
Squiggoling with Bialgebras

Recursion Schemes from Comonads Revisited

Ralf Hinze and Nicolas Wu?

Department of Computer Science, University of Oxford
Wolfson Building, Parks Road, Oxford, OX1 3QD, England

{ralf.hinze,nicolas.wu}@cs.ox.ac.uk

1 Introduction

A broad class of algorithms fall within the framework of dynamic programming,
where the results of smaller parts of a problem are used to build efficient solutions
of the whole. Such algorithms are an essential tool in the repertoire of every
skilled programmer. A classic example is the unbounded knapsack problem, which
so neatly demonstrates how a greedy algorithm can be implemented efficiently
using dynamic programming.

We start with a specification of the problem. There was once a professor who
had finally reached his time to retire. His final task, before going on indefinite
gardening leave, was to bring home the books and papers from his office which
he treasured the most. Unfortunately, he was unable to bring them all, and could
only carry a fixed weight of capacity c in his knapsack. There was no end to the
number of documents he could have chosen from in his office, and so the best he
could manage was to categorise them into groups, where each group i contained
items whose weight and value were wi and vi. He was interested, of course, in
computing the maximum value that would fit into his knapsack. Thus, given
capacity 15 and a list of groups wvs with

wvs :: [(N,Value)]
wvs = [(12, 4), (1, 2), (2, 2), (1, 1), (4, 10)] ,

the maximum value possible is 36, using three items each from the second and
fifth groups. How would he proceed to efficiently choose what to take with him?

The naive recursive solution of the problem takes exponential time, since
each intermediate level of the recursion spawns further recursive calls, and no
common results are shared:

knapsack1 :: N→ Value
knapsack1 0 = 0
knapsack1 (c + 1) =
maximum ′ [v + knapsack1 (c − w) | (w + 1, v)← wvs,w 6 c] .

We suppose here that the maximum value of the empty list of candidate solutions
is zero, and so let maximum ′ [] = 0 and be the maximum of the list otherwise.

? This work has been funded by EPSRC grant number EP/J010995/1.

2

This example lends itself perfectly to a solution that uses dynamic program-
ming: each recursive step can naturally be thought of as a subproblem whose
result can be reused time and again. The translation into an efficient version
that uses an immutable Array datatype, that is dynamically constructed to store
the results, is a fairly routine exercise:

knapsack2 :: N→ Value
knapsack2 c = table ! c
where
table :: ArrayNValue
table = array (0, c) [(i , ks i) | i ← [0 . . c]]
ks :: N→ Value
ks i = maximum ′ [v + table ! (i − w) | (w , v)← wvs,w 6 i] .

The improvement in performance is dramatic, resulting in a pseudo-polynomial
time algorithm. The key to this efficiency lies in the fact that the array table
allows constant time indexing of results that are reused in different recursive
calls of the function.

However, despite the performance gains, the solution we have arrived at re-
mains unsatisfactory. A fundamental problem with both of the implementations
we have seen is that they rely on general recursion, and it has long been under-
stood that general recursion is the ‘goto’ of functional programming. Of course,
what we desire is a version that might be expressed as an instance of a recur-
sion scheme that holds the promise that it terminates, and has the efficiency we
expect from this algorithm.

Where do we turn to for a squiggoly answer to this problem? One approach
is to use recursion schemes from comonads [1], in particular, histomorphisms,
which are the squiggol rendering of course-of-value recursion:

Recursion schemes from comonads form a general recursion principle that
makes use of a comonad (N, ε, δ), to provide ‘contextual information’ to the body
of the recursion. The scheme is ‘doubly generic’: it is parametric in a datatype
µF, and in the comonad N. Histomorphisms are a particularly nice instance of
the recursion scheme, where a cofree comonad is used to make the results of
recursive calls on all subterms available at each iteration.

