
Reason Isomorphically!

Ralf Hinze Daniel W. H. James
Computing Laboratory, University of Oxford,

Wolfson Building, Parks Road, Oxford, OX1 3QD, England
{ralf.hinze, daniel.james}@comlab.ox.ac.uk

Abstract
When are two types the same? In this paper we argue that isomor-
phism is a more useful notion than equality. We explain a succinct
and elegant approach to establishing isomorphisms, with our focus
on showing their existence over deriving the witnesses. We use cat-
egory theory as a framework, but rather than chasing diagrams or
arguing with arrows, we present our proofs in a calculational style.
In particular, we hope to showcase to the reader why the Yoneda
lemma and adjunctions should be in their reasoning toolbox.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.2.4 [Software/
Program Verification]: Correctness Proofs; F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Reasoning
about Programs—Specification techniques

General Terms Theory, Verification

Keywords adjunctions, category theory, isomorphism, Yoneda
lemma

1. Introduction
Generic programming is about making programs more adaptable
by making them more general. In this paper we embrace and ex-
tend this slogan: generic reasoning is about making proofs more
adaptable by making them more general. Our ‘generic reasoning’
is performed in the setting of category theory with our ‘adaptabil-
ity’ coming from the fact that our proofs are category agnostic.
The mention of category theory should be no cause for alarm: our
flavour is functor focused, an unfearsome concept for generic pro-
grammers.

Let us start with our feet firmly on the ground. Here are two
simple inductive definitions for rose trees and binary trees.

dataRose a = Rose (a, [Rose a])

dataTree a = Empty | Node (a,Tree a,Tree a)

Forests of rose trees and binary trees are in a so-called natural
correspondence [1, p. 334–335], illustrated in Figure 1. We can
represent any forest as a binary tree, where the left child represents
the subtrees of the first rose tree, and the right child its siblings.
The diagram also illustrates a second correspondence, one between
topped binary trees, sometimes called pennants, and rose trees.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
WGP ’10 September 26, 2010, Baltimore, Maryland, USA.
Copyright c© 2010 ACM 978-1-4503-0251-7/10/09. . . $5.00

sums

X + 0 ∼= X X + Y ∼= Y + X

(X + Y) + Z ∼= X + (Y + Z)

products

X × 1 ∼= X 0×X ∼= 0 X ×Y ∼= Y ×X

(X ×Y)× Z ∼= X × (Y × Z)

product over sum

(X + Y)× Z ∼= (X × Z) + (Y × Z)

exponentials

1X ∼= 1 X 0 ∼= 1 X 1 ∼= X

ZX+Y ∼= ZX × ZY (ZY)X ∼= ZX×Y

exponential over product

(Y × Z)X ∼= Y X × ZX

Table 1. Laws of high-school algebra

We can implement the isomorphism Tree a ∼= List (Rose a) by
giving two functions that convert to and fro,

toTree : [Rose a] → Tree a
toTree [] = Empty
toTree (Rose (a, ts) : us) = Node (a, toTree ts, toTree us)

toForest : Tree a → [Rose a]
toForest Empty = []
toForest (Node (a, l , r)) = Rose (a, toForest l) : toForest r

and furthermore, two proofs that toTree · toForest = id and
toForest · toTree = id . We could dispatch these proofs with in-
ductive reasoning, or reasoning with catamorphisms. In this paper,
we offer an alternative and show how to tackle this isomorphism
using reasoning on the type level: Tree ∼= List ◦ Rose.

A second, and perhaps not entirely obvious correspondence is
one between rose trees and leaf trees: Rose ∼= Fork.

dataFork a = Leaf a | Fork (Fork a,Fork a)

We shall abstain from talking about arrows as much as possible.
This sounds as though it would run counter to the spirit of category
theory. Instead our haunt will be one rung up on the abstraction
ladder where we will be talking in hom-sets (sets of arrows). This
means we will be establishing isomorphisms as far as existence, but
stopping short of deriving witnesses.

Now is a good opportunity to cast our minds back to simpler
times and recall our high-school algebra. For nostalgia’s sake, these
basic laws are listed in Table 1. We shall derive these laws from
first principles, showcasing two important tools: the Yoneda lemma
and adjunctions. We hope to demonstrate to the reader why these
concepts should be in their reasoning toolbox.

t1
t2

tn

a

a1

a2

an

ε

F1 F2 Fn

a

a1 a2 an⇐⇒

Figure 1. Natural correspondence between binary trees and forests of rose trees, and between pennants and rose trees.

The rest of the paper is structured as follows. The central con-
cept of an isomorphism is introduced in Section 2, along with some
basic reasoning principles. The Yoneda lemma, Section 3, answers
the question set out in the abstract “When are two types the same?”
in an appealing way: two types are isomorphic if they have the same
relationships to other types. This observation can be turned into a
definitional principle as illustrated in Section 4, where sum and pair
types are defined. A definition introduces a new concept in terms
of a known concept. A good definition is one where the given con-
cept is simple, but the emerging concept is intriguing or interesting.
Adjunctions, Section 5, allow us to do exactly this: to define inter-
esting new concepts in terms of simple old ones. Section 6 solves
the problem set out in this introduction, providing a set of rules to
reason about recursive types. Finally, Section 7 gives suggestions
for further reading and Section 8 concludes.

We assume a basic knowledge of category theory, along the
lines of the categorical trinity: categories, functors and natural
transformations. Readers not familiar with these notions are ad-
vised to consult any standard textbook, such as [2].

2. Isomorphisms
Before we turn to the technical material, it is worthwhile ruminat-
ing on the question “Why is isomorphism, not equality, the right
concept?” Equality is a very strong notion — too strong for our in-
terests. It applies when two things are exactly the same, whereas
isomorphism simply requires that there is a correspondence from
one to the other and back. We care about the what, not the how;
the what being the relationships that an object has with other ob-
jects. In types and programming language terms, we are concerned
with the specification not the implementation, much in the spirit of
abstract data types where we cannot inspect, just simply observe.

Formally, an arrow f : C(A,B) is an isomorphism if there is
an arrow g : C(B ,A), the inverse of f , with g · f = idA and
f · g = idB . If g exists, it is unique and is written as f ◦.1 For the
proof, assume that we have two inverses, g1 and g2. Then

g1

= { f · g2 = idB }
g1 · f · g2

= { g1 · f = idA }
g2 .

Having just given a simple equational proof, now is a good op-
portunity to explain our proof format. Proof steps are related by
an operator in the left column, with justifications written between
curly braces. The transitivity of the operators relates the first and
last lines.

1 We have chosen f ◦ as the name of the inverse rather than f−1.

Two objects A and B are isomorphic, written A ∼= B , if there is
an isomorphism f : C(A,B). We write f : A ∼= B if the category
C is evident from the context. The notation f : A ∼= B : f ◦ is
used if we additionally want to record the inverse. If we ignore
the witnesses of isomorphisms, the relation ∼= is an equivalence
relation: it is reflexive (idA : A ∼= A : idA), symmetric (f : A ∼=
B : f ◦ implies f ◦ : B ∼= A : f) and transitive (f : A ∼= B : f ◦ and
g : B ∼= C : g◦ imply g · f : A ∼= C : f ◦ · g◦).

