h · (◦1) · reverse)) (tabulate (h · (◦2) · reverse))
= { proof obligation }

Node a (tabulate (f · h · reverse)) (tabulate (g · h · reverse))
= { naturality of tabulate }

Node a (map f (tabulate (h · reverse))) (map g (tabulate (h · reverse)))

It remains to discard the proof obligations h · (◦1) = f · h and h · (◦2) = g · h,
which capture the fact that the most significant bit determines the function ap-
plied in the last iteration. Again, to avoid an inductive proof we show the equiv-
alent tabulate (h · (◦1)) = map f (iterate f g a). Let k = lookup · iterate f g ,
then

tabulate (k a · (◦1))
= { definition of tabulate and (k a · (◦1)) ε = f a }

Node (f a) (tabulate (k a · (◦1) · (1◦))) (tabulate (k a · (◦1) · (2◦)))

Reasoning about Codata 39

= { monoids: (x◦) · (◦y) = (◦y) · (x◦) }
Node (f a) ε) (tabulate (k a · (1◦) · (◦1))) (tabulate (k a · (2◦) · (◦1)))

= { definition of k }
Node (f a) (tabulate (k (f a) · (◦1))) (tabulate (k (g a) · (◦1)))

⊂ { x a = Node (f a) (x (f a)) (x (g a)) has a unique solution }
Node (f a) (map f (iterate f g (f a))) (map f (iterate f g (g a)))

= { definition of map and iterate }
map f (iterate f g a) .

The proof of h · (◦2) = g · h proceeds analogously.
It remains to deforest the intermediate data structure created by iterate. If

we ‘un-tabulate’ iterate, setting loop f g = lookup · iterate f g , we obtain an
iterative or tail-recursive function, which can be seen as the counterpart of foldl
for binary numbers.

loop :: ∀α . (α→ α)→ (α→ α)→ α→ (Bin → α)
loop f g a Nil = a
loop f g a (One b) = loop f g (f a) b
loop f g a (Two b) = loop f g (g a) b

To summarise, we have derived two iterative algorithms for fast exponentia-
tion:

power c n = loop (· (λx → x 2 ∗ c)) (· (λx → (x ∗ c)2)) id n 1
power c n = loop (λx → x 2 ∗ c) (λx → (x ∗ c)2) 1 (reverse n) .

The latter function is called the square-and-multiply algorithm or binary ex-
ponentiation. In fact, it corresponds to a variant known as the Montgomery
powering ladder. (Exponentiation is used in most public-key crypto systems.
The algorithm above is less vulnerable to attacks, since in each step a squaring
and a multiplication is performed.)

Exercise 23. The datatype Bin implements the 1-2 number system, a variant of
the binary system, which uses the digits {1, 2}, rather than {0, 1}. (A distinct
advantage of this number system is that each natural number has a unique
representation.) The functions

toNat :: Bin → Nat
toNat = fold (λn → 2 ∗ n + 1) (λn → 2 ∗ n + 2) 0
toBin :: Nat → Bin
toBin = fold succ zero

convert between unary numbers and these binary numbers. Implement zero ::Bin
and succ :: Bin → Bin. Show that toNat and toBin are inverses. ut

Exercise 24. Capture lookup and tabulate using a type class. Since two types are
involved, the type of keys and the type of tables, you need either multi-parameter
type classes or type families. ut

40 Ralf Hinze

6.4 Infinite Trees and Sequences

The type of natural numbers is isomorphic to the type of binary numbers: Nat ∼=
Bin. This implies that the type of streams is isomorphic to the type of infinite
binary trees:

Stream α ∼= Tree α .

We obtain the canonical isomorphism for converting a stream into a tree and vice
versa by following the aforementioned chain of isomorphisms. Let toNat ::Bin →
Nat and toBin :: Nat → Bin be the isomorphisms witnessing Nat ∼= Bin, see
Exercise 23. Then stream :: Tree α → Stream α and tree :: Stream α → Tree α
are given by the following diagram.

Stream α
lookup

�≺
tabulate

Nat → α

Tree α

tree

g

stream

f

lookup
�≺

tabulate
Bin → α

toBin → id

f

toNat → id

g

(5)

Here, f → g is the mapping function of the function space type constructor
defined (f → g) h = g · h · f .

