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Abstract

Support for generic programming consists of three essential ingredients: support for
overloaded functions, a run-time type representation, and a generic view on data.
Different approaches to datatype-generic programming occupy different points in
this design space. In this article, we revisit the “Scrap your boilerplate” approach
and identify its location within the three-dimensional design space. The character-
istic features of “Scrap your boilerplate” are its two generic views, the ‘spine’ view
for consuming and transforming data, and the ‘type-spine’ view for producing data.
We show how to combine these views with different overloading mechanisms and
type representations.

1 Introduction

A type system is like a suit of armour: it shields against the modern dangers
of illegal instructions and memory violations, but it also restricts flexibility.
The lack of flexibility is particularly vexing when it comes to implementing
fundamental operations such as showing a value or comparing two values. In a
statically typed language such as Haskell 98 [43] it is simply not possible, for
instance, to define an equality test that works for all non-function types. As a
rule of thumb, the more expressive a type system, the more fine-grained the
type information and the more difficult it becomes to write general-purpose
functions.

This problem has been the focus of intensive research for more than a decade.
In Haskell 1.0 and in subsequent versions of the language, the problem was
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only partially addressed: by attaching a so-called deriving form to a datatype
declaration the programmer can instruct the compiler to generate an instance
of equality for the new type. 1 In fact, the deriving mechanism is not restricted
to equality: parsers, pretty-printers and several other functions are derivable,
as well. These functions have become known as (datatype-) generic or poly-
typic functions, functions that work for a whole family of types. Unfortunately,
Haskell’s deriving mechanism is closed: the programmer cannot introduce new
generic functions.

A multitude of proposals have been put forward that support exactly this:
the definition of generic functions. The approaches differ wildly in syntax, ex-
pressiveness and ease of use. However, they all share a common structure. In
general, support for generic programming consists of three essential ingredi-
ents:

• support for overloading,
• a run-time type representation, and
• a generic view on data.

An overloaded function is a function that performs case analysis on types and
exhibits type-specific behaviour. As we will see in Section 2, generic functions
are special cases of overloaded functions, and almost every generic function
exhibits type-specific behaviour: Haskell’s pretty-printer, for instance, displays
pairs and lists using a special mix-fix notation.

If we write a generic function, does it only range over types (such as the
pretty printer), or also over parameterised types (such as a map function that
works for any container type)? The type representation determines the types
we can analyze in overloaded functions. Ideally, a type representation is a
faithful mirror of the language’s type system. To be able to define such a
representation, the type system must be sufficiently expressive. However, the
more expressive a type system, the more difficult it is to reflect the full system
onto the value level.

Finally, to make a function truly generic, we need a uniform mechanism for ac-
cessing the structure of values: a generic pretty printer works for all datatypes
including types that the programmer has yet to define. Consequently, the
pretty printer has to treat elements of these types in a uniform way: in Haskell,
for instance, they are displayed using prefix notation.

1 Actually, in Haskell 1.0 the compiler would always generate an instance of equality.
A deriving form was used to restrict the instances generated to those mentioned in
the form. To avoid the generation of instances altogether, the programmer had to
supply an empty deriving clause.
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The three ingredients are orthogonal concepts. Each concept can be realized
in different ways and each combination yields a different point in the design
space of generic programming. Not all combinations are equally feasible, and
sometimes, additional glue is required to make a choice work.

In this article, we take a closer look at the “Scrap your boilerplate” (SYB)
approach [44,36,37,29,27] and identify its location in the three-dimensional
design-space. The characteristic feature of SYB are its views: For consum-
ing and transforming values, SYB employs the ‘spine’ view; for producing
values, SYB provides the ‘type-spine’ view. We show how to use different
overloading mechanisms and type representations. In particular, we discuss
three techniques to achieve overloading: type reflection via a datatype of type
representations, Haskell’s type classes, and a type-safe cast. We explain how
to represent the type system of Haskell 1.0 and explore several ideas of how
to cover the more expressive system of Haskell 98 (or one of its manifold
extensions).

The rest of the article is organised as follows. In Section 2, we introduce the
central ideas of overloading, type representations, and generic views by pick-
ing one particular point in the design space: we choose explicit type reflection
to achieve support for overloading, we represent the simplest possible type
language, and pick the spine view of SYB as the generic view. Using this com-
bination, we present a few simple generic functions. Afterwards, we look at
each of the three dimensions in more detail, starting with type representations
(Section 3), followed by generic views (Section 4) and mechanisms for over-
loading (Section 5). Finally, we discuss related work in Section 6 and conclude
in Section 7.

Throughout this article, we use Haskell (with GADTs, and for some parts,
overlapping instances) as an implementation language. As we explain in Sec-
tion 2, we make some assumptions about the language that are not supported
by current Haskell explanations. However, all of the modifications are so simple
that they can be translated into plain Haskell by applying a simple prepro-
cessor. In fact, this paper is generated using lhs2TEX [26], a preprocessor that
can generate both a LATEX version and a Haskell version of all the Haskell code
examples from a common source.

This article is a thoroughly revised and extended version of the lecture notes
“Generic Programming, Now!” [28], which in turn are based on the papers
“‘Scrap Your Boilerplate’ Reloaded” [29] and “‘Scrap Your Boilerplate’ Rev-
olutions” [27]. While the lecture notes explore the design space in 2D, this
paper additionally covers the third dimension: the mechanism for overload-
ing (Section 5). Furthermore, we introduce and discuss a new generic view
(Section 4.3), which combines the ‘spine’ and the ‘type-spine’ view.
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2 A guided tour

2.1 Type-indexed functions

In Haskell, showing values of a datatype is particularly easy: one simply at-
taches a deriving (Show) clause to the declaration of the datatype.

data Tree α = Empty | Node (Tree α) α (Tree α)
deriving (Show)

The compiler then automatically generates a suitable show function. This
function is used, for instance, in interactive sessions to print the result of a
submitted expression (‘>>> ’ is the prompt of the interpreter).

>>> tree [0 . . 3]
Node (Node (Node Empty 0 Empty) 1 Empty) 2 (Node Empty 3 Empty)

Here tree :: [α ] → Tree α transforms a list into a balanced tree (see Ap-
pendix A.1). The function show can be seen as a pretty-printer. The display
of larger structures, however, is not especially pretty, due to lack of indenta-
tion.

>>> tree [0 . . 9]
Node (Node (Node (Node Empty 0 Empty) 1 Empty) 2 (Node (Node Empt
y 3 Empty) 4 Empty)) 5 (Node (Node (Node Empty 6 Empty) 7 Empty) 8 (N
ode Empty 9 Empty))

In the sequel, we develop a replacement for show , a generic prettier-printer.
There are several pretty-printing libraries around; since this article focuses on
generic programming techniques rather than pretty-printing we pick a very
simple one (see Appendix A.2), which only offers support for indentation.

data Text
text :: String→ Text
nl :: Text
indent :: Int→ Text→ Text
(♦) :: Text→ Text→ Text

The function text converts a string to a text, where Text is the datatype of
documents with indentation. By convention, the string passed to text must not
contain newline characters. The constant nl has to be used for that purpose.
The function indent adds a given number of spaces after each newline. Finally,
‘♦’ concatenates two pieces of text.

Now, our goal is to define a single function that receives the type of the to-
be-printed-value as an additional argument and suitably dispatches on this
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type argument. Unfortunately, Haskell does not permit the explicit passing
of types. An alternative is to pass the pretty-printer an additional argument
that represents the type of the value we wish to convert to text. As a first try,
we could assign the pretty-printer the type Type→ α→ Text where Type is a
suitable type of type representations. This turns out to be too simple-minded:
the parametricity theorem [50] implies that a function of this type must nec-
essarily ignore its second parameter. This argument breaks down, however,
if we additionally parameterise Type by the type it represents. The signature
of the pretty-printer then becomes Type α→ α→ Text. The idea is that an
element of type Type τ is a representation of the type τ . Using a generalised
algebraic datatype (GADT), we can define Type directly in Haskell.

open data Type :: ∗→ ∗ where
Char :: Type Char
Int :: Type Int
Pair :: Type α→ Type β→ Type (α, β )
List :: Type α→ Type [α ]
Tree :: Type α→ Type (Tree α)

A few remarks are in order. First, the above datatype definition introduces
constructors Char , Int , Pair , List , and Tree with the given type signatures.
The type defined is not an ordinary algebraic datatype, as the result types
of the constructors are restricted: Char , for example, is not an element of
Type α, but of Type Char. If we analyse a value of a generalised algebraic
datatype using a case-statement, the type checker can use this additional
information.

Second, the datatype Type is a parameterised type. Haskell’s type system
classifies types using so-called kinds (the types of types). All values belong to
types of kind ∗. Type functions have kind κ1→ κ2 where κ1 is the kind of the
argument type and κ2 is the kind of the result type. The grammar of kinds is
given by

κ ::= ∗ | κ1→ κ2

Kinds play a significant role in the field of generic programming, as we will
see in Section 3.

Third, the datatype definition is marked open. In this article, we assume that
we have open datatypes and open functions [39] at our disposal. New con-
structors can be freely added to an open datatype without modifying code
that already has been written. For instance, we can add a new constructor
Bool to represent the type of truth values just by providing the signature

Bool :: Type Bool
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We augment Type by a new constructor every time we define a new datatype
in our program.

The semantics of an open datatype is the same as if it had been defined closed,
in a single place. Openness is therefore mainly a matter of convenience and
modularity; it does not increase the expressive power of the language. The
code in this article remains executable in current Haskell implementations
that do not support these constructs by applying a preprocessor that collects
all parts of open definitions into one place.

Using Type, each type has a unique representation: the type Int is represented
by the constructor Int , the type (Char, Int) is represented by Pair Char Int
and so forth. For any given τ in our family of types, Type τ comprises exactly
one element (ignoring ⊥); Type τ is a so-called singleton type.

In the sequel, we often need to annotate an expression with its type represen-
tation. We introduce a special type for this purpose. 2

infixl 1 :
data Typed α = (:) {val :: α, type :: Type α}

The definition makes use of Haskell’s record syntax. It introduces the colon ‘:’
as an infix data constructor. Additionally, the definition brings the field se-
lectors val and type into scope. Thus, 4711 : Int is an element of Typed Int
and (47, "hello") : Pair Int (List Char) is an element of Typed ( Int, [Char ]).
It is important to note the difference between x : t and x :: τ . The former
expression constructs a pair consisting of a value x and a representation t of
its type. The latter expression is Haskell syntax for ‘x has type τ ’.

Given these prerequisites, we can finally define the desired pretty-printer:

open pretty :: Typed α→ Text
pretty (c : Char) = prettyChar c
pretty (n : Int) = pretty Int n
pretty ((x , y) : Pair a b) = align "( " (pretty (x : a)) ♦ nl ♦

align ", " (pretty (y : b)) ♦ text ")"
pretty (xs : List a) = bracketed [pretty (x : a) | x ← xs ]
pretty (Empty : Tree a) = text "Empty"
pretty (Node l x r : Tree a)

= align "(Node " (pretty (l : Tree a) ♦ nl ♦

2 The operator ‘:’ is predefined in Haskell for constructing lists. However, since we
use type annotations much more frequently than lists, we use ‘:’ for the former and
Nil and Cons for the latter purpose. Furthermore, we agree upon the convention
that the pattern x : t is matched from right to left : first the type representation t
is matched, then the associated value x . In other words: in proper Haskell source
code, x : t has to be written in reverse order, namely as t :> x.
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pretty (x : a) ♦ nl ♦
pretty (r : Tree a) ♦ text ")")

prettyChar :: Char→ Text
prettyChar c = text (showChar c)

pretty Int :: Int→ Text
pretty Int n = text (show Int n)

align :: String→ Text→ Text
align s d = indent (length s) (text s ♦ d)

The first line flags pretty as an open function. The definition of an open
function need not be contiguous; the defining equations may be scattered
throughout the program. In the case of overlapping patterns, the most specific
match takes precedence (best-fit pattern matching). Again, the semantics of an
open function is the same as if the function had been defined in one place. Open
functions can be translated into ordinary Haskell by collecting and reordering
the scattered cases. The details are described in a recent paper [39].

The function pretty makes heavy use of type annotations; its type Typed α→
Text is essentially an uncurried version of Type α→ α→ Text. Even though
pretty has a polymorphic type, each equation implements a more specific case
as dictated by the type annotations. For example, the first equation has type
Typed Char→Text. Let us consider each equation in turn. The first two equa-
tions take care of characters and integers, respectively. Pairs are enclosed in
parentheses, the two elements being separated by a line-break and a comma.
Lists are shown using bracketed , defined in Appendix A.2, which produces a
comma-separated sequence of elements between square brackets. Finally, trees
are displayed using prefix notation.

The pretty-printer produces output in the following style.

>>> pretty (tree : Tree Int [0 . . 3])
(Node (Node (Node Empty

0
Empty)

1
Empty)

2
(Node Empty

3
Empty))

>>> pretty ([(47, "hello"), (11, "world")] : List (Pair Int (List Char)))
[ (47
, [ ’h’
, ’e’
, ’l’
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, ’l’
, ’o’ ])

, (11
, [ ’w’
, ’o’
, ’r’
, ’l’
, ’d’ ])]

While the layout nicely emphasizes the structure of the tree, the pretty-printed
strings look slightly odd: a string is formatted as a list of characters. Fortu-
nately, this problem is easy to remedy: we add a special case for strings.

pretty (s : List Char) = text (show [Char ] s)

This case is more specific than the one for lists; best-fit pattern matching
ensures that the right instance is chosen. Now, we get

>>> pretty ([(47, "hello"), (11, "world")] : List (Pair Int (List Char)))
[ (47
, "hello")
, (11
, "world")]

The type of type representations is, of course, by no means specific to pretty-
printing. Using type representations, we can define arbitrary type-dependent
functions. Here is a second example: collecting strings.

open strings :: Typed α→ [String ]
strings (i : Int) = Nil
strings (c : Char) = Nil
strings (s : List Char) = [s ]
strings ((x , y) : Pair a b) = strings (x : a) ++ strings (y : b)
strings (xs : List a) = concat [strings (x : a) | x ← xs ]
strings (t : Tree a) = strings (inorder t : List a)

The function strings returns the list of all strings contained in the argument
structure. The example shows that we need not program every case from
scratch: the Tree case falls back on the list case. Nonetheless, most of the
cases have a rather ad-hoc flavour. Surely, there must be a more systematic
approach to collecting strings.
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2.2 Introducing new datatypes

We have declared Type to be open so that we can freely add new constructors
to the Type datatype and so that we can freely add new equations to existing
open functions on Type. To illustrate the extension of Type, consider the type
of perfect binary trees [18].

data Perfect α = Zero α | Succ (Perfect (α, α))

As an aside, note that Perfect is a so-called nested data type [7]. To be able
to pretty-print perfect trees, we add a constructor to the type Type of type
representations and extend pretty by suitable equations.

Perfect :: Type α→ Type (Perfect α)

pretty (Zero x : Perfect a) = align "(Zero " (pretty (x : a) ♦ text ")")
pretty (Succ x : Perfect a)

= align "(Succ " (pretty (x : Perfect (Pair a a)) ♦ text ")")

Here is a short interactive session that illustrates the extended version of
pretty .

>>> pretty (perfect 4 1 : Perfect Int)
(Succ (Succ (Succ (Succ (Zero ((((1

, 1)
, (1
, 1))

, ((1
, 1)
, (1
, 1)))

, (((1
, 1)
, (1
, 1))

, ((1
, 1)
, (1
, 1)))))))))

The function perfect d a generates a perfect tree of depth d whose leaves are
labelled with the element a; its definition is given in Appendix A.1.
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2.3 Generic functions

Using type representations, we can program functions that work uniformly for
all types of a given family, so-called overloaded functions. Let us now broaden
the scope of pretty and strings so that they work for all datatypes, including
types that the programmer has yet to define. For emphasis, we call these
functions generic functions.