More formally, recursion schemes from comonads make use of a coalgebra
fan : µF → N (µF) that embeds a subterm in a context. The coalgebra can be
defined generically in terms of a distributive law λ : F ◦ N →̇ N ◦ F, which is
subject to certain conditions (3), detailed below. Here is the scheme in its full
glory:

Let λ : F ◦ N →̇ N ◦ F be a distributive law, and fan = N in · λ (µF) . For
any (F ◦ N)-algebra (B , b) there is a unique arrow f : µF→ B such that

F (µF) F (NB)

µF B

F (N f ·fan)

in b

f

. (1)

3

The composition N f · fan creates a context that makes the results of ‘recursive
calls’ available to the algebra b. Note that b is a context-sensitive algebra—an
(F ◦ N)-algebra, rather than merely an F-algebra.

The recursion scheme is quite amazing in its generality: it works for an arbi-
trary functor F and an arbitrary comonad N, as long as they can be related by
a distributive law. Now, the goal of this paper is to establish the correctness of
the scheme, deriving the unique solution of (1) in the process. To this end we
shall need quite a bit of machinery, which we shall introduce in the subsequent
sections. But first let us revisit our introductory example.

To phrase the knapsack problem as an instance of the scheme we need to
identify the initial algebra (µF, in) and the comonad N. The first is easy: the
type of natural numbers N is the initial algebra of the functor NatA = 1 + A.
The second choice is specific to the class of algorithms: histomorphisms rely
on the cofree comonad, in our example, on the cofree comonad for the base
functor Nat, which we denote Nat∞. We will go into more detail in the next
section, but for now, Nat∞ can be understood as the type of nonempty lists,
which for our purposes, are treated as simple look-up tables. In particular, it
supports a function lookup :: Nat∞ v → N → Maybe v that acts as a means of
indexing values that have already been calculated.

knapsack3 :: N→ Value
knapsack3 = knap · fmap (fmap knapsack3 · fan) · in◦

knap :: Nat (Nat∞Value)→ Value
knap (Zero) = 0
knap (Succ table) =
maximum ′ [v1 + v2 | (w + 1, v1)← wvs, Just v2 ← [lookup table w]]

The helper function knap plays the part of the context-sensitive algebra. Note
that lookup table w corresponds to the operation table ! (i−w) of the array-based
implementation. In other words, the look-up table of type Nat∞Value stores the
values in reverse order.

2 Background: Comonad and Distributive Law

Comonad. Functional programmers have embraced monads, and to a lesser ex-
tent, comonads, to capture effectful and context-sensitive computations. We
use comonads to model ‘recursive calls in context’. A comonad is a functor
N : C → C equipped with a natural transformation ε : N →̇ Id (counit), that ex-
tracts a value from a context, and a second natural transformation δ : N→̇N◦N
(comultiplication), that duplicates a context, such that the following laws hold:

ε ◦ N · δ = N , (2a)

N ◦ ε · δ = N , (2b)

δ ◦ N · δ = N ◦ δ · δ . (2c)

4

Here we use categorical notation, where natural transformations can be com-
posed horizontally (◦), and vertically (·), and the identity natural transforma-
tion for a functor is denoted by the functor itself. The first two properties, the
counit laws, state that duplicating a context and then discarding a duplicate is
the same as doing nothing. The third property, the coassociative law, equates
the two ways of duplicating a context twice.

In Haskell, we can capture the interface to comonads by using the following
type class, where extract corresponds to ε, and duplicate to δ.

classComonad nwhere
extract :: n a → a
duplicate :: n a → n (n a) .

We have already noted that histomorphisms employ the so-called cofree
comonad of a functor F. As Haskell supports higher-kinded datatypes, the func-
tor part of the comonad can be readily implemented as follows.

data f∞ a = Cons {head :: a, tail :: f (f∞ a)}
instance (Functor f)⇒ Functor (f∞)where
fmap f (Cons a ts) = Cons (f a) (fmap (fmap f) ts)

The type f∞ can be seen as the type of generalised streams of observations—
‘generalised’ because the ‘tail’ is a F-structure of ‘streams’ rather than just a
single one. A generalised stream is, in fact, very similar to a generalised rose
tree, except that the latter is usually seen as an element of an inductive type,
whereas this construction is patently coinductive.

A cofree value can be built by coiteration from some seed value, where a
given function hd is used to produce a value from a seed, and tl produces the
seeds in the next level of coiteration:

coiterate :: (Functor f)⇒ (a → b)→ (a → f a)→ (a → f∞ b)
coiterate hd tl x = Cons (hd x) (fmap (coiterate hd tl) (tl x)) .