The interactive session below shows that stream converts the tree of natural
numbers, see Figure 2, into the stream of natural numbers.

� stream (recurse (λn → 2 ∗ n + 1) (λn → 2 ∗ n + 2) 0)
〈0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, . .〉
� stream (iterate (λn → 2 ∗ n + 1) (λn → 2 ∗ n + 2) 0)
〈0, 1, 2, 3, 5, 4, 6, 7, 11, 9, 13, 8, 12, 10, 14, . .〉

It is important to note that stream does not list the elements level-wise from
left to right, rather, it involves a bit-reversal permutation. Hence, streaming the
iterative construction yields the permuted list of naturals (0 ≺ A081241).

For calculational purposes, it is useful to derive versions of stream and tree
that do not involve number systems. For streaming, the idea is to define functions
that mimic the projection functions head and tail . Clearly, root is the counterpart
of head , the counterpart of tail is chop given by

chop :: ∀α . Tree α→ Tree α
chop t = Node (root (left t)) (right t) (chop (left t)) .

The name indicates that it chops off the root of a given tree, interleaving the
two subtrees. (The definition is reminiscent of g, this is not a coincidence, see
below.) The projection functions are related by

root = head · stream (6)
stream · chop = tail · stream . (7)

Reasoning about Codata 41

In other words, stream is a so-called representation changer [23]. Given these
prerequisites, it is a simple exercise to derive stream.

stream t
= { extensionality: s = head s ≺ tail s }

head (stream t) ≺ tail (stream s)
= { stream is a representation changer: (6) and (7) }

root t ≺ stream (chop s)

We obtain

stream :: ∀α . Tree α→ Stream α
stream t = root t ≺ stream (chop t) .

Conversely, for tree we define functions that mimic the projection functions
root , left and right . The counterparts of left and right are even · tail and odd ·
tail , respectively, where even and odd are given by

even, odd :: ∀α . Stream α→ Stream α
even s = head s ≺ odd (tail s)
odd s = even (tail s) .

Exercise 25. Formulate laws that capture the fact that head is the counterpart
of root etc. Use the laws to derive an implementation of tree. (The resulting
equation is displayed below.) ut

The isomorphism tree is then given by

tree :: ∀α . Stream α→ Tree α
tree s = Node (head s) (tree (even (tail s))) (tree (odd (tail s))) .

Exercise 26. Both stream and tree are given as unfolds or anamorphisms — they
construct a stream from a tree and vice versa. In Haskell, inductive datatypes
and coinductive types coincide [12]. For that reason, we can also define the
isomorphisms as folds or catamorphisms — these variants deconstruct a tree to
form a stream and vice versa.

stream ′ (∼(Node a l r)) = node a (stream ′ l) (stream ′ r)
tree ′ (∼(Cons a s)) = cons a (tree ′ s)

(The twiddles on the left-hand side delay pattern matching for increased lazi-
ness.) Define the helper functions node and cons. ut

The two functions stream and tree satisfy a variety of properties: they are
mutually inverse, they are natural in the element type and, most importantly,
they are idiom homomorphisms. If you have solved Exercise 26, then you know
that constructing a node corresponds roughly to interleaving two streams.

stream (Node a l r) = a ≺ stream l g stream r (8)
tree (a ≺ l g r) = Node a (tree l) (tree r) (9)

42 Ralf Hinze

Finally, the stream of natural numbers corresponds to the tree of natural num-
bers. The proof is straightforward: we show that tree Stream.nat satisfies the
recursion equation of Tree.nat .

tree nat
= { property of nat and definition of g }

tree (0 ≺ 2 ∗ nat + 1 g 2 ∗ (nat + 1))
= { property of tree (9) }

Node 0 (tree (2 ∗ nat + 1)) (tree (2 ∗ (nat + 1)))
= { tree is an idiom homomorphism }

Node 0 (2 ∗ tree nat + 1) (2 ∗ (tree nat + 1))

We have noted in the introduction to this section that streams relate to trees
in the same way as unary numbers relate to binary numbers. A stream corre-
sponds to a function from the natural numbers. Looking up the stream has, at
best, a linear running time — if each element of the sequence is constructed
in constant time. A tree corresponds to a function from the binary numbers.
Looking up the tree has, at best, a logarithmic running time. Consequently,
transforming a stream into a tree possibly transforms a linear into a logarithmic
algorithm. In a sense, we have already seen an example along those lines: fast
exponentiation. In the previous section we have derived an efficient implemen-
tation of Tree.lookup ((pure c)Tree.nat). It remains to make the transition from
streams to trees explicit.

