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Abstract. This paper describes a purely functional implementation of LR parsing.
We formally derive our parsers in a series of steps starting from the inverse of print-
ing. In contrast to traditional implementations of LR parsing, the resulting parsers
are fully typed, stackless and table-free. The parsing functions pursue alternatives in
parallel with each alternative represented by a continuation argument. The direct im-
plementation presents many opportunities for optimization and initial measurements
show excellent performance in comparison with conventional table-driven parsers.
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1. Introduction

Variants of LR parsing (Knu65) have long been the favoured technique
for mechanically generated parsers. LR grammars are expressive, allow-
ing a convenient description of most common programming language
constructs, and many tools exist to generate efficient parsers from them.

Typical implementations reflect the origin of these parsers as de-
terministic pushdown automata: there is a table of actions for each
state and input symbol, and a stack holding saved values and states. In
this paper, we shall derive an alternative implementation: the parsers
developed here consist of mutually recursive functions, each taking a
number of continuation functions. To give an idea of our destination,
Figure 1 lists a complete parser for a tiny expression language. The
states of conventional parsers have become functions with continuation
arguments, and the stack has disappeared: values discovered during
parsing are immediately passed to the continuations. Another salient
feature of our parsers is that they are fully typed, without the need for
a union type for stack elements as in many other implementations.

We shall explain our parsers by deriving them in a series of program
transformation steps. After introducing the notations we shall be using
in Section 2, the development is as follows:

− In Section 3, we begin with a direct specification of parsing, as
the inverse of flattening a parse tree. Parsing is therefore a non-
deterministic, or set-valued, function. It is convenient to work with
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data Expr = Ident String | Apply Expr Expr

reduceid :: (Expr → Parser r) → (String → Parser r)
reduceid g n = g (Ident n)
reduceE(E) :: (Expr → Parser r) → (Expr → Expr → Parser r)
reduceE(E) g f x = g (Apply f x)
data Token = IDENT String | LPAREN | RPAREN | EOF

type Parser r = [Token] → Maybe r

parseE :: Parser Expr

parseE = state1 (λe tr → return e)
state1 :: (Expr → Parser r) → (Parser r)
state1 k ts = case ts of IDENT n : tr → reduceid g n tr

→ fail "syntax error"
where g e = state2 (reduceE(E) g e) (k e)

state2 :: (Expr → Parser r) → (Parser r) → (Parser r)
state2 k1 k2 ts = case ts of LPAREN : tr → state3 k1 tr

EOF : tr → k2 tr

→ fail "syntax error"

state3 :: (Expr → Parser r) → (Parser r)
state3 k ts = case ts of IDENT n : tr → reduceid g n tr

→ fail "syntax error"
where g e = state4 (reduceE(E) g e) (k e)

state4 :: (Expr → Parser r) → (Parser r) → (Parser r)
state4 k1 k2 ts = case ts of LPAREN : tr → state3 k1 tr

RPAREN : tr → k2 tr

→ fail "syntax error"

Figure 1. Parser for the grammar E → id | E ( E ).

such functions through most of our development, addressing the
deterministic special case towards the end.

− The next step, in Section 4, is to derive a simple recursive char-
acterization of the parsing functions. This form corresponds to
continuation-style recursive descent parsers, and is thus directly
executable only if the grammar is not left-recursive.

− Left recursion is removed in Section 5 by analysing these func-
tions as sets of sequences of primitive steps, given by a left-linear
grammar, and using the standard technique to obtain an equiva-
lent right-linear grammar. The resulting program corresponds to
a non-deterministic LR parser.

− Finally, in Section 6, we remove non-determinism by collecting
sets of parsing functions, so that they parse alternatives in paral-
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lel, obtaining deterministic LR parsers. We also consider various
optimizations. Some of these have counterparts for conventional
parsers; some are specific to the functional representation.

We discuss previous derivations of bottom-up functional parsers in
Section 7, and compare them with the parsers derived here.

Experiments with a range of grammars, reported in Section 8, show
that our parsers compare well to conventional table-based ones.

Finally, Section 9 concludes.

2. Notation

This section briefly introduces the notation used in the subsequent
sections. The reader may wish to skim through the material and come
back later for reference.

Sets As noted in the introduction we shall derive an implementation
of LR parsing in a series of steps, each of which yields an executable
program. For concreteness, the derivation and the resulting programs
are presented in a Haskell-like notation; for information on Haskell, see
(Pey03). Although we use Haskell as a vehicle, we are interpreting it in
the category of sets and total functions so that arbitrary recursion is
unavailable. At the end of the development, when all non-determinism
is removed, we shall switch to the conventional interpretation of Haskell
in the category of complete partial orders and continuous functions.

Furthermore, we shall make heavy use of set comprehension nota-
tion. As an example, prefixes is a function that yields the set of all
prefixes of a given list.

prefixes :: [a] → P [a]
prefixes x = {p | p ++ s = x}

Here [a] is the type of lists of elements of type a; likewise, P a is
the type of sets of elements of type a; ‘++’ denotes list concatenation.
Note that the variables p and s in the body of the comprehension are
implicitly existentially quantified so that the definition is shorthand for
the more verbose

prefixes x = {p | ∃ p :: [a] . ∃ s :: [a] . p ++ s = x}

For the derivation we prefer the shorter form, so to reduce clutter we
adopt the convention of (Hin02) that the variables to the left of ‘=’
and ‘∈’ are always implicitly existentially quantified.
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Context-free grammars We shall use standard notation for context-
free grammars with one minor exception: we allow a set of start sym-
bols. Formally, a context-free grammar (T,N,S,P) consists of

− disjoint sets T and N, called respectively terminal and nonterminal
symbols, together comprising the set V = T ∪ N of symbols,

− a set S ⊆ N of start symbols, and

− a set P ⊆ N× V∗ of productions.

We shall use the following conventions for elements of these sets:

a, b, c, d ∈ T w ∈ T∗

A, B,C, D ∈ N
X ∈ V α, β, γ ∈ V∗

Elements of P are written A � α.

Example 1. Consider the simple expression grammar (ASU86, p222)
with

T = { +, *, (, ), id }
N = {E, T, F }
S = {E }

and the following productions:

E � E + T
E � T
T � T * F
T � F
F � ( E )
F � id

We shall use this grammar as a running example. 2

For any grammar, we can define an augmented grammar (we tacitly
assume that $ 6∈ V):

T† = T ∪ { $ }
N† = N ∪ S†

S† =
{

S† | S ∈ S
}

P† = P ∪ {
S† → S$ | S ∈ S

}

In an augmented grammar the start symbols do not appear on the right-
hand side of an production. Furthermore, the end of input is signalled
by the special symbol ‘$’.
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Linear grammars A left-linear grammar is one in which all produc-
tions have the form A � Bw or A � w. Similarly, a right-linear
grammar has only productions of the forms A � wB and A � w.

Any left-linear grammar (T, {S} ] N, {S},P) with a single start
symbol S that does not appear on the right-hand side of a production
may be transformed into an equivalent right-linear grammar (T, {S} ]
N̄, {S}, P̄), or vice versa, by the rules:

P 3 S � Aw ! Ā � w ∈ P̄
S � w ! S � w
A � Bw ! B̄ � wĀ
A � w ! S � wĀ

Items An item is a production plus a position in the right-hand side,
written A � α ·β where the dot marks the position. Kernel items of an
augmented grammar (T†,N†,S†,P†) are those of the forms S† � ·S$
or A � α ·β with α 6= ε. We let i and j denote arbitrary items, and use
q for kernel items.

