
Research Workshop on Challenges for
Trusted Computing

at:

3rd European Trusted Infrastructure

Summer School (ETISS 2008)

Tuesday 2nd September 2008: 16:00-18:00

Programme and contributed papers

Overview of Research Workshop

Trusted Computing refers to the collection of interrelated and interoperating technologies, which,

when combined, help to establish a more secure operating environment on commodity platforms. A

fully-realised Trusted Computing platform will allow users to reason about the behaviour of a

platform, as well as providing standardised mechanisms to protect sensitive data against software

attack.

Trusted Computing has been proposed as a means of enhancing the security of numerous

applications. For example, it has been promoted as an adjunct to the digital signature process, to

enable secure software download, to support secure single sign-on solutions, to secure peer-to-peer

networks, to improve the security and privacy of biometric user authentication, to harden mobile

devices, and to facilitate identity management. A number of authors have also considered Trusting

Computing’s applicability to the agent paradigm, grid security, e-commerce transaction security, and

to defend against the ever-growing threat posed by crimeware.

Despite its many potential beneficial applications, Trusted Computing is not without its detractors.

Privacy concerns relating to trusted platforms have been raised. The extent to which Trusted

Computing could be used to enable and enforce digital rights management, and, more generally, the

possible expropriation of platform owner control, are contentious issues. Concerns have also been

expressed that Trusted Computing could be used to support censorship, stifle competition between

software vendors, facilitate software lock-in, and hinder the deployment and use of open source

software, thereby potentially enabling market monopolisation by certain vendors.

The aim of this workshop is not to engage in this debate, but rather to highlight some of the key

challenges that we believe need to be addressed in order to accelerate the widespread adoption of

Trusted Computing.

Workshop Organisers

Shane Balfe, Royal Holloway, University of London

Eimear Gallery, Royal Holloway, University of London

Chris Mitchell, Royal Holloway, University of London

Kenny Paterson, Royal Holloway, University of London

Programme

16:00-16:10 Opening remarks

16:10-16:40 Challenges for trusted computing: Shane Balfe and Eimear Gallery (ISG, Royal

Holloway, University of London, UK)

16:40-17:10 Advances on PrivacyCAs: Martin Pirker, Ronald Toegl and Daniel Hein, Peter

Danner (IAIK, Graz University of Technology, Austria)

17:10-17:40 Attacking the BitLocker Boot Process: Sven Tuerpe, Andreas Poller, Jan

Steffan, Jan-Peter Stotz and Jan Trukenmueller (Fraunhofer-Institute for Secure Information

Technology, Darmstadt, Germany)

17:40-17:55 Discussion

17:55-18:00 Wrap-up

Contributed papers

Challenges for Trusted Computing

S. Balfe, E. Gallery, C.J. Mitchell and K.G. Paterson

Technical Report
RHUL–MA–2008–14

26 February 2008

Royal Holloway
University of London

Department of Mathematics
Royal Holloway, University of London
Egham, Surrey TW20 0EX, England

http://www.rhul.ac.uk/mathematics/techreports

Abstract

This article identifies and discusses some of the key challenges that need to
be addressed if the vision of Trusted Computing is to become reality. Topics
addressed include issues with setting up and maintaining the PKI required
to support the full set of Trusted Computing functionality, the practical
use and verification of attestation evidence, and backwards compatibility,
usability and compliance issues.

1 Introduction

A trusted platform, as discussed in this article, refers to a platform of the
type championed by the Trusted Computing Group (TCG). That is, a trusted
platform is one which will behave in a particular manner for a specific pur-
pose. Trusted computing refers to the collection of interrelated and interop-
erating technologies, which, when combined, help to establish a more secure
operating environment on commodity platforms. A fully-realised trusted
computing platform will allow users to reason about the behaviour of a plat-
form, as well as providing standardised mechanisms to protect user private
data against software attack [36]. A trusted platform should be able to reli-
ably gather and provide evidence of its current operating state, or any sub-
component thereof. Any divergence from an intended operating state can be
reported to interested parties, allowing them to make informed decisions as
to whether to continue to interact with the platform in question.

Trusted Computing functionality has been proposed to enhance the se-
curity of numerous applications. For example, it has been promoted as an
adjunct to the digital signature process [6, 49], in enabling secure software
download [19], in support of secure single sign-on solutions [29], in securing
peer-to-peer networks [8, 23, 45, 43], in improving the security and privacy
of a biometric user authentication process [14], in hardening mobile devices
[18] and to facilitate identity management [27, 28]. A number of authors
have also considered trusting computing’s applicability to the agent paradigm
[15, 30, 31, 35], grid security [25, 26], e-commerce transaction security [10, 9],
and to defend against the ever-growing threat posed by crimeware [7]. Fur-
ther applications are described in [5, 20, 24, 62].