A common approach for establishing an isomorphism is to
provide two proofs: one for f ◦ · f = idA and one for f · f ◦ = idB .
The following characterisation often allows us to replace these two
proofs by a single one. The arrow f : C(A,B) is an isomorphism
with inverse f ◦ : C(B ,A) if and only if

a = f ◦ · b ⇐⇒ f · a = b , (1)

for all a : C(X ,A) and b : C(X ,B), for some X : C. An arrow is
a total function in the category Set, and it is an isomorphism if and
only if it is bijective. For this particular category, we can simplify
(1) by replacing function composition by function application:

a = f ◦ b ⇐⇒ f a = b , (2)

for all a : A and b : B .
To showcase the characterisation (1), let us prove that f is an

isomorphism if and only if post-composition f · is an isomorphism.
The property also holds if we replace post- by pre-composition:

f : A ∼= B : f ◦ ⇐⇒ (f ·) : C(X ,A) ∼= C(X ,B) : (f ◦·) , (3)

f : A ∼= B : f ◦ ⇐⇒ (·f) : C(B ,X) ∼= C(A,X) : (·f ◦) , (4)

where X is some fixed object. Post- and pre-composition take an
arrow to an arrow, so they are functions that live in Set. The proof
of (3) shows that the property is almost content-free.

a = f ◦ · b ⇐⇒ f · a = b

⇐⇒ { definition of post-composition: (g ·) f = g · f }
a = (f ◦·) b ⇐⇒ (f ·) a = b

2.1 Two Special Cases
We have defined isomorphism of objects, but what about iso-
morphism of functors? Perhaps surprisingly, no new definition is
needed as functors are objects in a functor category. If the ambi-
ent category is DC, then an isomorphism is one between functors
F ∼= G, and the witness of the isomorphism is a natural transforma-
tion. (Some authors say that F and G are naturally isomorphic.)

A second choice of ambient category is Cat. In this instance,
the objects are all the small categories, an isomorphism is one
between categories C ∼= D, and the witness is a functor. In general,
isomorphism of categories is too strong a notion to be useful,
because equality of objects is too strong a notion: F and G are
inverses if G ◦ F = IdC and F ◦ G = IdD. If we replace equality by

(natural) isomorphism, G◦F ∼= IdC and F◦G ∼= IdD, we obtain the
weaker, but more useful notion of equivalence of categories.

2.2 Preservation of Isomorphisms
The equivalence relation ∼= is in fact a congruence relation as
functors preserve ∼=:

A ∼= B =⇒ FA ∼= FB . (5)

Let f : A ∼= B and F : C → D. We show F f : FA ∼= FB with
(F f)◦ = F (f ◦):

f ◦ · f = idA ∧ f · f ◦ = idB

=⇒ { Leibniz }
F (f ◦ · f) = F idA ∧ F (f · f ◦) = F idB

⇐⇒ { F functor }
F (f ◦) · F f = idF A ∧ F f · F (f ◦) = idF B .

Property (5) has far-reaching consequences. For example, sup-
pose that we have two isomorphisms, one on functors, one on ob-
jects. Then, the following is an instance of (5):

F ∼= G ∧ A ∼= B =⇒ FA ∼= GB . (6)

This follows from the fact that functor application is itself a functor.
Functor composition is also functorial, so it too preserves ∼=:

F1
∼= F2 ∧ G1

∼= G2 =⇒ F1 ◦ G1
∼= F2 ◦ G2 . (7)

2.3 Reflection of Isomorphisms
Preservation of isomorphism follows directly from the basic prop-
erties of functors. It turns out that functors that satisfy two ad-
ditional properties also reflect isomorphisms, the converse of (5).
These are the properties of fullness and faithfulness. For a pair of
objects A,B : C, the arrow part of functor F : C → D maps each
arrow f : C(A,B) to an arrow F f : D(FA,FB) and so defines a
function on hom-sets,

F : C(A,B)→ D(FA,FB) .

The functor F is full when every such function is surjective: for
every arrow g : D(FA,FB), there is an arrow f : C(A,B) with
g = F f . Similarly the functor F is faithful if this function between
hom-sets is injective: for every pair of arrows f1, f2 : C(A,B), the
equality F f1 = F f2 implies f1 = f2. For a functor that is fully
faithful, F is a bijection on the hom-sets.

F : C(A,B) ∼= D(FA,FB) (8)

The function F is invertible, and we shall call the inverse F◦. Since
F and F◦ live in Set, we can write (8) as an equivalence:

f = F◦ g ⇐⇒ F f = g . (9)

Fully faithful functors reflect ∼=:

A ∼= B ⇐= FA ∼= FB . (10)

The proof is similar to the one for (5):

g◦ · g = idF A ∧ g · g◦ = idF B

=⇒ { F full, let g = F f and g◦ = F (f ◦) }
F (f ◦) · F f = idF A ∧ F f · F (f ◦) = idF B

⇐⇒ { F functor }
F (f ◦ · f) = F idA ∧ F (f · f ◦) = F idB

=⇒ { F faithful }
f ◦ · f = idA ∧ f · f ◦ = idB .

Since functors preserve∼=, property (10) can be strengthened to
an equivalence for fully faithful functors:

A ∼= B ⇐⇒ FA ∼= FB . (11)

Furthermore, we can lift the property to an equivalence between
functors:

G ∼= H ⇐⇒ F ◦ G ∼= F ◦ H . (12)
This is a consequence of the fact that if F : C→ D is fully faithful,
then post-composition F◦ : CI → DI is fully faithful, as well. We
leave the details to the interested reader.

3. Yoneda Lemma
Suppose we are working with pre-orders and we wish to prove the
relation a . b. We could attempt to give a direct proof of this
property, however, an alternative strategy is to give an indirect proof
using the equivalence a . b ⇐⇒ (∀x . b . x =⇒ a . x). In
words, a is at most b if and only if b is at most x implies a is
at most x , for any x . A pre-order forms a simple category, so one
may wonder whether we can generalise the proof principle to an
arbitrary category. It turns out that the equivalence is actually an
instance of something in category theory called the Yoneda lemma.
Our aim is to make use of the Yoneda lemma in the same way,
namely as a technique for indirect proof of isomorphism.

As a means of introduction, we shall approach the Yoneda
lemma through its relation to continuation passing style (CPS),
something more familiar to functional programmers. The following
is the factorial function written in CPS style:

fac : ∀ x . (Nat → x)→ (Nat → x)
fac κ 0 = κ 1
fac κ (n + 1) = fac (λr → κ (r ∗ (n + 1))) n .

The first argument to fac is the continuation. CPS functions do not
‘return’, they pass their result to a continuation. Using the identity
function as the initial continuation, the call fac id 5 yields 120. If
we loosely equate parametricity with naturality, the type signature
identifies fac as a natural transformation, natural in x : it satisfies
the naturality property h · fac κ = fac (h · κ), which implies
h (fac id n) = fac h n . That fac id is indeed the factorial function
can now be seen by two simple calculations:

fac id 0

= { definition of fac }
id 1

= { identity }
1

and

fac id (n + 1)

= { definition of fac }
fac (λr → id (r ∗ (n + 1))) n

= { identity }
fac (λr → r ∗ (n + 1)) n

= { naturality of fac and β-reduction }
(fac id n) ∗ (n + 1) .

There is an isomorphism between the types of fac, the factorial
function in CPS style, and the direct factorial function of type
Nat → Nat . Applying the identity function is one direction of the
isomorphism, from CPS to direct style. The factorial isomorphism
is an instance of the isomorphism of the types A → B and
∀X . (B → X) → (A → X). Compare this to the pre-order
equivalence above, replacing . and =⇒with→. From left to right,

the isomorphism is f = λκ . κ · f , and from right to left,

◦
� = � id .
Let us pause for a moment to introduce the so-called hom-

functor, C(−,=) : Cop × C → Set, which takes two objects
to the set of arrows between them. (We use the notation of − and
= for implicitly bound variables.) The hom-functor is a bifunctor,
contravariant in its first argument and covariant in its second. We
will use it with either its first or its second argument fixed, making
it covariant and contravariant, respectively. The covariant hom-
functor for a fixed object A is C(A,−) : C→ Set, with the action
on arrows given by C(A, f) h = f · h . The functor C(A,−) maps
an object B to the set of arrows from a fixed A to B , and it takes an
arrow f : C(X ,Y) to a function C(A, f) : C(A,X)→ C(A,Y).
Conversely, C(−,B) : Cop → Set is a covariant functor defined
C(f ,B) h = h · f .

Let us continue by transliterating the CPS isomorphism into
more categorical language,

C(A,B) ∼= ∀X . C(B ,X)→ C(A,X) .

We can continue generalizing by extracting out the covariant hom-
functor C(A,−) and naming it H.