We also define a predict relation ‘.’ on items by (A � α ·Cβ) .
(C � · γ), where C � γ ∈ P†, with transitive closure .+ and reflexive-
transitive closure .∗. Furthermore, let q+ = { i | q .+ i } and q∗ =
{ i | q .∗ i }. Note that q+ = q∗ \ { q } if and only if q is a kernel item.
For example, the equation does not hold for A � ·Aa.

Finally, for any set Q of items, we define

Q/X = {A � α ·Xβ ∈ Q }
Q+X = {A � αX ·β | A � α ·Xβ ∈ Q }
next(Q) = {X | A � α ·Xβ ∈ Q }

3. A specification of parsing

3.1. Attributes

In most parsing applications, we wish to collect information about the
string parsed. The standard approach is to define for each symbol X a
sequence of data types X̄ of attributes computed for each parse of the
symbol. (We consider only synthesized attributes here.) It would suffice
to have a single attribute type for each symbol, representing multiple
attributes by tuples and no attributes by a unit type. However, we
choose to retain the sequences of types because they are more efficient,
and do not significantly complicate the description as we will need to
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deal with sequences of types anyway. We adopt the notational device
of extending the function type to sequences of types, allowing

t1 · · · tn → t

as an alternative form of

t1 → · · · → tn → t

Once we have defined X̄ for each symbol X, we can form ᾱ by con-
catenating these sequences of types for each symbol in α. We shall also
write vα for a sequence of variables with types ᾱ.

3.2. Tokens

We assume for each terminal symbol a, a string of attribute types ā,
with $̄ = ε. The combination of a terminal symbol with attribute values
is conventionally called a token (AU72). We can represent these with
a Haskell data type as follows:

data Token =
∑

c∈T† Tc c̄

For example, a Token type and a suitable lexical analyser for the ex-
pression grammar, Example 1, are given in Figure 2. In this case, some
symbols have a single attribute, while others have none. Note that ‘+’
and ‘*’ have been generalized to additive and multiplicative operator
families whose attribute specifies the concrete operator at hand. The
token EOF corresponds to T$.

3.3. Parse trees

In general, productions would be annotated with rules for computing
the attributes of the left side from those of the right side. Our aim
here, though, is to derive parsing as an invertible process, so we shall
use parse trees as attributes, thus ensuring that no information about
the parse is lost. Hence we define for each nonterminal symbol A, a
parse tree type Ā as follows

data Ā =
∑

(A→α)∈P RuleA→α ᾱ

Note that RuleA→α has type ᾱ → Ā demonstrating that the parse tree
constructor is the inverse of a production. As an exception, in the case
of the start symbols S† of an augmented grammar, we define S† = S̄.
For example, parse tree types for the expression grammar appear in
Figure 3.

Parse trees are an initial algebra of the signature determined by the
grammar. The attributes that are usually associated with nonterminal
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data Token = IDENT String

| ADDOP AddOp -- ‘+’ and ‘-’
| MULOP MulOp -- ‘*’ and ‘/’
| LPAREN

| RPAREN

| EOF -- = T$

data AddOp = Plus | Minus

data MulOp = Times | Divide

tokens :: String → [Token]
tokens [ ] = [EOF ]
tokens (’+’ : cs) = ADDOP Plus : tokens cs

tokens (’-’ : cs) = ADDOP Minus : tokens cs

tokens (’*’ : cs) = MULOP Times : tokens cs

tokens (’/’ : cs) = MULOP Divide : tokens cs

tokens (’(’ : cs) = LPAREN : tokens cs

tokens (’)’ : cs) = RPAREN : tokens cs

tokens (c : cs)
| isAlpha c = IDENT (c : n) : tokens cs′

| otherwise = tokens cs

where (n, cs′) = span isAlphaNum cs

Figure 2. Tokens for the expression grammar.

data Expr = RuleE�E +T Expr AddOp Term

| RuleE�T Term

data Term = RuleT�T *F Term MulOp Factor

| RuleT�F Factor

data Factor = RuleF�(E ) Expr

| RuleF�id String

Figure 3. Parse tree types for the expression grammar.

symbols may be computed by a fold over the parse tree. This fold may
be automatically fused with the parser by a routine application of defor-
estation (Wad88), replacing the constructors RuleA→α with functions
that compute the values of the attributes (see also Section 6.4).
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class ParseTree a where
flatten :: a → [Token]

instance ParseTree Expr where
flatten (RuleE�E +T e op t) = flatten e ++ [ADDOP op ] ++ flatten t

flatten (RuleE�T t) = flatten t

instance ParseTree Term where
flatten (RuleT�T *F t op f) = flatten t ++ [MULOP op ] ++ flatten f

flatten (RuleT�F f) = flatten f

instance ParseTree Factor where
flatten (RuleF�(E ) e) = [LPAREN ] ++ flatten e ++ [RPAREN]
flatten (RuleF�id n) = [IDENT n ]

Figure 4. Flattening parse trees for the expression grammar.

As a special case of this fold, we can define a family of functions
flattenα for each string α, with which we can recover the original
sequence of tokens from a parse tree:

flattenα :: ᾱ → [Token]
flattenS† v = flattenS$ v

flattena va = [Ta va]
flattenA (RuleA→α vα) = flattenα vα

flattenε = [ ]
flattenαβ vα vβ = flattenα vα ++ flattenβ vβ

This family of functions, together with the parse tree types, thus encode
the grammar in Haskell. The initiality of parse trees captures the notion
that the language defined is the least fixed point of the grammar in the
subset ordering. Suitable definitions for the expression grammar are
given in Figure 4. Note that the family of functions is represented by
an overloaded function in Haskell.

3.4. Non-deterministic parsing

Parsing can now be described as an inverse of the function flattenS† .
Of course, this function is not necessarily surjective or injective: some
token strings may not be the flattening of any parse tree, while others
may correspond to more than one parse tree, if the grammar is ambigu-
ous. Although for practical applications we are primarily interested in
unambiguous grammars, specifically LALR ones, it will be cleaner to
develop our parsers for the general case. In general, a token string may
be the flattening of a number of parse trees (possibly zero), so we define

type Parser r = [Token] → P r
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Specification of parse The parse function for a start symbol S will
have type

parseS :: Parser S̄

We shall expect it to satisfy

parseS ts = { vS | flattenS† vS ++ tr = ts } (1)

Following the conventions discussed in Section 2, the variables vS and
tr are implicitly bound in the set comprehension. In this case, the suffix
tr is actually immaterial, since flattenS† vS will end with the special
token T$ (EOF in the expression parser). Anything after that token will
be ignored by the parser.

4. Non-deterministic recursive descent parsing

We cannot expect a recursive definition of parseS . Rather we shall
define it in terms of a more general auxiliary function that parses a
suffix of a production. Following convention we use items of the form
A � α ·β to indicate this position. In the sequel we specify a parser
for each item A � α ·β, called stateA�α ·β, with which we can define
parseS . We derive equations that this family of functions satisfies,
and show that it is the least such family. We thus obtain a recursive
characterization, which corresponds to recursive descent parsing.