Despite its many beneficial applications, Trusted Computing is not with-
out its detractors; see for example [2, 3, 4, 38, 39, 40, 46, 51, 63]. Privacy
concerns relating to trusted platforms were raised in [37]. The extent to which
Trusted Computing could be used to enable and enforce Digital Rights Man-
agement (DRM), and, more generally, the possible expropriation of platform

1

owner control, have been contentious issues [46, 60]. Anderson [2] expresses
the view that Trusted Computing could be used to support censorship, stifle
competition between software vendors, facilitate software lock-in and hinder
the deployment and use of open source software, thereby potentially enabling
market monopolisation by select vendors.

Our aim in this article is not to engage in this debate, but rather to
highlight some of the key challenges that we believe need to be addressed in
order to accelerate the widespread adoption of Trusted Computing. Many
of the challenges we identify are not purely technical in nature, but rather
involve a mixture of technical, policy and management aspects. This could
make this article somewhat different in flavour from the majority of current
research in Trusted Computing. We trust that our work will bring some
useful diversity into the field and that our approach will add to, rather than
subtract from, the value of the article for readers.

This article is structured as follows. In order to make the article self-
contained, Section 2 provides an overview of Trusted Computing technology.
In Section 3, we discuss some of the challenges that we believe may hinder the
widespread adoption and use of Trusted Computing. In particular, we focus
on: the Public Key Infrastructure (PKI) that is associated with the deploy-
ment of Trusted Computing; certificate and Trusted Platform Module (TPM)
revocation as well as the impact of hardware attacks on platforms; problems
with attestation evidence gathering and verification; backward compatibility
requirements; usability issues; and challenges arising from non-compliance
with the TCG’s technical specifications. We conclude with Section 4.

2 Trusted Computing Concepts

The provision of the full range of Trusted Computing functionality is depen-
dent upon the integration of a number of additional hardware and software
components into a computing platform:

A Trusted Platform Module (TPM): The TPM forms the core of a Trusted
Computing platform [56, 57, 58]. A TPM is a microcontroller with
cryptographic coprocessor capabilities that provides a platform with
the following features: a number of special purpose registers called
Platform Configuration Registers (PCRs), into which cryptographic
digests representing platform state altering events can be recorded; a
means of reporting the platform’s current state to remote entities; se-
cure volatile and non-volatile memory; random number generation; a
SHA-1 hashing engine; and asymmetric key generation, encryption and
digital signature capabilities.

2

Core Root of Trust for Measurement (CRTM): The CRTM should form
an immutable portion of a host platform’s initialisation code and is re-
sponsible for measuring the host platform’s state, that is, the collection
of operating system and application software components running on
the machine. The process of measuring platform state may be much
more complicated than simply taking a single hash of a monolithic piece
of code, however. For example, for a Personal Computer (PC) client
[55], the CRTM code would measure a platform’s BIOS and store a
hashed representation of the BIOS code in one (or more) of the PCRs
within a TPM. The CRTM would then hand execution control to the
BIOS, which in turn would measure, store, and transfer control to the
next component in a host platform’s boot sequence. This process would
then continue until all components are measured. Through this suc-
cession of measuring, transfer of control and execution, a transitive
trust chain from the CRTM to the host Operating System (OS) can
be formed. Attestations to the measurements recorded to the TPM’s
PCRs that make up this chain can subsequently be provided to inter-
ested parties. (We discuss the different flavours of Trusted Computing
attestation in more detail below.)

Isolation technologies: The introduction of isolation technologies, such as
Microsoft’s Next Generation Secure Computing Base (NGSCB) [32, 33]
or XEN Source’s XEN [11], were designed to take advantage of CPU
and chipset extensions incorporated in a new generation of processor
hardware [22]. Together, these new initiatives will enable a platform
to be partitioned into isolated execution environments. An isolated
execution environment, independent of how it is implemented, should
provide the following services to hosted software [33]:

• protection of the software from external interference;

• observation of the computations and data of a program running
within an isolated environment only via controlled inter-process
communication;

• secure communication between programs running in independent
execution environments; and

• a trusted channel between input/output devices and a program
running in an isolated environment.

We note that current deployments of Trusted Computing technologies
have tended to focus more on the TPM than on the CRTM or isolation tech-
nologies. This naturally limits the trustworthiness of the platform. Even so,

3

a number of proposals [8, 9, 44] demonstrate that even a limited deployment
of Trusted Computing can bring security benefits.

2.1 Trusted Computing Credentials and Hardware At-
testation

In addition to the integration of additional hardware and software compo-
nents, certification and accreditation play an important role in building a
trusted platform. In this regard, there are a number of interrelated creden-
tials that must be present before a platform can be considered to be a trusted
platform:

An endorsement credential: Each TPM is associated with a unique asym-
metric encryption key pair called an Endorsement Key (EK) pair. An
endorsement credential binds the public component of this key pair to
a TPM description and vouches that a TPM is genuine. This creden-
tial is typically generated by the TPM manufacturer, with the binding
taking the form of a digital signature created using a signing key of the
manufacturer.

One or more conformance credentials: Conformance credentials vouch
that a particular type of TPM and associated components (such as a
CRTM and the connection of the CRTM and TPM to a motherboard)
conform to the TCG specifications. These credentials are issued by en-
tities with sufficient credibility to evaluate platforms containing TPMs,
typically conformance testing facilities.