HB ∼= ∀X . C(B ,X)→ HX . (13)

The covariant hom-functor has type C → Set, and in one final
abstraction we can let H : C → Set be any set-valued functor.
The isomorphism we have arrived at is a statement of the Yoneda
lemma. It remains to show that the following arrows are indeed
witnesses of the Yoneda isomorphism:

 s = Λ X . λ f : B → X . H f s and
◦
� = �B idB .

Observe that is just H with the two arguments flipped. It is easy
to see that ◦ is the left-inverse of .

◦ (s)

= { definition of ◦ }
 s B idB

= { definition of }
H idB s

= { H functor }
s

For the opposite direction, we make use of the naturality of �, that
is, H h · �X = �Y · C(B , h), or written in a pointwise style:
H h (�X g) = �Y (h · g), with h : X → Y and g : B → X .

 (◦ �) X

= { definition of }
λ f . H f (◦ �)

= { definition of ◦ }
λ f . H f (�B idB)

= { naturality of � }
λ f . �X (f · idB)

= { identity }
λ f . �X f

= { extensionality }
�X

The Yoneda lemma implies the proof principle of indirect iso-
morphism. To this end we define a functor Y A = Λ B . C(A,B),
which is a mapping of objects to functors and arrows to natural
transformations. This is known as the Yoneda functor Y : Cop →
SetC (or the Yoneda embedding by some authors). Note that Y is

nothing more than the curried hom-functor C(−,=) : Cop × C→
Set. The Yoneda lemma implies that Y is both full and faithful. The
proof proceeds by instantiating the set-valued functor H to Y B and
rewriting to show the bijection of hom-sets as in (8):

HA ∼= ∀X . C(A,X)→ HX

=⇒ { set H := Y B }
Y B A ∼= ∀X . C(A,X)→ Y B X

⇐⇒ { definition of Y }
C(B ,A) ∼= ∀X . Y AX → Y B X

⇐⇒ { definition of Cop and functor categories }
Cop(A,B) ∼= SetC(Y A,Y B) .

As one might expect, the Yoneda functor has a dual, Ȳ : C →
SetCop

with Ȳ B = Λ A . C(A,B). The dual functor Ȳ is full
and faithful too. (This is an instance of the development above as
Ȳ B = Cop(B ,−).) Consequently,

B ∼= A ⇐⇒ C(A,−) ∼= C(B ,−) , (14)
A ∼= B ⇐⇒ C(−,A) ∼= C(−,B) . (15)

Thus, we can prove that two objects, A and B , are isomorphic by
showing an isomorphism between the set of arrows from A and
the set of arrows from B (or to A and B). Earlier we said that
we were interested in the what, not the how; we have just shown
that an object is fully determined, up to isomorphism, by what
relationships it has with other objects in C. Naturality is the key.
Notice how (14) and (15) have generalised (3) and (4). On the
right hand side of the equivalence we have a natural isomorphism
between hom-functors, and this equation between functors is not
for some fixed object, but for any object of C.

Later on we will use the indirect isomorphism of (14) and (15)
to prove the type isomorphisms of high-school algebra.

Finally, let us climb up one more step on the abstraction ladder.
Since Y is fully faithful and consequently Y◦ we have

F ∼= G ⇐⇒ Y ◦ F ∼= Y ◦ G , (16)

where F,G : I→ C. This translates to

F ∼= G ⇐⇒ C(F−,=) ∼= C(G−,=) , (17)
F ∼= G ⇐⇒ C(−,F =) ∼= C(−,G =) . (18)

These two rules offer yet another approach to showing the isomor-
phism of two functors.

4. Representing Objects/Representable Functors
The gist of the Yoneda lemma is that an object is fully determined
by its relation to other objects. This observation can be turned into
a definitional principle. We illustrate the principle using coproducts
and then apply it to the other arithmetic objects of high-school
algebra.

A set-valued functor H : C → Set is representable if there
exists a representing object X : C such that

C(X ,−) ∼= H . (19)

The functor equation defines X up to isomorphism. Let X1 and X2

be objects that solve (19), then

C(X1,−)
∼= { X1 solves (19) }

H
∼= { X2 solves (19) }

C(X2,−)

Indirect isomorphism (14) implies X1
∼= X2.

As an example, for the functor H = C(A1,−) × C(A2,−)
the representing object is the coproduct of A1 and A2. Putting the
focus on the object instead of the functor, we can use (19) as the
definition of a coproduct: An object X is the coproduct of A1 and
A2 if it solves the equation

C(X ,−) ∼= C(A1,−)× C(A2,−) . (20)

The equation between functors demands that a pair of functions to
a common target can be represented by a single function from X
to the target, and vice versa. We write X as A1 + A2. This is a
representational approach to defining coproducts, where we define
an object in terms of a representation rather than its construction.

The arithmetic objects, 0, 1, +, × are defined as follows:

Λ B . C(0,B) ∼= Λ B . 1 , (21)
Λ B . C(A1 + A2,B) ∼= Λ B . C(A1,B)× C(A2,B) , (22)
Λ A . C(A, 1) ∼= Λ A . 1 , (23)
Λ A . C(A,B1 × B2) ∼= Λ A . C(A,B1)× C(A,B2) . (24)

(This time we have made explicit that the equations relate functors,
not objects.) An object is initial, written 0, if there is exactly one
arrow from 0 to any object. The last two equations are dual to
the first two: final objects are dual to initial objects and products
are dual to coproducts. It is worth pointing out that the last two
equations are not circular — it may appear that we are defining 1
in terms of 1 or × in terms of ×. The constructions on the right-
hand side live in Set. The final object in Set is a one-element set,
which is why (21) and (23) express that the cardinality of C(0,B)
and C(A, 1) is one.

As an immediate benefit of defining the arithmetic objects as
solutions of functor equations, we can easily prove their properties.
For example, the initial object and coproducts form a commutative
monoid: the coproduct + is associative and commutative with the
initial object 0 as its neutral element.

X + 0 ∼= X (25)
X + Y ∼= Y + X (26)
X + (Y + Z) ∼= (X + Y) + Z (27)

For the proofs we reduce the properties to corresponding properties
of 1 and × in Set.

C(X + 0,−)
∼= { definition of + and 0 (22, 21) }

C(X ,−)× 1
∼= { A× 1 ∼= A in Set }

C(X ,−)

Here we used neutrality of 1. As to be expected, the next proof
relies on the commutativity of × in Set.

C(X + Y ,−)
∼= { definition of + (22) }

C(X ,−)× C(Y ,−)
∼= { A× B ∼= B ×A in Set }

C(Y ,−)× C(X ,−)
∼= { definition of + (22) }

C(Y + X ,−)

The final proof leverages the associativity of × in Set.

C((X + Y) + Z ,−)
∼= { definition of + (22) }

(C(X ,−)× C(Y ,−))× C(Z ,−)
∼= { (A× B)× C ∼= A× (B × C) in Set }

C(X ,−)× (C(Y ,−)× C(Z ,−))
∼= { definition of + (22) }

C(X + (Y + Z),−)

We can dualise and enjoy the same properties. The terminal
object and products form a commutative monoid: × is associative
and commutative with 1 as its neutral element.

X × 1 ∼= X (28)
X ×Y ∼= Y ×X (29)
X × (Y × Z) ∼= (X ×Y)× Z (30)

The isomorphism (22) defines a coproduct in C in terms of a
product in Set — this is where the product on the right-hand side
of (22) lives. Alternatively, we can define the coproduct using the
product in Cat, that is, a product category. An object X is the
coproduct of A1 and A2 if it solves the equation

C(X ,−) ∼= (C× C)(〈A1,A2〉,∆−) . (31)

The so-called diagonal functor ∆ : C → C × C duplicates its
argument ∆ A = 〈A,A〉 and ∆ f = 〈f , f 〉. Because of the equality
(C1×C2)(〈A1,A2〉, 〈B1,B2〉) = C1(A1,B1)×C2(A2,B2), the
two approaches are in fact equivalent.

5. Adjunctions
The notion of an adjunction was introduced by Daniel Kan in
1958. Adjunctions have proved to be one of the most important
ideas in category theory, predominantly due to their ubiquity. Many
mathematical constructions turn out to be adjoint functors that form
adjunctions, with Mac Lane famously saying, “Adjoint functors
arise everywhere.”