Specification of state Suppose that during the parse we are at a point
described by an item A � α ·β. We expect the remaining input to be
parsable as a β, followed by further tokens. Hence the function to parse
from this point is passed a parsing continuation, to be used after the β
is seen. In parsing the string β, our parser will obtain attribute values of
type β̄, and these will be passed to the continuation. Hence the parsing
function corresponding to A � α ·β has the signature

stateA�α ·β :: (β̄ → Parser r) → Parser r

and we shall require that it satisfies

stateA�α ·β k ts =
⋃
{k vβ tr | flattenβ vβ ++ tr = ts } (2)

Note that stateA�α ·β is polymorphic in the result type r, which allows
us to support parsers with multiple entry points (corresponding to
grammars with multiple start symbols). Note further that stateA�α ·β
neither depends on A nor on α. Consequently, the state functions are
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identical if the strings to the right of the dot are identical, that is,
stateA�α ·β = stateA′�α′ ·β. We return to this issue in Section 6.3.

Derivation of parse Parsing begins with the item S† � ·S$:

parseS ts

= 〈 specification of parse 〉
{ vS | flattenS† vS ++ tr = ts }

= 〈 definition of flatten 〉
{ vS | flattenS$ vS ++ tr = ts }

= 〈 sets 〉⋃ { { vS } | flattenS$ vS ++ tr = ts }
= 〈 introduce accept—see below 〉⋃ {accept vS tr | flattenS$ vS ++ tr = ts }
= 〈 specification of state and S$ = S̄ 〉

stateS†� ·S$ accept ts

where the function accept is defined as

accept :: r → Parser r

accept v tr = { v }

and so we have

parseS = stateS†� ·S$ accept

Derivation of state We proceed by case analysis of the string to the
right of the dot.

Case A � α · : Consider first items with an empty string to the right
of the dot. In this case, we can use the parsing continuation to parse
the rest of ts:

stateA�α · k ts

= 〈 specification of state 〉⋃ {k vε tr | flattenε vε ++ tr = ts }
= 〈 definition of flatten 〉⋃ {k ts }
= 〈 sets 〉

k ts

In a conventional setting this corresponds to a reduce step.
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Case A � α ·Xβ: If there is at least one symbol to the right of the
dot, we have

stateA�α ·Xβ k ts

= 〈 specification of state 〉⋃ {k vXβ tr | flattenXβ vXβ ++ tr = ts }
= 〈 definition of flatten 〉⋃ {k vX vβ tr | flattenX vX ++ flattenβ vβ ++ tr = ts }
= 〈 sets 〉⋃ {⋃ {k vX vβ tr | flattenβ vβ ++ tr = tr′ }

| flattenX vX ++ tr′ = ts }
= 〈 specification of state 〉⋃ { stateA�αX ·β (k vX) tr′ | flattenX vX ++ tr′ = ts }
= 〈 introduce goto—see below 〉⋃ {

gotoA�α ·Xβ k vX tr′ | flattenX vX ++ tr′ = ts
}

= 〈 introduce shift—see below 〉
shiftX (gotoA�α ·Xβ k) ts

where functions gotoA�α ·Xβ and shiftX are specified by

gotoA�α ·Xβ :: (Xβ → Parser r) → (X̄ → Parser r)
gotoA�α ·Xβ k vX = stateA�αX ·β (k vX)

shiftX :: (X̄ → Parser r) → Parser r

shiftX g ts =
⋃ {g vX tr | flattenX vX ++ tr = ts }

As further progress depends on the nature of X, we have introduced
shift as a name for the branch point. We also introduce goto to cast
shift in a more convenient form for further manipulation: gotoA�α ·Xβ

feeds attributes to the continuation and enters the state after X.

Derivation of shift We proceed by case analysis on X.
Case X = c: When X is a terminal symbol c, we have

shiftc g ts

= 〈 specification of shift 〉⋃ {g vc tr | flattenc vc ++ tr = ts }
= 〈 definition of flatten 〉⋃ {g vc tr | [Tc vc] ++ tr = ts }
= 〈 definition of ‘++’ 〉⋃ {g vc tr | Tc vc : tr = ts }
= 〈 case expression 〉

case ts of (Tc vc : tr) → g vc tr

→ ∅

In a conventional setting this corresponds to a shift step.
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Case X = C: When X is a nonterminal symbol C, we have

shiftC g ts

= 〈 specification of shift 〉⋃ {g vC tr | flattenC vC ++ tr = ts }
= 〈 definition of flatten 〉⋃ {g (RuleC�γ vγ) tr | C � γ ∈ P ∧ flattenγ vγ ++ tr = ts }
= 〈 introduce reduce—see below 〉⋃ { reduceC→γ g vγ tr | C � γ ∈ P ∧ flattenγ vγ ++ tr = ts }
= 〈 sets 〉⋃ {⋃ { reduceC→γ g vγ tr | flattenγ vγ ++ tr = ts }

| C � γ ∈ P }
= 〈 specification of state 〉⋃ { stateC� · γ (reduceC→γ g) ts | C � γ ∈ P }

where we define reduceC→γ as the continuation-passing counterpart of
RuleC→γ :

reduceC→γ :: (C̄ → Parser r) → (γ̄ → Parser r)
reduceC→γ g vγ = g (RuleC→γ vγ)

This step, the only remaining source of nondeterminism, has no coun-
terpart in a conventional setting. We shall transform it further in the
next section. For the expression parser, the reduce functions are given
in Figure 4. Note that each constructor RuleC→γ is mentioned once
only. As remarked in Section 3.3, when the parser is fused with a fold
over a parse tree and deforested, these constructors will be replaced by
actions.

To summarize, Figure 6 lists the derived properties of state and of
the auxiliary functions we have introduced.

In general, state will not be the sole family of functions satisfying
these equations, but we can show that it is the least such family under
the set inclusion ordering, lifted pointwise to functions. Let state′,
shift′ and goto′ be another such family. Then we wish to establish
that state ⊆ state′ and shift ⊆ shift′, or equivalently

k vβ tr ⊆ state′A�α ·β k (flattenβ vβ ++ tr) (3)

g vX ts ⊆ shift′X g (flattenX vX ++ ts) (4)

The first set inclusion states that state′ produces every parse tree
by parsing its flattening and possibly others. The proof is similar in
structure to the derivation: We show (3) by induction over the depth
of the parse forest vβ with (4) serving as an intermediate result. The
details of the proof are omitted.