We have seen in the previous section that whenever we define a new datatype,
we add a constructor of the same name to the type of type representations and
we add corresponding equations to all generic functions. While the extension
of Type is cheap and easy (a compiler could do this for us), the extension of all
type-indexed functions is laborious and difficult (can you imagine a compiler
doing that?). In this section, we develop a scheme so that it suffices to extend
Type by a new constructor and to extend one particular overloaded function.
The remaining functions adapt themselves.

To achieve this goal we need to find a way to treat elements of a data type
in a general, uniform way. Consider an arbitrary element of some datatype. It
is always of the form C e1 · · · en, a constructor applied to some values. For
instance, an element of Tree Int is either Empty or of the form Node l a r . The
idea is to make this applicative structure visible and accessible: to this end
we mark the constructor using Con and each function application using ‘♦’.
Additionally, we annotate the constructor arguments with their types and
the constructor itself with information on its syntax. Consequently, the con-
structor Empty becomes Con empty and the expression Node l a r becomes
Con node ♦ (l : Tree Int) ♦ (a : Int) ♦ (r : Tree Int) where empty and node are
the tree constructors augmented with additional information. The functions
Con and ‘♦’ are themselves constructors of a datatype called Spine.

infixl 0 ♦

data Spine :: ∗→ ∗ where
Con :: Constr α→ Spine α
(♦) :: Spine (α→ β)→ Typed α→ Spine β

The type is called Spine because its elements represent the possibly partial
spine of a constructor application (a constructor application can be seen as
the internal node of a binary tree; the path to the leftmost leaf in a binary tree
is called its left spine). The following sequence of type assignments illustrates
the stepwise construction of a spine.

node :: Constr (Tree Int→ Int→ Tree Int→ Tree Int)
Con node :: Spine (Tree Int→ Int→ Tree Int→ Tree Int)
Con node ♦ (l : Tree Int) :: Spine (Int→ Tree Int→ Tree Int)
Con node ♦ (l : Tree Int) ♦ (a : Int) :: Spine (Tree Int→ Tree Int)
Con node ♦ (l : Tree Int) ♦ (a : Int) ♦ (r : Tree Int) :: Spine (Tree Int)
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Note that the type variable α does not appear in the result type of ‘♦’: it is
existentially quantified. 3 This is the reason why we annotate the second argu-
ment with its type. Otherwise, we wouldn’t be able to use it as an argument
of an overloaded function (see below).

An element of type Constr α comprises an element of type α, namely the
original data constructor, plus some additional information about its syntax:
its name and its arity.

data Constr α = Descr{constr :: α, name :: String, arity :: Int}

Given a value of type Spine α, we can easily recover the original value of type α
by undoing the conversion step.

fromSpine :: Spine α→ α
fromSpine (Con c) = constr c
fromSpine (f ♦ x ) = (fromSpine f ) (val x )

The function fromSpine is parametrically polymorphic; it works independently
of the type in question, as it simply replaces Con with the original constructor
and ‘♦’ with function application.

The inverse of fromSpine is not polymorphic; rather, it is an overloaded func-
tion of type Typed α→Spine α. Its definition, however, follows a trivial pattern
(so trivial that the definition could be easily generated by a compiler): if the
datatype comprises a constructor C with signature

C :: τ1→ · · · → τn→ τ0

then the equation for toSpine takes the form

toSpine (C x1 . . . xn : t0) = Con c ♦ (x1 : t1) ♦ · · · ♦ (xn : tn)

where c is the annotated version of C and ti is the type representation of τi.
As an example, here is the definition of toSpine for binary trees.

open toSpine :: Typed α→ Spine α
toSpine (Empty : Tree a) = Con empty
toSpine (Node l x r : Tree a) = Con node ♦ (l : Tree a) ♦ (x : a) ♦ (r : Tree a)
empty :: Constr (Tree α)
empty = Descr{constr = Empty , name = "Empty", arity = 0}
node :: Constr (Tree α→ α→ Tree α→ Tree α)
node = Descr{constr = Node, name = "Node", arity = 3}

3 All type variables in Haskell are universally quantified. However, ∀α . (σ→ τ) is
isomorphic to (∃α . σ)→ τ provided α does not appear free in τ ; this is where the
term ‘existential type’ comes from.
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Note that this scheme works for arbitrary datatypes including generalised
algebraic datatypes!

With all the machinery in place we can now turn pretty and strings into truly
generic functions. The idea is to add a catch-all case to each function that
takes care of all the remaining type cases in a uniform manner. Let’s tackle
strings first.

strings x = strings↙ (toSpine x )

strings↙ :: Spine α→ [String ]
strings↙ (Con c) = Nil
strings↙ (f ♦ x ) = strings↙ f ++ strings x

The helper function strings↙ traverses the left spine calling strings for each
argument of the spine.

Actually, we can drastically simplify the definition of strings : every case except
the one for List Char is subsumed by the catch-all case. Hence, the definition
boils down to:

strings :: Typed α→ [String ]
strings (s : List Char) = [s ]
strings x = strings↙ (toSpine x )

The revised definition makes clear that strings has only one type-specific case,
namely the one for List Char . This case must be separated out, because we
want to do something specific for strings, something that does not follow the
general pattern.

The catch-all case for pretty is almost as easy. We only have to take care that
we do not parenthesise nullary constructors.

pretty x = pretty↙ (toSpine x )
pretty↙ :: Spine α→ Text
pretty↙ (Con c) = text (name c)
pretty↙ (f ♦ x ) = pretty1↙ f (pretty x )

pretty1↙ :: Spine α→ Text→ Text
pretty1↙ (Con c) d = align ("(" ++ name c ++ " ") (d ♦ text ")")
pretty1↙ (f ♦ x ) d = pretty1↙ f (pretty x ♦ nl ♦ d)

Now, why are we in a better situation than before? When we introduce a new
datatype such as, say, XML, we still have to extend the representation type
with a constructor XML :: Type XML and provide cases for the data construc-
tors of XML in the toSpine function. However, this has to be done only once
per datatype, and it is so simple that it could easily be done automatically.
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The code for the generic functions (of which there can be many) is completely
unaffected by the addition of a new datatype. As a further plus, the generic
functions are unaffected by changes to a given datatype (unless they include
code that is specific to the datatype). Only the function toSpine must be
adapted to the new definition and possibly the type representation if the kind
of the datatype changes.

2.4 Dynamic values

Haskell is a statically typed language. Unfortunately, one cannot guarantee
the absence of run-time errors using static checks only. For instance, when we
communicate with the environment, we have to check dynamically whether
the imported values have the expected types. In this section we show how to
embed dynamic checking in a statically typed language.

To this end we introduce a universal datatype, the type Dynamic, which en-
compasses all static values. To inject a static value into the universal type we
bundle the value with a representation of its type, re-using the Typed datatype.

data Dynamic :: ∗ where
Dyn :: Typed α→ Dynamic

Note that the type variable α does not appear in the result type: it is effectively
existentially quantified. In other words, Dynamic is the union of all typed
values. As an example, misc is a list of dynamic values.

misc :: [Dynamic ]
misc = [Dyn (4711 : Int),Dyn ("hello world" : List Char)]

Since we have introduced a new type, we must extend the type of type repre-
sentations.

Dynamic :: Type Dynamic

Now, we can also turn the list misc itself into a dynamic value: Dyn (misc :
List Dynamic).

Dynamic values and generic functions go well together. In a sense, they are
dual concepts. 4 We can quite easily extend the generic function strings so
that it additionally works for dynamic values.

4 The universal type Dynamic corresponds to the infinite union ∃α . Typed α;
a generic function of type Typed α → σ corresponds to the infinite intersection
∀α . (Typed α→ σ) which equals (∃α . Typed α)→ σ if α does not occur in σ.
Hence, a generic function of this type can be seen as taking a dynamic value as an
argument (see also Section 5.3.2).
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strings (Dyn x : Dynamic) = strings x

An element of type Dynamic just contains the necessary information required
by strings . In fact, the situation is similar to the Spine datatype where the
second argument of ‘♦’ also has an existentially quantified type (this is why
we had to add type information).

Can we also extend toSpine by a case for Dynamic so that strings works
without any changes? Of course! As a first step we add Type and Typed to the
type of representable types.

Type :: Type α→ Type (Type α)
Typed :: Type α→ Type (Typed α)

The first line looks a bit intimidating with four occurrences of the same iden-
tifier, but it exactly follows the scheme for unary type constructors: the rep-
resentation of the type constructor T :: ∗ → ∗ is the data constructor T ::
Type α→ Type (T α).

As a second step, we provide suitable instances of toSpine pedantically fol-
lowing the general scheme given in Section 2.3 (oftype is the infix operator ‘:’
augmented by additional information).

toSpine (Char : Type Char) = Con char
toSpine (Int : Type Int) = Con int
toSpine (List t : Type (List a)) = Con list ♦ (t : Type a) -- t = a
. . .
toSpine ((x : t) : Typed a) = Con oftype ♦ (x : t) ♦ (t : Type t) -- t = a

Note that t and a must be the same type representation since the type rep-
resentation of x : t is Typed t . It remains to extend toSpine by a Dynamic
case.

toSpine (Dyn x : Dynamic) = Con dyn ♦ (x : Typed (type x ))

It is important to note that this instance does not follow the general pattern
for toSpine. The reason is that Dyn’s argument is existentially quantified and
in general, we do not have any type information about existentially quantified
types at run-time (see also Section 4.1). But the whole purpose of Dyn is
to pack a value and its type together, and therefore we can use this type
information to define toSpine.

To summarise, for every (closed) type with n constructors we have to add
n + 1 equations for toSpine, one for the type representation itself and one for
each of the n constructors.

Given these prerequisites, strings now works without any changes. There is,
however, a slight difference to the previous version: the generic case traverses
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both the static value and its type for Dynamic, as ‘:’ is treated just like every
other data constructor. This may or may not be what is wanted.

For pretty we decide to give an ad-hoc type case for typed values (we want
to use infix rather than prefix notation for ‘:’) and to fall back on the generic
case for dynamic values.

pretty ((x : t) : Typed a) = align "( " (pretty (x : t)) ♦ nl ♦ -- t = a
align ": " (pretty (t : Type t)) ♦ text ")"

Here is a short interactive session that illustrates pretty-printing dynamic
values.

>>> pretty (misc : List Dynamic)
[ (Dyn (4711

: Int))
, (Dyn ("hello world"

: (List Char)))]

2.5 Recap

Before we proceed, let us step back to see what we have achieved so far.

Broadly speaking, generic programming is about defining functions that work
for all types but that also exhibit type-specific behaviour. Using a GADT we
reflect types onto the value level. For each type constructor we introduce a
corresponding data constructor: types of kind ∗ are represented by constants;
parameterised types are represented by functions that take type representa-
tions to type representations. Using reflected types we can program overloaded
functions, functions that work for a fixed class of types and that exhibit type-
specific behaviour. Finally, we defined the Spine datatype that allows us to
treat data in a uniform manner. Using this uniform view on data we can
generalise overloaded functions to generic functions.

GADTs allow for a very direct type representation. In a less expressive type
system we may have to encode types less directly or in a less type-safe manner.
However, we shall see in Section 3 that there are several ways to model the
Haskell type system and that the one we have used in this section is not the
most natural or the most direct one.

We have used the ‘spine’ view, given by the type Spine and the transformations
toSpine and fromSpine, to represent data in a uniform way. This view is
applicable to a large class of datatypes, including GADTs. The reason for the
wide applicability is simple: a datatype definition describes how to construct
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data, the spine view captures just this. Its main weakness is also rooted in the
‘value-orientation’: one can only define generic functions that consume data
(such as pretty-printers) but not ones that produce data (such as parsers).
Again, the reason for this limitation is simple: a uniform view on individual
constructor applications is useful if you have data in your hands, but it is of
no help if you want to construct data. Section 4 shows how to overcome this
limitation and introduces several variants of the spine view.

So far, we have used type reflection as mechanism for overloading. Using the
datatype Type of type representations, we can reflect types as values and pro-
gram functions that depend or dispatch on types. We will discuss alternative
techniques in Section 5.

3 Type representations

In this section, we explore the first dimension of the design space of generic
programming: the type representation. For simplicity, we consider only over-
loaded functions – the material still applies to generic functions. We return to
truly generic functions in Section 4.

3.1 Representation types for types of a fixed kind

3.1.1 Representation type for types of kind ∗

The type Type of Section 2.1 represents types of kind ∗. A type constructor T
is represented by a data constructor T of the same name. A type of kind ∗ is
either an atomic type such as Char or Int, or a compound type such as [Char ]
or ( Int, [Char ]). The components of a compound type are possibly type con-
structors of higher kinds such as [ ] or (, ). These type constructors must also
be represented using the type Type of type representations. Since type con-
structors are reflected onto the value level, the type of the data constructor T
depends on the kind of the type constructor T. To see the precise relationship
between the type of T and the kind of T, consider again the declaration of
Type (Section 2.1), this time making polymorphic types explicit.

open data Type :: ∗→ ∗ where
Char :: Type Char
Int :: Type Int
Pair :: ∀α . Type α→ (∀β . Type β→ Type (α, β ))
List :: ∀α . Type α→ Type [α ]
Tree :: ∀α . Type α→ Type (Tree α)
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A type constructor T of higher kind is represented by a polymorphic function
that takes a type representation for α to a type representation for T α, for all
types α. In general, Tκ has the signature

Tκ :: Typeκ Tκ

where Typeκ is defined inductively on the structure of kinds

type Type∗ α = Type α
type Typeι→κ ϕ = ∀α . Typeι α→ Typeκ (ϕ α)

Thus, application on the type level corresponds to application of polymorphic
functions on the value level.

So far we have only encountered first-order type constructors. Here is an ex-
ample of a second-order one:

newtype Fix ϕ = In{out :: ϕ (Fix ϕ)}

The declaration introduces a fixed-point operator, Fix, on the type level, whose
kind is (∗ → ∗)→ ∗. Consequently, the value counterpart of Fix has a rank-2
type: it takes a polymorphic function as an argument.

Fix :: ∀ϕ . (∀α . Type α→ Type (ϕ α))→ Type (Fix ϕ)

As an aside, the type constructor Fix is Haskell 98, but the data constructor Fix
is not, because of its rank-2 type. Using Fix , the representation of fixed points
on the type level, we can now extend, for instance, strings by an appropriate
case.

strings (In x : Fix f ) = strings (x : f (Fix f ))

Of course, this case is not really necessary: if we add a Fix equation to toSpine,
then the specific case above is subsumed by the generic one of Section 2.3.

toSpine (In x : Fix f ) = Con in ♦ (x : f (Fix f ))

Here in is the annotated variant of In. Again, the definition of toSpine pedan-
tically follows the general scheme.

Unfortunately, this type representation has its problems. For instance, we can-
not compare two types for equality: the arguments of Fix cannot be recursively
checked for equality, as they are polymorphic functions. In general, we face the
problem that we cannot pattern match on polymorphic functions: Fix List ,
for instance, is not a legal pattern (List is not saturated). In Section 3.2 we
introduce an alternative type representation that does not suffer from this
problem.
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3.1.2 Representation type for types of kind ∗→ ∗

The generic functions of Section 2 abstract over a type of kind ∗. For instance,
pretty generalises functions of type

Char→ Text, String→ Text, [ [ Int ] ]→ Text

to a single generic function of type

Type α→ α→ Text or equivalently Typed α→ Text

A generic function may also abstract over a type constructor of higher kind.
Take, as an example, the function size that counts the number of elements
contained in some data structure. This function generalises functions of type

[α ]→ Int, Tree α→ Int, [Tree α ]→ Int

to a single generic function of type

Type′ ϕ→ ϕ α→ Int or equivalently Typed′ ϕ α→ Int

where Type′ is a representation type for types of kind ∗ → ∗ and Typed′ is a
suitable type, to be defined shortly, for annotating values with these represen-
tations.

