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Abstract. Generic programming allows you to write a function once,
and use it many times at different types. Traditionally, generic functions
are defined by induction on the structure of types. “Scrap your boil-
erplate” (SYB) is a radically different approach that dispatches on the
structure of values. In previous work, we have shown how to reconcile
both approaches using the concept of generic views: many generic func-
tions can be based either on the classical sum-of-products view or on the
view that underlies SYB, the so-called ‘spine’ view. One distinct advan-
tage of the spine view is its generality: it is applicable to a large class of
data types, including generalised algebraic data types. Its main weakness
roots in the value-orientation: one can only define generic functions that
consume data (show) but not ones that produce data (read). Further-
more, functions that abstract over type constructors (map, reduce) are
out of reach. In this paper, we show how to overcome both limitations.
The main technical contributions are the ‘type spine’ view and the ‘lifted
spine’ view.

1 Introduction

A generic function is one that the programmer writes once, but which is used
over many different data types. The folklore examples are pretty printing, pars-
ing, mapping functions, reductions, and so on. There is an impressive body of
work on generic programming [1–3]. The approaches differ wildly in syntax, ex-
pressiveness and ease of use. However, they all share a common structure. In
general, support for generic programming consists of two essential ingredients:
a way to write overloaded functions, and independently, a way to access the
structure of values in a uniform way.

Overloading is essential as almost every generic function exhibits type-specific
behaviour: Haskell’s pretty printer, for instance, displays pairs and lists using a
special mix-fix notation.

A uniform mechanism for accessing the structure of values is essential to
program the ‘generic part’ of a generic function: a generic pretty printer works for
all data types including types that the programmer is yet to define. Consequently,
the pretty printer has to treat elements of these types in a uniform way: in
Haskell, for instance, they are displayed using prefix notation.

The two ingredients are orthogonal concepts, and for both, there is a choice.
In Haskell, overloaded functions can be expressed
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– using the class system [4, 5],
– using a type-safe cast operation [6, 3],
– by reflecting the type structure onto the value level [7, 8],
– by specialisation [1, 9],
– or by a combination of the above [10].

Each approach has certain advantages and disadvantages. Nonetheless, they are
mostly interchangeable and of similar expressiveness. For the purposes of this
paper, we pick the third alternative, type reflection, as it is the most perspicuous.

The structural view, on the other hand, has a much larger impact: it affects
the set of data types we can represent, the class of functions we can write and
potentially the efficiency of these functions. For instance,

– PolyP [1] views data types as fixed points of regular functors,
– Generic Haskell [2] uses a sum-of-products view.

“Scrap your boilerplate” (SYB) [3] was originally introduced as a combinator
library for generic programming, so it seemed to lack the structural view on
data types. In a previous paper [11], we have revealed this structure:

– SYB [3] builds upon the so-called ‘spine’ view.

The spine view treats data uniformly as constructor applications; it is, in a
sense, value-oriented. This is in contrast to the classical views of PolyP and
Generic Haskell, which can be characterised as type-oriented. One distinct ad-
vantage of the spine view is its generality: it is applicable to a large class of data
types, including generalised algebraic data types (GADTs) [12, 13]. The reason
for the wide applicability is simple: a data type describes how to construct data,
the spine view captures just this. Its main weakness also roots in the value-
orientation: one can only define generic functions that consume data (show) but
not ones that produce data (read). Again, the reason for the limitation is simple:
a uniform view on individual constructor applications is useful if you have data
in your hands, but it is of no help if you want to construct data. Furthermore,
functions that abstract over type constructors (map, reduce) are out of reach,
because type constructors comprise no values.

In this paper, we show how to overcome both limitations. The main technical
contributions are the ‘type spine’ view for defining generic producers and the
‘lifted spine’ view, which renders it possible to define generic functions that
abstract over type constructors.

The rest of the paper is structured as follows. In Section 2 we review the SYB
approach to generic programming. We introduce the spine view and explain how
to define generic consumers such as show . Section 3 introduces a variant of
the spine view, the ‘type spine’ view, that allows us to write generic producers
such as read . Section 4 then broadens the scope of SYB to generic functions
that abstract over type constructors. In particular, we show how to implement
classic generic functions such as map. Finally, Section 5 reviews related work
and Section 6 concludes. For reference, Appendix A defines the helper functions
that are used in the main body of the paper.
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2 Recap: “Scrap Your Boilerplate” Reloaded

This section summarises the essentials ideas of the SYB approach to generic
programming. The material is based on the paper “ ‘Scrap Your Boilerplate’
Reloaded” [11]. Readers familiar with our previous work may wish to skim
through Sections 2.1 and 2.2 and proceed with Section 2.3.

As noted in the introduction, support for generic programming consists of
two essential ingredients: a way to write overloaded functions and a way to access
the structure of values in a uniform way. Section 2.1 introduces type reflection,
the mechanism we use to implement overloaded functions. This choice is entirely
independent of the paper’s main theme and has been taken with clarity in mind.
Section 2.2 then reveals the generic view SYB builds upon.

2.1 Overloaded functions

Assume that you want to define a pretty printer, such as Haskell’s show function,
that works for a family of types including characters, integers, lists and pairs.
The show function cannot be assigned the polymorphic type α → String , as
show is not insensitive to what type its argument is. Quite on the contrary, the
particular algorithm show invokes depends on the type: characters, for instance,
are displayed differently from lists.

An obvious idea is to pass the pretty printer an additional argument that rep-
resents the type of the value that we wish to convert to its string representation.
As a first try, we could assign the pretty printer the type Type → α → String
where Type is the type of type representations. Unfortunately, this is too simple-
minded: the parametricity theorem [14] implies that a function of this type must
necessarily ignore its second parameter. This argument breaks down, however,
if we additionally parameterise Type by the type it represents. The signature
of the pretty printer then becomes Type α → α → String . The idea is that an
element of type Type τ is a representation of the type τ . Using a generalised
algebraic data type [12, 13], we can define Type directly in Haskell.

data Type :: ∗ → ∗ where
Char :: Type Char
Int :: Type Int
List :: Type α→ Type [α ]
Pair :: Type α→ Type β → Type (α, β )

Each type has a unique representation: the type Int is represented by the con-
structor Int , the type (String , Int ) is represented by Pair (List Char) Int . In
other words, Type τ is a so-called singleton type.

In the sequel, we shall often need to annotate an expression with its type
representation. We introduce a special type for this purpose.1

1 The operator ‘:’ is predefined in Haskell for constructing lists. However, since we use
type annotations much more frequently than lists, we use ‘:’ for the former and Nil
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infixl 1 :
data Typed α = (:){val :: α, type :: Type α}

Thus, 4711:Int is an element of Typed Int and (47, "hello"):Pair Int (List Char)
is an element of Typed (Int ,String ). It is important to note the difference be-
tween x : t and x :: τ . The former expression constructs a pair consisting of a
value x and a representation t of its type. The latter expression is Haskell syntax
for ‘x has type τ ’.