Stream.lookup ((pure c)Stream.nat)
= { isomorphism: stream · tree = id }

Stream.lookup (stream (tree ((pure c)Stream.nat)))
= { Stream.lookup · stream = (toBin → id) · Tree.lookup (5) }

Tree.lookup (tree ((pure c)Stream.nat)) · toBin
= { tree is an idiom homomorphism }

Tree.lookup ((pure c)tree Stream.nat) · toBin
= { tree Stream.nat = Tree.nat }

Tree.lookup ((pure c)Tree.nat) · toBin

The example nicely demonstrates separation of concerns: a program is factored
into a corecursive part that constructs codata and a recursive part that inspects
the codata, taking care of termination.

The central step in the above derivation is the use of tree, which transforms
a stream to a tree. Perhaps surprisingly, the opposite transformation is equally
useful. If we view an infinite binary tree as a state space, then stream enumerates
this space. The next section considers such an example.

Exercise 27. Is chop an idiom homomorphism? ut

Reasoning about Codata 43

6.5 Application: Enumerating the Positive Rationals

This section is organised as a set of exercises around a common theme: enu-
merating the positive rationals. The challenge is to set things up so that every
positive rational occurs exactly once. This side condition rules out the naîve ap-
proach, generating all possible combinations of numerators and denominators,
as the resulting enumeration will contain infinitely many copies of every positive
rational.

There are, in fact, several ways to enumerate the positive rationals without
duplicates. Probably the oldest method was discovered in the 1850s by the Ger-
man mathematician Stern and independently a few years later by the French
clockmaker Brocot. It is deceptively simple: Start with the two ‘boundary ratio-
nals’ 0/1 and 1/0, which are not included in the enumeration, and then repeatedly
insert the so-called mediant a+b/c+d between two adjacent rationals a/c and b/d.

Since the number of inserted rationals doubles with every step, the process
can be pictured by an infinite binary tree, the so-called Stern-Brocot tree, see
Figure 4. Its root is labelled with the first inserted mediant: 0+1/1+0 = 1/1.

1/1

1/2

1/3

1/4

1/5
2/7

2/5

3/8
3/7

2/3

3/5

4/7
5/8

3/4

5/7
4/5

2/1

3/2

4/3

5/4
7/5

5/3

8/5
7/4

3/1

5/2

7/3
8/3

4/1

7/2
5/1

Fig. 4. Stern-Brocot tree.

Exercise 28. (Turn the informal description into a program) If we represent an
inserted rational a+b/c+d by the matrix

„
a b
c d

«
, then its left and right descendant

can be determined as follows.„
a a + b
c c + d

«
←[

„
a b
c d

«
7→

„
a + b b
c + d d

«
Phrase the transformations as matrix multiplications and then define the Stern-
Brocot tree as an unfold , a map after an iterate. ut
Exercise 29. (Turn the iterative form into a recursive form) Show that the it-
erative formulation is equivalent to the following recursive definition.

stern :: Tree Rational
stern = Node 1 (1 / (1 / stern + 1)) (stern + 1)

The definition makes explicit that the right subtree is the ‘successor’ of the entire
tree, see Figure 4. Hint: Use fusion and the recursion-iteration lemma. ut

44 Ralf Hinze

Exercise 30. (Relate the Stern-Brocot tree to Dijkstra’s fusc sequence) In one of
his EWDs [9], Dijkstra introduced the following function, also known as Stern’s
diatomic sequence

S1 = 1
S2∗n = Sn
S2∗n+1 = Sn + Sn+1 ,

which is a strange variant of fib.
Tabulate the function: fusc = tabulate S. Hint: You may find it helpful to

use the function chop that serves as the counterpart of tail .
Show that stern = fusc ÷ fusc′, where ÷ constructs a rational from two

integers and fusc′ = chop fusc. ut

Exercise 31. (Turn the recursive form of fusc into an iterative one) Turn the
trees

num = Node 1 num (num + den)
den = Node 1 (num + den) den

into an iterative form (num and den are more telling names for fusc and fusc′).
There are, at least, two approaches:

– Pair num and den

num ? den ,

where (?) = zip (,) turns a pair of trees into a tree of pairs.
– Use the fact that the subtrees of num are linear combinations of num and

den.

i ∗ num + j ∗ den

(Dijkstra [10] uses a similar approach to show that fusc + fusc′ = brp (fusc +
fusc′), where brp transforms a tree to its bit-reversal permutation.)