How can we represent type constructors of kind ∗ → ∗? Clearly, the type
Type∗→∗ is not suitable, as we intend to define size and other generic func-
tions by case analysis on the type constructor. Again, the elements of Type∗→∗
are polymorphic functions and pattern-matching on functions would break ref-
erential transparency. Therefore, we define a new tailor-made representation
type.

open data Type′ :: (∗→ ∗)→∗ where
List :: Type′ [ ]
Tree :: Type′ Tree

Think of the prime as shorthand for the kind index ∗ → ∗. The type Type′

is only inhabited by two constructors since the other datatypes have kinds
different from ∗→ ∗. Additionally, we introduce a primed variant of Typed.

infixl 1 :′

data Typed′ ϕ α = (:′){val ′ :: ϕ α, type ′ :: Type′ ϕ}

An overloaded version of size is now straightforward to define.

size :: Typed′ ϕ α→ Int
size (Nil :′ List) = 0
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size (Cons x xs :′ List) = 1 + size (xs :′ List)
size (Empty :′ Tree) = 0
size (Node l x r :′ Tree) = size (l :′ Tree) + 1 + size (r :′ Tree)

Unfortunately, size is not as flexible as pretty . If we have some compound data
structure x , say, a list of trees of integers, then we can simply call pretty (x :
List (Tree Int)). We cannot, however, use size to count the total number of
integers, simply because the new versions of List and Tree take no arguments!

There is one further problem, which is more fundamental. Computing the size
of a compound data structure is inherently ambiguous: in the example above,
do we count the number of integers, the number of trees or the number of
lists? Formally, we have to solve the type equation ϕ τ = [Tree Int ]. The
equation has, in fact, not three but four principal solutions: ϕ = Λα→ α and
τ = [Tree Int ], ϕ = Λα→ [α ] and τ = Tree Int, ϕ = Λα→ [Tree α ] and
τ = Int, and ϕ = Λα → [Tree Int ] and τ arbitrary. How can we represent
these different container types? They can be easily expressed using functions:
λa→ a, λa→ List a, λa→ List (Tree a), and λa→ List (Tree Int). Alas, we
are just trying to get rid of the functional representation. There are several
ways out of this dilemma. One possibility is to lift the type constructors [19]
so that they become members of Type′ and to include Id, given by

newtype Id α = In Id{out Id :: α}

as a representation of the type variable α:

Id :: Type′ Id
Char ′ :: Type′ Char′

Int ′ :: Type′ Int′

List ′ :: Type′ ϕ→ Type′ (List′ ϕ)
Tree ′ :: Type′ ϕ→ Type′ (Tree′ ϕ)

The type List′, defined below, is the lifted variant of [ ]: it takes a type con-
structor of kind ∗ → ∗ to a type constructor of kind ∗ → ∗. Using the lifted
types we can specify the four different container types as follows: Id, List′ Id,
List′ (Tree′ Id) and List′ (Tree′ Int′). Essentially, we replace the types by their
lifted counterparts and the type variable α by Id. Note that the constructors
of Type′ have types similar to those of Type, only the kinds differ.

It remains to define the lifted versions of the type constructors.

newtype Char′ χ = InChar′{outChar′ :: Char}
newtype Int′ χ = In Int′{out Int′ :: Int}
data List′ α′ χ = Nil ′ | Cons ′ (α′ χ) (List′ α′ χ)
data Pair′ α′ β′ χ = Pair ′ (α′ χ) (β′ χ)
data Tree′ α′ χ = Empty ′ | Node ′ (Tree′ α′ χ) (α′ χ) (Tree′ α′ χ)
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The lifted variants of the nullary type constructors Char and Int simply ignore
the additional argument χ. The data definitions follow a simple scheme: each
data constructor C with signature

C :: τ1→ · · · → τn→ τ0

is replaced by a polymorphic data constructor C ′ with signature

C ′ :: ∀χ . τ ′1 χ→ · · · → τ ′n χ→ τ ′0 χ

where τ ′i is the lifted variant of τi.

The function size can be easily extended to Id and to the lifted types.

size (x :′ Id) = 1
size (c :′ Char ′) = 0
size (i :′ Int ′) = 0
size (Nil ′ :′ List ′ a ′) = 0
size (Cons ′ x xs :′ List ′ a ′) = size (x :′ a ′) + size (xs :′ List ′ a ′)
size (Empty ′ :′ Tree ′ a ′) = 0
size (Node ′ l x r :′ Tree ′ a ′)

= size (l :′ Tree ′ a ′) + size (x :′ a ′) + size (r :′ Tree ′ a ′)

The instances are similar to the ones for the unlifted types, except that size
is now also called recursively for list elements and tree labels, that is, for
components of type α′.

Unfortunately, in Haskell size no longer works on the original data types: we
cannot call, for instance, size (x :′ List ′ (Tree ′ Id)) where x is a list of trees
of integers, since List′ (Tree′ Id) Int is different from [Tree Int ]. However, the
two types are isomorphic: τ ∼= τ ′ Id where τ ′ is the lifted variant of τ [19]. We
leave it at that for the moment and return to the problem in Section 4.

We have already noted that Type′ is similar to Type. This becomes even more
evident when we consider the signature of a lifted type representation: the
lifted version of Tκ has signature

T ′
κ :: Type′κ T′

κ

where Type′κ is defined

type Type′∗ α = Type′ α
type Type′ι→κ ϕ = ∀α . Type′ι α→ Type′κ (ϕ α)

Defining an overloaded function that abstracts over a type of kind ∗ → ∗ is
similar to defining a ∗-indexed function, except that one has to consider one
additional case, namely Id, which defines the action of the overloaded function
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on the type parameter. It is worth noting that it is not necessary to define
instances for the unlifted type constructors ([ ] and Tree in our running exam-
ple), as we have done, because these instances can be automatically derived
from the lifted ones by virtue of the isomorphism τ ∼= τ ′ Id (see Section 4.4.1).

3.1.3 Representation type for types of kind ω

Up to now we have confined ourselves to generic functions that abstract over
types of kind ∗ or ∗→∗. An obvious question is whether the approach can be
generalised to kind indices of arbitrary kinds. This is indeed possible. However,
functions that are indexed by higher kinds, for instance, by (∗→∗)→∗→∗ are
rare. For that reason, we only sketch the main points. For a formal treatment
see Hinze’s earlier work [19]. Assume that ω = κ1→ · · · → κn→∗ is the kind
of the type index. We first introduce a suitable type representation and lift
the datatypes to kind ω by adding n type arguments of kinds κ1, . . . , κn.

open data Typeω :: ω→∗ where
T ω

κ :: Typeω
κ Tω

κ

where Tω
κ is the lifted version of Tκ and Typeω

κ is defined

type Typeω
∗ α = Typeω α

type Typeω
ι→κ ϕ = ∀α . Typeω

ι α→ Typeω
κ (ϕ α)

The lifted variant Tω
κ of the type Tκ has kind κω where (−)ω is defined induc-

tively on the structure of kinds

∗ω = ω
(ι→ κ)ω = ιω→ κω

Types and lifted types are related as follows: the type τ is isomorphic to
τ ′ Out1 . . . Outn where Out i is the projection type that corresponds to the
i -th argument of ω. The generic programmer has to consider the cases for the
lifted type constructors plus n additional cases, one for each of the n projection
types Out1, . . . , Outn.

3.2 Kind-indexed families of representation types

We have seen that type-indexed functions may abstract over arbitrary type
constructors: pretty abstracts over types of kind ∗, size abstracts over types of
kind ∗→ ∗. Sometimes a type-indexed function even makes sense for types of
different kinds. A paradigmatic example is the mapping function: the mapping
function of a type ϕ of kind ∗→∗ lifts a function of type α1→α2 to a function
of type ϕ α1→ϕ α2; the mapping function of a type ψ of kind ∗→∗→∗ takes
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two functions of type α1→α2 and β1→β2 respectively and returns a function
of type ψ α1 β1 → ψ α2 β2. As an extreme case, the mapping function of a
type σ of kind ∗ is the identity of type σ→ σ.

3.2.1 Dictionary-passing style

The above discussion suggests turning map into a family of overloaded func-
tions. Since the type of the mapping functions depends on the kind of the
type argument, we have, in fact, a kind-indexed family of overloaded func-
tions. To make this work we have to represent types differently: we require a
kind-indexed family of representation types.

open data Typeκ :: κ→∗ where
Tκ :: Typeκ Tκ

In this scheme Int :: ∗ is represented by a data constructor of type Type∗; the
type constructor Tree :: ∗ → ∗ is represented by a data constructor of type
Type∗→∗ and so forth. There is, however, a snag in it. If the representation of
Tree is not a function, how can we represent the application of Tree to some
type? The solution may come as a surprise: we also represent type application
syntactically using a family of kind-indexed constructors.

Appι,κ :: Typeι→κ ϕ→ Typeι α→ Typeκ (ϕ α)

The result type dictates that Appι,κ is an element of Typeκ. Theoretically,
we need an infinite number of Appι,κ constructors, one for each combination
of ι and κ. Practically, only a few are likely to be used, since types with a
large number of type arguments are rare. For the purposes of this article the
following declarations suffice.

open data Type∗ :: ∗→ ∗ where
Char ∗ :: Type∗ Char
Int∗ :: Type∗ Int
App∗,∗ :: Type∗→∗ ϕ→ Type∗ α→ Type∗ (ϕ α)

open data Type∗→∗ :: (∗→ ∗)→∗ where
List∗→∗ :: Type∗→∗ [ ]
Tree∗→∗ :: Type∗→∗ Tree
App∗,∗→∗ :: Type∗→∗→∗ ϕ→ Type∗ α→ Type∗→∗ (ϕ α)

open data Type∗→∗→∗ :: (∗→ ∗→ ∗)→∗ where
Pair ∗→∗→∗ :: Type∗→∗→∗ (, )

For example, Tree Int is now represented by Tree∗→∗ ‘App∗,∗‘ Int∗.
5 We have

(Pair ∗→∗→∗ ‘App∗,∗→∗‘ Int∗) ‘App∗,∗‘ Int∗ :: Type∗ ( Int, Int). Since App∗,∗ is a

5 We can use a function or a constructor infix if we enclose it in backquotes:
Tree∗→∗ ‘App∗,∗‘ Int∗ is the same as App∗,∗ Tree∗→∗ Int∗.
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data constructor, we can pattern match both on Tree∗→∗ ‘App∗,∗‘ a and on
Tree∗→∗ alone. Since Haskell allows type constructors to be partially applied,
the family Typeκ is indeed a faithful representation of the type system of
Haskell 98.

Now, let’s tackle an example of a type-indexed function that works for types
of different kinds. We postpone the implementation of the mapping function
until the end of the section and first re-implement the function size that counts
the number of elements contained in a data structure (see Section 3.1.2).

size :: Type∗→∗ ϕ→ ϕ α→ Int

How can we generalise size so that it works for types of arbitrary kinds? The
essential step is to abstract away from size’s action on values of type α turning
the action of type α→ Int into an additional argument:

count∗→∗ :: Type∗→∗ ϕ→ (α→ Int)→ (ϕ α→ Int)

We call size’s kind-indexed generalisation count . If we instantiate the second
argument of count∗→∗ to const 1, we obtain the original function back. But
there is also an alternative choice: if we instantiate the second argument to id ,
we obtain a generalisation of Haskell’s sum function, which sums the elements
of a container.

size :: Type∗→∗ ϕ→ ϕ α→ Int
size f = count∗→∗ f (const 1)

sum :: Type∗→∗ ϕ→ ϕ Int→ Int
sum f = count∗→∗ f id

Two generic functions for the price of one!

Let us now turn to the definition of countκ. Since countκ is indexed by kind
it also has a kind-indexed type.

countκ :: Typeκ α→ Countκ α

where Countκ is defined

type Count∗ α = α→ Int
type Countι→κ ϕ = ∀α . Countι α→ Countκ (ϕ α)

The definition looks familiar: it follows the scheme we have already encoun-
tered in Section 3.1.1 (Typeκ is defined analogously). The first line specifies
that a ‘counting function’ maps an element to an integer. The second line ex-
presses that count ι→κ f takes a counting function for α to a counting function
for ϕ α, for all α. This means that the kind-indexed function countκ maps
type application to application of generic functions.
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countκ (Appι,κ f a) = (count ι→κ f ) (count ι a)

This case for Appι,κ is truly generic: it is the same for all kind-indexed generic
functions (in dictionary-passing style; see below) and for all combinations of ι
and κ. The type-specific behaviour of a generic function is solely determined
by the cases for the different type constructors. As an example, here are the
definitions for countκ:

open count∗ :: Type∗ α→ Count∗ α
count∗ (f ‘App∗,∗‘ a) = (count∗→∗ f ) (count∗ a)

count∗ t = const 0

open count∗→∗ :: Type∗→∗ α→ Count∗→∗ α
count∗→∗ List∗→∗ c = sum [ ] . map [ ] c

count∗→∗ Tree∗→∗ c = count∗→∗ List∗→∗ c . inorder
count∗→∗ (f ‘App∗,∗→∗‘ a) c = (count∗→∗→∗ f ) (count∗ a) c

open count∗→∗→∗ :: Type∗→∗→∗ α→ Count∗→∗→∗ α
count∗→∗→∗ (Pair ∗→∗→∗) c1 c2 = λ(x1, x2)→ c1 x1 + c2 x2

Note that we have to repeat the generic Appι,κ case for every instance of ι
and κ. The catch-all case for types of kind ∗ determines that elements of
types of kind ∗ such as Int or Char are mapped to 0.

Taking the size of a compound data structure such as a list of trees of integers
is now much easier than before: the count function for Λα→ [Tree α ] is the
unique function that maps c to count∗→∗ (List∗→∗) (count∗→∗ (Tree∗→∗) c).
Here is a short interactive session that illustrates the use of count and size.

>>> let ts = [tree [0 . . i ] | i ← [0 . . 9]]
>>> size (List∗→∗) ts
10
>>> count∗→∗ (List∗→∗) (size (Tree∗→∗)) ts
55

The fact that count∗→∗ is parameterised by the action on α allows us to mimic
type abstraction by abstraction on the value level. Since count∗→∗ receives
the ∗-instance of the count function as an argument, we say that count is
defined in dictionary-passing style—the term dictionary refers to the standard
implementation of Haskell’s type classes. There is also an alternative, type-
passing style, which we discuss in a moment, where the type representation
itself is passed as an argument.

The definition of the mapping function is analogous to the definition of size
except for the type. Recall that the mapping function of a type ϕ of kind ∗→∗
lifts a function of type α1→α2 to a function of type ϕ α1→ϕ α2. The instance
is doubly polymorphic: both the argument and the result type of the argument
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function may vary. Consequently, we assign map a kind-indexed type that has
two type arguments:

mapκ :: Typeκ α→Mapκ α α

where Mapκ is defined

type Map∗ α1 α2 = α1→ α2

type Mapι→κ ϕ1 ϕ2 = ∀α1 α2 . Mapι α1 α2→Mapκ (ϕ1 α1) (ϕ2 α2)

The definition of map itself is straightforward:

open map∗ :: Type∗ α→Map∗ α α
map∗ (Int∗) = id
map∗ (Char ∗) = id
map∗ (App∗,∗ f a) = (map∗→∗ f ) (map∗ a)

open map∗→∗ :: Type∗→∗ ϕ→Map∗→∗ ϕ ϕ
map∗→∗ (List∗→∗) = map [ ]

map∗→∗ (Tree∗→∗) = mapTree

map∗→∗ (App∗,∗→∗ f a) = (map∗→∗→∗ f ) (map∗ a)

open map∗→∗→∗ :: Type∗→∗→∗ ϕ→Map∗→∗→∗ ϕ ϕ
map∗→∗→∗ (Pair ∗→∗→∗) f g (a, b) = (f a, g b)

Each instance simply defines the mapping function for the respective type.