Given these prerequisites, we can define the desired family of pretty printers.
For concreteness, we re-implement Haskell’s showsPrec function (the Int argu-
ment of showsPrec specifies the operator precedence of the enclosing context;
ShowS is shorthand for String → String , Hughes’ efficient sequence type [15]).

showsPrec :: Int → Typed α→ ShowS
showsPrec d (c : Char) = showsPrecChar d c
showsPrec d (n : Int) = showsPrecInt d n
showsPrec d (s : List Char) = showsPrecString d s
showsPrec d (xs : List a) = showsList [shows (x : a) | x ← xs ]
showsPrec d ((x , y) : Pair a b)

= showChar ’(’ · shows (x : a) · showChar ’,’
· shows (y : b) · showChar ’)’

The function showsPrec makes heavy use of type annotations; its type Int →
Typed α → ShowS is essentially an uncurried version of Int → Type α →
α → ShowS . Even though showsPrec has a polymorphic type, each equation
implements a more specific case as dictated by the type representation. For
example, the first equation has type Int → Typed Char → ShowS . This is
typical of functions on GADTs.

Let us consider each equation in turn. The first three equations delegate the
work to tailor-made functions, showsPrecChar , showsPrecInt and showsPrecString ,
which are provided from somewhere. Lists are shown using showsList , defined in
Appendix A, which produces a comma-separated sequence of elements between
square brackets. Note that strings, lists of characters, are treated differently:
they are shown in double quotes by virtue of the third equation. Finally, pairs
are enclosed in parentheses, the two elements being separated by a comma.

The function showsPrec is defined by case analysis on the type representa-
tion. This is typical of an overloaded function, but not compulsory: the wrapper
functions shows and show , defined below, are given by simple abstractions.

shows :: Typed α→ ShowS
shows = showsPrec 0
show :: Typed α→ String
show x = shows x ""

and Cons for the latter purpose. Furthermore, we agree upon that the pattern x : t
is matched from right to left : first the type representation t is matched, then the
associated value x .
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Note that shows and showsPrec are mutually recursive.
An overloaded function is a single entity that incorporates a family of func-

tions where each member implements some type-specific behaviour. If we wish
to extend the pretty printer to other data types we have to add new constructors
to the Type data type and new equations to showsPrec. As an example, consider
the data type of binary trees.

data Tree α = Empty | Node (Tree α) α (Tree α)

To be able to show binary trees, we add Tree to the type of type representations

Tree :: Type α→ Type (Tree α)

and extend showsPrec by suitable equations

showsPrec d (Empty : Tree a) = showString "Empty"
showsPrec d (Node l x r : Tree a)

= showParen (d > 10) (showString "Node" • showsPrec 11 (l : Tree a)
• showsPrec 11 (x : a)
• showsPrec 11 (r : Tree a))

The predefined function showParen b puts its argument in parentheses if b is
True. The operator ‘•’ separates two elements by a space, see Appendix A.

2.2 Generic functions

Using type reflection we can program an overloaded function that works for all
types of a given family. Let us now broaden the scope of showsPrec, shows and
show so that they work for all data types including types that the programmer
is yet to define. For emphasis, we call such functions generic functions.

We have seen in the previous section that whenever we define a new data type,
we add a constructor of the same name to the type of type representations and
we add corresponding equations to all overloaded functions that are defined by
explicit case analysis. While the extension of Type is cheap and easy (a compiler
could do this for us), the extension of all overloaded functions is laborious and
difficult (can you imagine a compiler doing that?). In this section we shall develop
a scheme so that it suffices to extend Type by a new constructor and to extend
a single overloaded function. The remaining functions adapt themselves.

To achieve this goal we need to find a way to treat elements of a data type
in a general, uniform way. Consider an arbitrary element of some data type. It
is always of the form C e1 · · · en, a constructor applied to some values. For
instance, an element of Tree Int is either Empty or of the form Node l a r .
The idea is to make this applicative structure visible and accessible: to this end
we mark the constructor using Con and each function application using ‘♦’.
Additionally, we annotate the constructor arguments with their types and the
constructor itself with information on its syntax. As an example, Empty becomes
Con empty and Node l a r becomes Con node♦(l :Tree Int)♦(a :Int)♦(r :Tree Int)
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where empty and node are the tree constructors augmented with additional
information. The functions Con and ‘♦’ are themselves constructors of a data
type called Spine.

infixl 0 ♦

data Spine :: ∗ → ∗ where
Con :: Constr α→ Spine α
(♦) :: Spine (α→ β)→ Typed α→ Spine β

The type is called Spine because its elements represent the possibly partial
spine of a constructor application. The following table illustrates the stepwise
construction of a spine.

node :: Constr (Tree Int → Int → Tree Int → Tree Int)
Con node :: Spine (Tree Int → Int → Tree Int → Tree Int)
Con node ♦ (l : Tree Int) :: Spine (Int → Tree Int → Tree Int)
Con node ♦ (l : Tree Int) ♦ (a : Int) :: Spine (Tree Int → Tree Int)
Con node ♦ (l : Tree Int) ♦ (a : Int) ♦ (r : Tree Int) :: Spine (Tree Int)

Note that the type variable α does not appear in the result type of ‘♦’: it is
existentially quantified. This is the reason why we annotate the second argument
with its type. Otherwise, we wouldn’t be able to use it as an argument of an
overloaded function, see below.

Elements of type Constr α comprise an element of type α, namely the original
data constructor, plus some additional information about its syntax: for the
purposes of this paper we confine ourselves to the name of the constructor.

data Constr α = Constr{constr :: α,name :: String }

Given a value of type Spine α, we can easily recover the original value of
type α by undoing the conversion step.

fromSpine :: Spine α→ α
fromSpine (Con c) = constr c
fromSpine (f ♦ x ) = (fromSpine f ) (val x )

The function fromSpine is parametrically polymorphic, it works independently
of the type in question as it simply replaces Con with the original constructor
and ‘♦’ with function application.

The inverse of fromSpine is not polymorphic; rather, it is an overloaded
function of type Typed α → Spine α. Its definition, however, follows a trivial
pattern (so trivial that the definition could be easily generated by a compiler):
if the data type contains a constructor C with signature

C :: τ1 → · · · → τn → τ0

then the equation for toSpine takes the form
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toSpine (C x1 . . . xn : t0) = Con c ♦ (x1 : t1) ♦ · · · ♦ (xn : tn)

where c is the annotated version of C and ti is the type representation of τi. As
an example, here is the definition of toSpine for binary trees:

toSpine :: Typed α→ Spine α
toSpine (Empty : Tree a) = Con empty
toSpine (Node l x r : Tree a) = Con node ♦ (l : Tree a) ♦ (x : a) ♦ (r : Tree a)

The smart constructors empty and node are given by

empty :: Constr (Tree α)
empty = Constr{constr = Empty ,name = "Empty"}
node :: Constr (Tree α→ α→ Tree α→ Tree α)
node = Constr{constr = Node,name = "Node"}

With all the machinery in place we can now turn showsPrec into a truly
generic function. The idea is to add a catch-all case that takes care of all the
remaining type cases in a uniform manner.

showsPrec d x = showParen (arity x > 0 ∧ d > 10) (shows (toSpine x ))
shows :: Spine α→ ShowS
shows (Con c) = showString (name c)
shows (f ♦ x ) = shows f • showsPrec 11 x

The catch-all case displays its argument x using prefix notation. It first converts x
into a spine, which the helper function shows then traverses. Note that in the
last equation x is of type Typed α; at this point we require the type informa-
tion so that we can call showsPrec recursively. The Tree instance of showsPrec
is subsumed by this general pattern, so the two Tree equations can be safely
removed.