Try to relate the two approaches, see also Exercise 11. ut

Exercise 32. (Show that the rationals are in their lowest common form) In Ex-
ercise 30 we have shown that stern = num ÷ den. This fact does not, however,
imply that map numerator stern = num and map denominator stern = den.
(Why?) In order to prove the latter two equations, we have to show that the ra-
tionals num÷den are in their lowest common form, that is, the greatest common
divisor of num and den is 1:

num O den = 1 ,

where O denotes the greatest common divisor lifted to trees. ut

Reasoning about Codata 45

Exercise 33. (Show that the Stern-Brocot tree contains every rational at most
once) Again, there are, at least, two approaches. One can show that stern is a
search-tree using the following fact about mediants: if a/c 6 b/d, then

a/c 6 a+b/c+d 6 b/d .

Alternatively, one can show that lookup stern is injective by demonstrating that
it has a left-inverse (g is the left-inverse of f iff g · f = id). Rational numbers
are in a one-to-one correspondence to bit strings. The following instrumented
version of the greatest common divisor

a H b = case compare a b of
LT → 0 : (a H (b − a))
EQ → []
GT → 1 : ((a − b) H b) ,

maps two positive numbers to a bit string. We claim that this defines the required
left-inverse. Establish the result by showing

num H den = tabulate id .

Why is this sufficient? ut

Exercise 34. (Show that the Stern-Brocot tree contains every rational at least
once) Show that lookup stern is surjective by demonstrating that it has a right-
inverse (g is the right-inverse of f iff f · g = id). ut

Exercise 35. (Linearise the Stern-Brocot tree) Turn stream stern into an itera-
tive form. In other words, enumerate the rationals!

1. As a first step, linearise den. You have to express chop den in terms of den
and possibly num. To this end show that chop den = num + den − 2 ∗ x
where x is the unique solution of x = Node 0 num x .

2. Show that the unique solution of x = Node 0 num x equals num mod den.
3. Using the results of the two previous items, linearise num and den, defining

snum = stream num and sden = stream den.
4. Turn snum ? sden into an iterative form.
5. Polishing up: Use the formula

1 / (bn ÷ dc+ 1− {n ÷ d}) = d ÷ (n + d − 2 ∗ (n mod d))

to turn the result of the previous item into the following amazingly short
program for enumerating the rationals.

rationals = iterate next 1
where next r = 1 / (brc+ 1− {r})

Here, brc denotes the integral part of r and {r} its fractional part, such that
r = brc+ {r}. ut

46 Ralf Hinze

6.6 Summary and Related Work

The type of infinite binary trees is another example of a coinductive datatype.
Like streams, infinite trees form an idiom. Trees can be defined using recursion
equations; admissible equations have unique solutions. Unlike streams, recursive
and iterative constructions do not coincide: one tree is the bit-reversal permu-
tation tree of the other. A tree tabulates a function from the binary numbers.
Tabulation and look-up are idiom isomorphisms between the environment idiom
Bin → and Tree.

The section is loosely based on the paper “The Bird tree” [19], which in-
troduces an alternative scheme for enumerating the positive rationals. It also
develops an almost loopless algorithm for enumerating the elements of the infi-
nite tree recurse (a◦) (b◦) ε, where a and b are elements of some given group.

7 Tabulation

We have repeatedly stressed the fact that a stream can be seen as a tabulation
of a function from the unary numbers and that a tree tabulates a function from
the binary numbers.

Nat → γ ∼= Stream γ

Bin → γ ∼= Tree γ

In this section we look at this relationship from a more principled perspective
and show, among other things, that the two isomorphisms are based on the laws
of exponentials.

As a warm-up exercise, consider tabulating a function from a non-recursive
datatype. Probably every textbook on computer architecture includes truth ta-
bles for the logical connectives.