A platform credential: A platform credential proves that a TPM has been
correctly incorporated into a design which conforms to the TCG spec-
ifications. This credential is typically generated by a platform manu-
facturer. In order to create a platform credential, the platform man-
ufacturer must examine the endorsement credential, the conformance
credentials relevant to the trusted platform, and the platform to be
certified.

2.2 Identity Attestation

Since an EK is unique to a platform, it may act as a “super-cookie” in
identifying subsequent platform actions across multiple domains. To help
allay concerns that an EK may become associated with personally identifiable
information, the TCG [56] introduced the ability for a TPM to generate and

4

use an arbitrary number of pseudonyms, in the form of Attestation Identity
Key (AIK) key pairs. Unlike an EK, AIKs serve to identify a platform
as trusted without uniquely identifying it as a particular trusted platform.
However, in order for a relying party to have assurance that an AIK represents
a trusted platform, a platform must obtain AIK certification from a mutually
trusted third party. Two approaches to AIK certification have been proposed
by the TCG.

In the first approach, a trusted third party, referred to as a Privacy-
Certification Authority (P-CA), provides assurance that an AIK is bound
to a trusted platform in the form of an AIK credential. When a platform
requests an AIK credential from a P-CA, it must supply an AIK public key
as well as its endorsement, conformance and platform credentials. The P-
CA verifies these credentials, thereby obtaining assurance that the trusted
platform is genuine, and creates an AIK credential attesting to this fact.
This credential takes the form of a digital signature on the AIK public key.
However, this approach has attracted a certain amount of criticism. A P-CA
is capable of linking all AIK credentials issued to a specific platform via the
platform’s EK, putting the P-CA in a position where it is able to defeat the
anonymity protection provided by the use of AIKs. Moreover, it is unclear
what business model might support the development of commercial P-CAs.

Direct Anonymous Attestation (DAA) has been proposed as an (op-
tional) alternative to the P-CA model, and offers strong anonymity guar-
antees through advanced cryptographic techniques. These prevent the cor-
responding issuing authority from being able to link AIK credentials with
a single platform identity (EK). A DAA Issuer produces a certificate on a
blinded TPM secret. The TPM-host platform later uses this certificate and
TPM secret to produce a special type of digital signature (called a signature
proof of knowledge) on an AIK public key corresponding to the TPM secret.
A verifier of this signature does not actually get to see the certificate, but
instead receives an assurance (via a zero-knowledge protocol) that the plat-
form possesses such a certificate on the DAA public key corresponding to the
TPM secret.

2.3 Object Attestation

2.3.1 State Attestation

A platform’s state is represented by a set of integrity measurements. When
a platform component (i.e. a piece of software executing on a platform) is
“measured”, a hash of the component is recorded to one of a set of PCRs
within the host platform’s TPM (where the PCR to which a particular com-

5

ponent is recorded is platform-specific). Subsequent measurements to this
register are recorded by overwriting its current value with a hash of the con-
catenation of the new measurement and the existing contents of the register.
In this way, the cumulative contents of a TPM’s registers reflect the current
software state of the host platform, as well as the states through which the
platform has transitioned.

Platform attestation is the process by which a platform can reliably re-
port evidence of both its identity (as a valid trusted platform) and its current
state. A TPM signs the contents of (one or more of) the TPM’s PCRs which
reflect (all or part of) the current host platform’s state. The private compo-
nent of an AIK key pair is used to create the signature. This signed bundle is
communicated to an external entity in conjunction with a corresponding AIK
public key credential and a record of the platform components which have
been measured. The receiving entity validates the AIK credential, verifies
the AIK signature, and compares the signed PCR values against a set of ref-
erence integrity measurements. The TCG envisages that reference values and
associated credentials will typically be created during software development
[59].

2.3.2 Data Attestation

Sealing is the process by which sensitive data can be associated with a set
of PCR values representing a particular platform configuration, and only
released to the platform for use when the current state of the platform is such
that the PCR values match those specified at the time of sealing. The sealing
and unsealing processes are implemented using encryption and decryption,
in tandem with appropriate key management procedures.

Data can also be associated with a string of 20 bytes of authorisation
data before being sealed. When unsealing is requested, the authorisation
data must then also be submitted to the TPM. The submitted authorisation
data is then compared to the authorisation data in the unsealed string, and
the object is only released if the values match.

2.3.3 Key Attestation

A TPM can generate an unlimited number of asymmetric key pairs. For
each of these pairs, private key usage and mobility can be constrained. A
key pair can be generated so that use of its private component is contingent
upon the presence of a predefined platform state (as reflected in the TPM’s
PCRs). Additionally, a private key can be marked as either being migratable
or non-migratable. Migratable private keys can be moved from a TPM, whilst

6

non-migratable keys are inextricably bound to a single TPM.
Private keys, like data, can also be associated with a string of 20 bytes

of authorisation data. When private key usage is required, the authorisation
data must be submitted to the TPM. The submitted authorisation data is
then compared to the authorisation data associated with the key, and key
use is only permitted if the values match.