If the grammar is not left-recursive, the equations of Figure 6 are, in
fact, executable, acting as a nondeterministic LL(0) parser. The parser
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reduceE�E +T :: (Expr → Parser r)
→ (Expr → AddOp → Term → Parser r)

reduceE�E +T g e op t = g (RuleE�E +T e op t)
reduceE�T :: (Expr → Parser r) → (Term → Parser r)
reduceE�T g t = g (RuleE�T t)
reduceT�T *F :: (Term → Parser r)

→ (Term → MulOp → Factor → Parser r)
reduceT�T *F g t op f = g (RuleT�T *F t op f)
reduceT�F :: (Term → Parser r) → (Factor → Parser r)
reduceT�F g f = g (RuleT�F f)
reduceF�(E ) :: (Factor → Parser r) → (Expr → Parser r)
reduceF�(E ) g e = g (RuleF�(E ) e)
reduceF�id :: (Factor → Parser r) → (String → Parser r)
reduceF�id g n = g (RuleF�id n)

Figure 5. Reduce functions for the expression grammar.

stateA�α · β :: (β̄ → Parser r) → Parser r

stateA�α · k = k

stateA�α ·Xβ k = shiftX (gotoA�α ·Xβ k)

shiftX :: (X̄ → Parser r) → Parser r

shiftc g ts = case ts of (Tc vc : tr) → g vc tr

→ ∅
shiftC g ts =

⋃ { stateC� · γ (reduceC→γ g) ts | C � γ ∈ P }
reduceC→γ :: (C̄ → Parser r) → (γ̄ → Parser r)
reduceC→γ g vγ = g (RuleC→γ vγ)

gotoA�α ·Xβ :: (Xβ → Parser r) → (X̄ → Parser r)
gotoA�α ·Xβ k vX = stateA�αX · β (k vX)

Figure 6. Equational characterization of state, shift and goto.

for the expression grammar is listed in Appendix A. It loops, however,
in Haskell since there are two nested infinite branches (due to the left
recursion in E � E+T and T � T*F ). A system guaranteeing fair
selection of alternatives as in some logic programming systems would
ensure that all solutions were produced, but would sometimes signal
failure with nontermination.
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5. Non-deterministic recursive ascent parsing

As noted above, the equations for items of the forms A � α · and
A � α · cβ are directly implementable, corresponding to the reduce and
shift actions of a traditional LR parser. It remains to eliminate actions
of the form A � α ·Cβ by expanding them to reduce or shift actions.
For this step, we operate on the continuation-passing functions state

and shiftC expressed in a point-free style:

stateA�α · = id

stateA�α ·Xβ = shiftX ◦ gotoA�α ·Xβ

shiftC =
⋃ { stateC� · γ ◦ reduceC→γ | C � γ ∈ P }

where in the last equation union is lifted pointwise to function spaces:
(f ∪g) x = f x∪g x. Each state and each shiftC expands to the union
of a possibly infinite set of compositions of finite sequences of goto,
shiftc and reduce functions. We shall denote these sets of sequences
by nonterminal symbols State and ShiftC respectively, defined by a
left-linear grammar corresponding to the above equations:

StateA�α · � ε
StateA�α ·Xβ � ShiftX gotoA�α ·Xβ

Shiftc � shiftc

ShiftC � StateC� · γ reduceC�γ C � γ ∈ P

From this perspective, the task of eliminating left recursion reduces to
the standard procedure of transforming this left-linear grammar into
an equivalent right-linear grammar (see Section 2).

There is, however, a caveat. The transformation only preserves the
meaning of the start symbol. Therefore, we confine our attention to
Stateq for an arbitrary, but fixed kernel item q. The derivation below
must then be repeated for every kernel item. (We need not consider
non-kernel items though.) We furthermore restrict the grammar to
symbols reachable from Stateq as this does not change the language
denoted by Stateq. Then Stateq is given by the following productions
(for readability we have added a new start symbol Start):

Start � Stateq

Statei � ε i = A � α · ∈ q∗
Statei � ShiftX gotoi i ∈ q∗/X
Shiftc � shiftc c ∈ next(q∗)
ShiftC � StateC� · γ reduceC�γ C � · γ ∈ q+
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The equivalent right-linear grammar is then

Stateq � ε
Start � Statei i = A � α · ∈ q∗

ShiftX � gotoi Statei i ∈ q∗/X
Start � shiftc Shiftc c ∈ next(q∗)
StateC� · γ � reduceC�γ ShiftC C � · γ ∈ q+

Reverting the right-linear grammar back into a program we obtain
(stateq corresponds to Start):

stateq =
⋃ {

shiftc ◦ shiftc | c ∈ next(q∗)
} ∪⋃ {

statei | i = A � α · ∈ q∗
}

stateq = id

stateC� · γ∈q+ = reduceC�γ ◦ shiftC

shiftX =
⋃ {

gotoi ◦ statei | i ∈ q∗/X
}

Note that the transformation relies on the continuity of shift, reduce

and goto. Furthermore, it is important to note that the two equations
for state do not overlap because q /∈ q+ for any kernel item q.

Now, for the following it is more convenient to rewrite the definition
above into an applicative form.

stateq k =
⋃ {

shiftc (shiftc k) | c ∈ next(q∗)
} ∪⋃ {

statei k | i = A � α · ∈ q∗
}

stateq k = k

stateC� · γ∈q+ k = reduceC�γ (shiftC k)
shiftX k =

⋃ {
gotoi (statei k) | i ∈ q∗/X

}

Since we are aiming at a single definition for state q, we turn state and
shift into local definitions setting ki = statei k and gX = shiftX k:

stateq k =
⋃ { shiftc gc | c ∈ next(q∗) } ∪⋃ {ki | i = A � α · ∈ q∗ }

where kq = k

kC� · γ∈q+ = reduceC�γ gC

gX =
⋃ {gotoi ki | i ∈ q∗/X }

The last transformation is also known as λ-dropping (Dan99). We can
finally expand gX by calculating

gX vX

= 〈 definition of gX 〉⋃ {gotoi ki vX | i = A � α ·Xβ ∈ q∗ }
= 〈 definition of gotoi 〉⋃ { stateA�αX ·β (ki vX) | i = A � α ·Xβ ∈ q∗ }
= 〈 definition of Q+X and Q/X 〉⋃ { statei+X (ki vX) | i ∈ q∗/X }
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stateA�α ·β :: (β̄ → Parser r) → Parser r

stateq kq ts =
⋃ { shiftc gc ts | c ∈ next(q∗) } ∪⋃ { ki ts | i = A � α · ∈ q∗ }

where kC� · γ∈q+ = reduceC�γ gC

gX vX =
⋃ { statei+X (ki vX) | i ∈ q∗/X }

Figure 7. Non-deterministic LR(0) parser for a kernel item q.

stateQ :: (β̄ → Parser r | A � α ·β ∈ Q) → Parser r

stateQ ( kq | q ∈ Q ) ts =
⋃ { shiftc gc ts | c ∈ next(Q∗) } ∪⋃ {ki ts | i = A � α · ∈ Q∗ }

where kC� · γ∈Q+ = reduceC�γ gC

gX vX = stateQ∗+X ( ki vX | i ∈ Q∗/X )

Figure 8. Non-deterministic LR(0) parser for a set of kernel items Q.

We have derived the parser of Figure 7. The parser for our run-
ning example, the expression grammar, can be found in Appendix B.
Although our parsers are not yet deterministic, a relationship to tradi-
tional table-driven parsers can be noted: the right-hand side of stateq

corresponds to an entry in the action table, the local function gX to
an entry of the goto table.

6. Deterministic recursive ascent parsing

6.1. Pursuing sets of items in parallel

The first step towards a deterministic parser is to collect sets of parsers
for individual kernel items into a parser for a set Q of kernel items,
with a corresponding tuple of parsing continuations:

stateQ ( kq | q ∈ Q ) ts =
⋃ { stateq kq ts | q ∈ Q }

This corresponds to the classical subset construction for converting a
non-deterministic finite automaton to a deterministic one. Since every-
thing distributes over union, we obtain the parser of Figure 8.