There are several routes to introducing and defining adjunctions.
Cognisant of the fact that adjunctions are such a significant topic,
we will cover them from a limited perspective and see what bearing
they have on the constructions we have covered so far, as well as a
new construction, exponentials. To us, adjunctions will be a means
to concisely express a lot of structure about these constructions, and
also a useful tool for proving isomorphisms.

We have bumped into an adjunction already. Recall the defini-
tion of coproducts using products in Cat (31):

C(+〈A1,A2〉,−) ∼= (C× C)(〈A1,A2〉,∆−) .

We have substituted in the coproduct for X and written + in prefix
notation. Going one step further, we can bring out the symmetry.

C(+(−),=) ∼= (C× C)(−,∆ (=)) .

We have turned + into a functor, a bifunctor to be precise, and we
are implying a symmetry between it and the diagonal functor.

C
≺

+

⊥
∆
�

C× C

This data defines an adjunction; let us see the general case.

Let C and D be categories. The functors L and R are adjoint,
written L a R : C→ D,

C
≺

L

⊥
R
�

D

if there is a natural isomorphism,

φ : C(L−,=) ∼= D(−,R =) . (32)

An adjunction, then, is the triple of the left adjoint L, the right
adjoint R and the adjoint transposition φ. The type in L a R : C→
D describes the type of R, with L going in the opposite direction.
Since the adjoint transposition lives in Set, we can render it as an
equivalence, see (2):

f = φ◦ g ⇐⇒ φ f = g , (33)

for all f : C(LA,B) and g : D(A,RB). (The left-hand side
lives in C, and the right-hand side in D.) We shall see that the
computational content of an adjunction surfaces in this equivalence.

Adjoints are unique up to isomorphism: if L1 a R and L2 a R
then L1

∼= L2. (Likewise, for right adjoints.) This is a direct
consequence of (17) using:

C(L1−,=)
∼= { L1 a R }

D(−,R =)
∼= { L2 a R }

C(L2−,=) .

5.1 Coproducts and Products, Initial and Final Objects
Coproducts and products form a double adjunction with + left
adjoint to ∆ and × right adjoint to ∆.

C
≺

+

⊥
∆

�
C× C

≺
∆

⊥
×

�
C

The adjunction between + and ∆ expresses the isomorphism:

C(A1 + A2,B) ∼= (C× C)(〈A1,A2〉,∆ B) : O .

Note that this is an instantiation of the representable functor for co-
products (31). Reading the isomorphism from right to left, it takes
two functions f1 : C(A1,B) and f2 : C(A2,B), and combines
them into a function we call f1 O f2 : C(A1 + A2,B) (pronounced
“join”). This should appear familiar as this is case analysis on bi-
nary sum types. The isomorphism is usually stated as an equiva-
lence, see (33), the so-called universal property of coproducts.

f = g1 O g2 ⇐⇒ ∆ f · 〈ι1, ι2〉 = 〈g1, g2〉 (34)

The arrows ι1 : C(A1,A1 + A2) and ι2 : C(A2,A1 + A2) are the
injection functions into the coproduct.

Similarly for the adjunction between× and ∆, the isomorphism
is:

M : (C× C)(∆ A, 〈B1,B2〉) ∼= C(A,B1 × B2) .

Earlier, we did not give the representable functor for products in
Cat, but this is its instantiation. Reading the isomorphism from left
to right, it takes two functions f1 : C(A,B1) and f2 : C(A,B2),
and combines them into a function we call f1 M f2 : C(A,B1×B2)
(pronounced “split”). The isomorphism for coproducts echoes a
familiar programming language construct, but here the M operator
is simply the combinator that performs the parallel application of
two functions to a common argument. Again, the isomorphism is
often stated as an equivalence, the universal property of products.

〈f1, f2〉 = 〈π1, π2〉 ·∆ g ⇐⇒ f1 M f2 = g (35)

The arrows π1 : C(A1 × A2,A1) and π2 : C(A1 × A2,A2) are
the projection functions out of the product.

So, these adjunctions not only give meaning to coproducts and
products as functors, but they also exhibit computational content.

Initial and final objects define a rather trivial adjunction between
a category C and a discrete category 1.

C
≺

0

⊥
∆
�

1
≺

∆

⊥
1
�

C

For readers interested in the technical details: The category 1 con-
sists of a single object ¬ and a single arrow id¬. In this degenerate
case, the diagonal functor ∆ : C → 1 maps all objects of C to ¬
and all arrows to id¬. The initial and final objects of C are seen
as constant functors from 1. (An object A ∈ C seen as a functor
A : 1→ C maps ¬ to A and id¬ to idA.)

The adjunction on the left expresses the natural isomorphism
C(0 ¬,−) ∼= 1(¬,∆−). This reduces to C(0,−) ∼= 1(¬,¬),
which is exactly (21). Similarly the isomorphism of the second
adjunction, 1(¬,¬) ∼= C(−, 1), expresses (23).

Adjunctions have interesting interactions with the categorical
constructions we have considered so far. A functor that is left ad-
joint preserves initial objects: L 0 ∼= 0. This is a direct consequence
of (21) using:

C(L 0,−)
∼= { L a R }

D(0,R−)
∼= { (21) }

1 .

Such a functor also preserves coproducts: L (A1 + A2) ∼= LA1 +
LA2. Again, this is a direct consequence of (22) using:

C(L (A1 + A2),−)
∼= { L a R }

D(A1 + A2,R−)
∼= { (22) }

D(A1,R−)× D(A2,R−)
∼= { L a R }

D(LA1,−)× D(LA2,−) .

Dually, right adjoints preserve final objects (R 1 ∼= 1) and products
(R (A1 ×A2) ∼= RA1 × RA2).

5.2 Exponentials
Exponential objects give a categorical interpretation to the pro-
gramming language concepts of higher-order functions and curry-
ing. In Set, a two-argument function is curried by turning it into a
single-argument function that yields another single-argument func-
tion, which receives the second argument. The exponential object
for objects A and B is written BA. The following transformation
expresses the currying of a two-argument function:

λ : C(A×X ,B) ∼= C(A,BX) . (36)

From left to right, an arrow f : C(A × X ,B) is curried into an
arrow λ f : C(A,BX). We call the reverse direction uncurrying.
Note the type of uncurrying the identity, λ◦ idBX : C(BX×X ,B);
this is function application. This observation underlies the universal
property of exponentials:

f = app · (g ×X) ⇐⇒ λ f = g . (37)

Again, the computational content of the isomorphism surfaces by
writing it as an equivalence.

Exponentials also form an adjunction, which we can tease out
by noting that A×X is functorial in A and BX is functorial in B .

λ : C((−×X) A,B) ∼= C(A, (−)X B)

So −×X is left adjoint to (−)X .

C
≺
−×X

⊥
(−)X

�
C

In the category Set, an exponential object BA is the set of
functions with domain A and codomain B , which is exactly what
the hom-set is: BA = Set(A,B). For an arbitrary category C
with exponentials, we might say that C(−,=) is the external hom-
functor, and that (=)(−) is the internal hom-functor, both having
similar properties.

We have already established the monoidal properties of× and 1,
so a simple consequence of the adjunction above is C(A,B) ∼=
C(1,BA), which relates arrows to exponentials.

C(A,B)
∼= { (28) and (29) }

C(1×A,B)

∼= { − ×X a (−)X }
C(1,BA)

Being a left adjoint,−×X preserves 0 and +, and dually (−)X ,
as a right adjoint, preserves 1 and ×.

0×X ∼= 0 (38)
(X + Y)× Z ∼= (X × Z) + (Y × Z) (39)

1X ∼= 1 (40)

(Y × Z)X ∼= Y X × ZX (41)

A category is called bicartesian closed if the adjunctions 0 a ∆ a
1, + a ∆ a × and − × X a (−)X exist, the latter for each X .
The reasoning above shows that these categories are automatically
distributive, (38) and (39).

We can form another functor X (−) : Cop → C, if we fix the
target object of the internal hom-functor, rather than the source.
This is right adjoint to itself, (X (−))op : C→ Cop.