3.2.2 Type-passing style

The functions above are defined in dictionary-passing style, as instances of
overloaded functions are passed around. An alternative scheme passes the
type representation instead. We can use it, for instance, to define ∗-indexed
functions in a less verbose way. To illustrate, let us re-define the overloaded
function pretty in type-passing style. Its kind-indexed type is given by

type Pretty∗ α = α→ Text
type Prettyι→κ ϕ = ∀α . Typeι α→ Prettyκ (ϕ α)

The equations for prettyκ are similar to those of pretty of Section 2.1, ex-
cept for the ‘type patterns’: the left-hand side pretty (T a1 . . . an) becomes
prettyκ Tκ a1 . . . an, where κ is the kind of T.

open pretty∗ :: Type∗ α→ Pretty∗ α
pretty∗ (Char ∗) c = prettyChar c
pretty∗ (Int∗) n = pretty Int n
pretty∗ (f ‘App∗,∗‘ a) x = pretty∗→∗ f a x
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open pretty∗→∗ :: Type∗→∗ α→ Pretty∗→∗ α
pretty∗→∗ (List∗→∗) a xs = bracketed [pretty∗ a x | x ← xs ]
pretty∗→∗ (Tree∗→∗) a Empty = text "Empty"
pretty∗→∗ (Tree∗→∗) a (Node l x r)

= align "(Node " (pretty∗→∗ Tree∗→∗ a l ♦ nl ♦
pretty∗ a x ♦ nl ♦
pretty∗→∗ Tree∗→∗ a r ♦ text ")")

pretty∗→∗ (f ‘App∗,∗→∗‘ a) b x = pretty∗→∗→∗ f a b x

open pretty∗→∗→∗ :: Type∗→∗→∗ α→ Pretty∗→∗→∗ α
pretty∗→∗→∗ (Pair ∗→∗→∗) a b (x , y) = align "( " (pretty∗ a x ) ♦ nl ♦

align ", " (pretty∗ b y) ♦ text ")"

The equations for type application have a particularly simple form:

prettyκ (Appι,κ f a) = pretty ι→κ f a

The recursive call takes two type arguments (in dictionary-passing style the
second argument was pretty ι a, not just a). But again, this case is truly
generic: it is the same for all kind-indexed functions (in type-passing style).

Type-passing style is preferable to dictionary-passing style for implementing
mutually recursive generic functions. In dictionary-passing style we have to
tuple the functions into a single dictionary (analogous to the usual implemen-
tation of Haskell’s type classes). On the other hand, using dictionary-passing
style we can define truly polymorphic generic functions such as, for example,
size :: Type∗→∗ ϕ→ (∀α . ϕ α→ Int), which is not possible in type-passing
style where size has type Type∗→∗ ϕ→ (∀α . Type∗ α→ ϕ α→ Int).

3.3 Representations of open type terms

Haskell’s type system is somewhat peculiar, as it features type application but
not type abstraction. If Haskell had type-level lambdas, we could specify the
instances of ∗→ ∗-indexed functions using suitable type abstractions: for our
running example we could use representations of Λα→ [Tree Int ], Λα→ α,
Λα→ [α ], or Λα→ [Tree α ]. Interestingly, there is an alternative. We can
represent an anonymous type function by an open type term: Λα→[Tree α ], for
instance, is represented by List (Tree a) where a is a suitable representation
of α.

To motivate the representation of free type variables, let us work through a
concrete example. Consider the following version of count that is defined on
Type, the original type of type representations.
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count :: Type α→ (α→ Int)
count (Char) = const 0
count (Int) = const 0
count (Pair a b) = λ(x , y)→ count a x + count b y
count (List a) = sum [ ] . map [ ] (count a)

count (Tree a) = sum [ ] . map [ ] (count a) . inorder

As it stands, count is point-free, but also pointless, as it always returns the
constant 0 (unless the argument is not fully defined, in which case count is
undefined, as well). We shall see in a moment that we can make count more
useful by adding a representation of free type variables to Type. The million-
dollar question is, of course, what constitutes a suitable representation of a free
type variable? Now, if we extend count by a case for the free type variable, its
meaning must be provided from somewhere. An intriguing choice is therefore
to identify the type variable with its meaning. Thus, the representation of a
free type variable is a constructor that embeds a count instance, a function of
type α→ Int, into the type of type representations.

Count :: (α→ Int)→ Type α

Since the ‘type variable’ carries its own meaning, the count instance is partic-
ularly simple.

count (Count c) = c

A moment’s reflection reveals that this approach is an instance of the ‘embed-
ding trick’ [14] for higher-order abstract syntax: Count is the pre-inverse or
right inverse of count . Using Count we can specify the action on the free type
variable when we call count :

>>> let ts = [tree [0 . . i ] | i ← [0 . . 9 :: Int ] ]
>>> let a = Count (const 1)
>>> count (List (Tree Int)) ts
0
>>> count a ts
1
>>> count (List a) ts
10
>>> count (List (Tree a)) ts
55

The approach would work perfectly well if count were the only generic func-
tion. But it is not:

>>> pretty (4711 : a)
*** Exception: Non-exhaustive patterns in function pretty
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If we pass Count to a different generic function, we get a run-time error.
The problem is not easy to remedy, as it is impossible to define a suitable
Count instance for pretty . We simply have not enough information at hand.
Fortunately, there is a way out of this dilemma: we parameterise Type by the
type of generic functions.

open data PType :: (∗→ ∗)→∗→ ∗ where
PChar :: PType π Char
PInt :: PType π Int
PPair :: PType π α→ PType π β→ PType π (α, β )
PList :: PType π α→ PType π [α ]
PTree :: PType π α→ PType π (Tree α)

A generic function then has type PType Poly α→ Poly α for some suitable
type Poly. As before, the representation of a free type variable is a constructor
of the inverse type, except that now we additionally abstract away from Poly.

PVar :: π α→ PType π α

Since we abstract over Poly, we make do with a single constructor: PVar can
be used to embed instances of arbitrary generic functions.

The definition of count can be easily adapted to the new representation (for
technical reasons, we have to introduce a newtype for count ’s type).

newtype Count α = InCount{outCount :: α→ Int}
pcount :: PType Count α→ (α→ Int)
pcount (PVar c) = outCount c
pcount (PChar) = const 0
pcount (PInt) = const 0
pcount (PPair a b) = λ(x , y)→ pcount a x + pcount b y
pcount (PList a) = sum [ ] . map [ ] (pcount a)

pcount (PTree a) = sum [ ] . map [ ] (pcount a) . inorder

The code is almost identical to what we have seen before, except that the type
signature is more precise.

Here is an interactive session that illustrates the use of pcount .

>>> let ts = [tree [0 . . i ] | i ← [0 . . 9 :: Int ] ]
>>> let a = PVar (InCount (const 1))
>>> :type a
a :: ∀α . PType Count α
>>> pcount (PList (PTree PInt)) ts
0
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>>> pcount (a) ts
1
>>> pcount (PList a) ts
10
>>> pcount (PList (PTree a)) ts
55
>>> let a = PVar (InCount id)
>>> :type a
PType Count Int
>>> pcount (PList (PTree a)) ts
165

Note that the type of a now limits the applicability of the free type variable:
passing it to pretty would result in a static type error.

We can also capture our standard idioms, counting elements and summing up
integers, as abstractions.

psize f = pcount (f a) where a = PVar (InCount (const 1))
psum f = pcount (f a) where a = PVar (InCount id)

Given these definitions, we can represent type constructors of kind ∗ → ∗ by
ordinary, value-level λ-terms.

>>> let ts = [tree [0 . . i ] | i ← [0 . . 9 :: Int ] ]
>>> psize (λa→ PList (PTree PInt)) ts
0
>>> psize (λa→ a) ts
1
>>> psize (λa→ PList a) ts
10
>>> psize (λa→ PList (PTree a)) ts
55

It is somewhat surprising that the expressions above type-check, in particular,
as Haskell does not support anonymous type functions. The reason is that we
can assign psize and psum first-order types (standard Hindley-Milner types):

psize :: (PType Count α → PType Count β)→ (β→ Int)
psum :: (PType Count Int→ PType Count β)→ (β→ Int)

The functions also possess second-order types (Fω types), which are different
from the types above:

psize :: ∀ϕ . PType∗→∗ Count ϕ→ (∀α . ϕ α → Int)
psum :: ∀ϕ . PType∗→∗ Count ϕ→ (∀α . ϕ Int→ Int)
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Using Fω types, however, the above calls do not type-check, since Haskell
employs a kinded first-order unification of types [34].

The other representation types, Type′ and Typeκ, can be extended in an anal-
ogous manner to support open type terms.

3.4 Summary

In this section, we have presented type representations for several different
sets of types. The straightforward representation type Type reflects types of
kind ∗, and is therefore suitable to define overloaded or generic functions on
datatypes of kind ∗. By lifting the type constructors, we can define several
variants of Type, and thereby represent types of an arbitrary, but fixed kind.

The type Type models type terms as first-order algebraic terms. Haskell’s type
language, however, has a kinded, higher-order term structure. This language
can be faithfully represented using a kind-indexed family of representation
types. Type application is represented syntactically using kind-indexed con-
structors Appι,κ. Overloaded and generic functions that range over types of
different kinds (such as map) can then be defined as a kind-indexed family of
functions.

We have investigated how to define the ‘type application’ case of a generic
function: in dictionary-passing style, type application is mapped to application
of generic functions; in type-passing style, we pass the type representation itself
as an argument rather than the recursive call. Both approaches have their
merits: while type-passing style allows the definition of mutually recursive
generic functions with ease, dictionary-passing style permits the definition of
truly polymorphic generic functions.

Haskell does not support type-level lambdas. Nevertheless, we can simulate
the effect of type-level lambdas with open type terms, type terms with free
type variables. This requires us to parametrise the representation types by
the type of generic functions. This extension features a number of advantages:
We can represent partial application of type constructors using free type vari-
ables obviating the need for a kind-indexed family. Furthermore, by providing
instances for the free type variables we can easily modify or customise the
behaviour of generic functions.
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4 Views

In Section 3 we thoroughly investigated various type representations. The
examples in that section are without exception overloaded functions. In this
section we discuss techniques to turn these overloaded functions into truly
generic ones exploring the second dimension of the design space. Before we
tackle this, let us first discuss the difference between nominal and structural
type systems.

Haskell has a nominal type system: each data declaration introduces a new
type that is incompatible with all the existing types. Two types are equal if
and only if they have the same name. By contrast, in a structural type system
two types are equal if they have the same structure. In a language with a
structural type system there is no need for a generic view; a generic function
can be defined exhaustively by induction on the structure of types.

For nominal systems the key to genericity is a uniform view on data. In Sec-
tion 2.3 we introduced the spine view, which views data as constructor appli-
cations. Of course, this is not the only generic view. PolyP [33], for instance,
views data types as fixed points of regular functors; Generic Haskell [24] uses
a sum-of-products view. We shall see that these two approaches can be char-
acterised as type-oriented: they provide a uniform view on all elements of a
datatype. By contrast, the spine view is value-oriented: it provides a uniform
view on a single element.

View For the following it is useful to make the concept of a view explicit.

data View :: ∗→ ∗ where
View :: Type β→ (α→ β)→ (α← β)→ View α

type α← β = β→ α

A view consists of three ingredients: a so-called structure type that constitutes
the actual view on the original datatype, and two functions that convert to and
fro. To define a view the generic programmer simply provides a view function

view :: Type α→ View α

that maps a type to its structural representation. The view function can then
be used in the catch-all case of a generic function. Let us rewrite the catch-all
case of strings (defined in Section 2.3) so that it makes use of a generic view.

strings (x : t) = case view t of
View u fromData toData→ strings (fromData x : u)
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Using the fromData conversion function, x : t is converted to its structural
representation fromData x : u, on which strings is called recursively. Because
of the recursive call, the definition of strings must contain additional case(s)
that deal with the structure type. For the spine view, a single equation suffices.

strings (x : Spine a) = strings↙ x

Lifted view For the type Type′ of lifted type representations, we can set up
similar machinery.

data View′ :: (∗→ ∗)→∗ where
View ′ :: Type′ ψ→ (ϕ →̇ ψ)→ (ϕ ←̇ ψ)→ View′ ϕ

type ϕ →̇ ψ = ∀α . ϕ α→ ψ α
type ϕ ←̇ ψ = ∀α . ψ α→ ϕ α

The view function is now of type

view ′ :: Type′ ϕ→ View′ ϕ

and is used as follows:

map f m x = case view ′ f of
View ′ g fromData toData→

(toData ·map g m · fromData) x

In this case, we require both the fromData and the toData function.

4.1 Spine view

The spine view of the type τ is simply Spine τ :

spine :: Type α→ View α
spine a = View (Spine a) (λx → toSpine (x : a)) fromSpine

Recall that fromSpine is parametrically polymorphic, while toSpine is an over-
loaded function. The definition of toSpine follows a simple pattern: if the
datatype comprises a constructor C with signature

C :: τ1→ · · · → τn→ τ0

then the equation for toSpine takes the form

toSpine (C x1 . . . xn : t0) = Con c ♦ (x1 : t1) ♦ · · · ♦ (xn : tn)
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where c is the annotated version of C and ti is the type representation of τi.
The equation is only valid if vars (t1) ∪ · · · ∪ vars (tn) ⊆ vars (t0), that is, if
C ’s type signature contains no existentially quantified type variables (see also
below).

The spine view is particularly easy to use: the generic part of a generic function
has to consider only two cases: Con and ‘♦’.

A further advantage of the spine view is its generality: it is applicable to a
large class of datatypes. Nested datatypes, for instance, pose no problems: the
type of perfect binary trees (see Section 2.2)

data Perfect α = Zero α | Succ (Perfect (α, α))

gives rise to the following two equations for toSpine:

toSpine (Zero x : Perfect a) = Con zero ♦ (x : a)
toSpine (Succ x : Perfect a) = Con succ ♦ (x : Perfect (Pair a a))

The equations follow exactly the general scheme above. We have also seen
that the scheme is applicable to generalised algebraic datatypes. Consider as
an example a typed representation of expressions:

data Expr :: ∗→ ∗ where
Num :: Int→ Expr Int
Plus :: Expr Int→ Expr Int→ Expr Int
Eq :: Expr Int→ Expr Int→ Expr Bool
If :: Expr Bool→ Expr α→ Expr α→ Expr α

The relevant equations for toSpine are

toSpine (Num i : Expr Int) = Con num ♦ (i : Int)
toSpine (Plus e1 e2 : Expr Int) = Con plus ♦ (e1 : Expr Int) ♦ (e2 : Expr Int)
toSpine (Eq e1 e2 : Expr Bool) = Con eq ♦ (e1 : Expr Int) ♦ (e2 : Expr Int)
toSpine (If e1 e2 e3 : Expr a)

= Con if ♦ (e1 : Expr Bool) ♦ (e2 : Expr a) ♦ (e3 : Expr a)

Given this definition we can apply pretty to values of type Expr without further
ado. Note in this respect that the Glasgow Haskell Compiler (GHC 6.6.1)
currently does not support deriving (Show) for GADTs. When we turned
Dynamic into a representable type (Section 2.4), we discussed one limitation
of the spine view: it cannot, in general, cope with existentially quantified
types. Consider, as another example, the following extension of the expression
datatype:

Apply :: Expr (α→ β)→ Expr α→ Expr β
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The equation for toSpine

toSpine (Apply f x : Expr b)
= Con apply ♦ (f : Expr (a→ b)) ♦ (x : Expr a) -- not legal Haskell

is not legal Haskell, as a, the representation of α, appears free on the right-hand
side. The only way out of this dilemma is to augment x by a representation
of its type, as in Dynamic. 6

To summarise: a data declaration describes how to construct data; the spine
view captures just this. Consequently, it is applicable to almost every datatype
declaration. The other views are more restricted: Generic Haskell’s original
sum-of-products view [17] is only applicable to Haskell 98 types excluding
GADTs and existential types (however, we will show in Section 4.3 how to
extend a sum-of-products view to GADTs ); PolyP is even restricted to fixed
points of regular functors excluding nested datatypes and higher-kinded types.