Using the properties of case, the unions of shiftc functions may
furthermore be combined into a single case statement:

shiftc1 g1 ts ∪ · · · ∪ shiftcn gn ts = case ts of
Tc1 vc1 : tr → g1 vc1 tr

· · ·
Tcn vcn : tr → gn vcn tr

→ ∅

TypedLR.tex; 1/11/2005; 10:45; p.16



17

The state functions in our parsers take parsing continuations as
arguments, one for each kernel item in the corresponding state of the
LR automaton. Traditional parsers also maintain a stack of attribute
values, popping the required number of values when a reduction occurs.
In contrast, in our parsers the parsing continuations are applied to these
attributes as they become available. In effect, we have a short value
stack for each continuation. This seems expensive, but the number of
continuations of a state is equal to the number of kernel items, and in
typical parsers this is small.

6.2. Using look-ahead

The remaining non-determinism of the parser in Figure 8 arises when a
state contains both shifts and reductions (shift-reduce conflict) or more
than one reduction (reduce-reduce conflict). By definition, these con-
flicts do not occur if the grammar is LR(0). For these grammars we have
constructed a deterministic parser: the set of results is either empty or
has a single element. We can represent such sets using Haskell’s Maybe

type. For non-LR(0) grammars we can use look-ahead information to
resolve these conflicts. For example, in the expression parser the item
set {E � E+T · , T � T · *F } yields the state function

state6 :: Parser r → (MulOp → Factor → Parser r) → Parser r

state6 kE�E +T · kT�T · *F ts =
(case ts of MULOP v : tr → state8 (kT�T · *F v) tr

→ ∅)
∪ kE�E +T · ts -- shift-reduce conflict

The look-ahead set for the reduce item kE�E +T · is {RPAREN, ADDOP,
EOF}. Using this information we can refine the case expression to

state6 :: Parser r → (MulOp → Factor → Parser r) → Parser r

state6 kE�E +T · kT�T · *F ts =
case ts of MULOP v : tr → state8 (kT�T · *F v) tr

ADDOP v : → kE�E +T · ts

RPAREN : → kE�E +T · ts

EOF : → kE�E +T · ts

→ ∅
Eliminating reductions in this way removes many conflicts. If the gram-
mar is LALR(1), it makes the parser deterministic. Alternatively, we
can perform the reduction on all symbols other than MULOP.

state6 :: Parser r → (MulOp → Factor → Parser r) → Parser r

state6 kE�E +T · kT�T · *F ts =
case ts of MULOP v : tr → state8 (kT�T · *F v) tr

→ kE�E +T · ts
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This choice corresponds to a standard optimization of table-based LR
parsers (ASU86), where the most common reduce action is generalized.
The resulting expression parser is given in Appendix C.

6.3. Smaller parsers

For realistic grammars, the parsers generated by the above method are
fast, but quite large, possibly stretching the compiler or the available
memory. However, several simple steps can drastically reduce the size
of the parser. Since our parsers eschew tables, exposing the control flow,
a reasonable optimizing compiler would perform many of these steps
anyway. However, our concern is that the input program would be too
large for the compiler, so they should be done by the parser generator.

Firstly, because in our parsers the parsing continuations are already
applied to past values, the only part of a kernel item A � α ·β that
matters is β. If these parts of the items, and the associated look-aheads,
are identical, the states can be merged. For example, in the parser of
Appendix C, states 6 and 7 are identical. The whole items, however, do
not match, so the states could not be merged in a table-based parser.

The extreme case, where a state consists of a single item, and that of
the form A � α · , is quite common. In this case, the state is an identity
function, and thus may be eliminated. In the example parser, states 3,
9, 10, 12 and 13 may be eliminated in this way.

Now note that states 1, 5, 8 and 11 have identical actions, differing
only in the goto functions they use. So one could abstract out the
common action part, and parameterize it by the goto functions and
continuations used. This is a common situation, and corresponds to
a standard optimization for table-based parsers (ASU86). In this ex-
ample, this common part is equivalent to state8 (after the previous
optimization):

state8 :: (Factor → Parser r) → Parser r

state8 kT�T * ·F ts =
case ts of LPAREN : tr → state11 (reduceF�(E ) gF ) tr

IDENT v : tr → reduceF�id kT�T * ·F v tr

→ ∅

We can go further: the definition of gT and gF in states 1 and 11 is the
same as in state 5, so they may be defined in terms of it. (This could
also be done in a table-based parser, but would involve slowing down
the selection of the goto function.) The resulting expression parser is
given in Appendix D.
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type Environment = [(String, Int)]
type Expr′ = Environment → Int

type Term′ = Environment → Int

type Factor′ = Environment → Int

ruleE�E +T :: Expr′ → AddOp → Term′ → Expr′

ruleE�E +T e Plus t env = e env + t env

ruleE�E +T e Minus t env = e env− t env

ruleE�T :: Term′ → Expr′

ruleE�T = id

ruleT�T *F :: Term′ → MulOp → Factor′ → Term′

ruleT�T *F t Times f env = t env ∗ f env

ruleT�T *F t Divide f env = t env ‘div‘ f env

ruleT�F :: Factor′ → Term′

ruleT�F = id

ruleF�(E ) :: Expr′ → Factor′

ruleF�(E ) = id

ruleF�id :: String → Factor′

ruleF�id n env = fromJust (lookup n env)

Figure 9. Attribute functions for an environment-based evaluator.

6.4. Attributes

In many applications, we will want to apply a fold to the parse tree
returned by our parser. A simple form of deforestation (GLP83) is to
redefine the attribute type Ā of each nonterminal A and replace each
RuleA→α constructor with a corresponding function ruleA→α. Since
the Rule constructors occur only in the reduce functions, only these
need be changed, in addition to redefining the types.

For example, if we wished to evaluate a parsed expression in an
environment mapping identifiers to integer values, we could use the
definitions of Figure 9.

7. Related work on functional LR parsers

Leermakers, Augusteijn and Kruseman Aretz (LAK92; Lee93; Aug93)
defined several functional parsers, including an LR parser consisting of
functions [Q] for a set Q of kernel items specified as

[Q] w = { (A � α ·β, w2) | A � α ·β ∈ Q ∧ β →∗ w1 ∧ w = w1w2 }
Many nondeterministic recursive functions, including the functions [Q]
above, are amenable to a group of general transformations studied
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[Q] :: [Token] → P (Item, [Token])
[Q] w = [Q]c w′ ∪

{ (A � α · , w) | A � α · ∈ Q } ∪⋃ {
[Q]C w | C � · ∈ Q+

}

where (c : w′) = w

[Q]X :: [Token] → P (Item, [Token])
[Q]X w = { (i, w′) | i ∈ Q/X ∧ (i+X, w′) ∈ [Q∗+X] w } ∪⋃ {

[Q]C w′ | j ∈ Q+/X ∧ (j+X, w′) ∈ [Q∗+X] w
}

Figure 10. Direct-style functional parser of Leermakers.

by Augusteijn (Aug93). These transformations lead to the definition
of Figure 10, where we have omitted handling of attributes to avoid
clutter. Note a minor complication in the definition of [Q], where ker-
nel reduce items A � α · and predict reduce items C � · are treated
differently.