The function h = coiterate f c enjoys a universal property: it is the unique F-
coalgebra homomorphism h : (A, c) → (F∞ B , tail B) with f = head B · h.
Together with the destructors of the datatype, coiterate can be used to produce
an instance of the Comonad class:

instance (Functor f)⇒ Comonad (f∞)where
extract = head
duplicate = coiterate id tail .

If we instantiate the base functor of the cofree comonad to Id, we obtain the
type of streams. A more interesting base functor is

dataNat a = Zero | Succ a
instanceFunctor Natwhere
fmap f Zero = Zero
fmap f (Succ n) = Succ (f n) ,

5

which gives rise to the type Nat∞ of non-empty colists. Colists support the
indexing operation that was already used in the definition of knap.

lookup :: Nat∞ v → N→ Maybe v
lookup (Cons a) 0 = Just a
lookup (Cons a (Zero)) (n + 1) = Nothing
lookup (Cons a (Succ t)) (n + 1) = lookup t n

Distributive law. A distributive law λ : F ◦N →̇N ◦ F of an endofunctor F over a
comonad N is a natural transformation satisfying the two coherence conditions:

ε ◦ F · λ = F ◦ ε , (3a)

δ ◦ F · λ = N ◦ λ · λ ◦ N · F ◦ δ . (3b)

The function coiterate that we saw earlier can be used to create a generic
distributive law for the cofree comonad. (The proof that this is, in fact, a dis-
tributive law of an endofunctor over a comonad is beyond the scope of this
paper). We have λ = coiterate (F head) (F tail), which is implemented as:

dist :: (Functor f)⇒ f (f∞ a)→ f∞ (f a)
dist = coiterate (fmap head) (fmap tail) .

The coalgebra fan, which generates the stream of all subterms, enjoys a
generic definition in terms of dist . Below we have specialised its type to the
initial algebra N.

fan :: N→ Nat∞ N
fan = fmap in · dist

As an example, the call fan 3 generates the colist

Cons 3 (Succ (Cons 2 (Succ (Cons 1 (Succ (Cons 0Zero)))))) .

This corresponds to the list of all predecessors.

3 Bialgebra

The recursion scheme involves both algebras and coalgebras, and combines them
in an interesting way. We have noted above that fan is a coalgebra, but it is actu-
ally a bit more: it is a coalgebra for the comonad N. Furthermore, the algebra in
and the coalgebra fan go hand-in-hand. They are related by the distributive
law λ and form what is known as a λ-bialgebra, a combination of an algebra and
a coalgebra with a common carrier. In particular, in and fan satisfy the so-called

6

pentagonal law.

F (µF)

F (N (µF))

µF

N (F (µF))

N (µF)

in

F fan

λ (µF)

fan

N in

(4)

The diagram commutes simply because the coalgebra fan = N in · λ (µF) is
an F-homomorphism of type (µF, in)→ (N (µF),N in · λ (µF)), more about this
shortly.

Bialgebras come in many flavours; we need the variant that combines F-
algebras and coalgebras for a comonad N. The two functors have to interact
coherently, described by the distributive law λ : F ◦ N →̇ N ◦ F.

Background: Coalgebra for a comonad. A coalgebra for a comonad N is an N-
coalgebra (C , c) that respects ε and δ:

εC · c = idC , (5a)

δC · c = N c · c . (5b)

If we first create a context and then focus, we obtain the original value. Creating
a nested context is the same as first creating a context and then duplicating it.
For example, the coalgebra (NA, δA) is respectful—this is the so-called cofree
coalgebra for the comonad N. The coherence conditions, (5a) and (5b), are just
two of the comonad laws, (2a) and (2c). Coalgebras that respect ε and δ and N-
coalgebra homomorphisms form a category, known as the (co)-Eilenberg-Moore
category and denoted CN.

The second law (5b) also enjoys an alternative reading: c is an N-coalgebra
homomorphism of type (C , c)→ (NC , δC). This observation is at the heart of
the Eilenberg-Moore construction, see Section 4.