On the other hand, the classic views provide more information, as they rep-
resent the complete datatype, not just a single constructor application. The
spine view effectively restricts the class of functions we can write: one can only
define generic functions that consume or transform data (such as show) but
not ones that produce data (such as read). The uniform view on individual
constructor applications is useful if you have data in your hands, but it is of no
help if you want to construct data. We make this more precise in the following
section.

Furthermore, functions that abstract over type constructors (such as size or
map) are out of reach for the spine view. In the following sections we show
how to overcome both limitations.

4.2 The type-spine view

A generic consumer is a function of type Type α→ α→ τ (∼= Typed α→ τ),
where the type we abstract over occurs in an argument position and possibly
in the result type τ . We have seen in Section 2.3 that the generic part of a
consumer follows the general pattern below.

open consume :: Type α→ α→ τ
. . .
consume a x = consume↙ (toSpine (x : a))

6 Type-theoretically, we have to turn the existential quantifier ∃α . τ into an ‘in-
tensional’ quantifier ∃α . Type α × τ . This is analogous to the difference between
parametrically polymorphic functions of type ∀α . τ and overloaded functions of
type ∀α . Type α→ τ .
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consume↙ :: Spine α→ τ
consume↙ . . . = . . .

The element x is converted to the spine representation, over which the helper
function consume↙ then recurses. By duality, we would expect that a generic
producer of type Type α→ τ → α, where α appears in the result type but not
in τ , takes on the following form.

open produce :: Type α→ τ → α
. . .
produce a t = fromSpine (produce↙ t)

produce↙ :: τ → Spine α -- does not work
produce↙ . . . = . . .

The helper function produce↙ generates an element in spine representation,
which fromSpine converts back. Unfortunately, this approach does not work.
The formal reason is that toSpine and fromSpine are different beasts: toSpine
is an overloaded function, while fromSpine is parametrically polymorphic. If
it were possible to define produce↙ :: ∀α . τ → Spine α, then the composition
fromSpine . produce↙ would yield a parametrically polymorphic function of
type ∀α . τ→α, which is the type of an unsafe cast operation. Furthermore, a
closer inspection of the catch-all case of produce reveals that a, the type repre-
sentation of α, does not appear on the right-hand side. However, as we already
know, a truly polymorphic function cannot exhibit type-specific behaviour.

Of course, this does not mean that we cannot define a function of type
Type α→ τ → α. We just require additional information about the datatype,
information that the spine view does not provide. Consider in this respect the
syntactic form of a GADT (eg Type itself or Expr in Section 4.1): a datatype is
essentially a sequence of signatures. This motivates the following definitions.

type Datatype α = [Signature α ]

data Signature :: ∗→ ∗ where
Sig :: Constr α→ Signature α
(@) :: Signature (α→ β)→ Type α→ Signature β

The type Signature is almost identical to the Spine type, except for the second
argument of ‘@’, which is of type Type α rather than Typed α. Thus, an element
of type Signature contains the types of the constructor arguments, but not the
arguments themselves. For that reason, Datatype is called the type-spine view.

Other than the spine view, the type-spine view encodes not only the structure
of a single constructor application, but contains information about all the
constructors in the list of signatures. To be able to use the type-spine view,
we additionally require an overloaded function that maps a type representation
to an element of type Datatype α.
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open datatype :: Type α→ Datatype α
datatype (Bool) = [Sig false, Sig true ]
datatype (Int) = [Sig (int i) | i ← [minBound . .maxBound ] ]
datatype (Pair a b) = [Sig pair @ a @ b ]
datatype (List a) = [Sig nil , Sig cons @ a @ List a ]
datatype (Tree a) = [Sig empty , Sig node @ Tree a @ a @ Tree a ]

Here, int maps a character to its annotated variant; nil , cons and pair are the
annotated versions of Nil , Cons and ‘(, )’. As an aside, the second equation
produces a rather long list (and so would a case for Char); it is only practical
in a lazy setting. The function datatype plays the same role for producers as
toSpine plays for consumers .

The first example of a generic producer is a simple test-data generator. The
function generate a d yields all terms of the data type α up to a given finite
depth d .

generate :: Type α→ Int→ [α ]
generate a 0 = Nil
generate a (d + 1) = concat [generate↙ s d | s ← datatype a ]

generate↙ :: Signature α→ Int→ [α ]
generate↙ (Sig c) d = [constr c ]
generate↙ (s @ a) d = [f x | f ← generate↙ s d , x ← generate a d ]

The helper function generate↙ constructs all terms that conform to a given
signature. The right-hand side of the second equation essentially computes
the cartesian product of generate↙ s d and generate a d . Here is a short
interactive session that illustrates the use of generate.

>>> generate (List Bool) 3
[[ ], [False ], [False,False ], [False,True ], [True ], [True,False ], [True,True ] ]
>>> generate (List (List Bool)) 3
[[ ], [ [ ] ], [ [ ], [ ] ], [ [False ] ], [ [False ], [ ] ], [ [True ] ], [ [True ], [ ] ] ]

As a second example, let us define a generic parser. We implement a parser
similar to Haskell’s read function that is the left-inverse of pretty . For the
implementation, we use a standard combinator-parsing library [10], see also
Appendix A.3.

data ReadP :: ∗→ ∗
instance Monad ReadP

token :: String→ ReadP String
pfail :: ReadP α
(+++) :: ReadP α→ ReadP α→ ReadP α
sepBy :: ReadP α→ ReadP β→ ReadP [α ]

36



Parsers have type ReadP α if they parse a string producing a result of type α.
Note that ReadP is an instance of the Monad class. The function token reads
a specific string and consumes trailing spaces. The parser pfail always fails;
the operator (+++) represents binary choice. Finally, sepBy parses sequences
of αs that are separated by βs.

The generic parser parse takes an additional Boolean argument that indi-
cates whether the context requires a non-atomic expression to be enclosed in
parentheses.

open parse :: Type α→ Bool→ ReadP α
parse (Char) d = parseChar

parse (Int) d = parse Int

parse (List Char) d = parseString

parse (List a) d
= parseParens False (do token "["

xs ← sepBy (parse a False) (token ",")
token "]"

return xs)
parse (Pair a b) d

= parseParens True (do x ← parse a False
token ","

y ← parse b False
return (x , y))

parse a d
= foldr (+++) pfail

[parseParens (arity ′ s > 0 ∧ d) (parse↙ s) | s ← datatype a ]

The overall structure is similar to that of pretty . The first three equations
delegate the work to tailor-made parsers. We assume that each of these tailor-
made parsers can also deal with optional pairs of parentheses and trailing
spaces (for instance, parse Int should be able to parse ( (4711 ))  ). Lists
consist of a comma-separated list of elements (calling parse on the element
type a) between square brackets. The function parseParen b (defined in Ap-
pendix A.3) takes care of optional (b = False) or mandatory parentheses
(b = True). Pairs are read using the usual mix-fix notation. The catch-all
case implements the generic part: constructors in prefix notation. Parentheses
are mandatory if the constructor has at least one argument and the context
requires parentheses. The parser for α is the choice between all parsers for
the individual constructors of α. The auxiliary function parse↙ parses a single
constructor application.

parse↙ :: Signature α→ ReadP α
parse↙ (Sig c) = do x ← ident

if x = = name c then return (constr c) else pfail
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parse↙ (s @ a) = do f ← parse↙ s
x ← parse a True
return (f x )

The constructor itself is a single alphanumeric identifier parsed by ident (also
defined in Appendix A.3). The case for ‘@’ calls parse↙ and parse recursively,
and applies the results to each other.

Finally, arity ′ determines the arity of a constructor.

arity ′ :: Signature α→ Int
arity ′ (Sig c) = 0
arity ′ (s @ a) = arity ′ s + 1

The function parse is defined by explicit case analysis on the type represen-
tation. This is typical of generic functions, but not compulsory: the wrapper
function read , which simplifies the use of the generic parser, is given by a
simple abstraction:

read :: Type α→ String→ α
read a s = case [x | (x , "")← readP to S (parse a False) s ] of

[x ] → x
Nil → error "read: no parse"

→ error "read: ambiguous parse"

The library function readP to S turns the abstract parser of type ReadP α
into a function of type String→ [(α, String)] that produces a list of possible
results (and, in case the result corresponds to a partial parse, the rest of the
input).

From the code of generate and parse we can abstract a general definitional
scheme for generic producers.

open produce :: Type α→ τ → α
. . .
produce a t = . . . [ . . . produce↙ s t . . . | s ← datatype a ]

produce↙ :: Signature α→ τ → α
produce↙ . . . = . . .

The generic case is a two-step procedure: the list comprehension processes
the list of constructors; the helper function produce↙ takes care of a single
constructor.

The type-spine view is complementary to the spine view, but independent of
it. The former is used for generic producers, the latter for generic consumers
or transformers. This is in contrast to Generic Haskell’s sum-of-products view
or PolyP’s fixed-point view where a single view serves both purposes.
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The type-spine view shares the major advantage of the spine view: it is ap-
plicable to a large class of datatypes. Nested datatypes such as the type of
perfect binary trees can be handled easily:

datatype (Perfect a) = [Sig zero @ a, Sig succ @ Perfect (Pair a a)]

The scheme can even be extended to generalised algebraic datatypes. However,
since Datatype α is a homogeneous list, we have to partition the constructors
according to their result types. Consider the expression datatype of Section 4.1.
We have three different result types, Expr Bool, Expr Int and Expr α, and
consequently three equations for datatype.

datatype (Expr Bool)
= [Sig eq @ Expr Int @ Expr Int ,

Sig if @ Expr Bool @ Expr Bool @ Expr Bool ]
datatype (Expr Int)

= [Sig num @ Int ,
Sig plus @ Expr Int @ Expr Int ,
Sig if @ Expr Bool @ Expr Int @ Expr Int ]

datatype (Expr a)
= [Sig if @ Expr Bool @ Expr a @ Expr a ]

The equations are ordered from specific to general; each right-hand side lists
all the constructors that have the given result type or a more general one.
Consequently, the If constructor, which has a polymorphic result type, ap-
pears in every list. Given this declaration we can easily generate well-typed
expressions (for reasons of space we have modified generate Int so that only
0 is produced and made the output of pretty somewhat less pretty):

>>> let gen a d = putStrLn (render (pretty (generate a d : List a)))
>>> gen (Expr Int) 4
[(Num 0), (Plus (Num 0) (Num 0)), (Plus (Num 0) (Plus (Num 0) (Num
0))), (Plus (Plus (Num 0) (Num 0)) (Num 0)), (Plus (Plus (Num 0) (Num
0)) (Plus (Num 0) (Num 0))), (If (Eq (Num 0) (Num 0)) (Num 0) (Num
0)), (If (Eq (Num 0) (Num 0)) (Num 0) (Plus (Num 0) (Num 0))), (If (Eq
(Num 0) (Num 0)) (Plus (Num 0) (Num 0)) (Num 0)), (If (Eq (Num 0)
(Num 0)) (Plus (Num 0) (Num 0)) (Plus (Num 0) (Num 0)))]
>>> gen (Expr Bool) 4
[(Eq (Num 0) (Num 0)), (Eq (Num 0) (Plus (Num 0) (Num 0))), (Eq (Plus
(Num 0) (Num 0)) (Num 0)), (Eq (Plus (Num 0) (Num 0)) (Plus (Num 0)
(Num 0))), (If (Eq (Num 0) (Num 0)) (Eq (Num 0) (Num 0)) (Eq (Num 0)
(Num 0)))]
>>> gen (Expr Char) 4
[ ]

The last call shows that there are no character expressions of depth 4 (in fact,
there are no character expressions of any depth).
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In general, for each constructor C with signature

C :: τ1→ · · · → τn→ τ0

we add an element of the form

Sig c @ t1 @ · · · @ tn

to each right-hand side of datatype t provided τ0 is more general than τ .

4.3 Spine-like sum-of-products view

We have introduced the spine view for generic consumers and transformers,
and the type-spine view for generic producers, but it remains unsatisfactory
that there is no single view that can handle both kinds of generic functions.

In this section, we present a view that makes explicit the sum structure (the
choice between the different constructors) and the product structure (the com-
bination of arguments for each constructor) of a datatype. It merges elements
of both the spine view and the type-spine view to achieve this goal. The re-
sulting spine-like sum-of-products view is the view introduced in the RepLib
library by Weirich [53], where it is used together with class-based overloading
rather than explicit type reflection (see also Section 6).

We introduce a variant of Datatype, called Constructors:

type Constructors α = [Constructor α ]

data Constructor :: ∗→ ∗ where
Constructor :: Product α→ (α→ β)→ (Maybe α← β)→ Constructor β

Compared to Signature, the datatype Constructor contains more information
about each constructor: it defines embeddings (partial views) between the
datatype and types representing the product structure of the constructors.
These embeddings can be used both to consume and to produce values of the
original type. Because not all values of the type belong to a certain constructor,
one direction of the conversion can fail.

The product structure is a list of type representations, encoded as a nested
pair where the left component is always an element of the list, and the right
component is either the unit type, indicating the end of the list, or another
pair.

data Product :: ∗→ ∗ where
PNil :: Product ()
PCons :: Type α→ Product β→ Product (α, β)
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The counterpart of datatype is an open overloaded function constructors that
computes an element of type Constructors α from a type representation.

open constructors :: Type a→ Constructors α

As an example, here are the defining equations for Booleans and binary trees:

constructors (Bool) =
[Constructor PNil toFalse fromFalse,
Constructor PNil toTrue fromTrue ]
where toFalse () = False

fromFalse False = Just ()
fromFalse = Nothing

toTrue () = True
fromTrue True = Just ()
fromTrue = Nothing

constructors (Tree a) =
[Constructor PNil toEmpty fromEmpty ,
Constructor (PCons (Tree a) (PCons a (PCons (Tree a) PNil)))

toNode fromNode ]
where toEmpty () = Empty

fromEmpty Empty = Just ()
fromEmpty = Nothing

toNode (l , (x , (r , ()))) = Node l x r
fromNode (Node l x r) = Just (l , (x , (r , ())))
fromNode = Nothing

The transformation is straightforward: the arguments of the constructors are
transformed into nested pairs. For each constructor, there are specific conver-
sion functions, where the back direction additionally tests whether the value
in question is actually constructed by the right constructor.

For brevity, we have not included information about the names of constructors
or their arity (as in Section 2.3 for values of type Constr). It would be easy to
augment Constructor by another argument that adds this information. 7

The typical shape of a generic function now consists of three layers:

open generic :: Type α→ . . .
. . .
generic a = . . . generic+ (constructors a) . . .

7 Unfortunately, we cannot reuse the original Constr datatype because that contains
the constructor itself as a function, and therefore has an incompatible type.
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generic+ :: Constructors α→ . . .
generic+ Nil = . . .
generic+ (Cons (Constructor b to from) cs) = . . . generic× b . . . generic+ cs

generic× :: Product α→ . . .
generic× PNil = . . .
generic× (PCons a b) = . . . generic a . . . generic× b . . .

The catch-all case of the generic function invokes constructors and delegates
the traversal of the constructors – the sum structure of the datatype – to
generic+. In generic+ we have the opportunity to perform some action for
each constructor and to invoke generic× to traverse the arguments of that con-
structor – the product structure of the datatype. Finally, generic× recursively
invokes the original generic function generic, for each constructor argument
encountered.