To attest to the usage, mobility and authorisation constraints associated
with a private key held by a TPM, the TCG has specified the Subject Key
Attestation Evidence (SKAE) X.509 extension [53]. SKAE provides a mech-
anism to allow a verifier to ascertain that an operation involving a private
key was performed within a TCG-compliant TPM environment. After ob-
taining an AIK credential (following the P-CA method outlined in Section
2.2), a platform can sign a data structure containing the public component
of a non-migratable TPM key pair and a description of usage attributes of
the corresponding private key. An SKAE Certification Authority (CA), af-
ter verifying the signed TPM data structure, can then create a new X.509
certificate for the public key. This certificate incorporates an extension field
attesting to the TPM-related security properties of the certified key. Such a
certificate can then be used as an aid to authentication in protocols such as
SSL/TLS [16] or IKEv2 [1].

3 Challenges for Trusted Computing

3.1 Public Key Infrastructure and Trusted Computing

As we saw in Section 2.1, for a platform to be considered trusted, it must
first obtain certificates from an endorsement CA, a platform CA, and one
or more conformance CAs. Together, these CAs are responsible for issuing
the core trusted platform credentials. However, in order to address privacy
concerns resulting from overuse of an EK (as contained in an endorsement
credential), P-CAs, and later DAA Issuers, were introduced. Subsequently,
SKAE CAs were proposed as a means of coping with difficulties in integrating
TPM-controlled keys with standard security protocols. Recently, further-
PKI-related authorities (notably Migration Authorities (MAs) and Migration
Selection Authorities (MSAs) [52]) have been introduced to address issues
concerning key migration between TPM-enabled platforms.

Thus the majority of Trusted Computing services depend fundamentally
on the deployment and successful inter-operation of a number of PKI ele-
ments. We refer to this collection of components as a Trusted Computing PKI
(TC-PKI), although it is actually a larger and more complex “eco-system” of

7

elements than would normally be contained in a single PKI. Figure 1 depicts
the main types of CA in a TC-PKI. Yet the development of any functional
PKI requires a sophisticated combination of organisational, policy-oriented,
procedural, and legislative approaches. Indeed the challenges and pitfalls of
PKI deployment are well-documented [21, 34], and high-profile system and
protocol failures that have been blamed on inappropriate deployment of PKI
abound, with SET [47] providing one of the most prominent examples. Put
simply, providing a PKI is hard.

A TC-PKI not only involves a plurality of CAs, but also a series of implicit
dependencies amongst these CAs. In a TC-PKI, a platform CA relies on the
due diligence of an endorsement CA and one or more conformance CAs in
accrediting components of a trusted platform. Similarly, both privacy CAs
and DAA Issuers rely on platform CAs, endorsement CAs and one or more
conformance CAs. Furthermore, SKAE CAs rely on the due diligence of Pri-
vacy CAs or DAA Issuers in evaluating the accreditation evidence provided
by a trusted platform.

Traditionally, Certificate Policies (CPs) (which specify what a certificate
should be used for, and the liability assumed by the CA for this use) and
Certificate Practice Statements (CPSs) (which specify the practices that a
CA employs to manage the certificates it issues) are deployed by CAs in
order to define and limit their liabilities with respect to relying parties. CPs
and CPSs are, in fact, an essential component in building a successful PKI,
since they give a relying party (which could be an end-user or another CA)
a means to manage the business risk in pursuing a particular PKI-related
course of action. In the past, uncertainty as to where liability lies has driven
up the cost of many PKI implementations [34]. In the absence of CPs and
CPSs, implicit cross-certification may exist between CAs, which, as noted in
[21], implies that CAs are equally trusted. In such a setting the security of
a certificate is reduced to that of the least trustworthy CA. Unfortunately,
CPs and CPSs are notoriously difficult and costly to create, and so their
production may act as a barrier to entities wishing to provide CA services.

In the setting of a TC-PKI, such policy statements must be produced by
every CA upon which another CA may depend. Currently, these dependen-
cies are only informally defined, and, as a result, there is no clear indication
of where any liability will lie. Further, at the time of writing, we are not
aware of any TC-specific CPs or CPSs having been created. The picture is
further complicated by the fact that all the CAs in a TC-PKI rely (at least
to some extent) on the endorsement CA. Therefore, the point in a TPM’s
life-cycle at which an EK credential is acquired impacts on a platform’s abil-
ity to obtain platform, AIK, DAA and SKAE credentials. In early normative
EK credential acquisition, as defined by the TCG [54], a TPM manufacturer

8

generates the EK credential. However, in post-manufacturing generation, as
defined by the TCG [54], a platform owner is responsible for generating the
EK credential. In this instance, the certifying body may not be recognised
by other CAs and, as a result, the certified TPM host platform may not be
able to obtain further credentials from entities outside the domain of its EK
credential issuer. In practice, this may not be an issue, as it seems likely that
non-manufacturer supplied EK credentials will not be widely used.