Background: Bialgebra. Let λ : F ◦ N →̇ N ◦ F be a distributive law for the
endofunctor F over the comonad N. A λ-bialgebra (X , a, c) consists of an F-
algebra a and a coalgebra c for the comonad N such that the pentagonal law
holds:

c · a = N a · λX · F c . (6)

Loosely speaking, this law allows us to swap the algebra a and the coalgebra c.
A λ-bialgebra homomorphism is both an F-algebra and an N-coalgebra homo-
morphism. λ-bialgebras and their homomorphisms form a category.

7

The pentagonal law (6) also has two asymmetric renderings

FX F (NX)

X NX

a

F c

Nλ a

c

FX

F (NX)

X

N (FX)

NX

a

F c

λX

c

N a

X FX

NX N (FX)

c

a

Fλ c

N a

, (7)

which relate it to so-called liftings and coliftings, which we introduce next.

Background: Lifting and colifting. A functor H̄ : F-Alg(C)→ G-Alg(D) is called
a lifting of H : C → D iff H◦UF = UG◦H̄, where UF : F-Alg(C)→ C and UG : G-
Alg(D)→ D are forgetful functors.

Given a distributive law λ : H ◦ F ←̇ G ◦ H, we can define a lifting as follows:

Hλ (A, a) = (HA,H a · λA) ,

Hλ h = H h .

For liftings, the action on the carrier and on homomorphisms is fixed; the action
on the algebra is determined by the distributive law.

It is customary to use the action of an algebra to refer to the algebra itself.
In this vein, we simplify our notation and use Hλ a to mean Hλ (A, a). We abuse
this in certain contexts by using Hλ a for the arrow of the resultant algebra,
H a · λA.

Dually, a functor H : F-Coalg(C)→ G-Coalg(D) is called a colifting of H :
C → D iff UG ◦ H = H ◦ UF. Given a distributive law λ : H ◦ F →̇ G ◦ H we can
define a colifting as follows:

Hλ (C , c) = (HC , λC · H c) ,

Hλ h = H h .

The distributive law λ : F ◦ N →̇ N ◦ F underlying λ-bialgebras induces the
lifting Nλ : F-Alg(C) → F-Alg(C). The coherence conditions (3) ensure that
Nλ is a comonad. In particular, the natural transformations ε and δ are F-
algebra homomorphisms of type εA : Nλ (A, a) → (A, a) and δA : Nλ (A, a) →
Nλ (Nλ (A, a)). Dually, we can use λ to colift F to the category CN. Now, the
coherence conditions (3) guarantee that Fλ : CN → CN preserves respect for ε
and δ, that is, it maps coalgebras for N to coalgebras for N.

Returning to (7), the diagram on the left shows that c : (X , a)→ Nλ (X , a)
is an F-algebra homomorphism. Dually, the diagram on the right identifies a :
Fλ (X , c) → (X , c) as an N-coalgebra homomorphism. Thus, we can interpret
the bialgebra (X , a, c) both as an algebra over a coalgebra ((X , c), a), or as a
coalgebra over an algebra ((X , a), c).

8

4 Eilenberg-Moore construction

We are nearly ready to tackle the proof of uniqueness. Before we head out to
the garden, we should fetch one more tool from the shed. First observe that
the recursion scheme (1) involves actually two arrows: f and N f · fan. Perhaps
surprisingly, the latter is an N-coalgebra homomorphism of type (µF, fan) →
(NB , δB). To understand why, we delve a bit deeper into the theory.

Background: Eilenberg-Moore construction. The so-called Eilenberg-Moore con-
struction [2] applied to comonads shows that arrows f : A → B of C and
homomorphisms h : (A, c)→ (NB , δB) of CN are in one-to-one correspondence:

f = εB · h ⇐⇒ N f · c = h . (8)

The homomorphism h is also called the transpose of f . To get into a squiggoly
mood, let us establish the one-to-one correspondence.

“=⇒”: We have to show that N f · c is an N-coalgebra homomorphism of
type (A, c)→ (NB , δB)

N (N f · c) · c
= { N functor and c coalgebra for N (5b) }

N (N f) · δA · c
= { δ natural and f : A→ B }
δB · N f · c ,

and that h is uniquely determined by f = εB · h:

h

= { comonad counit (2b) }
N (εB) · δB · h

= { h : (A, c)→ (NB , δB) }
N (εB) · N h · c

= { N functor and assumption: f = εB · h }
N f · c .