Cop ≺
(X (−))op

⊥
X (−)

�
C

This adjunction is a consequence of currying.

Cop((X (−))op A,B)
∼= { opposite category }

C(B ,XA)

∼= { − ×X a (−)X }
C(B ×A,X)

∼= { (29) }
C(A× B ,X)

∼= { − ×X a (−)X }
C(A,XB)

Since the functor X (−) is contravariant, it takes 0 to 1 and +
to ×, giving a categorical setting to the laws of exponentials.

X 0 ∼= 1 (42)

ZX+Y ∼= ZX × ZY (43)

These two laws come ‘for free’. The next two use the adjunction
for (−)X : C→ C and the monoidal properties of × with 1.

X 1 ∼= X (44)

(ZY)X ∼= ZX×Y (45)

The first proof requires the neutrality of 1.

C(−,X 1)

∼= { currying: −×A a (−)A }
C(−× 1,X)

∼= { (28) }
C(−,X)

The second proof requires the associativity of ×.

C(−, (ZY)X)

∼= { currying: −×A a (−)A }
C(−×X ,ZY)

∼= { currying: −×A a (−)A }
C((−×X)×Y ,Z)

∼= { × is associative }
C(−× (X ×Y),Z)

∼= { currying: −×A a (−)A }
C(−,ZX×Y)

This completes the proofs of the basic laws of high-school
algebra. It is worth pointing out that all the laws of Table 1 are
natural in all the variables. As an example, X + 0 ∼= X is natural
in X , that is, Λ X . X + 0 ∼= Λ X . X . The proof of the former
law, given in Section 4, can be generalised to a proof of the latter.

Λ〈X ,Y 〉 . C(X + 0,Y)
∼= { + a ∆, 0 a ∆ and product in Cat }

Λ〈X ,Y 〉 . C(X ,Y)× 1
∼= { Λ A . A× 1 ∼= Λ A . A in Set }

Λ〈X ,Y 〉 . C(X ,Y)

Each step rests on the naturality of the underlying transformation.
The natural isomorphism Λ X . X + 0 ∼= Λ X . X then follows
from indirect equality of functors (17).

If a property involves several variables, then the natural trans-
formation is one between functors from a product category. (As an
aside, a transformation between bifunctors is natural if and only if
it is natural in each argument separately.)

5.3 Composition of Adjunctions
The identity functor forms a trivial adjunction with itself Id a Id :
C→ C.

C
≺

Id

⊥
Id
�

C

The adjoint transposition is simply the identity natural transforma-
tion, natural in A and B :

id : C(IdA,B) ∼= C(A, IdB) .

Like functors, adjunctions can be composed. Given adjunctions
L1 a R1 : C→ D and L2 a R2 : D→ E, their composition

C
≺

L2

⊥
R2

�
D
≺

L1

⊥
R1

�
E

yields an adjunction L2 ◦ L1 a R1 ◦ R2 : C → E. Observe that
the right adjoints are composed in the reverse order. To establish
C(L2 (L1−),=) ∼= E(−,R1 (R2 =)), we compose the two adjoint
transpositions.

C(L2 (L1−),=)
∼= { assumption: L2 a R2 }

D(L1−,R2 =)
∼= { assumption: L1 a R1 }

E(−,R1 (R2 =))

If we view the nested functors L2 (L1−) as a list, then the proof
corresponds to the efficient version of list reversal. Hence the re-
versal of the functors R1 and R2.

Composition of adjunctions is associative and has Id a Id as its
neutral element. This data turns categories and adjunctions into a
category, but we will not make use of this fact.

6. Fixpoints
The previous two sections have covered the full gamut of type
isomorphisms inspired by high-school algebra, and we have done
so using the power of adjunctions and the Yoneda lemma. So far
all our examples have been on non-recursive types. The goal of this
section is to demonstrate various isomorphisms between list and
tree types. Since these types are given by recursive definitions we
have to delve into the theory of fixpoints [3].

In the introduction we gave Haskell definitions to three tree
types, and in which we made use of the inbuilt list type. As a
reminder, here it is explicitly.

data List a = Nil | Cons (a, List a)

To make use of List and the three tree types in our categorical
setting, we will rewrite them as least fixpoints of functors.

List = Λ A . µL . 1 + A× L

Rose = Λ A . µR . A× ListR

Tree = Λ A . µT . 1 + A× T × T

Fork = Λ A . µF . A + F × F

Here µX . e is a shorthand for µ (Λ X . e).
The introduction gave a Haskell witness to the isomorphism

TreeA ∼= List (RoseA). Later will give a categorical proof for the
existence of this isomorphism. We will we also prove TreeA×A ∼=
ForkA, A× TreeA ∼= RoseA and RoseA ∼= ForkA.

For reasons of brevity, we will not provide proofs for all of the
obligations that arise in this section.

6.1 Algebras
The classic fixpoint theorem due to Knaster and Tarski states that
for an order-preserving function f : L → L over a complete
lattice 〈L,6〉,

l
{x | fx = x } =

l
{x | fx 6 x } , (46)G

{x | fx = x } =
G
{x | x 6 fx } (47)

are the least and greatest fixpoints of f . That is to say, the least fix-
point of f equals its least pre-fixpoint, and dually the greatest fix-
point equals its greatest post-fixpoint. The categorical counterpart

of a pre-fixpoint is an algebra, and coalgebras are the categorical
counterpart of post-fixpoints.

Let F : C → C be a functor. An F-algebra is a pair 〈A, a〉
consisting of an object A : C and an arrow a : C(FA,A). The
object A is the actual pre-fixpoint of F, the arrow a can be seen as
a witness of this fact. If the witness is an isomorphism, then A is
a fixpoint of F. An F-homomorphism between algebras 〈A, a〉 and
〈B , b〉 is an arrow h : C(A,B) such that h · a = b · F h .

FA

A

a

g

FA
F h
� FB

A

a

g

h
� B

b

g

FB

B

b

g

The fact that functors preserve identity and composition entails that
identity is an F-homomorphism and that F-homomorphisms com-
pose. Consequently, the data defines a category of F-algebras and
F-homomorphisms, called Alg(F). The fixpoints 〈A, a : FA ∼=
A〉 of F form a full subcategory of Alg(F), denoted Fix(F). The
initial object of Alg(F), the initial F-algebra 〈µF, in〉, corresponds
to the least pre-fixpoint, and the initial object of Fix(F) corre-
sponds to the least fixpoint. Therefore the categorical counterpart
of (46) is that these initial objects in Alg(F) and Fix(F) are equal.
We ignore questions of existence in this paper.

All of this dualises to coalgebras, where an F-coalgebra is a pair
〈A, a〉 consisting of an object A : C and an arrow a : C(A,FA).
Again, we have a category of F-coalgebras and F-homomorphisms,
called Coalg(F), with the same relation to Fix(F). The final
object of Coalg(F), the final F-coalgebra 〈νF, out〉, corresponds
to the greatest post-fixpoint, and coincides with the final object of
Fix(F), the greatest fixpoint.

Interestingly, we can also obtain least and greatest fixpoints
through an adjunction. There is a canonical functor from the cat-
egory of algebras to the underlying category, the so-called forgetful
or underlying functor U : Alg(F) → C defined U〈A, f 〉 = A and
U h = h . While its definition is deceptively simple, it gives rise to
two interesting concepts via a double adjunction.

Alg(F)
≺

Free

⊥
U

�
C
≺

U

⊥
Cofree

�
Coalg(F)

The functor Free maps an object A to the so-called free F-algebra
over A. Dually, Cofree maps an object A to the cofree F-coalgebra
over A.2 Since left adjoints preserve initial objects and right ad-
joints preserve final ones, we can alternatively define µ and ν by
µF := U 0 ∼= U (Free 0) and νF := U 1 ∼= U (Cofree 1). Ralf says: The

free monad is
Λ A . µX ·
A + F X ,
and the cofree
comonad is
Λ A . νX ·
A × F X .