To summarise: Trusted Computing relies on an as yet largely unavailable
and unspecified PKI in which multiple CAs (possibly existing in different
organisational, procedural and/or jurisdictional domains) are expected to
inter-operate. This may pose a significant challenge to the future success of
this technology.

Figure 1: Trusted Computing PKI Components

3.2 Certificate and TPM Revocation

The revocation of credentials within a TC-PKI may introduce further prob-
lems. Given the complex dependencies between many of the TC-PKI creden-
tials, the compromise of an individual key and the subsequent revocation of
its associated public key certificate will result in a cascading revocation of all
dependent TPM credentials. For example, in the event of endorsement key
revocation, every AIK associated with the revoked EK must also be revoked.
In addition, all SKAE credentials associated with the newly revoked AIKs
must also be revoked. This implies that multiple CAs, potentially in inde-
pendent domains, must be contacted in a timely manner and informed about
a revocation decision. This may be a time-consuming and costly endeavour.
Further complexity is introduced when attempting to revoke a DAA creden-
tial associated with a compromised Endorsement Key pair, because a DAA
Issuer cannot link a platform’s Endorsement Key pair with a DAA credential.

We next consider revocation of a TPM itself (rather than revocation of
its credentials). For cost reasons, the level of tamper-resistance provided by

9

TPMs is likely to be limited. Moreover, the objective of the mechanisms
specified by the TCG is the prevention of information asset compromise
through software attack. That is, the software security of the platform is
predicated upon the notion that the TPM will maintain an accurate and
reliable record of all platform events. Such a focus means that the security
of the underlying hardware is assumed and that there is no purely technical
driver to promote the development of tamper-resistant TPMs.

Yet it is clear from the example of widespread gaming console modifica-
tion that, given sufficient incentive, users will actively circumvent hardware-
enforced security. In this context, recent demonstrations of a relatively unso-
phisticated hardware attack [50] through which a TPM’s PCRs can be reset
without rebooting a platform would appear to pose a significant challenge to
Trusted Computing. The ability to reset PCRs effectively destroys the tran-
sitive trust chain upon which a remote verifier relies to assess a platform.
Once this trust chain is broken, the PCRs can be repopulated with whatever
data the platform owner wishes, allowing the owner to misrepresent their
platform’s current state in a manner that is convincing to a remote verifier.
The simple attack of [50] underlines the need for any verifier to consider the
“quality” of the platform when assessing the state of a trusted platform. That
is, an attestation from a platform incorporating a well-designed TPM from a
known manufacturer should be considered more convincing than an attesta-
tion from a platform incorporating a TPM from an unknown or disreputable
supplier.

Given the above discussion, it is reasonable to assume that, before long,
TPMs will be compromised and all credentials and keys extracted. These
could then be used to emulate a TPM in software in a way that is indistin-
guishable from the true hardware TPM. The process by which a compro-
mised TPM is detected will largely be reliant on that TPM’s interactions
with P-CAs, DAA Issuers and SKAE CAs. It has been suggested in [13]
that TPM compromise could manifest itself through an excessive number of
certification requests originating from a single TPM host platform (where
“excessive” is to be determined by a risk-management policy). However,
such a naive approach to detection introduces a number of challenges:

• CAs may specify different thresholds for determining what is meant by
“excessive”, potentially leading to a high number of false positives for
CAs with low thresholds.

• Once a compromised TPM has been detected, there is a need to globally
propagate this information to prevent the compromised TPM host plat-
form from being (mis)used elsewhere. This requires the establishment

10

of a global revocation infrastructure. Such an infrastructure could be
implemented using Certificate Revocation Lists (CRLs) or through an
On-line Certificate Status Protocol (OCSP). Neither option, however,
is ideal. In the case of CRLs, there are concerns regarding CRL dis-
covery and the timely issuance of revocation information. In the case
of OCSP, in order to make its deployment economically viable, CAs
typically charge for each revocation check. It is unclear who would pay
for such a service in a TC-PKI. In the case of an OCSP request for
an SKAE certificate, the verifier would need to contact the SKAE CA,
which would need to contact the AIK CA, which in turn would need
to contact the platform, endorsement and conformance CAs.

• A CA must consider potential legal issues that might result from the
wrongful issuance of revocation statements negatively impacting on a
platform’s ability to interact with other parts of the infrastructure. As
a result of such considerations, CAs may become reluctant to announce
suspected compromises.

• To alleviate the risk of a malicious P-CA issuing falsified revocation
statements, a means by which the credibility of CAs in issuing such
statements can be assessed must be provided. It is currently unclear
what form such a mechanism might take.

3.3 Attestation Evidence Gathering and Verification

The exact parameters to be considered when performing integrity measure-
ments on platform components have yet to be standardised1. At a minimum,
the parameters must be chosen so that each software component’s integrity
measurement can be uniquely identified. These measurements must also re-
main consistent to allow ease of verification. However, in the absence of
standardisation, platform integrity measurements may fail to capture all el-
ements required by the verifier of a platform component. This is especially
true when one considers the complications introduced with respect to soft-
ware which relies on dynamically linked libraries (DLLs). In this case, a
proportion of the platform component’s code base may not be measured, as
it will not be loaded by the application prior to execution.