“⇐=”: For the other direction we reason

f

= { c coalgebra for N (5a) }
f · εA · c

= { ε natural and f : A→ B }
εB · N f · c

= { assumption: N f · c = h }
εB · h .

9

5 Proof

Equipped with our shiny new tools, we can prepare the ground to solve the cen-
tral problem, the proof that Equation (1) has a unique solution. Our strategy
for conquering this proof is in two parts: first, we establish a bijection between
certain arrows and λ-bialgebra homomorphisms; second, we instantiate the bi-
jection to the initial λ-bialgebra. Without going into details, we assume that the
ambient categories support the initial and final constructions that we will make
use of.

5.1 Proof: First Half

We abstract away from the initial object (µF, in, fan), generalising to an ar-
bitrary λ-bialgebra (A, a, c). The first goal is to establish a bijection between
arrows f : A → B satisfying f · a = b · F (N f · c) and λ-bialgebra homomor-
phisms h : (A, a, c)→ (NB , b], δB), where b] is a to-be-determined F-algebra.

The Eilenberg-Moore construction (8) shows that arrows f : A → B and
N-coalgebra homomorphisms h : (A, c) → (NB , δB) are in one-to-one corre-
spondence. So we identify N f · c as the transpose of f and simplify f ’s equation
to f · a = b · F h.

FA F (NB)

A B

F h

a b

f

⇐⇒

FA F (NB)

A NB

NA N (NB)

F h

a b]

h

c δB

N h

(9)

“=⇒”: We already know that h : (A, c) → (NB , δB) is an N-coalgebra
homomorphism. It remains to show that h is an F-algebra homomorphism of
type (A, a) → (NB , b]), deriving b] in the calculation. The strategy for the
proof is clear: we have to transmogrify f into N f · c. Thus, we apply N to both
sides of f · a = b · F h and then ‘swap’ a and c using the pentagonal law (6).

f · a = b · F h
=⇒ { N functor }

N f · N a = N b · N (F h)

=⇒ { Leibniz }
N f · N a · Fλ c = N b · N (F h) · Fλ c

⇐⇒ { a : Fλ (A, c)→ (A, c) (6) }
N f · c · a = N b · N (F h) · Fλ c

⇐⇒ { Fλ h : Fλ (A, c)→ Fλ (NB , δB) and Fλ h = F h }
N f · c · a = N b · Fλ (δB) · F h

10

N f · c · a = N b · Fλ (δB) · F h
⇐⇒ { N f · c = h }

h · a = N b · Fλ (δB) · F h

The proof makes essential use of the fact that a and h are N-coalgebra homo-
morphisms, and that Fλ preserves coalgebra homomorphisms. Along the way,
we have derived a formula for b]:

b] = N b · Fλ (δB) = N b · λ (NB) · F (δB) . (10)

We have to make sure that (NB , b], δB) is a λ-bialgebra. Since Fλ (NB , δB) is
a coalgebra for the comonad N, we can conclude using (8) that b] is a coalgebra
homomorphism of type Fλ (NB , δB)→ (NB , δB), which establishes the desired
result. Furthermore, we have b = εB · b], which is essential for the reverse
direction:

“⇐=”: Again, the strategy is clear: we have to transmogrify h into εB · h.
Thus, we precompose both sides of the homomorphism condition with εB .

h · a = b] · F h
=⇒ { Leibniz }

εB · h · a = εB · b] · F h
⇐⇒ { f = εB · h and b = εB · b] }

f · a = b · F h

To summarise, f and h are related by the Eilenberg-Moore construction, as
are b and b].

5.2 Proof: Second Half

Now, we can reap the harvest: the initial object in the category of λ-bialgebras
is (µF, in, fan) where fan = Nλ in = N in · λ (µF) . Several proof obligations
arise. We have already noted that the pentagonal law (6) holds, see Diagram (4).

Since (µF, in) is the initial F-algebra there is a unique F-algebra homomor-
phism h to any target algebra. Because of uniqueness, h is also an N-coalgebra
homomorphism—recall that the coalgebra of a λ-bialgebra is simultaneously an
F-algebra homomorphism.