The function arity used above computes the arity of a data constructor. Its
implementation follows the same definitional scheme as showsPrec:

arity :: Typed α→ Int
arity = arity · toSpine
arity :: Spine α→ Int
arity (Con c) = 0
arity (f ♦ x ) = arity f + 1

Interestingly, arity exhibits no type-specific behaviour; it is completely generic.
Now, why are we in a better situation than before? When we introduce a new

data type such as, say, XML, we still have to extend the representation type with
a constructor XML :: Type XML and provide cases for the data constructors of
XML in the toSpine function. However, this has to be done only once per data
type, and it is so simple that it could easily be done automatically. The code
for the generic functions (of which there can be many) is completely unaffected
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by the addition of a new data type. As a further plus, the generic functions are
unaffected by changes to a given data type (unless they include code that is
specific to the data type). Only the function toSpine must be adapted to the
new definition (and possibly the type representation if the kind of the data type
changes).

2.3 Discussion

The key to genericity is a uniform view on data. In the previous section we
have introduced the spine view, which views data as constructor applications. Of
course, this is not the only generic view. PolyP [1], for instance, views data types
as fixed points of regular functors; Generic Haskell [2] uses a sum-of-products
view. These two approaches can be characterised as type-oriented: they provide
a uniform view on all elements of a data type. By contrast, the spine view is
value-oriented: it provides a uniform view on single elements.

The spine view is particularly easy to use: the generic part of a generic
function only has to consider two cases: Con and ‘♦’. By contrast, Generic Haskell
distinguishes three cases, PolyP even six.

A further advantage of the spine view is its generality: it is applicable to a
large class of data types. Nested data types [16], for instance, pose no problems:
the type of perfect binary trees [17]

data Perfect α = Zero α | Succ (Perfect (α, α))

gives rise to the following two equations for toSpine:

toSpine (Zero x : Perfect a) = Con zero ♦ (x : a)
toSpine (Succ x : Perfect a) = Con succ ♦ (x : Perfect (Pair a a))

The equations follow exactly the general scheme introduced in Section 2.2. The
scheme is even applicable to generalised algebraic data types. Consider as an
example a typed representation of expressions.

data Expr :: ∗ → ∗ where
Num :: Int → Expr Int
Plus :: Expr Int → Expr Int → Expr Int
Eq :: Expr Int → Expr Int → Expr Bool
If :: Expr Bool → Expr α→ Expr α→ Expr α

The relevant equations for toSpine are

toSpine (Num i : Expr Int) = Con num ♦ (i : Int)
toSpine (Plus e1 e2 : Expr Int) = Con plus ♦ (e1 : Expr Int) ♦ (e2 : Expr Int)
toSpine (Eq e1 e2 : Expr Bool) = Con eq ♦ (e1 : Expr Int) ♦ (e2 : Expr Int)
toSpine (If e1 e2 e3 : Expr a)

= Con if ♦ (e1 : Expr Bool) ♦ (e2 : Expr a) ♦ (e3 : Expr a)
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Given this definition we can apply show to values of type Expr without further
ado. Note in this respect that the Glasgow Haskell Compiler (GHC) currently
does not support deriving (Show) for GADTs. We can also turn Type itself
into a representable type (recall that Type is a GADT). One may be tempted
to consider this an intellectual curiosity, but it is not. The possibility to reflect
Type is vital for implementing dynamic values.

data Dynamic :: ∗ where
Dyn :: Typed α→ Dynamic

Note that the type variable α does not appear in the result type: it is existentially
quantified. However, since α is accompanied by a representation of its type, we
can define a suitable toSpine instance.

Dynamic :: Type Dynamic
Type :: Type α→ Type (Type α)
Typed :: Type α→ Type (Typed α)
toSpine (Dyn x : Dynamic) = Con dyn ♦ (x : Typed (type x ))
toSpine ((x : t) : Typed a) = Con hastype ♦ (x : t) ♦ (t : Type t) -- t = a
toSpine (Char : Type Char) = Con char
. . .

It is important to note that the first instance does not follow the general pattern
for toSpine. This points out the only limitation of the spine view: it can, in
general, not cope with existentially quantified types. Consider, as an example,
the following extension of the expression data type:

Apply :: Expr (α→ β)→ Expr α→ Expr β

The equation for toSpine

toSpine (Apply f x : Expr b)
= Con apply ♦ (f : Expr (a → b)) ♦ (x : Expr a) -- not legal Haskell

is not legal Haskell, as a, the representation of α, appears free on the right-hand
side. The only way out of this dilemma is to augment x by a representation of
its type, as in Dynamic.2

To make a long story short: a data declaration describes how to construct
data, the spine view captures just this. Consequently, it is applicable to almost
every data type declaration. The classic views are much more restricted: Generic
Haskell’s sum-of-products view is only applicable to Haskell 98 types excluding
GADTs and existential types; PolyP is even restricted to fixed points of regular
functors excluding nested data types and higher-order kinded types.

2 Type-theoretically, we have to turn the existential quantifier ∃α.τ into an intensional
quantifier ∃α.Type α× τ . This is analogous to the difference between parametrically
polymorphic functions of type ∀α.τ and overloaded functions of type ∀α.Type α → τ .
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On the other hand, the classic views provide more information as they repre-
sent the complete data type, not just a single constructor application. The spine
view effectively restricts the class of functions we can write: one can only define
generic functions that consume data (such as show) but not ones that produce
data (such as read). The uniform view on individual constructor applications is
useful if you have data in your hands, but it is of no help if you want to construct
data. We make this more precise in the following section.

Furthermore, functions that abstract over type constructors (such as map
and reduce) are out of reach for SYB. The latter deficiency is somewhat ironic
as these functions are the classic examples of generics. In the following two
sections we show how to overcome both limitations.

3 Extension I: the type spine view

A generic consumer is a function of type Type α → α → τ (∼= Typed α → τ),
where the type we abstract over occurs in an argument position (and possibly
in the result type τ). We have seen in the previous section that the generic part
of a consumer follows the general pattern below.

consume :: Type α→ α→ τ
. . .
consume a x = consume (toSpine (x : a))
consume :: Spine α→ τ
consume . . . = . . .

The element x is converted to the spine representation, over which the helper
function consume then recurses. By duality, we would expect that a generic
producer of type Type α → τ → α, where α appears in the result type but not
in τ , takes on the following form.

produce :: Type α→ τ → α
. . .
produce a t = fromSpine (produce t)
produce :: τ → Spine α -- does not work
produce . . . = . . .

The helper function produce generates an element in spine representation, which
fromSpine converts back. Unfortunately, this approach does not work. The for-
mal reason is that toSpine and fromSpine are different beasts: toSpine is an over-
loaded function, while fromSpine is parametrically polymorphic. If it were possi-
ble to define produce :: τ → Spine α, then the composition fromSpine · produce
would yield a parametrically polymorphic function of type τ → α. And, indeed,
a closer inspection of the catch-all case reveals that a, the type representation
of α, does not appear on the right-hand side. However, as we already know a
truly polymorphic function cannot exhibit type-specific behaviour.
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Of course, this does not mean that we cannot define a function of type
Type α → τ → α. We just require additional information about the data type,
information that the spine view does not provide. Consider in this respect the
syntactic form of a GADT (eg Type itself or Expr in Section 2.3): a data type
is essentially a sequence of signatures. This motivates the following definitions.

type Datatype α = [Signature α ]
infixl 0 @

data Signature :: ∗ → ∗ where
Sig :: Constr α→ Signature α
(@) :: Signature (α→ β)→ Type α→ Signature β

The type Signature is almost identical to the Spine type, except for the second
argument of ‘@’, which is of type Type α rather than Typed α. Thus, an element
of type Signature contains the types of the constructor arguments, but not the
arguments themselves. For that reason, Datatype is called the type spine view.