Moreover, given the extensible nature of modern computing systems, the
number of components that might need to be measured by a TPM is rapidly

1For example, the authors of [33] have proposed that a platform component’s integrity
measurement can be calculated from its instruction sequence, initial state (i.e. the exe-
cutable file) and input.

11

increasing. This implies that each register will have to store multiple mea-
surements. As the number of a platform’s components increases, so does
the complexity of third party verification of attestation statements. It also
becomes difficult for a challenger to verify a single component running on a
platform.

The introduction of isolation technologies, as described in Section 2,
enables a platform to be partitioned into isolated execution environments,
thereby (potentially) simplifying attestation statement verification. In this
case, a challenger of the platform may be satisfied to verify measurements
pertaining to rudimentary platform components, such as the boot software,
the isolation layer and software components running in an isolated execution
environment rather than verify all software running on the platform. This
may ease the platform attestation problem in some situations.

However, even assuming the number of platform component integrity
measurements that a challenger must verify is limited, problems relating
to platform component updates and patching will still arise. Given current
software development practices, frequent patching to OS components and
applications can be expected to be the norm for the foreseeable future. But
even the order in which patches are applied can result in a “combinatorial
explosion” of distinct configurations for a single application, each configura-
tion requiring a distinct reference value for attestation purposes. Frequent
patching may also lead to problems with respect to sealed data. If an up-
date or patch is applied to a software component to which a key or data is
sealed, this key or data must be unsealed and resealed to the updated soft-
ware component measurements. Failure to reseal to the updated component
measurements will result in the key or data being inaccessible after the patch
has been applied.

Property Based Attestation [42] has been proposed to address the problem
of managing attestation in the presence of a multitude of possible configura-
tions and system updates. This approach introduces an additional layer of
indirection into the attestation and sealing processes. Instead of expecting a
verifier to determine if a particular set of PCR values represent a trustwor-
thy software state, a platform’s state is certified (by a trusted third party) as
satisfying certain properties. A platform is then capable of attesting that its
current configuration possesses such a property, allowing a verifier to infer
whether a platform is trustworthy or not without knowing which particular
software is running. Property Based Attestation also allows data or keys to
be sealed to properties. As long as the properties of the updated platform
configuration match those of the prior configuration, problems related to
patching may be reduced. Sadeghi and C. Stüble suggest that this approach
could be realised either through a software-based “Trusted Attestation Ser-

12

vice” or through modifications to the TPM hardware.
Unfortunately, Property Based Attestation only succeeds in shifting the

problems with attestation to an entity other than the verifier, with all of
the original problems persisting for the entity that needs to verify a PCR-
based attestation. Nevertheless, the number of entities needing to verify such
complex attestations could be significantly reduced, and these entities could
be given additional resources to enable them to complete their task. More-
over, a software component satisfying a particular property is by no means
guaranteed to still satisfy that property after it has been patched, without
rerunning the (potentially expensive) evaluation procedure. This evaluation
procedure may contribute to the marginalisation of minority platforms by
“altering the economics of interoperability” [38]. The cost of establishing
that a given platform state matches some desirable property may be so great
that only a few well-funded organisations may be able to obtain such a result.
Additionally, exactly what properties can be satisfied using such an approach
remains an open question. More positively, Property Based Attestation at
least shifts the problems to an expert specialising in the particular business
of attestation.

A final issue which must be considered with respect to the successful
implementation of platform attestation is that of user observable verification.
McCune et al. [17] describe a scenario in which a user’s platform has become
infected with malware. Despite the fact that this infection can be detected
by an external entity during an attestation process, the external entity has no
way of reliably informing the end user that they have failed their attestation.
Malware may simply modify the user’s display, resulting in the user believing
their platform to be in an acceptable state, and, because of this, going on to
disclose sensitive information to the malware.

3.4 Backward Compatibility

As a consequence of the piecemeal roll-out of Trusted Computing technolo-
gies, current trusted platforms do not come equipped with CRTMs, isolation
technologies, processors or chipset extensions. Instead, current trusted plat-
forms include only a TPM meeting the relevant TCG specifications, and,
with the exception of Infineon TPMs, do not even include endorsement cre-
dentials. To the best of our knowledge, all currently available platforms
lack both conformance credentials and platform credentials. This situation
has the potential to create an awkward backward compatibility issue as and
when fully-deployed TC-PKIs become available. In particular, the absence
of these credentials will make it difficult, if not impossible, for a platform to
later acquire AIK credentials without operating at reduced assurance levels.