F (µF) FX

µF X

N (µF) NX

F h

in a

h

a

fan c

N h

11

It remains to show that (µF, fan) is a coalgebra for the comonad N. The
proofs make essential use of the fact that ε and δ are F-algebra homomorphisms.
The coalgebra fan respects ε (5a):

F (µF) F (N (µF)) F (µF)

µF N (µF) µF

in

F (ε (µF))

Nλ in

F fan

in

ε (µF) fan

=

F (µF) F (µF)

µF µF

in

F id

in

id

.

It also respects δ (5b):

F (N (N (µF))) F (N (µF)) F (µF)

N (N (µF)) N (µF) µF

Nλ (Nλ in)

F (δ (µF))

Nλ in

F fan

in

δ (µF) fan

=

F (N (N (µF))) F (µF)

N (N (µF)) µF

Nλ (Nλ in) in

=

F (N (N (µF))) F (N (µF)) F (µF)

N (N (µF)) N (µF) µF

Nλ (Nλ in)

F (N fan)

Nλ in

F fan

in

N fan fan

.

Note that N fan is the lifting of fan and hence an F-homomorphism. Since there
is only one homomorphism from (µF, in) to Nλ (Nλ (µF, in)), both compositions
are equal.

Consequently, the unique homomorphism from the initial λ-bialgebra to the
bialgebra (NB , b], δB) is h = b] .

F (µF) F (NB)

µF NB

N (µF) N (NB)

F h

in b]

h

b]

fan δB

N h

12

Furthermore, f = εB · h = εB · b] is the unique solution of

F (µF) F (NB)

µF B

F (N f ·fan)

in b

f

.

6 Knapsack revisited

Obtaining an efficient implementation of knapsack is now simply a matter of
instantiating the framework above to the cofree comonad of N.

knapsack4 :: N→ Value
knapsack4 = head · knap]
(−)] :: (Functor f)⇒ (f (f∞ a)→ a)→ (f (f∞ a)→ f∞ a)
b] = fmap b · dist · fmap duplicate

Recall that knap is a context-sensitive algebra of type Nat (Nat∞Value) →
Value: as such it has access to the recursive images of all natural numbers smaller
than the current one. The implementation of (−)] builds on the generic defini-
tion that works for an arbitrary comonad. As a final tweak let us simplify its
implementation for the comonad at hand:

We have emphasised before that b] is a coalgebra for N and consequently
an N-coalgebra homomorphism. If N is the cofree comonad F∞, then b] is also
an F-coalgebra homomorphism, which is the key to improving its definition. A
central observation is that λ-bialgebras with λ : F ◦ F∞ →̇ F∞ ◦ F are in one-to-
one correspondence to id -bialgebras with id : F ◦F →̇F ◦F. (The correspondence
builds on the fact that the category of F-coalgebras is isomorphic to the (co)-
Eilenberg-Moore category CF∞ .)

FX

F (FX)

X

F (FX)

FX

a

F c

id

c

F a

⇐⇒

FX

F (F∞X)

X

F∞ (FX)

F∞X

a

F c̄

λX

c̄

F∞ a

where c̄ = coiterate id c

Since the comultiplication is defined δA = coiterate id (tail A), the id -bialgebra
corresponding to the λ-bialgebra (NB , b], δB) is (NB , b], tail B). Consequently
b] is an F-coalgebra homomorphism: tail B · b] = F b] · F (tail B). Since further-
more head B · b] = b, we have b] = coiterate b (F (tail B)).

(−)] :: (Functor f)⇒ (f (f∞ a)→ a)→ (f (f∞ a)→ f∞ a)
b] = coiterate b (fmap tail)

13

Quite interestingly, the final solution of the unbounded knapsack problem, that
is, knapsack = head · coiterate knap (fmap tail) is roughly a fold of a coiter-
ation, a generalisation of a fold of an unfold—recall that unfolds are related to
coiterations in the same way final coalgebras are related to cofree comonads.

Benchmarks. We now have four different versions of knapsack, and it is a worth-
while exercise to compare their performance with some benchmarks. The charts
below show the results of the mean time from a sample of 1000 measurements.
The first benchmark presents the results of solving the problem with a capacity
of 15.