This view is similar to the sum-of-products view: the list encodes the sum,
the constructor ‘@’ corresponds to a product and Sig is like the unit element.
To be able to use the type spine view, we additionally require an overloaded
function that maps a type representation to an element of type Datatype α.

datatype :: Type α→ Datatype α
datatype (Char) = [Sig (char c) | c ← [minBound . .maxBound ]]
datatype (Int) = [Sig (int i) | i ← [minBound . .maxBound ]]
datatype (List a) = [Sig nil ,Sig cons @ a @ List a ]
datatype (Pair a b) = [Sig pair @ a @ b ]
char :: Char → Constr Char
char c = Constr{constr = c,name = showChar c}
int :: Int → Constr Int
int i = Constr{constr = i , name = show Int i }

Here, nil , cons and pair are the annotated versions of Nil , Cons and ‘(,)’.
The function datatype plays the same role for producers as toSpine plays for
consumers.

The first example of a generic producer is a simple test-data generator. The
function generate a d yields all terms of the data type α up to a given finite
depth d .

generate :: Type α→ Int → [α ]
generate a 0 = [ ]
generate a (d + 1) = concat [generate s d | s ← datatype a ]
generate :: Signature α→ Int → [α ]
generate (Sig c) d = [constr c ]
generate (s @ a) d = [f x | f ← generate s d , x ← generate a d ]

The helper function generate constructs all terms that conform to a given sig-
nature. The right-hand side of the second equation essentially computes the
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cartesian product of generate s d and generate a d . Here is a short interactive
session that illustrates the use of generate (we assume a suitable Bool instance
of datatype).

Main〉 generate (List Bool) 3
[[ ], [False ], [False,False ], [False,True ], [True ], [True,False ], [True,True ]]
Main〉 generate (List (List Bool)) 3
[[ ], [[ ]], [[ ], [ ] ], [[False ]], [[False ], [ ]], [[True ]], [[True ], [ ]] ]

As a second example, let us define a generic parser. For concreteness, we
re-implement Haskell’s readsPrec function (again, the Int argument specifies
the operator precedence of the enclosing context; ReadS abbreviates String →
[(α,String)], the type of backtracking parsers).

readsPrec :: Type α→ Int → ReadS α
readsPrec (Char) d = readsPrecChar d
readsPrec (Int) d = readsPrecInt d
readsPrec (List Char) d = readsPrecString d
readsPrec (List a) d = readsList (reads a)
readsPrec (Pair a b) d

= readParen False (λs0 → [((x , y), s5) | ("(", s1)← lex s0,
(x , s2)← reads a s1,
(",", s3)← lex s2,
(y , s4)← reads b s3,
(")", s5)← lex s4 ])

readsPrec a d
= alt [readParen (arity ′ s > 0 ∧ d > 10) (reads s) | s ← datatype a ]

The overall structure is similar to that of showsPrec. The first three equations
delegate the work to tailor-made parsers. Given a parser for elements, readsList ,
defined in Appendix A, parses a list of elements. Pairs are read using the usual
mix-fix notation. The predefined function readParen b takes care of optional
(b = False) or mandatory (b = True) parentheses. The catch-all case implements
the generic part: constructors in prefix notation. Parentheses are mandatory if
the constructor has at least one argument and the operator precedence of the
enclosing context exceeds 10 (the precedence of function application is 11). The
parser for α is the alternation of all parsers for the individual constructors of α
(alt is defined in Appendix A). The auxiliary function reads parses a single
constructor application.

reads :: Signature α→ ReadS α
reads (Sig c) s0 = [(constr c, s1) | (t , s1)← lex s0,name c = = t ]
reads (s @ a) s0 = [(f x , s2) | (f , s1)← reads s s0,

(x , s2)← readsPrec a 11 s1 ]

Finally, arity ′ determines the arity of a constructor.
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arity ′ :: Signature α→ Int
arity ′ (Sig c) = 0
arity ′ (s @ a) = arity ′ s + 1

As for showsPrec, we can define suitable wrapper functions that simplify the use
of the generic parser.

reads :: Type α→ ReadS α
reads a = readsPrec a 0
read :: Type α→ String → α
read a s = case [x | (x , t)← reads a s, ("", "")← lex t ] of

[x ]→ x
[ ] → error "read: no parse"
→ error "read: ambiguous parse"

From the code of generate and readsPrec we can abstract a general defini-
tional scheme for generic producers.

produce :: Type α→ τ → α
. . .
produce a t = . . . [. . . produce s t . . . | s ← datatype a ]
produce :: Signature α→ τ → α
produce . . . = . . .

The generic case is a two-step procedure: the list comprehension processes the list
of constructors; the helper function produce takes care of a single constructor.

The type spine view is complementary to the spine view, but independent of
it. The latter is used for generic producers, the former for generic consumers (or
transformers). This is in contrast to Generic Haskell’s sum-of-products view or
PolyP’s fixed point view where a single view serves both purposes.

The type spine view shares the major advantage of the spine view: it is
applicable to a large class of data types. Nested data types such as the type of
perfect binary trees can be handled easily:

datatype (Perfect a) = [Sig zero @ a,Sig succ @ Perfect (Pair a a)]

The scheme can even be extended to generalised algebraic data types. Since
Datatype α is a homogeneous list, we have to partition the constructors according
to their result types. Re-consider the expression data type of Section 2.3. We have
three different result types, Expr Bool , Expr Int and Expr α, and consequently
three equations for datatype.

datatype (Expr Bool)
= [Sig eq @ Expr Int @ Expr Int ,

Sig if @ Expr Bool @ Expr Bool @ Expr Bool ]
datatype (Expr Int)

= [Sig num @ Int ,
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Sig plus @ Expr Int @ Expr Int ,
Sig if @ Expr Bool @ Expr Int @ Expr Int ]

datatype (Expr a)
= [Sig if @ Expr Bool @ Expr a @ Expr a ]

The equations are ordered from specific to general; each right-hand side lists
all the constructors that have the given result type or a more general one.
Consequently, the If constructor, which has a polymorphic result type, appears
in every list. Given this declaration we can easily generate well-typed expressions
(for reasons of space we have modified generate Int so that only 0 is produced):

Main〉 let gen a d = putStrLn (show (generate a d : List a))
Main〉 gen (Expr Int) 4
[Num 0,Plus (Num 0) (Num 0),Plus (Num 0) (Plus (Num 0) (Num
0)),Plus (Plus (Num 0) (Num 0)) (Num 0),Plus (Plus (Num 0) (Num
0)) (Plus (Num 0) (Num 0)), If (Eq (Num 0) (Num 0)) (Num 0) (Num
0), If (Eq (Num 0) (Num 0)) (Num 0) (Plus (Num 0) (Num 0)), If (Eq
(Num 0) (Num 0)) (Plus (Num 0) (Num 0)) (Num 0), If (Eq (Num 0)
(Num 0)) (Plus (Num 0) (Num 0)) (Plus (Num 0) (Num 0))]
Main〉 gen (Expr Bool) 4
[Eq (Num 0) (Num 0),Eq (Num 0) (Plus (Num 0) (Num 0)),Eq (Plus
(Num 0) (Num 0)) (Num 0),Eq (Plus (Num 0) (Num 0)) (Plus (Num 0)
(Num 0)), If (Eq (Num 0) (Num 0)) (Eq (Num 0) (Num 0)) (Eq (Num 0)
(Num 0))]
Main〉 gen (Expr Char) 4
[ ]

The last call shows that there are no character expressions of depth 4.
In general, for each constructor C with signature

C :: τ1 → · · · → τn → τ0

we add an element of the form

Sig c @ t1 @ · · · @ tn

to each right-hand side of datatype (t) provided τ0 is more general than τ .