13

The absence of CRTMs, isolation technologies, processors and chipset
extensions from current TPM-enabled platforms makes the use of much of
the TPM Trusted Computing functionality described in Section 2 essentially
unreliable. Techniques such as sealing and attestation are unworkable if the
host platform’s state cannot be reliably measured. In order to later enable
these features on an already deployed platform, measurement functionality
(in the form of a CRTM and modified operating system) would need to
be integrated into the platform. This would require the installation of a
new OS and the BIOS to be flashed, tasks that would prove difficult for
the average user. On the other hand, this may be feasible in a corporate
environment with centralised administrative control of platforms. Indeed, in
such deployments, legacy hardwares issue may be less of an issue because
of more rapid retirement of platforms. Moreover, software-based isolation
environments can be provided through the installation of additional software
onto already deployed platforms. Nevertheless, hardware-based isolation,
enabled through the processor and chipset extensions, cannot be retrofitted to
platforms already in the field. As a result, first generation trusted platforms
can never be adequately upgraded to provide all the services associated with
a trusted platform.

3.5 Usability

Prevailing wisdom suggests that it is prudent to hide the complexities of
security technology from end-users [34]. In the past, applications that have
relied on a PKI have failed in cases where security functions have been too
unwieldy to be usable by non-experts [12]. In one example [48], the PKI
experience was considered so painful by some users that they refused to use
the technology if it involved handling certificates. The design of suitable user-
interfaces that can communicate rich security information whilst remaining
usable has historically been very difficult to achieve [61].

By contrast, using a TPM currently requires a detailed understanding of
how the underlying technology works. For example, the very act of enabling
a TPM prior to its use is a non-trivial task requiring a user to understand and
edit BIOS settings. Once enabled, a user is further confronted with setting
a TPM owner password, selecting key types fit for purpose, and enrolling
certain keys within a PKI. Further problems may arise with respect to
password use and management. In addition to setting a password for TPM
ownership, unique passwords may also be associated with protected data or
keys in a TPM. While the deployment of numerous passwords may be viewed
as a sound security decision, management of such passwords so that access
is not jeopardised may prove problematic.

14

These usability issues are a reflection of the general immaturity of Trusted
Computing technology and the associated marketplace. Whilst a huge effort
has been put into design and specification of technical aspects of Trusted
Computing by the TCG, so far less work seems to have been done to address
user-centric issues. We may hope for user-friendly configuration and man-
agement tools in future, although even these may not be sufficient to make
Trusted Computing accessible to the masses.

3.6 Non-Compliance and Inter-operability

Through the provision of a set of open standards, Trusted Computing spec-
ifies security interfaces which allow heterogeneous devices to interact. Un-
fortunately, many of the additional technological building blocks required to
instantiate a trusted platformare not standardised, nor does the TCG dictate
implementation specifics to its adopters. As a result, a number of currently
available TPMs do not comply with the TPM specifications [41]. The cur-
rent absence of conformance testing facilities implies that the production
of non-compliant TPMs may very well continue for the foreseeable future.
In turn, discrepancies in implementation between TPM manufacturers may
limit future inter-operability of different trusted platforms.

4 Conclusions

Trusted Computing is undoubtedly a powerful technology, with a huge range
of possible applications. Nevertheless, there remain a number of significant
obstacles to its widespread use, as we have discussed above. Addressing these
challenges is therefore a high priority for future research.

Perhaps the most significant of these obstacles is the deployment and
management of the PKI necessary to enable general use of the security ser-
vices supported by Trusted Computing. These issues are in many ways sim-
ilar to those which prevented the establishment of a global general-purpose
PKI. Nevertheless, deploying domain and company-specific PKIs to support
Trusted Computing well-defined and limited environments would appear rel-
atively straightforward, since the majority of the problems simply disappear
— this again reflects the experience of deploying conventional PKIs, which
have been used very successfully in specific domains.

We have also examined problems arising with the use and interpretation
of evidence generated using Trusted Computing functionality. This problem
arises in particular because of the number of different components (and ver-
sions of components). As with the PKI issues, many of the problems are

15

particularly serious when one considers universal use of Trusted Computing
— the issues are likely to be much less serious in a closed/managed environ-
ment, e.g. as established within a large organisation, notably because the
number of components will be significantly less, and there are likely to be
more resources available to evaluate the components.

In conclusion, many challenges to the successful large-scale use of Trusted
Computing remain. Nevertheless, these challenges are likely to be much less
serious for a very important class of users, namely corporate IT. Providing
the full benefits of Trusted Computing to the widest possible audience is a
major challenge for future research.

References

[1] Internet Key Exchange (IKEv2) Protocol. RFC 4306, 2005.

[2] R. Anderson. Cryptography and Competition Policy: Issues with
‘Trusted Computing’. In Proceedings of the 22nd Annual Symposium on
Principles of Distributed Computing (PODC 2003), pages 3–10, Boston,
Massachusetts, USA, 2003. ACM Press, New York, USA.

[3] R. Anderson. ‘Trusted Computing’ Frequently Asked Questions - Ver-
sion 1.1. http://www.cl.cam.ac.uk/~rja14/tcpa-faq.html, August
2003.

[4] B. Arbaugh. Improving the TCPA Specification. IEEE Computer,
35(8):77–79, August 2002.

[5] B. Balacheff, L. Chen, S. Pearson, D. Plaquin, and G. Proudler. Trusted
Computing Platforms: TCPA Technology in Context. Prentice Hall,
Upper Saddle River, New Jersey, USA, 2003.