This version was further refined to an imperative implementation,
providing a derivation of the parsers of Kruseman Aretz (Kru88) and
Pennello (Pen86).

Leermakers also defined a continuation-passing version, where the
continuation is passed the pair (A � α ·β, w2), and then winds back
through |α| continuations and dispatches on the nonterminal A, corre-
sponding to the traditional reduction and goto function.

Sperber and Thiemann (ST00) also derived a continuation-passing
version, by applying partial evaluation techniques to the parser of Fig-
ure 10. Their variant passes a list of continuations, corresponding to
the stack of states (goto functions) in traditional parsers. They realized
that only a finite number of these were needed (the largest |α| for any
item A � α ·β in Q) so they could be passed as separate arguments. A
consequence of these transformations is that kernel and predict items
may be handled uniformly, as in our parser. They handled attributes
using a stack of values, which may be similarly truncated. Sperber and
Thiemann worked in an untyped setting, but their parser may be recast
in typed form as in Figure 11. Each ki here corresponds to a row of
the goto table of a traditional parser, which is usually quite sparse. On
reduction, the parser selects the continuation, which then dispatches
over the nonterminal. In comparison, our parser passes entries of the
goto table as separate arguments.

It is possible to remove the interpretive overhead from Sperber and
Thiemann’s parser by fusing k|γ|◦NC . In this way, we obtain the parser
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data NonTerminal =
∑

A∈N† NA Ā

[Q] :: (NonTerminal → Parser r)|α| → ᾱ → Parser r

[Q] k1 . . . k|α| vα ts =
⋃ { shiftc gc ts | c ∈ next(Q∗) }

∪ ⋃ {
reduceC�γ (k|γ| ◦NC) vγ ts | C � γ · ∈ Q∗ }

where gX vX = [Q∗+X] k0 k1 . . . k|α′| vα′ vX

k0 (NA vA) = gA vA A ∈ next(Q∗)

α maximal such that A � α ·β ∈ Q
α′ maximal such that A′ � α′ ·Xβ′ ∈ Q∗

Figure 11. Typed version of Sperber and Thiemann’s parser for a set of kernel items
Q.

[Q] :: (Ā → Parser r | A � α ·β ∈ Q) → ᾱmax → Parser r

[Q] (ki | i ∈ Q) vαmax ts =
⋃ { shiftc gc ts | c ∈ next(Q∗) }

∪ ⋃ { reduceC�γ kC�γ · vγ ts | C � γ · ∈ Q∗ }
where gX vX = [Q∗+X] (ki | i ∈ Q∗/X) vα′max

vX

kC� · γ = gC

αmax maximal such that A � α ·β ∈ Q
α′max maximal such that A′ � α′ ·Xβ′ ∈ Q∗

Figure 12. Intermediate parser for a set of kernel items Q.

of Figure 12. From this, we could then obtain the parser of Figure 8
by applying to continuations to the values as they become available,
instead of passing the top portion of the stack.

Another scheme for typing LR parsers was presented by Pottier and
Régis-Gianas (PRG05). They also address the interpretive overhead of
the union type for nonterminals, but their solution requires a type sys-
tem extended with inductive type families (also known as generalized
algebraic data types).

A different approach is pursued by Pepper (Pep04). Though re-
cursive descent formulations of grammars are not always directly ex-
ecutable, Pepper shows that if the underlying language is LR(k), the
programs may be transformed into equivalent recursive descent parsers,
extended with a delayed choice operator.

8. Measurements

The purpose of this section is to compare the time and space be-
haviour of our parsers with that of traditional table-based ones. To get
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grammara parser srcb binc prgd timee %f %g

expr
1.0M
0.100s

frown -cs 5.0K 18K 482K 2.184s 101 101
frown 5.7K 18K 482K 2.160s 100 100
frown -cc 4.3K 20K 484K 2.264s 105 105
frown -cg 5.5K 25K 491K 2.480s 115 116
happy 12K 27K 492K 6.784s 314 324
happy -cg 14K 19K 482K 4.380s 203 208
happy -acg 14K 16K 488K 4.772s 221 227

Oberon
2.9M
1.492s

frown -cs 114K 177K 1.2M 2.568s 100 100
frown 169K 341K 1.4M 2.616s 102 104
frown -cc 77K 242K 1.3M 2.620s 102 105
frown -cg 118K 237K 1.3M 2.636s 103 106
happy 87K 215K 1.2M 3.700s 144 205
happy -cg 109K 122K 1.1M 4.180s 163 250
happy -acg 84K 122K 1.1M 3.736s 145 209

Haskell
1.9M
3.016s

frown -cs 414K 1.2M 2.6M 4.172s 100 100
frown 732K 2.1M 3.4M 4.272s 102 109
frown -cc 298K 1.2M 2.6M 4.256s 102 107
frown -cg 307K 1.0M 2.3M 4.204s 101 103
happy 207K 666K 2.0M 5.068s 121 178
happy -cg 243K 329K 1.7M 5.836s 140 244
happy -acg 163K 205K 1.5M 5.512s 132 216

agrammar, size of the input to the parser, lexing time (minimum of 4 runs)
bsize of the generated parser (source) csize of the generated parser (binary)
dsize of the executable (including lexer and pretty printer)
eexecution time (minimum of 4 runs, including lexing and pretty printing)
ftime relative to the fastest parser (including lexing and pretty printing)
gtime relative to the fastest parser (excluding lexing)

Figure 13. Benchmark results.

a somewhat broader picture we also include alternative non-table based
parsers in the competition. Table 13 lists the results of the benchmarks,
which were conducted on an AMD Athlon 64 3000+ with 2GB of main
memory. We consider three grammars, a tiny, a medium-sized and a
large grammar:

1. the expression grammar of Example 1 (7 productions, 13 states),

2. a grammar for Oberon (175 productions, 288 states),

3. a grammar for Haskell 98 (277 productions, 482 states).

The parsers for these grammars have been generated using two parser
generators for Haskell: happy (GM05) is a yacc-like parser generator,
frown (Hin05) is an LALR(k) parser generator developed by the first
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author of the present paper. The generated parsers were compiled using
the Glasgow Haskell Compiler, GHC 6.4.1 (The05), with optimizations,
-O, turned on. Here are the salient features of the generated parsers:

1. frown -cs : the parsers developed in this paper;

2. frown : a table-free parser that uses an explicit stack of state
transitions (represented by a tailor-made union type (DS00));

3. frown -cc : like 2 but with a more conventional stack type (a
tailor-made union type for an alternation of states and attributes);

4. frown -cg : like 2 with the stack represented by a nested pair type
(similar to the version of Figure 11 but passing the whole stack
rather than a window of the top portion);

5. happy : a table-free parser that uses a polymorphic stack and
a universal type for attributes (the union of all attribute types);

6. happy -cg : like 5, but using several GHC extensions including
unboxed integers and unsafe type coercions (to avoid the need for
a union type);

7. happy -acg: a table-based parser that uses the same GHC exten-
sions as 6.

The different parsers for a grammar share the same lexical analyzer;
the parsing actions construct the abstract syntax tree of the input (not
the parse tree), which is then pretty-printed.