0 20 40 60 80 100 120 140 160

knapsack1 15

knapsack2 15

knapsack3 15

knapsack4 15

146.35

0.01

5.12

0.06

time (milliseconds)

The results of knapsack1 are underwhelming, even for very small knapsack ca-
pacities. This is entirely to be expected, given that it is an exponential algorithm,
and served only as a specification of the problem.

We have claimed that our final derived version of knapsack4 is efficient, so
how does it compare with the array-based version discussed in Section 1? Looking
more closely at knapsack2 and knapsack4, over a much larger capacity of 250,
shows that despite our efforts, the version based on arrays is still significantly
faster.

0 5 10 15 20 25 30 35

knapsack2 250

knapsack ′2 250

knapsack ′′2 250
knapsack4 250

0.13

0.94

3.18

33.66

time (milliseconds)

We might expect a result along these lines, given that knapsack2 uses constant
time look-ups in the array that is built, whereas knapsack4 must still perform a
linear traversal to get to its data. However, the results of knapsack ′2 show what
happens when we replace the underlying array structure of knapsack2 with a
list that is treated as an indexed structure using the (!!) operator. Similarly
knapsack ′′2 is a version where the list is treated as an association list and in-
dexed using lookup from the prelude. This difference in performance is rather
disappointing, but note, however, that knapsack1 and knapsack3 were unable to
complete within a reasonable time. Why is knapsack4 so much slower?

The main problem occurs not in the look-up of values, but rather, in the
construction of the look-up table. For knapsack2, a single iteration is required

14

to build the table. Looking more carefully at the code that was derived for
knapsack4, it should be clear that the function responsible for creating the tables,
knap, is used within a coiterate that is nested in a fold. Thus there is a linear
factor difference between the two algorithms.

However, all is not lost, since we can use this observation to adjust our
definition to become the following:

knapsack5 :: N→ Value
knapsack5 = head · knap[
(−)[:: (f (f∞ a)→ a)→ (f (f∞ a)→ f∞ a)
b[ts = Cons (b ts) ts .

The algebra b[constructs the look-up table in time proportional to the running-
time of b, cleverly re-using its argument for the tail of the table.

How does this compare to knapsack2? The benchmarks show that the two
are now in the same ball park, and their performance scales linearly. Not bad!

0 0.2 0.4 0.6 0.8 1 1.2 1.4

knapsack2 105

knapsack5 105

knapsack2 106

knapsack5 106

0.09

0.13

0.98

1.3

time (seconds)

But what about the proof that knapsack5 is correct? Does it follow the specifica-
tion? What is its relationship to bialgebras? We leave the proof that knapsack5

satisfies our requirements to the avid reader: without a doubt, this should be a
manageable task for a distinguished professor with plenty of time on his hands.

7 Conclusion

In this paper we have given a proof of correctness of recursion schemes from
comonads. Along the way, we have shown derivations of the unique arrow that
solves these schemes, and presented ways of optimising this computation. Our
analysis shows that the optimisations we introduced improve upon the efficiency
of the standard definition of a histomorphism. Furthermore, the final version
we presented, whose derivation is left as a challenge, is comparable to an array-
based version. While the efficiency of our final algorithm falls slightly short of an
array-based one, it gains in an important way: by construction, it is guaranteed
to terminate, and we squiggolers favour correctness over speed. And so, we keenly
await the derivation of our final implementation.

15

Acknowledgements

The authors would like to thank Jeremy Gibbons for pointing them to the knap-
sack problem as an interesting example of a histomorphism, and for his useful
suggestions for improving this paper.

On a personal note, I would like to thank you, Doaitse, for your support and
encouragement over the past fifteen years. I do hope that you enjoy your newly
gained freedom. Ralf

References

1. Uustalu, T., Vene, V., Pardo, A.: Recursion schemes from comonads. Nordic J. of
Computing 8 (September 2001) 366–390 2

2. Eilenberg, S., Moore, J.C.: Adjoint functors and triples. Illinois J. Math 9(3) (1965)
381–398 8

	Squiggoling with Bialgebras