(∧) :: (Bool ,Bool)→ Bool
False False
False True

A function from a pair of Booleans can be represented by a two-by-two table.
Expressed in terms of type constructors we have

(Bool ,Bool)→ Bool ∼= ((Bool ,Bool), (Bool ,Bool)) .

The relationship becomes more perspicuous, if we use mathematical notation for
the types: (Bool ,Bool) corresponds to (1 + 1)× (1 + 1) where 1 is a one-element
type, + is disjoint union and × denotes the cartesian product — called (), Either
and (,) in Haskell. Rephrasing the above isomorphism in terms of the ‘arithmetic
types’ we obtain

(1 + 1)× (1 + 1)→ Bool ∼= (Bool × Bool)× (Bool × Bool) . (10)

If we furthermore write the function space K → V as an exponential V K —
the type K is mnemonic for key type and V for value type — we realise that
tabulation rests on the well-known laws of exponentials.

X 0 ∼= 1 X 1 ∼= X X A+B ∼= X A ×X B X A×B ∼= (X B)A

Reasoning about Codata 47

A straightforward application of these laws proves the correspondence above,
namely that we can tabulate a function from a pair of Booleans using a two-by-
two table.

Bool (1+1)×(1+1)

= { X A×B ∼= (X B)A }
(Bool1+1)1+1

= { X A+B ∼= X A ×X B }
(Bool1 × Bool1)1 × (Bool1 × Bool1)1

= { X 1 ∼= X }
(Bool × Bool)× (Bool × Bool)

The derivation holds for every return type, so Equation (10) can, in fact, be
generalised to an isomorphism between two type constructors

Λ V . (1 + 1)× (1 + 1)→ V ∼= Λ V . (V ×V)× (V ×V) ,

or equivalently, in a ‘point-free style’,

(1 + 1)× (1 + 1)→ ∼= (Id ×̇ Id) ×̇ (Id ×̇ Id) .

This is an isomorphism between two type constructors of kind ? → ?. On the
left-hand side, the two-argument type constructor ‘→’ is written without its
second argument, so Bool ×Bool → has kind ?→ ?. On the right-hand side, we
use the identity type constructor of kind ? → ? and the lifted product, which
sends two type constructors of kind ? → ? to another type constructor of this
kind. Using the types introduced in Section 2, the laws of exponentials can be
rephrased as follows:

0→ γ ∼= 1
1→ γ ∼= γ

(α+ β)→ γ ∼= (α→ γ)× (β → γ)
(α× β)→ γ ∼= α→ (β → γ)

0→ ∼= Const 1
1→ ∼= Id
(α+ β)→ ∼= (α→) ×̇ (β →)
(α× β)→ ∼= (α→) · (β →) .

The constructors on the right-hand side are container types. To represent a
function from the empty type, we use an empty container; to represent a func-
tion from the one-element type, we use a one-element container; to represent a
function from a disjoint union, we use a pair of containers; and finally, to rep-
resent a function from a pair, we use nested containers. The last law captures
currying : a function of two arguments can be treated as a function of the first
argument whose values are functions of the second argument. The law underlies,
for instance, representations of two-dimensional arrays as arrays of arrays in the
programming languages C or Java.

As an intermediate summary, tabulation is defined by induction on the struc-
ture of the key type; the construction is, however, parametric in the return type.
Looking back at Section 2, we notice that all the container types involved have

48 Ralf Hinze

the structure of an idiom. Moreover, tabulation preserves the idiomatic struc-
ture of the environment idiom: one can show that datatype-generic versions of
tabulate and lookup are idiom isomorphisms between the environment idiom and
memo-tables. The proof is beyond the scope of these lecture notes.

Turning to recursive datatypes, we note that a function from a recursive type
is tabulated by a recursive container type. Actually, we can be more precise than
that: a function from an inductive type is tabulated by a coinductive container
type. And indeed, both Nat and Bin are inductive types and both Stream and
Tree are coinductive types. (In Haskell, inductive and coinductive types coincide,
but it is useful to maintain the distinction.) Writing µ α . τ for an inductive type
and ν α . τ for a coinductive type, the isomorphisms for streams and infinite
trees can be written

(µ α . 1 + α)→ ∼= ν β . Id ×̇ β
(µ α . 1 + α+ α)→ ∼= ν β . Id ×̇ β ×̇ β .