For tiny and medium-sized grammars the parsers derived in this
paper are the implementation of choice: they are fast, at least twice as
fast as table-based parsers, and small, the size commensurate to that
of table-based ones. For large grammars, the situation is not as clear
cut: our parsers are still the fastest; the size of the generated code,
however, exceeds that of table-based parsers: the executable is roughly
70% larger. In a sense, the findings mirror the typical time/space trade-
off between interpreted and compiled code. It should be noted, however,
that the frown implementation does not yet incorporate the optimiza-
tions described in Section 6.3. The merging of states might ameliorate
the size problem.

To summarize, the stackless, table-free parsers are consistently twice
as fast as table-based parsers; the larger the grammar the larger the
size of the generated parser relative to the table-based one.

As a final remark, it is interesting to note that the use of unsafe
features does not necessarily improve the running time. Or to put it
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positively, it is pleasing to see that a clean derivation gives rise to an
efficient parser.

9. Conclusion

We have derived a purely functional implementation of LR parsing. The
derived parsers consist of mutually recursive functions corresponding
to the states of the underlying LR automaton. Each function takes a
number of continuation arguments corresponding to the kernel items
of that state. No separate stack is needed as the parsing continuations
are immediately applied to the attributes when they become available.
Furthermore, the parsers can be typed in a standard Hindley-Milner
type system. Polymorphism is only required if one wants to support
parsers with multiple entry points.

Once the stage has been set, the derivation proceeds surprisingly
smoothly with little or no Eureka steps: the first major transformation
(Section 5) is motivated by the need to eliminate the left-recursion
present in the initial LL parser; the second major transformation (Sec-
tion 6.1) eliminates the non-determinism of the intermediate parser,
provided the grammar is LR(0).

An interesting feature of our parsers is the passing multiple continua-
tions. These could also be implemented using the multi-function return
feature proposed by Shivers (SFar) as an alternative to continuations.

Initial measurements are encouraging: compared to conventional
table-based parsers, our parsers are roughly twice as fast. This is not
astonishing as our implementation avoids the interpretative overhead
of the traditional approach. Furthermore, since our parsers expose the
control flow, they are amenable to several optimizations, some of which
are specific to the functional representation. On the negative side, the
generated parsers are fairly large for realistic grammars. We are con-
fident, however, that the optimizations described in Section 6.3 will
ameliorate this problem.
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Appendix

In the appendix we shall abbreviate Parser by P.

A. LL(0) Expression Parser

The function parseE is a non-deterministic recursive descent parser for
the expression grammar (Example 1). The parser loops, however, for
non-trivial inputs as the functions stateE� ·E +T and stateT� ·T *F are
left-recursive.

parseE :: P Expr

parseE = stateE†� ·E$ accept

stateE†� ·E$ :: (Expr → P r) → P r

stateE†� ·E$ k ts = stateE� ·E +T (reduceE�E +T gE) ts

∪ stateE� ·T (reduceE�T gE) ts

where gE v = stateE†�E · $ (k v)
stateE†�E · $ :: P r → P r

stateE†�E · $ k ts = case ts of EOF : tr → k tr

→ ∅
stateE� ·E +T :: (Expr → AddOp → Term → P r) → P r

stateE� ·E +T k ts = stateE� ·E +T (reduceE�E +T gE) ts -- left recursion
∪ stateE� ·T (reduceE�T gE) ts

where gE v = stateE�E · +T (k v)
stateE�E · +T :: (AddOp → Term → P r) → P r

stateE�E · +T k ts = case ts of ADDOP v : tr → stateE�E + ·T (k v) tr

→ ∅
stateE�E + ·T :: (Term → P r) → P r

stateE�E + ·T k ts = stateT� ·T *F (reduceT�T *F gT ) ts

∪ stateT� ·F (reduceT�F gT ) ts

where gT v = stateE�E +T · (k v)
stateE�E +T · :: P r → P r

stateE�E +T · k ts = k ts

stateE� ·T :: (Term → P r) → P r

stateE� ·T k ts = stateT� ·T *F (reduceT�T *F gT ) ts

∪ stateT� ·F (reduceT�F gT ) ts

where gT v = stateE�T · (k v)
stateE�T · :: P r → P r

stateE�T · k ts = k ts

stateT� ·T *F :: (Term → MulOp → Factor → P r) → P r

stateT� ·T *F k ts = stateT� ·T *F (reduceT�T *F gT ) ts -- left recursion
∪ stateT� ·F (reduceT�F gT ) ts

where gT v = stateT�T · *F (k v)
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stateT�T · *F :: (MulOp → Factor → P r) → P r

stateT�T · *F k ts = case ts of MULOP v : tr → stateT�T * ·F (k v) tr

→ ∅
stateT�T * ·F :: (Factor → P r) → P r

stateT�T * ·F k ts = stateF� · (E ) (reduceF�(E ) gF ) ts

∪ stateF� · id (reduceF�id gF ) ts

where gF v = stateT�T *F · (k v)
stateT�T *F · :: P r → P r

stateT�T *F · k ts = k ts

stateT� ·F :: (Factor → P r) → P r

stateT� ·F k ts = stateF� · (E ) (reduceF�(E ) gF ) ts

∪ stateF� · id (reduceF�id gF ) ts

where gF v = stateT�F · (k v)
stateT�F · :: P r → P r

stateT�F · k ts = k ts

stateF� · (E ) :: (Expr → P r) → P r

stateF� · (E ) k ts = case ts of LPAREN : tr → stateF�( ·E ) k tr

→ ∅
stateF�( ·E ) :: (Expr → P r) → P r

stateF�( ·E ) k ts = stateE� ·E +T (reduceE�E +T gE) ts

∪ stateE� ·T (reduceE�T gE) ts

where gE v = stateF�(E · ) (k v)
stateF�(E · ) :: P r → P r

stateF�(E · ) k ts = case ts of RPAREN : tr → stateF�(E ) · k tr

→ ∅
stateF�(E ) · :: P r → P r

stateF�(E ) · k ts = k ts

stateF� · id :: (String → P r) → P r

stateF� · id k ts = case ts of IDENT v : tr → stateF�id · (k v) tr

→ ∅
stateF�id · :: P r → P r

stateF�id · k ts = k ts

Note that states with an identical string to the right of the dot are
equal: stateE�E + ·T = stateE� ·T and stateT�T * ·F = stateT� ·F .