6.2 Functor Rules
Both µ and ν are actually functors of type CC → C. They take
endofunctors, objects of the category CC, to objects in C, and
they take natural transformations, arrows of the category CC, to
arrows in C. For a functor F : C → C, µ maps it to µF, and
for another functor G : C → C and a natural transformation
� : F →̇ G, µ� : C(µF, µG). (The functor µ is only well defined
for functors that have an initial algebra; we have to assume that
C is ω-cocomplete and that CC is really the subcategory of ω-
cocontinuous endofunctors.) Using the fact that functors preserve
isomorphism (5), we have that two recursive types are isomorphic
if the base functors are:

2 Every adjunction gives rise to a monad, and U ◦ Free is called the free
monad of the functor F. Dually, U ◦ Cofree is the cofree comonad.

µF ∼= µG ⇐= F ∼= G , (48)
νF ∼= νG ⇐= F ∼= G . (49)

We can use (48) to show, for example, that cons and snoc lists
are isomorphic. Fixing some element type A, cons and snoc lists
are initial algebras of the base functors Λ X . 1 + A × X and
Λ X . 1 + X ×A, respectively. We reason

µX . 1 + A×X ∼= µX . 1 + X ×A

⇐= { (48) }
Λ X . 1 + A×X ∼= Λ X . 1 + X ×A

⇐⇒ { × is commutative (26) }
Λ X . 1 + X ×A ∼= Λ X . 1 + X ×A

The proof is simple enough, but it raises an interesting question:
why can we replace a term below a Λ-abstraction? Every Λ-term
denotes a functor [4]. As their functorial nature preserves isomor-
phism, we can manipulate below a Λ. Our appeal to the commuta-
tivity of × is really:

(Λ F . Λ X . 1 + FX) (Λ X . A×X)
∼= { A×− ∼= −×A }

(Λ F . Λ X . 1 + FX) (Λ X . X ×A)

Note that we require a natural isomorphism between A × − and
−×A.

6.3 Type fusion
Suppose we have an initial F-algebra 〈µF, in : FµF ∼= µF〉, then
the isomorphism in lets us fold and unfold from F (µF) to µF and
back. This is an elementary rule of fixpoint calculus, but what if
we want to fuse the application of a different functor? Suppose
that F is an endofunctor in a category D and we have a functor
L : D → C. Can we turn L (µF) : C into another initial algebra,
say µG : C, for some G : C→ C? The answer is yes, under certain
conditions. To motivate the necessary conditions, let us consider
lifting the functor L to a functor between the categories of algebras,
Alg(F) and Alg(G). Given an F-algebra 〈A, a : FA → A〉, we
can apply L to a to obtain an arrow L a : L (FA) → LA. To
be able to construct a G-algebra 〈LA, x : G (LA) → LA〉, we
have to demand that L (FA) ∼= G (LA). This isomorphism should
hold uniformly for all A, so we assume the existence of a natural
isomorphism swap : L ◦ F ∼= G ◦ L. The lifted variant of L is then
L : Alg(F) → Alg(G) with L〈A, a〉 = 〈LA, L a · swap◦〉 and
L h = L h .

Our lifted functor L should preserve initial algebras, which is
certainly the case if L is a left adjoint. It turns out that L is a left
adjoint, if the original functor L is one. This motivates the two type
fusion rules:

Let C and D be categories, let L a R : C → D be an adjoint
pair of functors, and let F : D → D and G : C → C be two
endofunctors. Then,

L (µF) ∼= µG ⇐= L ◦ F ∼= G ◦ L , (50)
νF ∼= R (νG) ⇐= F ◦ R ∼= R ◦ G . (51)

Before we sketch the proof, let us first consider two examples
— we shall cover more applications in Section 6.6. As the identity
functor is left adjoint to itself, we can set L and R to be Id and
get (48) and (49) as special cases of type fusion.

The Haskell programmer’s favourite adjunction is currying:−×
A a (−)A. This adjunction allows us to relate binary trees, where
the values are stored in the branches, to leaf trees, where the values
are stored in the leaves. Here we take the functor ×A as L, TreeA
as µF and ForkA as µG.

TreeA×A
∼= { definition of Tree }

(µT . 1 + A× T × T)×A
∼= { type fusion (50), see proof obligation below }

µT . A + T × T
∼= { definition of Fork }

ForkA

For the fusion step we have to show that (×A) ◦ (Λ T . 1 + A ×
T × T) ∼= (Λ T . A + T × T) ◦ (×A). The obligation is quick
to discharge:

(1 + A× T × T)×A
∼= { distributivity (39) and neutral (28) }

A + (A× T × T)×A
∼= { associativity (30) }

A + (A× T)× (T ×A)
∼= { commutativity (29) }

A + (T ×A)× (T ×A) .

Turning to the proof of type fusion, the essential idea is that the
adjunction φ : L a R between the base categories can be lifted to
an adjunction φ : L a R between the corresponding algebras. The
proof proceeds in three steps:

First, we have to show that L is indeed a functor between
Alg(F) and Alg(G). If h is an F-homomorphism between alge-
bras 〈A, a〉 and 〈B , b〉 in the category Alg(F), then there is an
arrow h : D(A,B) such that h · a = b · F h . To show that L is a
functor, we must show that it takes an F-homomorphism such as h
to a G-homomorphism. The G-homomorphism L h is between al-
gebras L 〈A, a〉 and L 〈B , b〉 with an arrow L h : C(LA, LB) such
that the following diagram commutes.

G (LA)
G (L h)

� G (LB)

LA

L a · swap◦

g

L h
� LB

L b · swap◦

g

So, we have to show that L h ·(L a ·swap◦) = (L b·swap◦)·G (L h):

L h · (L a · swap◦)

= { L functor }
L (h · a) · swap◦)

= { h is an F-homomorphism }
L (b · F h) · swap◦)

= { L functor }
L b · L (F h) · swap◦)

= { naturality of swap◦ : G ◦ L →̇ L ◦ F }
(L b · swap◦) · G (L h) .

Note that the proof works for an arbitrary natural transformation of
type G ◦ L →̇ L ◦ F.

Next, we have to lift the right adjoint R to a functor between
algebras. The approach is the same as for L, but this time we
require a natural transformation (not necessarily an isomorphism)
of type F ◦ R →̇ R ◦ G. It turns out that we can derive the required
transformation from swap — the details are beyond the scope of
this paper.

Finally, and this is the most laborious part, we have to show that
the adjoint transposition of L a R also serves as the adjoint trans-
position of L a R, that is, it preserves and reflects homomorphisms.
Again, the details are beyond the scope of this paper.

As an intermediate summary, we have established the following
square of adjunctions.

Alg(G)
≺

L

⊥
R

�
Alg(F)

C

U

g

` Free

f

≺
L

⊥
R

�
D

U

g

` Free

f

Adjoint functors compose, see Section 5.3, so the square gives rise
to two composite adjunctions:

Free ◦ L a R ◦ U and L ◦ Free a U ◦ R .

By definition, L ◦ U = U ◦ L and R ◦ U = U ◦ R — note the
equality sign. In other words, R ◦U has two left adjoints. However,
left adjoints are unique up to isomorphism, so we can immediately
conclude that

Free ◦ L ∼= L ◦ Free . (52)
The natural isomorphism lives in Alg(G), using U we can ‘lower’
it to an isomorphism in C.

U ◦ Free ◦ L
∼= { (52) }

U ◦ L ◦ Free
∼= { L ◦ U = U ◦ L }

L ◦ U ◦ Free

Note that U◦Free appears twice, with the first instance in respect to
G, that is, U ◦ Free : C→ Alg(G)→ C and the second in respect
to F, that is, U ◦ Free : D → Alg(F) → D. To highlight this we
write the above isomorphism again replacing U ◦ Free by the more
informative notation F∗ and G∗.

L ◦ F∗ ∼= G∗ ◦ L ⇐= L ◦ F ∼= G ◦ L .

This generalises (50). Recall that the free functor Free is left adjoint
and so preserves 0. It takes the initial object in C to the initial object
object in Alg(F), 〈µF, in : FµF ∼= µF〉. Therefore µF := U 0 ∼=
U (Free 0), or using the alternative notation, µF:=F∗ 0. Type fusion
emerges then as a special case:

L (µF) ∼= L (F∗ 0) ∼= G∗ (L 0) ∼= G∗ 0 ∼= µG .