The notation nicely makes the structure of the key and the corresponding con-
tainer type explicit. In terms of constructors and destructors: 0 and +1 corre-
spond to head and tail ; Nil , One and Two correspond to root , left and right .

Table 4 extends the correspondence between key and container types to para-
metric types and types with embedded recursive types. To reduce clutter, we
abbreviate (α1, . . . , αn) by α. It is understood that for each definition of K in
the left column, T is defined by the corresponding entry in the right column.

Table 4. Tabulation: types of keys K (α) and tables T (β).

K (α) = αi T (β) = βi

K (α) = 0 T (β) = Const 1
K (α) = 1 T (β) = Id
K (α) = K1(α) +K2(α) T (β) = T1(β) ×̇ T2(β)
K (α) = K1(α)×K2(α) T (β) = T1(β) · T2(β)
K (α) = µ α . K1(α, α) T (β) = ν β . T1(β, β)

Without proof we state the following

Theorem 1 (Tabulation). Let K (α) and T (β) be defined as in Table 4. Then

K (τ1, . . . , τn)→ ∼= T (τ1 →, . . . , τn →) .

for all types τ1, . . . , τn. ut
Note that the type T (β) of memo-tables contains only products, no sums, hence
the terms table and tabulation. All the examples of tabulation we have seen be-
fore are instances of this scheme. For variety, let us discuss two further examples.

We have primarily considered functions from the natural numbers, what
about the integers? Well, if integers are represented by

data Int = Neg Nat | Zero | Pos Nat ,

Reasoning about Codata 49

then

data Tape α = Window {neg :: Stream α, zero :: α, pos :: Stream α} .

is a suitable container type. A container of type Tape α can be seen as a tape
that extends infinitely to the left and infinitely to the right, with the zero com-
ponent marking the current position. Phrased in terms of the arithmetic type
constructors, the two types are related by

Nat + 1 + Nat → ∼= Stream ×̇ Id ×̇ Stream .

If the key type involves products, then the container type is nested accord-
ingly. For instance to represent a function from a pair of natural numbers, we
use a stream of streams.

Nat ×Nat → ∼= Stream · Stream

As we have noted before, the isomorphism above also underlies the usual encod-
ing of two-dimensional arrays in C or Java — an array is a finite map of type
{0, . . . ,n − 1} → where n is the size.

Let us conclude the section with a brief discussion of proof techniques. If
we want to establish a property of a function from the naturals, we have, at
least, two choices. The standard approach is to use induction and case analysis,
see Figure 1. A less conventional approach, favoured in these lecture notes, is to
rephrase the function and the property in terms of streams and to use coinduction
or, preferably, the unique fixed-point principle. Theorem 1 explains why the
eschewed case-analysis disappears, it is replaced by a proof about pairs.

case analysis K1(α) +K2(α) T1(β) ×̇ T2(β) pairs
pairs K1(α)×K2(α) T1(β) · T2(β) nested proofs
induction µ α . K1(α, α) ν β . T1(β, β) coinduction

The laws of exponentials eliminate sums and consequently proofs by case anal-
ysis. This is why the unique fixed-point proof in Section 1 is so much more
attractive than the inductive proof. To establish the equality of two pairs, we
simply have to show that the corresponding elements are equal.

However, all that glitters is not gold. If the key type involves products, then
we have to deal with a nested container type, which is often less manageable. Of
course, tabulation establishes an isomorphism, which also allows us to transfer
proofs from one setting to the other. So in principle, we can port an inductive
proof to the coinductive setting. Conversely, even if we do not use streams or
other coinductive types directly, we may profit from the widened perspective.

Overall, tabulation is a very valuable tool in the arsenal of techniques for
program derivation and verification and it certainly deserves to be better known.

7.1 Summary and Related Work

Tabulation is based on the laws of exponentials. A function from an inductive
type is tabulated by a coinductive type. Memo-tables are basically products,

50 Ralf Hinze

hence the name. In particular, they do not contain sums, which explains why
the proofs in these lecture notes do without case analysis.