B. LR(0) Expression Parser

The function parseE is a non-deterministic recursive ascent parser
for the expression grammar. The non-determinism is exhibited by the
locally defined gX functions.

parseE :: P Expr

parseE = stateE†� ·E$ accept
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stateE†� ·E$ :: (Expr → P r) → P r

stateE†� ·E$ kE†� ·E$ ts =
case ts of LPAREN : tr → stateF�( ·E ) (reduceF�(E ) gF ) tr

IDENT v : tr → stateF�id · (reduceF�id gF v) tr

→ ∅
where gE v = stateE†�E · $ (kE†� ·E$ v)

∪ stateE�E · +T (reduceE�E +T gE v)
gT v = stateE�T · (reduceE�T gE v)

∪ stateT�T · *F (reduceT�T *F gT v)
gF v = stateT�F · (reduceT�F gT v)

stateE†�E · $ k ts =
case ts of EOF : tr → k tr

→ ∅
stateE�E · +T k ts =

case ts of ADDOP v : tr → stateE�E + ·T (k v) tr

→ ∅
stateE�E + ·T :: (Term → P r) → P r

stateE�E + ·T kE�E + ·T ts =
case ts of LPAREN : tr → stateF�( ·E ) (reduceF�(E ) gF ) tr

IDENT v : tr → stateF�id · (reduceF�id gF v) tr

→ ∅
where gT v = stateE�E +T · (kE�E + ·T v)

∪ stateT�T · *F (reduceT�T *F gT v)
gF v = stateT�F · (reduceT�F gT v)

stateE�E +T · k ts = k ts

stateE�T · k ts = k ts

stateT�T · *F k ts =
case ts of MULOP v : tr → stateT�T * ·F (k v) tr

→ ∅
stateT�T * ·F :: (Factor → P r) → P r

stateT�T * ·F kT�T * ·F ts =
case ts of LPAREN : tr → stateF�( ·E ) (reduceF�(E ) gF ) tr

IDENT v : tr → stateF�id · (reduceF�id gF v) tr

→ ∅
where gF v = stateT�T *F · (kT�T * ·F v)

stateT�T *F · k ts = k ts

stateT�F · k ts = k ts

stateF� · (E ) k ts =
case ts of LPAREN : tr → stateF�( ·E ) k tr

→ ∅
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stateF�( ·E ) :: (Expr → P r) → P r

stateF�( ·E ) kF�( ·E ) ts =
case ts of LPAREN : tr → stateF�( ·E ) (reduceF�(E ) gF ) tr

IDENT v : tr → stateF�id · (reduceF�id gF v) tr

→ ∅
where gE v = stateE�E · +T (reduceE�E +T gE v)

∪ stateF�(E · ) (kF�( ·E ) v)
gT v = stateE�T · (reduceE�T gE v)

∪ stateT�T · *F (reduceT�T *F gT v)
gF v = stateT�F · (reduceT�F gT v)

stateF�(E · ) k ts =
case ts of RPAREN : tr → stateF�(E ) · k tr

→ ∅
stateF�(E ) · k ts = k ts

stateF� · id k ts =
case ts of IDENT v : tr → stateF�id · (k v) tr

→ ∅
stateF�id · k ts = k ts

C. LALR(1) Expression Parser

The function parseE is a deterministic recursive ascent parser for the
expression grammar corresponding to a conventional LALR(1) parser.

parseE :: P Expr

parseE = state1 accept

state1 :: (Expr → P r) → P r

state1 kE†� ·E$ ts =
case ts of LPAREN : tr → state11 (reduceF�(E ) gF ) tr

IDENT v : tr → state13 (reduceF�id gF v) tr

→ ∅
where gE v = state2 (kE†� ·E$ v) (reduceE�E +T gE v)

gT v = state7 (reduceE�T gE v) (reduceT�T *F gT v)
gF v = state10 (reduceT�F gT v)

state2 :: P r → (AddOp → Term → P r) → P r

state2 kE†�E · $ kE�E · +T ts =
case ts of ADDOP v : tr → state5 (kE�E · +T v) tr

EOF : tr → state3 kE†�E · $ tr

→ ∅
state3 :: P r → P r

state3 kE†�E$ · ts = kE†�E$ · ts
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state4 :: (AddOp → Term → P r) → P r → P r

state4 kE�E · +T kF�(E · ) ts =
case ts of RPAREN : tr → state12 kF�(E · ) tr

ADDOP v : tr → state5 (kE�E · +T v) tr

→ ∅
state5 :: (Term → P r) → P r

state5 kE�E + ·T ts =
case ts of LPAREN : tr → state11 (reduceF�(E ) gF ) tr

IDENT v : tr → state13 (reduceF�id gF v) tr

→ ∅
where gT v = state6 (kE�E + ·T v) (reduceT�T *F gT v)

gF v = state10 (reduceT�F gT v)
state6 :: P r → (MulOp → Factor → P r) → P r

state6 kE�E +T · kT�T · *F ts =
case ts of MULOP v : tr → state8 (kT�T · *F v) tr

→ kE�E +T · ts

state7 :: P r → (MulOp → Factor → P r) → P r

state7 kE�T · kT�T · *F ts =
case ts of MULOP v : tr → state8 (kT�T · *F v) tr

→ kE�T · ts

state8 :: (Factor → P r) → P r

state8 kT�T * ·F ts =
case ts of LPAREN : tr → state11 (reduceF�(E ) gF ) tr

IDENT v : tr → state13 (reduceF�id gF v) tr

→ ∅
where gF v = state9 (kT�T * ·F v)

state9 :: P r → P r

state9 kT�T *F · ts = kT�T *F · ts

state10 :: P r → P r

state10 kT�F · ts = kT�F · ts

state11 :: (Expr → P r) → P r

state11 kF�( ·E ) ts =
case ts of LPAREN : tr → state11 (reduceF�(E ) gF ) tr

IDENT v : tr → state13 (reduceF�id gF v) tr

→ ∅
where gE v = state4 (reduceE�E +T gE v) (kF�( ·E ) v)

gT v = state7 (reduceE�T gE v) (reduceT�T *F gT v)
gF v = state10 (reduceT�F gT v)

state12 :: P r → P r

state12 kF�(E ) · ts = kF�(E ) · ts

state13 :: P r → P r

state13 kF�id · ts = kF�id · ts
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Note that state6 and state7 are identical since the two sets of kernel
items do not differ in the strings to the right of the dot.

D. Smaller LALR(1) Expression Parser

Again, parseE is a deterministic recursive ascent parser for the expres-
sion grammar. Compared to the parser in Appendix C, trivial states
of the form statei kq = kq have been inlined. Furthermore, common
actions have been factored out: state1 is defined in terms of state5

which in turn depends on state8.

parseE :: P Expr

parseE = state1 accept

state1 :: (Expr → P r) → P r

state1 kE†� ·E$ = state5 (reduceE�T gE)
where gE v = state2 (kE†� ·E$ v) (reduceE�E +T gE v)

state2 :: P r → (AddOp → Term → P r) → P r

state2 kE†�E · $ kE�E · +T ts =
case ts of ADDOP v : tr → state5 (kE�E · +T v) tr

EOF : tr → kE†�E · $ tr

→ ∅
state4 :: (AddOp → Term → P r) → P r → P r

state4 kE�E · +T kF�(E · ) ts =
case ts of RPAREN : tr → kF�(E · ) tr

ADDOP v : tr → state5 (kE�E · +T v) tr

→ ∅
state5 :: (Term → P r) → P r

state5 kE�E + ·T = state8 (reduceT�F gT )
where gT v = state6 (kE�E + ·T v) (reduceT�T *F gT v)

state6 :: P r → (MulOp → Factor → P r) → P r

state6 kE�E +T · kT�T · *F ts =
case ts of MULOP v : tr → state8 (kT�T · *F v) tr

→ kE�E +T · ts

state8 :: (Factor → P r) → P r

state8 kT�T * ·F ts =
case ts of LPAREN : tr → state11 (reduceF�(E ) kT�T * ·F ) tr

IDENT v : tr → reduceF�id kT�T * ·F v tr

→ ∅
state11 :: (Expr → P r) → P r

state11 kF�( ·E ) = state5 (reduceE�T gE)
where gE v = state4 (reduceE�E +T gE v) (kF�( ·E ) v)
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