4 Extension II: the lifted spine view

The generic functions of the previous two sections abstract over a type. For
instance, shows generalises functions of type

Char → ShowS , String → ShowS , [[Int ]]→ ShowS

to a single generic function of type

Type α→ α→ ShowS ∼= Typed α→ ShowS
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A generic function may also abstract over a type constructor of higher kind. Take,
as an example, the function size that counts the number of elements contained
in some data structure. This function generalises functions of type

[α ]→ Int , Tree α→ Int , [Tree α ]→ Int

to a single generic function of type

Type ′ ϕ→ ϕ α→ Int ∼= Typed ′ ϕ α→ Int

where Type ′ is a representation type for types of kind ∗ → ∗ and Typed ′ is a
suitable type for annotating values with these representations.

The original spine view is not appropriate in this context as it cannot capture
type abstractions. To illustrate, consider a variant of Tree whose inner nodes are
annotated with an integer, say, a balance factor.

data BalTree α = Empty | Node Int (BalTree α) α (BalTree α)

If we call the generic function on a value of type BalTree Int , then the two integer
components are handled in a uniform way. This is fine for generic functions on
types, but not acceptable for generic functions on type constructors. In the
Sections 4.1 and 4.2 we introduce suitable variants of Type and Spine that can
be used to define the latter brand of generic functions.

4.1 Lifted types

To represent type constructors of kind ∗ → ∗ we introduce a new tailor-made
representation type.

data Type ′ :: (∗ → ∗)→ ∗ where
List :: Type ′ [ ]
Tree :: Type ′ Tree

infixl 1 :′

data Typed ′ ϕ α = (:′){val ′ :: ϕ α, type ′ :: Type ′ ϕ}

The type is only inhabited by two constructors since the other data types listed
in Type have kinds different from ∗ → ∗.

An overloaded version of size is now straightforward to define.

size :: Typed ′ ϕ α→ Int
size (Nil :′ List) = 0
size (Cons x xs :′ List) = 1 + size (xs :′ List)
size (Empty :′ Tree) = 0
size (Node l x r :′ Tree) = size (l :′ Tree) + 1 + size (r :′ Tree)

Unfortunately, the overloaded function size is not as flexible as shows. If we
have some compound data structure x , say, a list of trees of integers, then we
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can simply call shows (x :List (Tree Int)). We cannot, however, use size to count
the total number of integers, simply because the new versions of List and Tree
take no arguments.

There is one further problem, which is more fundamental. Computing the size
of a compound data structure is inherently ambiguous: in the example above,
shall we count the number of integers, the number of trees or the number of
lists? Formally, we have to solve the type equation ϕ τ = List (Tree Int).
The equation has, in fact, not three but four principal solutions: ϕ = Λα → α
and τ = List (Tree Int), ϕ = Λα → List α and τ = Tree Int , ϕ = Λα →
List (Tree α) and τ = Int , and ϕ = Λα→ List (Tree Int) and τ arbitrary. How
can we represent these different container types? One possibility is to lift the
type constructors [9] so that they become members of Type ′ and to include Id ,
the identity type, as a representation of the type variable α:

Id :: Type ′ Id
Char ′ :: Type ′ Char ′

Int ′ :: Type ′ Int ′

List ′ :: Type ′ ϕ→ Type ′ (List ′ ϕ)
Pair ′ :: Type ′ ϕ→ Type ′ ψ → Type ′ (Pair ′ ϕ ψ)
Tree ′ :: Type ′ ϕ→ Type ′ (Tree ′ ϕ)

The type List ′, for instance, is the lifted variant of List : it takes a type construc-
tor of kind ∗ → ∗ to a type constructor of kind ∗ → ∗. Using the lifted types we
can specify the four different container types as follows: List ′ (Tree ′ Id), List ′ Id ,
Id and List ′ (Tree ′ Int ′). Essentially, we replace the types by their lifted coun-
terparts and the type variable α by Id . Note that the above constructors of Type ′

are exactly identical to those of Type except for the kinds.
It remains to define Id and the lifted versions of the type constructors.

newtype Id χ = InId {outId :: χ }
newtype Char ′ χ = InChar ′{outChar ′ :: Char }
newtype Int ′ χ = InInt′ {outInt′ :: Int }
data List ′ α′ χ = Nil ′ | Cons ′ (α′ χ) (List ′ α′ χ)
data Pair ′ α′ β′ χ = Pair ′ (α′ χ) (β′ χ)
data Tree ′ α′ χ = Empty ′ | Node ′ (Tree ′ α′ χ) (α′ χ) (Tree ′ α′ χ)

The lifted variants of the nullary type constructors Int and Char simply ignore
the additional argument χ. The data definitions follow a simple scheme: each
data constructor C with signature

C :: τ1 → · · · → τn → τ0

is replaced by a polymorphic data constructor C ′ with signature

C ′ :: ∀χ.τ ′
1 χ→ · · · → τ ′

n χ→ τ ′
0 χ

where τ ′
i is the lifted variant of τi.
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The function size can be easily extended to Id and to the lifted types.

size (x :′ Id) = 1
size (c :′ Char ′) = 0
size (i :′ Int ′) = 0
size (Nil ′ :′ List ′ a ′) = 0
size (Cons ′ x xs :′ List ′ a ′) = size (x :′ a ′) + size (xs :′ List ′ a ′)
size (Empty ′ :′ Tree ′ a ′) = 0
size (Node ′ l x r :′ Tree ′ a ′)

= size (l :′ Tree ′ a ′) + size (x :′ a ′) + size (r :′ Tree ′ a ′)

The instances are similar to the ones for the unlifted types except that size is
now also called recursively for components of type α′.

Unfortunately, in Haskell, size no longer works on the original data types: we
cannot call, for instance, size (x :′ List ′ (Tree ′ Id)) where x is is a list of trees of
integers, since List ′ (Tree ′ Id) Int is different from [Tree Int ]. We address this
problem later in Section 4.3 after we have introduced the lifted spine view.