As an example of a generic consumer, let us consider generic equality:

open equal :: Type α→ α→ α→ Bool
equal (Int) m n = m = = n
equal (Char) c d = c = = d
equal (a) x y = equal+ (constructors a) x y

equal+ :: Constructors α→ α→ α→ Bool
equal+ (Cons (Constructor b toCon fromCon) cs) x y =

case (fromCon x , fromCon y) of
(Just x×, Just y×) → equal× b x× y×
(Nothing ,Nothing)→ equal+ cs x y

→ False

equal× :: Product α→ α→ α→ Bool
equal× PNil () () = True
equal× (PCons a b) (x , r) (y , s) = equal a x y ∧ equal× b r s

This function differs from the examples we have seen before in that it consumes
two arguments of the ‘generic’ type. Implementing such a function using the
spine view faces the problem that the elements of a spine possess existentially
quantified types: even if we know that the constructors of two values are
identical, we cannot conclude that the types of corresponding arguments are
the same – and, indeed, this property fails, for instance, for the type Dynamic.
Consequently, a spine-based implementation of equal must either involve a
dynamic type-equality check, or the type of equality must be generalised to

equal :: Type α→ α→ Type β→ β→ Bool

While the latter twist works fine for equal , it is not without problems for other,
similar functions such as generic comparison, as in general we have to relate
elements of different types.
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Note that a case for the empty list of constructors is not required in equal+, be-
cause we stop traversing the list as soon as one of the two arguments matches
the current constructor, and each of the arguments must match one construc-
tor in the list. On the negative side, since equal+ blindly searches the list of
constructors for a matching entry, the running time of equal is not only de-
termined by the size of its arguments, but also by the size of the datatypes
involved.

As an example of a generic producer, let us define some, a function that
returns some value of a given type. This function may be used, for instance,
in a web application to fill an HTML form with default values [46].

open some :: Type α→ α
some (Int) = 0
some (Char) = ’ ’

some a = some+ (constructors a)

some+ :: Constructors α→ α
some+ (Cons (Constructor b toCon fromCon) ) = toCon (some× b)

some× :: Product α→ α
some× PNil = ()
some× (PCons a b) = (some a, some× b)

Using a technique similar to that in Section 4.2 we can broaden the scope of the
spine-like sum-of-products view to include generalised algebraic datatypes. A
GADT introduces a family of Haskell 98 types indexed by the type argument
of the GADT. If we partition the constructors according to their result types,
we can provide an individual view for each instance. Consider the expres-
sion datatype of Section 4.1. We have three different result types, Expr Bool,
Expr Int and Expr α, and consequently three equations for constructors .

constructors (Expr Bool) = [cEq , cIf Bool ]
constructors (Expr Int) = [cNum, cPlus , cIf Int ]
constructors (Expr a) = [cIf a ]

cNum = Constructor (PCons Int PNil)
toNum fromNum

where toNum (n, ()) = Num n
fromNum (Num n) = Just (n, ())
fromNum = Nothing

cPlus = Constructor (PCons (Expr Int) (PCons (Expr Int) PNil))
toPlus fromPlus

where toPlus (x1, (x2, ())) = Plus x1 x2

fromPlus (Plus x1 x2) = Just (x1, (x2, ()))
fromPlus = Nothing

cEq = Constructor (PCons (Expr Int) (PCons (Expr Int) PNil))
toEq fromEq
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where toEq (x1, (x2, ())) = Eq x1 x2

fromEq (Eq x1 x2) = Just (x1, (x2, ()))
fromEq = Nothing

cIf a = Constructor (PCons (Expr Bool)
(PCons (Expr a) (PCons (Expr a) PNil)))

toIf fromIf
where toIf (x1, (x2, (x3, ()))) = If x1 x2 x3

fromIf (If x1 x2 x3) = Just (x1, (x2, (x3, ())))
fromIf = Nothing

For the details we refer to the description in Section 4.2.

The spine-like sum-of-products view is very similar to the sum-of-products
view of Generic Haskell [1], the main difference being that Constructors’s sum
structure is less direct: while the product structure is encoded as a nested
pair, the sum is not encoded as a nested binary sum, but simply as a list. The
gain is that only one type conversion is necessary, and building subsets of the
constructors such as required for the encoding of a GADT is less work.

4.4 Lifted spine view

We have already mentioned that the original spine view is not suitable for
defining ∗ → ∗-indexed functions, as it cannot capture type abstractions. To
illustrate, consider a variant of Tree whose inner nodes are annotated with an
integer, say, a balance factor.

data BalTree α = Empty | Node Int (BalTree α) α (BalTree α)

If we call the generic function on a value of type BalTree Int, then the two
integer components are handled in a uniform way. This is fine for generic
functions that abstract from types of kind ∗, but not acceptable for generic
functions that abstract from type constructors of kind κ1→ κ2. For instance,
a generic version of sum must consider the label of type α = Int, but ignore
the balance factor of type Int. In the sequel we introduce a suitable variant of
Spine that can be used to define the latter brand of generic functions.

A constructor of a lifted type has the signature ∀χ . τ ′1 χ→ · · ·→ τ ′n χ→ τ ′0 χ
where the type variable χ marks the parametric components. We can write
the signature more perspicuously as ∀χ . (τ ′1 →′ · · · →′ τ ′n →′ τ ′0) χ, using the
lifted function space:

infixr→′

newtype (ϕ→′ ψ) χ = Fun{app :: ϕ χ→ ψ χ}
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For technical reasons, ‘→′’ must be defined by a newtype rather than a type
declaration. 8 As an example, here are variants of Nil ′ and Cons ′:

nil ′ :: ∀χ . ∀α′ . (List′ α′) χ
nil ′ = Nil ′

cons ′ :: ∀χ . ∀α′ . (α′ →′ List′ α′ →′ List′ α′) χ
cons ′ = Fun (λx → Fun (λxs → Cons ′ x xs))

An element of a lifted type can always be put into the applicative form c ′ ‘app‘
e1 ‘app‘ · · · ‘app‘en. As in the first-order case we can make this structure visible
and accessible by marking the constructor and the function applications.

data Spine′ :: (∗→ ∗)→∗→ ∗ where
Con ′ :: (∀χ . ϕ χ)→ Spine′ ϕ α
(♦′) :: Spine′ (ϕ→′ ψ) α→ Typed′ ϕ α→ Spine′ ψ α

The structure of Spine′ is very similar to that of Spine, except that we are
now working in a higher realm: Con ′ takes a polymorphic function of type
∀χ . ϕ χ to an element of Spine′ ϕ; the constructor ‘♦′’ applies an element of
type Spine′ (ϕ→′ ψ) to a Typed′ ϕ yielding an element of type Spine′ ψ.

Turning to the conversion functions, fromSpine ′ is again polymorphic.

fromSpine ′ :: Spine′ ϕ α→ ϕ α
fromSpine ′ (Con ′ c) = c
fromSpine ′ (f ♦′ x ) = fromSpine ′ f ‘app‘ val ′ x

Its inverse is an overloaded function that follows a pattern similar to toSpine:
each constructor C ′ with signature

C ′ :: ∀χ . τ ′1 χ→ · · · → τ ′n χ→ τ ′0 χ

gives rise to an equation of the form

toSpine ′ (C ′ x1 . . . xn :′ t ′0) = Con ′ c ′ ♦′ (x1 : t ′1) ♦′ · · · ♦′ (xn : t ′n)

where c ′ is the variant of C ′ that uses the lifted function space and t ′i is the
type representation of the lifted type τ ′i . As an example, here is the instance
for lifted lists.

toSpine ′ :: Typed′ ϕ α→ Spine′ ϕ α
toSpine ′ (Nil ′ :′ List ′ a ′) = Con ′ nil ′

toSpine ′ (Cons ′ x xs :′ List ′ a ′) = Con ′ cons ′ ♦′ (x :′ a ′) ♦′ (xs :′ List ′ a ′)

The equations are surprisingly close to those of toSpine; pretty much the only
difference is that toSpine ′ works on lifted types.

8 In Haskell, types introduced by type declarations cannot be partially applied.
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Let us make the generic view explicit. In our case, the structure view of ϕ is
simply Spine′ ϕ.

Spine ′ :: Type′ ϕ→ Type′ (Spine′ ϕ)

spine ′ :: Type′ ϕ→ View′ ϕ
spine ′ a ′ = View ′ (Spine ′ a ′) (λx → toSpine ′ (x :′ a ′)) fromSpine ′

The first line extends the type representation Type′ (see Section 3.1.2) by an
additional constructor.

Given these prerequisites we can turn size (see Section 3.1.2) into a generic
function.

size (x :′ Spine ′ a ′) = size↙ x
size (x :′ a ′) = case spine ′ a ′ of

View ′ b ′ from to→ size (from x :′ b ′)

The catch-all case applies the spine view: the argument x is converted to the
structure type, on which size is called recursively. Currently, the structure
type is always of the form Spine′ ϕ (this will change in a moment), so the
first equation applies, which in turn delegates the work to the helper function
size↙.

size↙ :: Spine′ ϕ α→ Int
size↙ (Con ′ c) = 0
size↙ (f ♦′ x ) = size↙ f + size x

The implementation of size↙ is entirely straightforward: it traverses the spine,
summing up the sizes of the constructor’s arguments. It is worth noting that
the catch-all case of size subsumes all the previous instances except the one
for Id , as we cannot provide a toSpine ′ instance for the identity type. In other
words, the generic programmer has to take care of essentially three cases: Id ,
Con ′ and ‘♦′’.

As a second example, here is an implementation of the generic mapping func-
tion:

map :: Type′ ϕ→ (α→ β)→ (ϕ α→ ϕ β)
map Id m = In Id . m . out Id

map (Spine ′ a ′) m = map↙ m
map a ′ m = case spine ′ a ′ of

View ′ b ′ from to→ to . map b ′ m . from

map↙ :: (α→ β)→ (Spine′ ϕ α→ Spine′ ϕ β)
map↙ m (Con ′ c) = Con ′ c
map↙ m (f ♦′ (x :′ a ′)) = map↙ m f ♦′ (map a ′ m x :′ a ′)
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The definition is stunningly simple: the argument function m is applied in
the Id case; the helper function map↙ applies map to each argument of the
constructor. Note that the mapping function is of type Type′ ϕ→ (α→ β)→
(ϕ α→ ϕ β) rather than (α→ β)→ (Typed′ ϕ α→ ϕ β). Both variants are
interchangeable, so picking one is just a matter of personal taste.

4.4.1 Bridging the gap

We have noted in Section 3.1.2 that the generic size function does not work on
the original, unlifted types, as they are different from the lifted ones. However,
both are closely related: if τ ′ is the lifted variant of τ , then τ ′ Id is isomorphic
to τ [19]. (This relation only holds for Haskell 98 types, not for GADTs; see also
below.) Even more, τ ′ Id and τ can share the same run-time representation,
since Id is defined by a newtype declaration and since the lifted datatype τ ′

has exactly the same structure as the original datatype τ .

As an example, the functions fromList In Id and toList out Id exhibit the iso-
morphism between [ ] and List′ Id.

fromList :: (α→ α′ χ)→ ([α ]→ List′ α′ χ)
fromList from Nil = Nil ′

fromList from (Cons x xs) = Cons ′ (from x ) (fromList from xs)

toList :: (α′ χ→ α)→ (List′ α′ χ→ [α ])
toList to Nil ′ = Nil
toList to (Cons ′ x xs) = Cons (to x ) (toList to xs)

Operationally, if the types τ ′ Id and τ have the same run-time representation,
then fromList In Id and toList out Id are identity functions (the Haskell Report
[43] guarantees this for In Id and out Id).

We can use the isomorphism to broaden the scope of generic functions to
unlifted types. To this end we simply re-use the view mechanism.

spine ′ List = View ′ (List ′ Id) (fromList In Id) (toList out Id)

The following interactive session illustrates the use of size.

>>> let ts = [tree [0 . . i :: Int ] | i ← [0 . . 9]]
>>> size (ts :′ List)
10
>>> size (fromList (fromTree In Int′) ts :′ List ′ (Tree ′ Int ′))
0
>>> size (In Id ts :′ Id)
1
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>>> size (fromList In Id ts :′ List ′ Id)
10
>>> size (fromList (fromTree In Id) ts :′ List ′ (Tree ′ Id))
55

With the help of the conversion functions we can implement each of the four
different views on a list of trees of integers. Since Haskell employs a kinded
first-order unification of types [34], the calls almost always additionally involve
a change on the value level. The type equation ϕ τ = [Tree Int ] is solved
by setting ϕ = [ ] and τ = Tree Int, that is, Haskell picks one of the four
higher-order unifiers. Only in this particular case we need not change the
representation of values: size (ts :′ List) implements the intended call. In the
other cases, [Tree Int ] must be rearranged so that the unification with ϕ τ
yields the desired choice.

4.4.2 Discussion

The lifted spine view is almost as general as the original spine view: it is
applicable to all datatypes that are definable in Haskell 98. In particular,
nested datatypes can be handled with ease. As an example, for the datatype
Perfect (see Section 2.2), we introduce a lifted variant

data Perfect′ α′ χ = Zero ′ (α′ χ) | Succ ′ (Perfect′ (Pair′ α′ α′) χ)

Perfect :: Type′ Perfect
Perfect ′ :: Type′ ϕ→ Type′ (Perfect′ ϕ)

toSpine ′ (Zero ′ x :′ Perfect ′ a ′) = Con ′ zero ′ ♦′ (x :′ a ′)
toSpine ′ (Succ ′ x :′ Perfect ′ a ′) = Con ′ succ ′ ♦′ (x :′ Perfect ′ (Pair ′ a ′ a ′))

and functions that convert between the lifted and the unlifted variant.

spine ′ (Perfect)
= View ′ (Perfect ′ Id) (fromPerfect In Id) (toPerfect out Id)

fromPerfect :: (α→ α′ χ)→ (Perfect α→ Perfect′ α′ χ)
fromPerfect from (Zero x ) = Zero ′ (from x )
fromPerfect from (Succ x ) = Succ ′ (fromPerfect (fromPair from from) x )

toPerfect :: (α′ χ→ α)→ (Perfect′ α′ χ→ Perfect α)
toPerfect to (Zero ′ x ) = Zero (to x )
toPerfect to (Succ ′ x ) = Succ (toPerfect (toPair to to) x )

The following interactive session shows some examples involving perfect trees.

>>> size (Succ (Zero (1, 2)) :′ Perfect)
2
>>> map (Perfect) (+1) (Succ (Zero (1, 2)))
Succ (Zero (2, 3))
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We have seen that the spine view is also applicable to generalised algebraic
datatypes. This does not hold for the lifted spine view, as it is not possible to
generalise size or map to GADTs. Consider the expression datatype of Sec-
tion 4.1. Though Expr is parameterised, it is not a container type: an element
of Expr Int, for instance, is an expression that evaluates to an integer; it is
not a data structure that contains integers. This means, in particular, that we
cannot define a mapping function (α→β)→ (Expr α→Expr β): How could we
possibly turn expressions of type Expr α into expressions of type Expr β? The
type Expr β might not even be inhabited: there are, for instance, no terms
of type Expr String. Since the type argument of Expr is not related to any
component, Expr is also called a phantom type [38,21] or an indexed type [54].

It is instructive to see where the attempt to generalise size or map to GADTs
fails technically. We can, in fact, define a lifted version of the Expr type (we
confine ourselves to one constructor).

data Expr′ :: (∗→ ∗)→∗→ ∗ where
Num ′ :: Int′ χ→ Expr′ Int′ χ

However, we cannot establish an isomorphism between Expr and Expr′ Id: the
following code simply does not type-check.

fromExpr :: (α→ α′ χ)→ (Expr α→ Expr′ α′ χ)
fromExpr from (Num i) = Num ′ (In Int′ i) -- wrong: does not type-check

The isomorphism between τ and τ ′ Id only holds for Haskell 98 types.