6.4 Rolling rules
A simple way to satisfy the precondition in (50) is to set F := H ◦L
and G := L ◦ H so that swap is the identity transformation. It turns
out that in this particular case we can forego the assumption that L
is a left adjoint. Renaming L and H, we obtain the rolling rules:

F (µ(G ◦ F)) ∼= µ(F ◦ G) , (53)
F (ν(G ◦ F)) ∼= ν(F ◦ G) . (54)

Despite appearances, the rules describe a perfectly symmetric situ-
ation. We shall see that the lifted functor F, turns a fixpoint of G◦F
into a fixpoint of F ◦ G with G going in the opposite direction. (If
we interchange the functors F and G above, we obtain a second set
of rules for the reverse direction.)

Fix(F ◦ G)
≺

F

'
G
� Fix(G ◦ F) (55)

Before we tackle the proof, let us first consider an example. The
rolling rule (53) allows us to relate the standard list type to the type
of non-empty lists.

A× (µX . 1 + A×X) ∼= (µX . A + A×X)

(µX . 1 + A×X) ∼= 1 + (µX . A + A×X)

The functors of (53) are instantiated as F :=A× and G :=1+ . The
first isomorphism can also be seen as an instance of type fusion, but
not the second as 1 + is not a left adjoint.

Turning to the proof of the rolling rules, since swap is now
the identity, the definition of a lifted F simplifies somewhat: F :
Alg(G ◦ F) → Alg(F ◦ G) is given by F〈A, f 〉 = 〈FA,F f 〉 and
F h = F h . The typings work out nicely: if f : D(G (FA),A), then
F f : C(F (G (FA)),FA). Since functors preserve isomorphisms,
F furthermore takes fixpoints of G ◦ F to fixpoints of F ◦ G, see
Diagram (55).

Moreover, the categories Fix(G◦F) and Fix(F◦G) are equiv-
alent: there are natural isomorphisms � : G ◦ F ∼= IdFix(G◦F) and
� : F ◦ G ∼= IdFix(F◦G). The definition of the isomorphism is sur-
prisingly simple. Recall that a natural transformation maps objects
to arrows: � has to map a G ◦ F-algebra, say, 〈A, f 〉 to a G ◦ F-
homomorphism Alg(G◦F)(G (F〈A, f 〉), 〈A, f 〉), that is, an arrow
D(G (FA),A). The arrow f is of this type, which suggests that
we define � as �〈A, f 〉 = f and �

◦〈A, f 〉 = f ◦. The diagram
below shows that the components of � and �

◦ are indeed G ◦ F-
homomorphisms — it is immediate that they are inverses.

G (F (G (FA)))
G (F f)

� G (FA)
G (F (f ◦))

� G (F (G (FA)))

f

G (FA)

G (F f)

g

f
� A

g

f ◦
� G (FA)

G (F f)

g

It remains to prove that � and �
◦ are natural transformations. Let

h : Alg(G ◦ F)(〈A, f 〉, 〈B , g〉) be a G ◦ F-homomorphism, then
the naturality condition,

h · �〈A, f 〉 = �〈B , g〉 · G (F h)

⇐⇒ { definition of � }
h · f = g · G (F h)

is just the definition of a G ◦ F-homomorphism.
An equivalence of categories gives rise to two adjunctions:

F a G and G a F, see [2]. Consequently, F and G preserve both
initial and final objects.

6.5 Diagonal Rules
To be able to establish the natural correspondence between binary
trees and forests, see Figure 1, we need one further rule.

Let F : C× C→ C be a bifunctor. Then,

µX . µY . F〈X ,Y 〉 ∼= µZ . F〈Z ,Z 〉 , (56)
ν X . ν Y . F〈X ,Y 〉 ∼= ν Z . F〈Z ,Z 〉 . (57)

The diagonal rules allow us to rewrite a nested fixpoint to a simple
fixpoint along the diagonal of the functor F. The rules look innocent
enough, but they are needed in every single example in Section 6.6.
The proof of the two rules is very technical and omitted.

6.6 Examples
It is time to pick the fruit. Armed with the laws of high-school
algebra and fixpoint calculus, we can now tackle the problems set
out in the introduction.

The proof of the natural correspondence between forests and
binary trees makes essential use of the rolling rule.

List (RoseA)
∼= { definition of Rose }

List (µR . A× ListR)
∼= { rolling rule (53): F := List and G := A× }

µR . List (A× R)
∼= { definition of List }

µR . µL . 1 + A× R × L
∼= { diagonal rule (56) }

µT . 1 + A× T × T
∼= { definition of Tree }

TreeA

Perhaps surprisingly, high-school algebra is not needed — the
proof works solely by rearranging the recursive structure. In
Haskell, the situation is more subtle, as nested pairs ((A,B),C)
and triples (A,B ,C) are distinguished. It is worth noting that the
correspondence is not only natural in a data-structural sense, but
also in a categorical one: List ◦ Rose ∼= Tree.

The isomorphism between topped binary trees and rose trees is
a direct consequence of the above.

A× TreeA
∼= { see above }

A× List (RoseA)
∼= { F (µF) ∼= µF }

RoseA

The next isomorphism illustrates the use of type fusion. Both
rose trees and fork trees can be seen as representing non-empty
sequences. To transform one into the other requires some shuffling
though, implemented by type fusion.

RoseA
∼= { definition of Rose }

µR . A× ListR
∼= { definition of List }

µR . A× (µL . 1 + R × L)
∼= { type fusion (50) }

µR . µL . A + R × L
∼= { diagonal rule (56) }

µT . A + T × T
∼= { definition of Fork }

ForkA

For the fusion step we have to show that (A×)◦(Λ L . 1+R×L) ∼=
(Λ L . A + R × L) ◦ (A×). The obligation is again quick to
discharge:

A× (1 + R × L)
∼= { distributivity (39) and neutral (28) }

A + A× (R × L)
∼= { associativity (30) and commutativity (29) }

A + R × (A× L) .

The use of commutativity indicates that the relative ordering of
elements is changed: the root of the rose tree becomes the rightmost
element of the fork tree.

The five type constructors 0, 1, +, × and List almost form
a so-called Kleene algebra, the algebraic underpinning of regular
expressions. The only difference is that, in a Kleene algebra, +
is required to be idempotent (a + a = a), which is, in general,
not the case for coproducts. Nonetheless, some laws of Kleene
algebra carry over to our setting, for instance, List (A + B) ∼=
ListA× List (B × ListA). Here is the proof which showcases all
three fixpoint rules:

ListA× List (B × ListA)
∼= { definition of List }

ListA× (µL . 1 + B × ListA× L)
∼= { rolling rule (53): F := ListA× and GX := 1 + B ×X }

µL . ListA× (1 + B × L)
∼= { definition of List }

µL . (µX . 1 + A×X)× (1 + B × L)
∼= { type fusion (50) }

µL . µX . 1 + B × L + A×X
∼= { diagonal rule (56) }

µL . 1 + B × L + A× L
∼= { distributivity (39) and commutativity (26) }

µL . 1 + (A + B)× L
∼= { definition of List }

List (A + B) .

Further applications of type fusion can be found in the recent
paper “Type Fusion” by the first author [5].

7. Further Reading and Related Work
Every textbook on category theory defines the notions of isomor-
phism and equivalence, see, for example [2, 6]. However, the calcu-
lational properties of isomorphisms are mostly ignored. For exam-
ple, the all important fact that functors preserve isomorphisms, on
which our isomorphic reasoning rests, is often mentioned only in
passing. This omission has a profound impact on the style of proofs,
which typically involve chasing arrows in a diagram or arguing in-
formally with and about arrows. As this paper amply demonstrates,
our own preference is a calculational style, showing the equality
of two arrows or the isomorphism of two objects by a series of
meaning-preserving steps.