4.2 Lifted spine view

A constructor of a lifted type has the signature ∀χ.τ ′
1 χ → · · · → τ ′

n χ → τ ′
0 χ

where the type variable χ marks the parametric components. We can write the
signature more perspicuously as ∀χ.(τ ′

1 →̇ · · · →̇ τ ′
n →̇ τ ′

0) χ, using the lifted
functions space:

infixr →̇
newtype (ϕ →̇ ψ) χ = Fun{app :: ϕ χ→ ψ χ}

For technical reasons, ‘→̇’ must be defined by a newtype rather than a type
declaration. As an example, here are variants of Nil ′ and Cons ′:

nil ′ :: ∀χ.∀α′.(List ′ α′) χ
nil ′ = Nil ′

cons ′ :: ∀χ.∀α′.(α′ →̇ List ′ α′ →̇ List ′ α′) χ
cons ′ = Fun (λx → Fun (λxs → Cons ′ x xs))

Now, an element of a lifted type can always be put into the applicative form
c′ ‘app‘ e1 ‘app‘ · · · ‘app‘ en. As in the first-order case we can make this structure
visible and accessible by marking the constructor and the function applications.

data Spine ′ :: (∗ → ∗)→ ∗ → ∗ where
Con ′ :: (∀χ.ϕ χ)→ Spine ′ ϕ α
(♦′) :: Spine ′ (ϕ →̇ ψ) α→ Typed ′ ϕ α→ Spine ′ ψ α

The structure of Spine ′ is very similar to that of Spine except that we are
now working in a higher realm: Con ′ takes a polymorphic function of type
∀χ.ϕ χ to an element of Spine ′ ϕ; the constructor ‘♦′’ applies an element of
type Spine ′ (ϕ →̇ ψ) to a Typed ′ ϕ yielding an element of type Spine ′ ψ.
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Turning to the conversion functions, fromSpine ′ is again polymorphic.

fromSpine ′ :: Spine ′ ϕ α→ ϕ α
fromSpine ′ (Con ′ c) = c
fromSpine ′ (f ♦′ x ) = fromSpine ′ f ‘app‘ val ′ x

Its inverse is an overloaded function that follows a similar pattern as toSpine:
each constructor C ′ with signature

C ′ :: ∀χ.τ ′
1 χ→ · · · → τ ′

n χ→ τ ′
0 χ

gives rise to an equation of the form

toSpine ′ (C ′ x1 . . . xn :′ t ′
0) = Con c′ ♦ (x1 : t ′

1) ♦ · · · ♦ (xn : t ′
n)

where c′ is the variant of C ′ that uses the lifted function space and t ′
i is the type

representation of the lifted type τ ′
i . As an example, here is the instance for lifted

lists.

toSpine ′ :: Typed ′ ϕ α→ Spine ′ ϕ α
toSpine ′ (Nil ′ :′ List ′ a ′) = Con ′ nil ′

toSpine ′ (Cons ′ x xs :′ List ′ a ′) = Con ′ cons ′ ♦′ (x :′ a ′) ♦′ (xs :′ List ′ a ′)

The equations are surprisingly close to those of toSpine; pretty much the only
difference is that toSpine ′ works on lifted types.

The Spine ′ data type provides the generic view that allows us to implement
the ‘generic part’ of a generic function. The following declarations make the
concept of a generic view explicit.

infixr 5 _
infixl 5 ^
type ϕ _ ψ = ∀α.ϕ α→ ψ α
type ϕ ^ ψ = ∀α.ψ α→ ϕ α

data View ′ :: (∗ → ∗)→ ∗ where
View ′ :: Type ′ ψ → (ϕ _ ψ)→ (ϕ ^ ψ)→ View ′ ϕ

A view consists of three ingredients: a so-called structure type that provides a
uniform view on the original type and two functions that convert to and fro. In
our case, the structure view of ϕ is simply Spine ′ ϕ.

Spine ′ :: Type ′ ϕ→ Type ′ (Spine ′ ϕ)
spineView :: Type ′ ϕ→ View ′ ϕ
spineView a ′ = View ′ (Spine ′ a ′) (λx → toSpine ′ (x :′ a ′)) fromSpine ′

Given these prerequisites we can finally turn size into a generic function.

size (x :′ Spine ′ a ′) = size x
size (x :′ a ′) = case spineView a ′ of

View ′ b′ from to → size (from x :′ b′)
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The catch-all case applies the spine view: the argument x is converted to the
structure type, on which size is called recursively. Currently, the structure type
is always of the form Spine ′ ϕ (this will change in the next section), so the first
equation applies, which in turn delegates the work to the helper function size .

size :: Spine ′ ϕ α→ Int
size (Con ′ c) = 0
size (f ♦′ x ) = size f + size x

The implementation of size is entirely straightforward: it traverses the spine
summing up the sizes of the constructors arguments. It is worth noting that the
catch-all case of size subsumes all the previous instances except the one for Id , as
we cannot provide a toSpine ′ instance for the identity type. In other words, the
generic programmer has to take care of essentially three cases: Id , Con ′ and ‘♦′’.

As a second example, here is an implementation of the generic mapping
function:

map :: Type ′ ϕ→ (α→ β)→ (ϕ α→ ϕ β)
map Id m = InId ·m · outId
map (Spine ′ a ′) m = map m
map a ′ m = case spineView a ′ of

View ′ b′ from to → to ·map b′ m · from
map :: (α→ β)→ (Spine ′ ϕ α→ Spine ′ ϕ β)
map m (Con ′ c) = Con ′ c
map m (f ♦′ (x :′ a ′)) = map m f ♦′ (map a ′ m x :′ a ′)

The definition is stunningly simple: the argument function m is applied in the Id
case; the helper function map applies map to each argument of the constructor.
Note that the mapping function is of type Type ′ ϕ → (α → β) → (ϕ α → ϕ β)
rather than (α → β) → (Typed ′ ϕ α → ϕ β). Both variants are commensurate,
so picking one is just a matter of personal taste.

4.3 Bridging the gap

We have noted in Section 4.1 that the generic size function does not work on
the original, unlifted types as they are different from the lifted ones. However,
both are closely related: if τ ′ is the lifted variant of τ , then τ ′ Id is isomorphic
to τ [9]. Even more, τ ′ Id and τ can share the same run-time representation,
since Id is defined by a newtype declaration and since the lifted data type τ ′

has exactly the same structure as the original data type τ .
As an example, the functions fromList InId and toList outId exhibit the

isomorphism between [ ] and List ′ Id .

fromList :: (α→ α′ χ)→ ([α ]→ List ′ α′ χ)
fromList from Nil = Nil ′

fromList from (Cons x xs) = Cons ′ (from x ) (fromList from xs)
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toList :: (α′ χ→ α)→ (List ′ α′ χ→ [α ])
toList to Nil ′ = Nil
toList to (Cons ′ x xs) = Cons (to x ) (toList to xs)

Operationally, if the types τ ′ Id and τ have the same run-time representation,
then fromList InId and toList outId are identity functions (the Haskell Report
[18] guarantees this for InId and outId).

We can use the isomorphism to broaden the scope of generic functions to
unlifted types. To this end we simply re-use the view mechanism (the equation
below must be inserted before the catch-all case).

spineView List = View ′ (List ′ Id) (fromList InId) (toList outId)

The following interactive session illustrates the use of size.