We have seen two examples of generic consumers or transformers. As in the
first-order case, generic producers are out of reach, and for exactly the same
reason: fromSpine ′ is a polymorphic function while toSpine ′ is overloaded.
Of course, the solution to the problem suggests itself: we must also lift the
type-spine view to type constructors of kind ∗→ ∗.

The spine view can even be lifted to kind indices of arbitrary kinds. The
generic programmer then has to consider two cases for the spine view and
additionally n cases, one for each of the n projection types Out1, . . . , Outn.

Introducing lifted types for each possible type index sounds like a lot of work.
Note, however, that the declarations can be generated completely mechanically
(a compiler could do this easily). Furthermore, we have already noted that
generic functions that are indexed by higher kinds, for instance, by (∗→∗)→
∗→∗ are rare. In practice, most generic functions are indexed by a first-order
kind such as ∗ or ∗→ ∗.
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4.5 Summary

In this section, we have made the concept of a generic view explicit, and we
have compared several variants of the spine view.

The original spine view of SYB [44] provides a view on a single element of a
datatype. It models the way that values are constructed. The strengths of the
spine view are its simplicity and that it covers a large class of datatypes: nested
datatypes and GADTs pose no problems; only values of existential types lack-
ing some form of run-time type information cannot be turned into a spine.
The weakness of the view is its value-orientation: functions that destruct a
value are easy to write, but functions that construct a value require informa-
tion about the structure of the complete datatype, which is not provided by
the spine view. The spine view operates on datatypes of kind ∗.

The type-spine view (also originating from a SYB paper [36]) contains infor-
mation about the constructors of a datatype and is specifically tailored to
provide the functionality that the original spine view lacks: while it is now
easy to write generic producers of values, the type-spine view cannot express
generic consumers. Again, the view is applicable to nested datatypes. With a
bit of effort the view can be extended to GADTs. This view is slightly more
involved than the spine view. Both views nicely complement each other; most
generic functions on types of kind ∗ can be written using either view.

The spine-like sum-of-products view can be seen as a combination of the two
previous views. The information about the constructors of a datatype (the sum
structure) is combined with information about individual values (the product
structure). As a consequence, using this view both producers and consumers
can be defined generically. Other than the original spine view, the spine-like
sum-of-products view is not value-oriented – the shape of the type is separated
from the generic value. For this reason, the spine-like sum-of-products view
can be used to define consumers that combine several arguments of the generic
type, such as generic equality. The view is again applicable to many datatypes
of kind ∗. Nested types pose no difficulties. GADTs can be handled in the
same manner as for the type-spine view. The spine-like sum-of-products view
is the view of RepLib [53] and shares most of its properties with the sum-of-
products view of Generic Haskell [1] (although GADTs are not yet supported
in Generic Haskell). The disadvantage of the sum-of-products views is that
they are less direct than the spine and the type-spine views.

Finally, we have discussed how the spine view can be lifted to datatypes of
higher kind such as ∗→∗. This requires quite some effort, but the development
is completely mechanical and could be easily automated. We can reuse the
view mechanism to exploit the isomorphism between datatypes and their lifted
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counterparts. The resulting view is almost as general as the original, but it no
longer works for GADTs.

5 Overloading

Most generic functions exhibit type-specific behaviour requiring support for
overloading. In this section, we compare three approaches to overloading ex-
ploring the third and last dimension of the design space of generic program-
ming.

We have already seen that GADTs enable us to reflect types. We summarise
the pros and cons of this approach in Section 5.1. Besides, we take a look at
the classic construct that Haskell offers to achieve overloading: type classes
(Section 5.2). Finally, we discuss the use of a type-safe cast to perform a
limited amount of run-time analysis on types (Section 5.3).

Some approaches to generic programming are based on preprocessing and
circumvent the need for overloading by specializing generic functions for the
cases that are used in a program. We briefly consider these approaches in our
discussion of related work (Section 6).

In the following, we consider and evaluate the different approaches in turn.
Like in the previous sections, we move through one dimension of our three-
dimensional design space while keeping the two other dimensions fixed. Here,
we represent only closed type terms of kind ∗ and we confine ourselves to
overloaded functions (no generic view).

5.1 Type reflection

Reflecting types using the GADT Type is the approach to overloading that we
have used so far. Each type has a representation as a Haskell value. Here is
the definition of Type again:

open data Type :: ∗→ ∗ where
Char :: Type Char
Int :: Type Int
Pair :: Type α→ Type β→ Type (α, β )
List :: Type α→ Type [α ]
Tree :: Type α→ Type (Tree α)

The advantage of the GADT encoding is its simplicity and its directness:
type representations have structure; they can be combined by constructor
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application and analyzed by pattern matching. In particular, pattern matching
is a very convenient way to write overloaded functions, not the least because
Haskell’s pattern matching language is very expressive: it allows, for instance,
nested and overlapping patterns. At the same time, the encoding is type-safe,
because the type parameter of Type records the type that is being reflected.

There are a number of disadvantages, too. We require generalised algebraic
datatypes, a relatively recent addition to the Haskell type system, that is not
yet supported by many implementations. Also, the explicitness of the reflection
mechanisms implies that the programmer must manually provide the correct
type arguments. All overloaded and generic functions take a type argument,
even if the reflected type is uniquely determined by the context. Perhaps the
most significant disadvantage of this reflection mechanism is that the selection
of the correct case is shifted to run-time: this implies that we only learn at
run-time if a type case is missing (reported as a pattern match failure). For
Haskell programmers, who are used to the fact that type-level computations
are performed at compile time, this may come as an unpleasant surprise.

If the set of datatypes we deal with is known in advance, GADTs are very
suitable for expressing generic functions. However, the introduction of new
datatypes requires the modification of Type and a few other existing defini-
tions. Throughout this article, we therefore assume that the programming
language supports open datatypes and functions.

5.2 Type classes

Type classes have the potential to alleviate some of the disadvantages of the
GADT approach discussed in the previous section. Instances for type classes
are inferred statically and implicitly by the compiler, and a missing type case,
that is, a missing instance is reported as a compile-time error. Furthermore,
type classes can be easily extended with new instances obviating the need for
open datatypes.

Type classes are a powerful and versatile construct. Therefore, it is perhaps
not surprising that there is more than one way in which type classes can be
employed in this context. We consider two variations. First, we show how to
combine type classes with the GADT approach to gain more convenience.
Thereafter, we analyse the classic approach of defining overloaded functions
via type classes.
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5.2.1 A class of representable types

A very simple use of type classes in addition to GADT-based reflection is to
derive values of type Type automatically:

class Rep a where
rep :: Type a

Instances of this class are trivial to define:

instance Rep Int where
rep = Int

instance Rep Char where
rep = Char

instance (Rep α)⇒ Rep [α ] where
rep = List rep

instance (Rep α,Rep β)⇒ Rep (α, β) where
rep = Pair rep rep

instance (Rep α)⇒ Rep (Tree α) where
rep = Tree rep

With the help of

typed :: (Rep α)⇒ α→ Typed α
typed a = a : rep

we can now define a class-based version of a generic function such as pretty :

cpretty :: (Rep α)⇒ α→ Text
cpretty x = pretty (typed x )

The type argument of cpretty is now implicit: at the call site, the compiler
automatically inserts the correct class instance. However, the other problems
of reflected types still persist: the type Type is still present behind the scenes,
so we still need GADT support and open datatypes. Furthermore, overloaded
functions are still defined using pattern matching on Type, and pattern match
failures are still reported as run-time errors.

5.2.2 One class per overloaded function

Haskell’s classic approach to overloading is to introduce one type class per
overloaded function or per group of related overloaded functions.

As an example, for strings from Section 2, we introduce the following class
declaration:
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class Strings a where
strings :: a→ [String ]

Each type case becomes one instance declaration. Cases for parameterised
types correspond to instances with preconditions:

instance Strings Int where
strings i = Nil

instance Strings Char where
strings c = Nil

instance (Strings α)⇒ Strings [α ] where
strings xs = concat [strings x | x ← xs ]

An important case for the strings function is the one for strings, that is, for
the type [Char ]. What used to be a nested pattern now turns into an instance
that overlaps with the instance for lists:

instance Strings [Char ] where
strings s = [s ]

Actually, this declaration requires ‘overlapping instances’, an extension to the
class system of Haskell 98. At the call site, the most specific instance that
applies is selected by the compiler.

If an overloaded function is declared using type classes, the type arguments
are implicit and automatically inferred by the compiler. Furthermore, missing
instances are detected statically and an error is reported at the call site. Fur-
thermore, the overloaded function is extensible, because new instances can be
added at any time, without touching existing code.

Special care must be taken if the class-based approach to reflection is to be
used together with a view. To understand why, recall the definition of views
from Section 4:

data View :: ∗→ ∗ where
View :: Type β→ (α→ β)→ (α← β)→ View α

A view for type α consists of three components: a structure type β, plus
conversion functions to and fro. Since we want to use type classes rather than
the Type datatype for type reflection, we have to replace Type by a suitable
class constraint.

data View :: ∗→ ∗ where
View :: (C β)⇒ (α→ β)→ (α← β)→ View α

The constraint is required, because in the generic case, we want to invoke the
view and call the function recursively on the structure type. But, what is a
suitable choice for C?
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Assuming the spine view for the moment and a class HasSpine for the now also
class-based function spine (cf. Section 4.1), we obtain the following generic
case for strings :

instance (HasSpine α)⇒ Strings α where
strings x = case spine of

View from to→ strings (from x )

For the above definition to be type-correct, C β must imply Strings β (we call
strings on the result of from). In other words, C must be Strings, or Strings must
be a superclass of C. But the same is true for every generic function. Whenever
we want to define a generic case for a function in a class D, we require that
the class D is a superclass of C. We cannot simply let C be a specific class
Generic, because Haskell requires us to declare all its superclasses the moment
we define Generic. As a consequence, the number of generic functions we can
write is fixed, which means that we cannot add new generic functions at a
later stage.

The same problem shows up when we adapt the spine view to the class-based
approach. Recall that the Spine datatype in its original form contains a type
representation:

data Spine :: ∗→ ∗ where
Con :: Constr α→ Spine α
(♦) :: Spine (α→ β)→ Typed α→ Spine β

The reason for including a type representation of α is that we want to call
generic functions on the value of that type, but we cannot say in advance
which generic function that might be. The type Spine therefore becomes

data Spine :: ∗→ ∗ where
Con :: Constr α→ Spine α
(♦) :: (C α)⇒ Spine (α→ β)→ α→ Spine β

and as before we do not know what to use as a suitable class C.

There are at least two solutions to this problem: we can detach the superclass
relation from the class declaration, or we can abstract away from the type
class C. Neither solution is directly expressible in Haskell, each requires an
extension to the class system. We discuss each solution in turn.

Flexible superclasses Sulzmann and Wang [48] propose a language exten-
sion that detaches the superclass relation from the declaration of classes. In
their language extension, the superclass hierarchy can be extended at any time
using rules of the form
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rule Generic β =⇒ Strings β

which encodes exactly the statement from above that Generic β (or C β)
implies Strings β. In the system of Sulzmann and Wang, the superclass relation
may even be cyclic. Interestingly, their proposed translation scheme internally
makes use of reflected types.

A consequence of this approach is that a datatype can only be an instance of
Generic if it is an instance of all generic classes. Unfortunately, this negates
one of the advantages of the class-based approach, namely that the domain of
a generic function can be defined precisely and individually.

Class abstraction Lämmel and Peyton Jones [37] describe a different so-
lution to the above problem: rather than looking for a single class like Generic
to take the place of C, they abstract away from C. Haskell does not support
abstraction from type classes, but let us assume for a moment that it does:

data AView :: (∗→ ctx)→∗→ ∗ where
AView :: (γ β)⇒ (α→ β)→ (α← β)→ AView γ α

The type AView receives an additional context parameter γ of kind ∗ → ctx,
which represents a class that has one parameter of kind ∗. This parameter
propagates to a number of other definitions. For instance, the Spine class
becomes ASpine:

class ASpine γ α where
aspine :: AView γ α

and the generic case of strings requires a modification, as well:

instance (ASpine Strings α)⇒ Strings α where
strings (x :: α) = case aspine :: AView Strings α of

AView from to→ strings (from x )

At this point we make use of the abstraction: we instantiate γ to Strings so
that we can recursively call strings after applying the view. For other generic
classes, the context argument is instantiated differently. Note that mutually
recursive (groups of) generic functions have to be merged into one class, be-
cause we abstract only from a single class γ.

Encoding class abstraction in Haskell There is a well-known trick [32,37]
to encode class abstraction in Haskell: classes are reflected as datatypes. As
an example, for the class Strings we define:

data StringsD α = StringsD {stringsD :: α→ Text}
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All class methods (in this case, we only have the stringsD method) are stored
as components in the so-called dictionary type StringsD. The kind ctx is sim-
ulated by kind ∗, and a class constraint of the form (γ α) becomes (Sat γ α),
where Sat is a class that just contains the dictionary (this trick requires
multiple-parameter type classes):

class Sat γ α where
dict :: γ α

data AView :: (∗→ ∗)→∗→ ∗ where
AView :: (Sat γ β)⇒ (α→ β)→ (α← β)→ AView γ α

In the recursive calls, we do not access the class method directly, but instead
we extract it from the dictionary:

instance (ASpine StringsD α)⇒ Strings α where
strings (x :: α) = case aspine :: AView StringsD α of

AView from to→ stringsD dict (from x )

To summarise, type classes are an excellent method of type reflection for over-
loaded functions. For generic functions, the class system requires a number
of extensions: we need overlapping instances in order to express type-specific
cases corresponding to nested patterns 9 and we need extensible superclasses.
The simulation of class abstraction is quite subtle and requires a deep tech-
nical understanding of the type class mechanism. On the positive side, type
arguments remain implicit and are inferred automatically. Furthermore, over-
loaded functions are extensible. Since there are no values that reflect types,
there is no need for an open datatype. Missing cases of overloaded or generic
functions are reported during compilation.

5.3 Type-safe cast

A third possibility to perform analysis on types is via a built-in type-safe cast
operation. In the following, we will look at three variants of a type-safe cast.

5.3.1 Polymorphic cast

Let us assume that we have a cast operator of type

cast :: α→Maybe β

9 The generic case does not necessarily require overlapping patterns if we make use
of default methods.
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The function tests at run-time whether an element of α is in fact an element
of β, and it returns Nothing if the test fails. With cast as a language built-in, we
can write functions of polymorphic types that exhibit type-specific behaviour.

For instance, here is a variant of strings from Section 2:

strings :: α→ [String ]
strings x =

case cast x of
Just (c :: Char)→ Nil
Nothing →

case cast x of
Just (i :: Int)→ Nil
Nothing →

case cast x of
Just (s :: [Char ])→ [s ]
Nothing →

case cast x of
Just xs → concat [strings x | x ← xs ]

A few remarks are in order. The repeated calls to cast are necessary because
each call is at a different result type. In the first three cases, we annotate the
pattern with the type (recall that e :: τ is a Haskell type annotation, not a
pattern of type Typed) because the type cannot be inferred from the context.
It is unusual that the presence of type annotations can influence the result of a
function call (especially if there are no type classes involved), which indicates
that cast would indeed be a very powerful function to add to the language. In
the fourth case, we assume that we can cast the value x to a list type without
specifying the element type explicitly. We then call strings recursively on the
elements. Note that the function strings is incomplete, so if none of the four
cases match, an error is reported at run-time.