Finite versions of memo-tables are known as tries or digital search trees.
Knuth [25] attributes the idea of a trie to Thue [36]. Connelly and Morris [5]
formalised the concept of a trie in a categorical setting: they showed that a trie
is a functor and that the corresponding look-up function is a natural transfor-
mation. The author gave a datatype-generic or polytypic definition of tries and
memo-tables using type-indexed datatypes [16, 17]. The insight that a function
from an inductive type is tabulated by a coinductive type is due to Altenkirch [2].
If the trie structures are deforested, we obtain linear algorithms for sorting and
grouping [15]. Like tries, these algorithms do not depend on an ordering relation,
but use the structure of the elements to organise the working.

8 Conclusion

I hope you have enjoyed the journey. By and large, coinductive datatypes and
corecursive programs are under-appreciated. We have demonstrated that they
nicely support a holistic or wholemeal approach to programming and proving.
A stream enables us to treat an infinite sequence of elements as a single entity.
Likewise, a tree captures an infinite binary process.

Streams and trees can be conveniently defined using recursion equations.
Admissible equations have unique solutions, which is the basis of the unique
fixed-point principle. Both coinductive types have additional structure that can
be put to good use. The idiomatic structure allows us to lift operations, which is
a notational convenience not to be underestimated. Definitions and calculations
benefit from the fact that streams and trees are memo-tables and that look-up
and tabulation are idiom homomorphisms.

References

1. Aczel, P., Mendler, N.: A final coalgebra theorem. In: Pitt, D., Rydeheard, D., Dy-
bjer, P., Poigné, A. (eds.) Category Theory and Computer Science (Manchester).
Lecture Notes in Computer Science, vol. 389, pp. 357–365. Springer-Verlag, Berlin
(1989)

2. Altenkirch, T.: Representations of first order function types as terminal coalge-
bras. In: Typed Lambda Calculi and Applications, TLCA 2001. Lecture Notes in
Computer Science, vol. 2044, pp. 62–78. Springer-Verlag (2001)

3. Bird, R., de Moor, O.: Algebra of Programming. Prentice Hall Europe, London
(1997)

4. Bird, R.: An introduction to the theory of lists. In: Broy, M. (ed.) Proceedings
of the NATO Advanced Study Institute on Logic of programming and calculi of
discrete design, Marktoberdorf, Germany. pp. 5–42. Springer-Verlag (1987)

5. Connelly, R.H., Morris, F.L.: A generalization of the trie data structure. Mathe-
matical Structures in Computer Science 5(3), 381–418 (September 1995)

6. Coquand, T.: Infinite objects in type theory. In: Barendregt, H., Nipkow, T. (eds.)
Types for Proofs and Programs, International Workshop TYPES’93, Nijmegen,

Reasoning about Codata 51

The Netherlands, May 24-–28, 1993, Selected Papers, Lecture Notes in Computer
Science, vol. 806, pp. 62–78. Springer-Verlag (1994)

7. Curry, H., Feys, R.: Combinatory Logic, Volume 1. North-Holland, Amsterdam
New York Oxford (1958)

8. Danvy, O.: An extensional characterization of lambda-lifting and lambda-dropping.
In: Middeldorp, A., Sato, T. (eds.) 4th Fuji International Symposium on Functional
and Logic Programming (FLOPS’99), Tsukuba, Japan. Lecture Notes in Computer
Science, vol. 1722, pp. 241–250. Springer-Verlag (November 1999)

9. Dijkstra, E.W.: EWD570: An exercise for Dr.R.M.Burstall (May 1976), the
manuscript was published as pages 215–216 of Edsger W. Dijkstra, Selected Writ-
ings on Computing: A Personal Perspective, Springer-Verlag, 1982. ISBN 0–387–
90652–5.

10. Dijkstra, E.W.: EWD578: More about the function “fusc” (a sequel to EWD570)
(May 1976), the manuscript was published as pages 230–232 of Edsger W. Dijkstra,
Selected Writings on Computing: A Personal Perspective, Springer-Verlag, 1982.
ISBN 0–387–90652–5.