Central to the latter undertaking is the Yoneda lemma, which
support an indirect mode of reasoning. Because of its central im-
portance it also appears in every textbook on category theory, [2, 6]
being no exceptions. Unfortunately, often only the abstract result is
presented, leaving readers unenlightened and depriving them of a
powerful reasoning tool. We have hinted at another link to comput-
ing science: continuation-passing style.

Likewise, adjunctions are directly relevant to computing science
and programming. An adjunction bundles a programming language
construct in a single package: introduction and elimination rules
are given by the adjoint transposition, β- and η-rules fall out of
the isomorphism itself, fusion rules correspond to the naturality
of the transposition. The standard example of an adjunction is the
list functor List : Set → Mon, which is left adjoint to the
forgetful functor U : Mon → Set from the category of monoids
to the category of sets [7]. Again, the calculational properties of
adjunctions are usually neglected, a remarkable exception being
the unpublished draft [8], which we highly recommend for further
reading. (We also did not emphasise the calculational aspects as
we approached adjunctions from a somewhat limited perspective.)

Along similar lines, [9] showcases a calculational approach to
colimits and limits.

The use of initial algebras and fixpoints in categories to provide
a semantics to datatypes originated with Lambek [10]. Following
the suggestion of Lambek, Backhouse et al. [3] use lattice theory as
a source of inspiration and generalise the lattice-theoretic fixpoint
rules to category-theoretic rules, type fusion and the rolling rules
among others. The development in Section 6 is based on their work.
The original paper does not provide any proofs; they can be found
in an unpublished draft [11]. The proof of type fusion, Section 6.3,
draws on this work; the other proofs are ours. An alternative proof
of type fusion, which makes the isomorphisms explicit, can be
found in a recent paper [5] by the first author.

The interest in type isomorphisms is broad and is surveyed by
Di Cosmo [12, 13]. Atanassow and Jeuring take up the task of infer-
ring invertible coercions between isomorphic types using Generic
Haskell [14]. They apply their technique to simplifying XML pro-
cessing in Haskell. Also of note is the work of Fiore, which es-
tablishes the decidability of type isomorphisms for recursive poly-
nomial types [15]; and of Soloviev, who gives an axiomatization
of isomorphic types in symmetric monodial closed categories [16].
Finally, Mazur provides a more detailed and philosophical look at
the question of isomorphism over equality [17].

In spirit, Cáccamo and Winskel’s work is the closest to ours [18].
Their main contribution is a nice calculus where naturality pops
out. Their focus is on more mundane topics, such as the categorical
concepts of ends and powers that power the underlying theory of
their calculus. There is no discussion of initial algebras

Our use of the colloquial term ‘high-school algebra’ is due
to Thorsten Altenkirch [19]. The term was originally coined by
Tarski, for the algebraic theory of a semiring with exponentiation;
Altenkirch introduces ‘university algebra’. High-school algebra, as
in this paper, is interpreted in a lambda calculus with coproducts
(bicartesian closed category); Altenkirch’s university algebra is
interpreted in a dependently typed lambda calculus.

8. Conclusion
We have offered a perspective on why isomorphism is a preferable
notion to equality. Furthermore, we have stated and proven a range
of isomorphisms on both non-recursive and recursive types. All
functors preserve isomorphisms, but a key property at the base
of our approach is that functors that are fully faithful also reflect
isomorphisms.

The Yoneda lemma builds on this: it implies the proof principle
of indirect isomorphism. The Yoneda functor Y, and its dual, Ȳ,
are fully faithful due to the Yoneda lemma. Thus, we can prove that
two objects, A and B , are isomorphic by showing an isomorphism
between the set of arrows from A and the set of arrows from B . We
used this fact as a definitional principle for the arithmetic objects 0,
1, +, ×, and moreover, to prove that 0 and + form a commutative
monoid under isomorphism, as do 1 and ×. These statements are
category agnostic.

Adjunctions have provided a powerful means to concisely pack-
age up lots of structure about the constructions we have explored.
We have seen, for example, how they give meaning to + and ×
as bifunctors, and how the adjoint transposition contains computa-
tional content: case analysis in the context of coproducts, and curry-
ing and function application in the context of exponentials. When
we came to model recursive datatypes as least fixpoints of func-
tors, the property that left adjoints preserve initial objects was in-
valuable. It is notable trend with adjunctions that we often discover
interesting functors when we start with simple ones and explore the
adjoints that arise from it. The diagonal functor is very simple, but
its left adjoint + and right adjoint× are interesting. Again, the for-

getful functor is simple, even uninteresting, but its left adjoint Free
and right adjoint Cofree are far from that.

Using adjunctions and the Yoneda lemma we have rounded out
the categorical interpretation of high-school algebra under isomor-
phism, and brought the rules of fixpoint calculus into our category
theory setting — the latter with an isomorphic twist. Having built
our platform to ‘reason isomorphically’, we have presented some
parting examples of isomorphisms on recursive datatypes in a clean
calculational style.

References
[1] Knuth, D.E.: The Art of Computer Programming, Volume 3: Sorting

and Searching. 2nd edn. Addison-Wesley Publishing Company
(1998)

[2] Mac Lane, S.: Categories for the Working Mathematician. 2nd edn.
Graduate Texts in Mathematics. Springer-Verlag, Berlin (1998)

[3] Backhouse, R., Bijsterveld, M., van Geldrop, R., van der Woude, J.:
Categorical fixed point calculus. In: Category Theory and Computer
Science. Volume 953 of LNCS. (1995) 159–179

[4] Gibbons, J., Paterson, R.: Parametric datatype-genericity. In:
Workshop on Generic programming, ACM Press (August 2009)
85–93

[5] Hinze, R.: Type fusion. In Pavlovic, D., Johnson, M., eds.: Thirteenth
International Conference on Algebraic Methodology And Software
Technology (AMAST2010). Volume 6486 of Lecture Notes in
Computer Science., Springer-Verlag (2010) to appear.

[6] Barr, M., Wells, C.: Category Theory for Computing Science.
3rd edn. Les Publications CRM, Montréal (1999) The book
is available from Centre de recherches mathématiques http:
//crm.umontreal.ca/.

[7] Rydeheard, D.: Adjunctions. In Pitt, D., Poigne, A., Rydeheard, D.,
eds.: Category Theory and Computer Science. (1987) LNCS 283.

[8] Fokkinga, M.M., Meertens, L.: Adjunctions. Technical Report
Memoranda Inf 94-31, University of Twente, Enschede, Netherlands
(June 1994)

[9] Fokkinga, M.M.: Calculate categorically! Formal Aspects of
Computing 4(2) (1992) 673–692

[10] Lambek, J.: A fixpoint theorem for complete categories. Math.
Zeitschr. 103 (1968) 151–161

[11] Backhouse, R., Bijsterveld, M., van Geldrop, R., van der Woude,
J.: Category theory as coherently constructive lattice theory (2003)
Working Document, available from http://www.cs.nott.ac.uk/

~rcb/MPC/CatTheory.ps.gz.

[12] Di Cosmo, R.: A short survey of isomorphisms of types. Math.
Struct. in Comp. Sci. 15(05) (2005) 825–838

[13] Di Cosmo, R.: The Isomorphisms of Types

[14] Atanassow, F., Jeuring, J.: Inferring Type Isomorphisms Generically.
In: Mathematics of Program Construction. Volume 3125 of LNCS.
(2004) 32–53

[15] Fiore, M.: Isomorphisms of Generic Recursive Polynomial Types. In:
Principles of programming languages, ACM (2004) 77–88

[16] Soloviev, S.: A Complete Axiom System for Isomorphism of Types
in Closed Categories. In: Logic Programming and Automated
Reasoning. Volume 698 of LNCS. (1993) 360–371

[17] Mazur, B.: When is one thing equal to some other thing? http:
//abel.math.harvard.edu/~mazur/preprints/when_is_
one.pdf (Sept. 2007)

[18] Cáccamo, M., Winskel, G.: A Higher-Order Calculus for Categories.
In: Theorem Proving in Higher Order Logics. Volume 2152 of LNCS.
(2001) 136–153

[19] Altenkirch, T.: From High School to University Algebra. http:
//www.cs.nott.ac.uk/~txa/publ/unialg.pdf (June 2008)