To avoid the nested case structure, we can define combinators that extend
existing functions by new type-specific behaviour. For instance, the original
SYB paper [44] introduces an extension operator extQ that adds a new type-
specific case to a function of type α→ γ:

extQ :: (α→ γ)→ (β→ γ)→ (α→ γ)
extQ t s x = case cast x of

Just y → s y
Nothing → t x

Using extQ , we can rewrite strings in a slightly more appealing way:

strings = error "strings is undefined for this type"

‘extQ ‘ (λxs → concat [strings x | x ← xs ])

58



‘extQ ‘ (λ(s :: [Char ])→ [s ])
‘extQ ‘ (λ(i :: Int) → Nil)
‘extQ ‘ (λ(c :: Char) → Nil)

For defining overloaded functions of a more complex type (generic transform-
ers, for instance), it is necessary to generalize the cast operator to

gcast :: γ α→Maybe (γ β)

that can convert between α and β in an arbitrary context γ. The function
gcast is general enough to define cast , by instantiating γ to the identity type.

5.3.2 Cast on dynamic values

Using polymorphic types for functions that are not parametrically polymor-
phic is suspicious. An alternative is to restrict the cast operation to values of
type Dynamic, where Dynamic is a built-in, abstract type. Assuming a case-like
cast construct that allows pattern-matching on types, we can define strings
in a style similar to the GADT approach:

strings :: Dynamic→ [String ]
strings x =

cast x of
(c :: Char) → Nil
(i :: Int) → Nil
(s :: [Char ])→ [s ]
(xs :: [β ]) → concat [strings (dynamic (x :: β)) | x ← xs ]

The functional programming language Clean [45] provides such a built-in in-
terface to dynamic values.

A dedicated pattern-matching construct has the advantage that type patterns
are explicit, and that it provides a more concise syntax. As with the cast oper-
ator, the passing of a type argument to the overloaded function is not required.
However, we now have to explicitly convert between values of concrete types
and values of type Dynamic.

5.3.3 Class-based cast

In Haskell, we can use the class system to assign cast (and gcast) more re-
stricted types:

cast :: (Typeable α,Typeable β)⇒ α→Maybe β
gcast :: (Typeable α,Typeable β)⇒ γ α→Maybe (γ β)
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Apart from the types, the code of the generic strings function is identical to
the one given in Section 5.3.1, requiring a nested case or the introduction of
an extension operator such as extQ .

However, it is now problematic to pattern match on a partially polymorphic
case: Recall that one of the four cases in our strings example matches lists of an
arbitrary element type. For this case, cast introduces a constraint Typeable β
for the desired result type, and Typeable [β ] cannot be resolved without know-
ing β. We can fix this problem by introducing another cast operation, specific
for types of kind ∗→ ∗:

gcast∗→∗ :: (Typeable∗→∗ ϕ,Typeable∗→∗ ψ)⇒ γ (ϕ α)→Maybe (γ (ψ α))

Likewise, in order to define a case for pairs, we need a cast operator gcast∗→∗→∗.
In fact, we need cast operators and variants of Typeable for all kinds that occur
in the cases of overloaded functions. Even having all those special purpose
cast-operators in place, it is still somewhat tricky to put them to use [36].

We conclude that using a type-safe cast is less convenient than explicit type
reflection for the definition of overloaded functions. If we add syntactic sugar
for pattern matching as in Section 5.3.2, some of the convenience can be
restored. Still, compared to the class-based approach, we lose all the static
guarantees: a missing type case will be reported as a run-time error.

6 Related Work

There is a wealth of material on the subject of generic programming. Several
tutorials [5,24,23] provide an excellent overview of the field.

We have seen that support for generic programming consists of three essential
ingredients:

• support for overloading (Section 5),
• a type representation (Section 3), and
• a generic view on data (Section 4).

The first two items provide a way to write overloaded functions, and the third
a way to access the structure of values in a uniform way. The different ap-
proaches to generic programming can be faithfully classified along these three
dimensions. Figure 1 provides an overview of the design space. Since the type
representation is closely coupled to the generic view, we have omitted the rep-
resentation dimension. The two remaining dimensions are largely independent
of each other and for each there are various choices. Overloaded functions can
be expressed using
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view(s) representation of overloaded functions

type reflection type classes type-safe cast specialisation

none ITA
[16,13,12,49,51]

– – –

fixed point – PolyP [41,42] – PolyP [33]

spine Reloaded [29],
Revolutions
[27]

SYB [37],
Reloaded [30]

SYB [44,36] –

sum-of-products LIGD [9,21] DTC [31],
GC [2],
GM [22]

– GH
[20,24,40,1]

spine-like
sum-of-products

this article RepLib [53] – –

Fig. 1. Generic programming: the design space.

• type reflection: This is the approach we have used in the main bulk of
this article. Its origins can be traced back to the work on intensional type
analysis (ITA) [16,13,12,49,51]. ITA is intensively used in typed intermedi-
ate languages, in particular, for optimising purely polymorphic functions.
Type reflection avoids the duplication of features: a type case, for instance,
boils down to an ordinary case expression. Cheney and Hinze [9] present
a library for generics and dynamics (LIGD) that uses an encoding of type
representations in Haskell 98 augmented by existential types.

In dependently-typed programming languages, a universe construction
can be used for type reflection [6]. In style, this approach is very similar to
our use of GADTs. The choice of universe determines which types can be
reflected. Representing Haskell’s type system within a dependently-typed
language is possible without problems [3]. Universes can also represent the
inductive families of modern dependently-typed languages. Using such uni-
verses for generic programming is the topic of ongoing research [4].
• type classes [15]: Type classes are Haskell’s major innovation for supporting

ad-hoc polymorphism. A type class declaration corresponds to the type sig-
nature of an overloaded value – or rather, to a collection of type signatures.
An instance declaration is related to a type case of an overloaded value.
For a handful of built-in classes, Haskell provides support for genericity:
by attaching a deriving clause to a data declaration the Haskell com-
piler automatically generates an appropriate instance of the class. Deriv-
able type classes (DTC) generalise this feature to arbitrary user-defined
classes. A similar, but more expressive variant is implemented in Generic
Clean (GC) [2]. Clean’s type classes are indexed by kind so that a single
generic function can be applied to type constructors of different kinds. A
pure Haskell 98 implementation of generics (GM) is described by Hinze [22].
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The implementation builds upon a class-based encoding of the type Type of
type representations.
• type-safe cast [52]: A cast operation converts a value from one type to

another, provided the two types are identical at run-time. A cast can be
seen as a type-case with exactly one branch. The original SYB paper [44] is
based on casts.
• specialisation [19]: This implementation technique transforms an overloaded

function into a family of polymorphic functions (dictionary translation).
While the other techniques can be used to write a library for generics,
specialisation is mainly used for implementing full-fledged generic program-
ming systems such as PolyP [33] or Generic Haskell [1] that are set up as
preprocessors or compilers.

The approaches differ mostly in syntax and style, but less in expressiveness –
except perhaps for specialisation, which cannot cope with higher-order generic
functions. The third dimension, the generic view, has a much larger impact:
we have seen that it affects the set of datatypes we can cover, the class of
functions we can write and potentially the efficiency of these functions.

• no view : Haskell has a nominal type system: each data declaration intro-
duces a new type that is incompatible with all the existing types. Two types
are equal if and only if they have the same name. By contrast, in a struc-
tural type system two types are equal if they have the same structure. In a
language with a structural type system, there is no need for a generic view;
a generic function can be defined exhaustively by induction on the structure
of types. The type systems that underlie ITA are structural.
• fixed-point view : PolyP [33] views data types as fixed points of regular

functors, which are in turn represented as lifted sums of products. This
view is quite limited in applicability: only datatypes of kind ∗→ ∗ that are
regular can be represented, excluding nested datatypes and higher-kinded
datatypes. Its particular strength is that recursion patterns such as cata-
or anamorphisms can be expressed generically, because each datatype is
viewed as a fixed point, and the points of recursion are visible. The original
implementation of PolyP is set up as a preprocessor that translates PolyP
code into Haskell. A later version [41] embeds PolyP programs into Haskell
augmented by multiple parameter type classes with functional dependen-
cies [35]. Oliveira and Gibbons [42] present a lightweight variant of PolyP
that works within Haskell 98.
• spine views: The spine view treats data uniformly as constructor applica-

tions. The SYB approach has been developed by Lämmel and Peyton Jones
in a series of papers [44,36,37]. The original approach is combinator-based:
the user writes generic functions by combining a few generic primitives. The
first paper [44] introduces two main combinators: a type-safe cast for defin-
ing ad-hoc cases and a generic recursion operator, called gfoldl , for imple-
menting the generic part. It turns out that gfoldl is essentially the catamor-
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phism of the Spine datatype [29]: gfoldl equals the catamorphism composed
with toSpine. The second paper [36] adds a function called gunfold to the
set of predefined combinators, which is required for defining generic produc-
ers. The name suggests that the new combinator is the anamorphism of the
Spine type, but it is not: gunfold is actually the catamorphism of the type
Signature, introduced in Section 4.2.
• sum-of-products view : Generic Haskell [24,40,1] (GH) builds upon this view.

In its original form it is applicable to all datatypes definable in Haskell 98.
Generic Haskell is a full-fledged implementation of generics based on ideas
by Hinze [20,25] that features generic functions, generic types and various
extensions such as default cases and constructor cases [11]. Generic Haskell
supports the definition of functions that work for all types of all kinds, such
as, for example, a generalised mapping function.
• spine-like sum-of-products view: This is the view that the RepLib library [53]

uses. It can express the same functions as GH’s sum-of-products view, but
in style, it is more closely related to the SYB views. In particular, the sum
structure is represented somewhat indirectly using a list. We have seen in
Section 4.3 that this view can be generalised to GADTs. Actually, the same
technique can also be applied to generalize the GH view, but the resulting
code is more verbose.

7 Conclusion

The essence of the SYB approach to generic programming are its two views:

• The ‘spine’ view faithfully encodes the structure of a value as an application
of a constructor to its arguments. Using the view, we can implement generic
consumers and transformers.
• The ‘type-spine’ view allows us to implement generic producers in the same

elegant manner as generic consumers that build upon the spine view. While
the spine view can be seen as encoding the product structure of a single
constructor, the type-spine view offers access to the sum structure of the
datatype.

Using one of the different spine views one can program almost all of the stan-
dard examples of generic functions.

The spine views are attractive for at least two reasons: they are easy to use
and they are widely applicable. For instance, for type indices of kind ∗ the
programmer only has to consider two cases. The spine view and the type-spine
view cover almost all datatypes including generalised algebraic datatypes, but
excluding existential types. We have shown that both views can be combined
into the ‘spine-like sum-of-products’ view.
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While the views are characteristic for the SYB approach, they are not tied to
it. The design space of generic programming is actually three-dimensional: a
generic programming approach is classified not only by its view, but also by its
approach to overloading, and by the datatypes it can represent. Identifying the
three dimensions allows us to better categorize and relate different approaches.

Functions that abstract over type constructors can be handled using the tech-
nique of lifting. Originally, such functions were thought to be out of reach for
the SYB approach. Lifting also requires the adaption of the view and leads to
the ‘lifted spine view’. Unfortunately, the lifted spine view is, for fundamental
reasons, more restricted than the other views: generic functions that abstract
over type constructors can be instantiated to arbitrary container types but
not to phantom types (GADTs).

Besides type indices of higher kind, we have shown how to represent open type
terms. This allows us to flexibly specify the behaviour of generic functions
through free type variables, thereby providing a powerful way to parameterize
such functions.

Of the overloading mechanisms we discussed, it is easy to see that the use of
a type-safe cast is the least useful. While we advocate the use of reflection,
many other approaches use actually type classes. The main reason for this
choice is that classes are better supported by current implementations. GADT-
support is still new, and for overloaded functions to be extensible, we require
open datatypes and open functions [39], which are currently not implemented.
Nonetheless, we believe that explicit type arguments make the structure of
generic definitions more obvious. Furthermore, we expect that it is easier to
prove algebraic properties of generic functions in this setting. We believe that
the work of Reig [47] could be recast using our approach, leading to shorter
and more concise proofs.
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A Library

This appendix presents some auxiliary functions used in the main part of the
article, but relegated here so as not to disturb the flow.

A.1 Binary trees

The function inorder , used in Section 2.1, yields the elements of a tree in
symmetric order.

inorder :: ∀α . Tree α→ [α ]
inorder Empty = Nil
inorder (Node l a r) = inorder l ++ [a ] ++ inorder r

The function tree, also used in Section 2.1, turns a list of elements into a
balanced binary tree, a so-called Braun tree [8].

tree :: ∀α . [α ]→ Tree α
tree x
| null x = Empty
| otherwise = Node (tree x1) a (tree x2)
where (x1,Cons a x2) = splitAt (length x ‘div ‘ 2) x

The function perfect d a, used in Section 2.2, generates a perfect tree of
depth d whose leaves are labelled with the element a.

perfect :: ∀α . Int→ α→ Perfect α
perfect 0 a = Zero a
perfect (n + 1) a = Succ (perfect n (a, a ))

A.2 Text with indentation

The pretty-printing library, used in Section 2, is implemented as follows.

data Text = Text String
| NL
| Indent Int Text
| Text :♦ Text

text = Text
nl = NL
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indent = Indent
(♦) = (:♦)

Each Text-generating function is implemented by a corresponding data con-
structor. The main work is done by the function render , which can be seen as
an interpreter for Text-documents.

render ′ :: Int→ Text→ String→ String
render ′ i (Text s) x = s ++ x
render ′ i NL x = "\n" ++ replicate i ’ ’ ++ x
render ′ i (Indent j d) x = render ′ (i + j ) d x
render ′ i (d1 :♦ d2) x = render ′ i d1 (render ′ i d2 x )

render :: Text→ String
render d = render ′ 0 d ""

The functions append and bracketed are derived combinators:

append :: [Text ]→ Text
append = foldr (♦) (text "")

bracketed :: [Text ]→ Text
bracketed Nil = text "[]"
bracketed (Cons d ds) = align "[ " d

♦ append [nl ♦ align ", " d | d ← ds ] ♦ text "]"

The function append concatenates a list of documents; bracketed produces a
comma-separated sequence of elements between square brackets.

Finally, we provide a Show instance for Text, which renders a text as a string
(this instance is particularly useful for interactive sessions).

instance Show Text where
showsPrec p x = render ′ 0 x

A.3 Parsing

The library ReadP (Text.ParserCombinators.ReadP), which is part of Haskell’s
Hierachical Libraries, comes with a number of predefined combinators:

string :: String→ ReadP String
satisfy :: (Char→ Bool)→ ReadP Char
munch :: (Char→ Bool)→ ReadP String
skipSpaces :: ReadP ()
readP to S :: ReadP α→ (String→ [(α, String)])
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The parser string tries to parse the string provided as an argument. The parser
satisfy parses a single character, but only if it satisfies the given property.
Likewise, munch parses as many characters as possible that satisfy the given
property. The parser skipSpaces consumes as much whitespace as possible.
Finally, the conversion function readP to S runs a parser and transforms it
from the abstract type ReadP into a concrete function.

The following derived functions are used in Section 4.2 to define the generic
parser.

The function parseParens parses what its second argument parses, but sur-
rounded with balanced pairs of parentheses. If the first argument is True, at
least one pair of parentheses is mandatory.

parseParens :: Bool→ ReadP α→ ReadP α
parseParens True p = between (token "(") (token ")")

(parseParens False p)
parseParens False p = p +++ parseParens True p

The function token reads a specific string and consumes trailing spaces.

token :: String→ ReadP String
token x = do string x

skipSpaces
return x

Finally, the function ident reads an identifier and discards trailing whitespace.
The first character must be an underscore or a letter, the remaining characters
may also be numbers.

ident :: ReadP String
ident = do c ← satisfy (λx → x = = ’_’ ∨ isAlpha x )

cs ← munch (λx → x = = ’_’ ∨ isAlphaNum x )
skipSpaces
return (c:cs)
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