Main〉 let ts = [tree [0 . . i :: Int ] | i ← [0 . . 9]]
Main〉 size (ts :′ List)
10
Main〉 size (fromList (fromTree InId) ts :′ List ′ (Tree ′ Id))
55
Main〉 size (fromList InId ts :′ List ′ Id)
10
Main〉 size (InId ts :′ Id)
1
Main〉 size (fromList (fromTree InInt′) ts :′ List ′ (Tree ′ Int ′))
0

With the help of the conversion functions we can implement each of the four
different views on a list of trees of integers. Since Haskell employs a kinded first-
order unification of types [19], the calls almost always involve a change on the
value level: The type equation ϕ τ = List (Tree Int), for instance, is solved
setting ϕ = List and τ = Tree Int , that is, Haskell picks one of the four higher-
order unifiers. Only in this particular case we need not change the representation
of values: size (ts :′ List) implements the desired call.

4.4 Discussion

The lifted spine view is almost as general as the original spine view: it is ap-
plicable to all data types that are definable in Haskell 98. In particular, nested
data types can be handled with ease. As an example, for the data type Perfect ,
see Section 2.3, we introduce a lifted variant

data Perfect ′ α′ χ = Zero′ (α′ χ) | Succ′ (Perfect ′ (Pair ′ α′ α′) χ)
Perfect :: Type ′ Perfect
Perfect ′ :: Type ′ ϕ→ Type ′ (Perfect ′ ϕ)
toSpine ′ (Zero′ x :′ Perfect ′ a ′) = Con ′ zero′ ♦′ (x :′ a ′)
toSpine ′ (Succ′ x :′ Perfect ′ a ′) = Con ′ succ′ ♦′ (x :′ Perfect ′ (Pair ′ a ′ a ′))
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and functions that convert between the lifted and the unlifted variant.

spineView (Perfect)
= View ′ (Perfect ′ Id) (fromPerfect InId) (toPerfect outId)

fromPerfect :: (α→ α′ χ)→ (Perfect α→ Perfect ′ α′ χ)
fromPerfect from (Zero x ) = Zero′ (from x )
fromPerfect from (Succ x ) = Succ′ (fromPerfect (fromPair from from) x )
toPerfect :: (α′ χ→ α)→ (Perfect ′ α′ χ→ Perfect α)
toPerfect to (Zero′ x ) = Zero (to x )
toPerfect to (Succ′ x ) = Succ (toPerfect (toPair to to) x )

The following interactive session shows some examples involving perfect trees.

Main〉 size (Succ (Zero (1, 2)) :′ Perfect)
2
Main〉 map (Perfect) (+1) (Succ (Zero (1, 2)))
Succ (Zero (2, 3))

We have seen in Section 2.3 that the spine view is also applicable to gener-
alised algebraic data types. This does not hold for the lifted spine view, as it is
not possible to generalise map to GADTs. Consider the expression data type of
Section 2.3. Though Expr is parameterised, it is not a container type: an element
of Expr Int , for instance, is an expression that evaluates to an integer; it is not a
data structure that contains integers. This means, in particular, that we cannot
define a mapping function (α → β) → (Expr α → Expr β): How could we pos-
sibly turn expressions of type Expr α into expression of type Expr β? The type
Expr β might not even be inhabited: there are, for instance, no terms of type
Expr String . Since the type argument of Expr is not related to any component,
Expr is also called a phantom type [20].

It is instructive to see where the attempt to generalise map to GADTs fails
technically. We can, in fact, define a lifted version of the Expr type (we confine
ourselves to one constructor).

data Expr ′ :: (∗ → ∗)→ ∗ → ∗ where
Num ′ :: Int ′ χ→ Expr ′ Int ′ χ

However, we cannot establish an isomorphism between Expr and Expr ′ Id : the
following code simply does not type-check.

fromExpr :: (α→ α′ χ)→ (Expr α→ Expr ′ α′ χ)
fromExpr from (Num i) = Num ′ (InInt′ i) -- wrong: does not type-check

The isomorphism between τ and τ ′ Id only holds for Haskell 98 types.
In the preceding section we have seen two examples of generic consumers (or

transformers). As in the first-order case generic producers are out of reach and
for exactly the same reason: fromSpine ′ is a polymorphic function while toSpine ′

is overloaded. Of course, the solution to the problem suggests itself: we must also
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lift the type spine view to type constructors of kind ∗ → ∗. In a sense, the spine
view really comprises two views: one for consumers (and transformers) and one
for pure producers.

Up to now we have confined ourselves to generic functions that abstract over
types of kind ∗ or ∗ → ∗. An obvious question is whether the approach can be
generalised to kind indices of arbitrary kinds. The answer is an emphatic “Yes!”.
Let us briefly sketch the main steps, for a formal treatment see Hinze’s earlier
work [9]. Assume that κ = κ1 → · · · → κn → ∗ is the kind of the type index. We
first introduce a suitable type representation and lift the data types to kind κ by
adding n type arguments of kind κ1, . . . , κn. Types and lifted types are related
as follows: τ is isomorphic to τ ′ Out1 . . . Outn where Out i is the projection
type that corresponds to the i -th argument of κ. The spine representation must
be lifted accordingly. The generic programmer then has to consider two cases
for the spine view and additionally n cases, one for each of the n projection
types Out1, . . . , Outn.

Introducing lifted types for each possible type index sounds like a lot of work.
Note, however, that the declarations can be generated completely mechanically
(a compiler could do this easily). Furthermore, generic functions that are indexed
by higher-order kinds, for instance, (∗ → ∗)→ ∗ → ∗ are rare. In practice, most
generic functions are indexed by a first-order kind such as ∗ or ∗ → ∗.

5 Related Work

Scrap your boilerplate The SYB approach has been developed by Lämmel and
Peyton Jones in a series of papers [3, 21, 5]. The original approach is combinator-
based: the user writes generic functions by combining a few generic primitives.
The first paper [3] introduces two main combinators: a type-safe cast for defining
ad-hoc cases and a generic recursion operator, called gfoldl , for implementing
the generic part. It turns out that gfoldl is essentially the catamorphism of the
Spine data type [11]: gfoldl equals the catamorphism composed with toSpine.
The second paper [21] adds a function called gunfold to the set of predefined
combinators, which is required for defining generic producers. The name suggests
that the new combinator is the anamorphism of the Spine type, but it is not:
gunfold is actually the catamorphism of Signature, introduced in Section 3.

Relating approaches to generic programming There is a wealth of material on
the subject of generic programming. The tutorials [22, 2, 23] provide an excellent
overview of the field. We have noted in the introduction that support for generic
programming consists of two essential ingredients: a way to write overloaded
functions, and independently, a way to access the structure of values in a uniform
way. The different approaches to generic programming can be faithfully classified
along these two dimensions. Figure 1 provides an overview of the design space.
The two ingredients are largely independent of each other and for each there are
various choices. Overloaded functions can be expressed using
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view(s) representation of overloaded functions

type reflection type classes type-safe cast specialisation

none ITA [24, 7,
25–27]

– – –

fixed point Reloaded [11] PolyP [28, 29] – PolyP [1]

sum-of-products LIGD [8, 20] DTC [30],
GC [34],
GM [10]

– GH [31, 2, 32,
33]

spine Reloaded [11],
this paper

SYB [5],
Reloaded [35]

SYB [3, 21] –

Fig. 1. Generic programming: the design space.