11. Fokkinga, M.M.: Law and Order in Algorithmics. Ph.D. thesis, University of
Twente (February 1992)

12. Fokkinga, M.M., Meijer, E.: Program calculation properties of continuous alge-
bras. Tech. Rep. CS-R9104, Centre of Mathematics and Computer Science, CWI,
Amsterdam (January 1991)

13. Gibbons, J., Hutton, G.: Proof methods for corecursive programs. Fundamenta
Informaticae (XX), 1–14 (2005)

14. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete mathematics. Addison-
Wesley Publishing Company, Reading, Massachusetts, 2nd edn. (1994)

15. Henglein, F.: Generic discrimination: Sorting and partitioning unshared data in
linear time. In: Thiemann, P. (ed.) Proceedings of the 13th ACM Sigplan Interna-
tional Conference on Functional Programming (ICFP’08), September 22–24, 2008,
Victoria, BC, Canada. pp. 91–102. ACM, New York, NY, USA (September 2008)

16. Hinze, R.: Generalizing generalized tries. Journal of Functional Programming
10(4), 327–351 (July 2000)

17. Hinze, R.: Memo functions, polytypically! In: Jeuring, J. (ed.) Proceedings of the
2nd Workshop on Generic Programming, Ponte de Lima, Portugal. pp. 17–32 (July
2000), the proceedings appeared as a technical report of Universiteit Utrecht, UU-
CS-2000-19

18. Hinze, R.: Functional Pearl: Streams and unique fixed points. In: Thiemann, P.
(ed.) Proceedings of the 13th ACM SIGPLAN International Conference on Func-
tional Programming (ICFP ’08). pp. 189–200. ACM Press (September 2008)

19. Hinze, R.: Functional Pearl: The Bird tree. J. Functional Programming 19(5),
491–508 (September 2009)

20. Hinze, R.: Scans and convolutions—a calculational proof of Moessner’s theorem.
In: Scholz, S.B. (ed.) Post-proceedings of the 20th International Symposium on the
Implementation and Application of Functional Languages (IFL 2008), University
of Hertfordshire, UK, September 10–12, 2008. Lecture Notes in Computer Science,
vol. 5836. Springer-Verlag (2009)

21. Hinze, R.: Lifting operators and laws (2010), available from http://www.comlab.
ox.ac.uk/ralf.hinze/Lifting.pdf

22. Hinze, R., Löh, A.: Guide2lhs2tex (for version 1.13) (February 2008), http://
people.cs.uu.nl/andres/lhs2tex/

23. Hutton, G., Meijer, E.: Functional Pearl: Back to basics: Deriving representation
changers functionally. J. Functional Programming 6(1), 181–188 (January 1996)

52 Ralf Hinze

24. Karczmarczuk, J.: Generating power of lazy semantics. Theoretical Computer Sci-
ence (187), 203–219 (1997)

25. Knuth, D.E.: The Art of Computer Programming, Volume 3: Sorting and Search-
ing. Addison-Wesley Publishing Company, 2nd edn. (1998)

26. Mac Lane, S.: Categories for the Working Mathematician. Graduate Texts in Math-
ematics, Springer-Verlag, Berlin, 2nd edn. (1998)

27. McBride, C., Paterson, R.: Functional Pearl: Applicative programming with effects.
Journal of Functional Programming 18(1), 1–13 (2008)

28. McIlroy, M.D.: Power series, power serious. J. Functional Programming 3(9), 325–
337 (May 1999)

29. McIlroy, M.D.: The music of streams. Information Processing Letters (77), 189–195
(2001)

30. Milner, R.: Communication and Concurrency. International Series in Computer
Science, Prentice Hall International (1989)

31. Peyton Jones, S.: Haskell 98 Language and Libraries. Cambridge University Press
(2003)

32. Rutten, J.: Fundamental study: Behavioural differential equations: A coinductive
calculus of streams, automata, and power series. Theoretical Computer Science
308, 1–53 (2003)

33. Rutten, J.: A coinductive calculus of streams. Math. Struct. in Comp. Science 15,
93–147 (2005)

34. Röjemo, N.: Garbage collection, and memory efficiency, in lazy functional lan-
guages. Ph.D. thesis, Chalmers University of Technology (1995)

35. Sloane, N.J.A.: The on-line encyclopedia of integer sequences [online] (2009), avail-
able at: http://www.research.att.com/~njas/sequences/

36. Thue, A.: Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Skrifter
udgivne af Videnskaps-Selskabet i Christiania, Mathematisk-Naturvidenskabelig
Klasse 1, 1–67 (1912), reprinted in Thue’s “Selected Mathematical Papers” (Oslo:
Universitetsforlaget, 1977), 413–477

37. Turner, D.: A new implementation technique for applicative languages. Software -
Practice and Experience 9, 31–49 (1979)