– type reflection: This is the approach we have used in this paper. Its origins
can be traced back to the work on intensional type analysis [24, 7, 25–27]
(ITA). ITA is intensively used in typed intermediate languages, in particu-
lar, for optimising purely polymorphic functions. Type reflection avoids the
duplication of features: a type case, for instance, boils down to an ordinary
case expression. Cheney and Hinze [8] present a library for generics and dy-
namics (LIGD) that uses an encoding of type representations in Haskell 98
augmented by existential types.

– type classes [4]: Type classes are Haskell’s major innovation for supporting
ad-hoc polymorphism. A type class declaration corresponds to the type sig-
nature of an overloaded value—or rather, to a collection of type signatures.
An instance declaration is related to a type case of an overloaded value.
For a handful of built-in classes Haskell provides support for genericity: by
attaching a deriving clause to a data declaration the Haskell compiler au-
tomatically generates an appropriate instance of the class. Derivable type
classes (DTC) generalise this feature to arbitrary user-defined classes. A sim-
ilar, but more expressive variant is implemented in Generic Clean [34] (GC).
Clean’s type classes are indexed by kind so that a single generic function can
be applied to type constructors of different kinds. A pure Haskell 98 imple-
mentation of generics (GM) is described by Hinze [10]. The implementation
builds upon a class-based encoding of the type Type of type representations.

– type-safe cast [6]: A cast operation converts a value from one type to another,
provided the two types are identical at run-time. A cast can be seen as a
type-case with exactly one branch. The original SYB paper [3] is based on
casts.

– specialisation [9]: This implementation technique transforms an overloaded
function into a family of polymorphic functions (dictionary translation).
While the other techniques can be used to write a library for generics, spe-
cialisation is mainly used for implementing full-fledged generic programming
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systems such as PolyP [1] or Generic Haskell [33], that are set up as prepro-
cessors or compilers.

The approaches differ mostly in syntax and style, but less in expressiveness—
except perhaps for specialisation, which cannot cope with higher-order generic
functions. The second dimension, the generic view, has a much larger impact:
we have seen that it affects the set of data types we can represent, the class of
functions we can write and potentially the efficiency of these functions.

– no view : Haskell has a nominal type system: each data declaration intro-
duces a new type that is incompatible with all the existing types. Two types
are equal if and only if they have the same name. By contrast, in a struc-
tural type system two types are equal if they have the same structure. In a
language with a structural type system there is no need for a generic view;
a generic function can be defined exhaustively by induction on the structure
of types. The type systems that underly ITA are structural.

– fixed point view : PolyP [1] views data types as fixed points of regular func-
tors, which are in turn represented as lifted sums of products. This view is
quite limited in applicability: only data types of kind ∗ → ∗ that are regu-
lar can be represented, excluding nested data types and higher-order kinded
data types. Its particular strength is that recursion patterns such as cata-
or anamorphisms can be expressed generically, because each data type is
viewed as a fixed point, and the points of recursion are visible. The original
implementation of PolyP is set up as a preprocessor that translates PolyP
code into Haskell. A later version [28] embeds PolyP program into Haskell
augmented by multiple parameter type classes with functional dependencies
[36]. Oliveira and Gibbons [29] present a light-weight variant of PolyP that
works within Haskell 98.

– sum-of-products view : Generic Haskell [2, 32, 33] (GH) builds upon this view.
It is applicable to all data types definable in Haskell 98. Generic Haskell is
a full-fledged implementation of generics based on ideas by Hinze [31, 37]
that features generic functions, generic types and various extensions such as
default cases and constructor cases [38]. Generic Haskell supports the defi-
nition of functions that work for all types of all kinds, such as, for example,
a generalised mapping function.

– spine views: The spine view treats data uniformly as constructor appli-
cations. The different spine views have been extensively discussed in Sec-
tions 2.3, 3 and 4.4.

6 Conclusion

The SYB approach to generic programming was originally presented as an im-
plementation of strategic programming in Haskell. Strategic programming [39]
is an idiom for processing and querying complex, compound data such as, for
example, abstract syntax trees. Because of this background and because of the
particular presentation as a combinator library, the approach seemed to be tied
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to generic consumers indexed by types of kind ∗. This paper makes the following
contributions revealing the full potential of the SYB approach.

– The ‘type spine’ view allows us to implement generic producers in the same
elegant manner as generic consumers that build upon the spine view. The
type spine view can be seen as the hidden structure that underlies the gunfold
combinator.

– Functions that abstract over type constructors can be handled using the
technique of lifting. Previously, these functions were thought to be out of
reach for the SYB approach. For reasons of space, we have confined ourselves
to type indices of kind ∗ → ∗. Lifting, however, works for indices of arbitrary
kinds.

Using one of the different spine views one can program almost all of the standard
examples of generic functions.

The spine views are attractive for at least two reasons: they are easy to use
and they are widely applicable. The generic programmer only has to consider two
cases plus one case for each argument of the type index (that is, n additional
cases for indices of kind κ1 → · · · → κn → ∗). The spine view and the type
spine view cover almost all data types including generalised algebraic data types,
but excluding existential types. For principal reasons, the lifted spine view is
more restricted: generic functions that abstract over type constructors can be
instantiated to arbitrary container types but not to phantom types (GADTs).

We have left a couple of topics for future work. The overloading technique
used in this paper, type reflection, hinders in its present form the formulation of
the approach as a re-usable library: the encoding of overloaded functions using
explicit type arguments requires the extensibility of the Type data type and
of functions such as toSpine. Using the concepts of open data types and open
functions [40] this limitation can be overcome. We plan to build an industrial-
strength library based on this extension. Type reflection has at least one distinct
advantage over a class-based approach: we expect that it is much easier to prove
algebraic properties of generic functions in this setting. We believe that the
work of Reig [41] could be recast using our approach, leading to shorter and
more concise proofs.
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A Library

The function tree turns a list of elements into a balanced binary tree, a so-called
Braun tree [42].

tree :: [α ]→ Tree α
tree x
| null x = Empty
| otherwise = Node (tree x1) a (tree x2)
where (x1, a : x2) = splitAt (length x ‘div ‘ 2) x

The type ShowS is Haskell’s type of pretty printers. The operator ‘•’ sepa-
rates two elements of this type by a space.

(•) :: ShowS → ShowS → ShowS
s1 • s2 = s1 · showChar ’ ’ · s2

The function showsList produces a comma-separated sequence of elements be-
tween square brackets.

showsList :: [ShowS ]→ ShowS
showsList Nil = showString "[]"
showsList (Cons x xs) = showChar ’[’ · x

· foldr (·) id [showChar ’,’ · s | s ← xs ]
· showChar ’]’

The type ReadS is Haskell’s parser type. The function alt implements the alter-
nation of a list of parsers.

alt :: [ReadS α ]→ ReadS α
alt rs = λs → concatMap (λr → r s) rs
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Give a parser for elements, readsList parses a list of elements written as a comma-
separated sequence between square brackets.

readsList :: ReadS α→ ReadS [α ]
readsList r = readParen False (λs → [x | ("[", s1)← lex s, x ← readl s1 ])

where readl s = [([ ], s1) | ("]", s1)← lex s ]
++ [(x : xs, s2) | (x , s1)← r s,

(xs, s2)← readl ′ s1 ]
readl ′ s = [([ ], s1) | ("]", s1)← lex s ]

++ [(x : xs, s3) | (",", s1)← lex s,
(x , s2)← r s1,
(xs, s3)← readl ′ s2 ]