[6] B. Balacheff, L. Chen, S. Pearson, G. Proudler, and D. Chan. Comput-
ing Platform Security in Cyberspace. Information Security Technical
Report, 5(1):54–63, 2000.

[7] S. Balfe, E. Gallery, C. J. Mitchell, and K. G. Paterson. Crimeware
and Trusted Computing. In M. Jakobsson and Z. Ramzan, editors,
Crimeware. Addison-Wesley, 2008.

[8] S. Balfe, A. D. Lakhani, and K. G. Paterson. Securing Peer-to-Peer
Networks using Trusted Computing. In C. J. Mitchell, editor, Trusted
Computing, chapter 10, pages 271–298. The Institute of Electrical En-
gineers (IEE), London, UK, 2005.

16

[9] S. Balfe and K. G. Paterson. Augmenting Internet-based Card Not
Present Transactions with Trusted Computing: An Analysis. Techni-
cal Report RHUL-MA-2006-9, Department of Mathematics, Royal Hol-
loway, University of London, London, UK, 2005. http://www.rhul.ac.
uk/mathematics/techreports.

[10] S. Balfe and K. G. Paterson. e-EMV: Emulating EMV for Internet Pay-
ments using Trusted Computing Technology. Technical Report RHUL-
MA-2006-10, Department of Mathematics, Royal Holloway, University
of London, London, UK, 2006. http://www.rhul.ac.uk/mathematics/
techreports.

[11] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauery, I. Pratt, and A. Warfield. XEN and the Art of Virtualization.
In Proceedings of the 19th ACM Symposium on Operating Systems Prin-
ciples (SOSP 2003), pages 164–177, Bolton Landing, New York, USA,
19–22 October 2003. ACM Press, New York, USA.

[12] B. Beckles, V. Welch, and J. Basney. Mechanisms for Increasing the Us-
ability of Grid Security. International Journal of Man-Machine Studies,
63(1-2):74–101, 2005.

[13] E. Brickell, J. Camenisch, and L. Chen. Direct Anonymous Attestation.
In Proceedings of the 11th ACM Conference on Computer and Commu-
nications Security (CCS 2004), pages 132–145, Washington DC, USA,
2004. ACM Press, New York, USA.

[14] L. Chen, S. Pearson, and A. Vamvakas. On Enhancing Biometric Au-
thentication with Data Protection. In R. J. Howlett and L. C. Jain,
editors, Proceedings of the 4th International Conference on Knowledge-
Based Intelligent Engineering Systems and Allied Technologies, vol-
ume 1, pages 249–252, Brighton, Sussex, UK, 30th August – 1st Septem-
ber 2000. IEEE.

[15] S. Crane. Privacy Preserving Trust Agents. Technical Report HPL-
2004-197, HP Labs, Bristol, UK, 11 November 2004.

[16] T. Dierks and C. Allen. The TLS Protocol. RFC 2246, 1999.

[17] J. McCun eand A. Perrig, A. Seshadri, and Leendert van Doorn. Turtles
All The Way Down: Research Challenges in User-Based Attestation.
In Proceedings of 2nd USENIX Workshop on Hot Topics in Security
(HotSec 2007), August 2007.

17

[18] E. Gallery and C. J. Mitchell. Trusted Mobile Platforms. In A. Aldini
and R. Gorrieri, editors, Foundations of Security Analysis and Design
IV (FOSAD 2007), volume 4677 of Lecture Notes in Computer Science,
pages 282–323. Springer-Verlag, Berlin, Germany, September 2007.

[19] E. Gallery and A. Tomlinson. Secure Delivery of Conditional Access Ap-
plications to Mobile Receivers. In C. J. Mitchell, editor, Trusted Com-
puting, IEE Professional Applications of Computing Series 6, chapter 7,
pages 195–238. The Institute of Electrical Engineers (IEE), London, UK,
2005.

[20] T. Garfinkel, M. Rosenblum, and D. Boneh. Flexible OS Support and
Applications for Trusted Computing. In Proceedings of the 9th USENIX
Workshop on Hot Topics on Operating Systems (HotOS-IX), pages 145–
150, Kauai, Hawaii, USA, 18–21 May 2003. USENIX, The Advanced
Computing Systems Association, Berkeley, California, USA.

[21] P. Gutmann. PKI: It’s Not Dead, Just Resting. Computer, 35(8):41–49,
2002.

[22] Intel. LaGrande Technology Architectural Overview. Technical Report
252491-001, Intel Corporation, September 2003.

[23] M. Kinateder and S. Pearson. A Privacy-Enhanced Peer-to-Peer Reputa-
tion System. In K. Bauknecht, A. Min Tjoa, and G. Quirchmayr, editors,
Proceedings of the 4th International Conference on E-Commerce and
Web Technologies, volume 2738 of Lecture Notes in Computer Science,
pages 206–216, Prague, Czech Republic, 2–5 September 2003. Springer-
Verlag, Berlin-Heidelberg.

[24] D. Kuhlmann, R. Landfermann, H. Ramasamy, M. Schunter, G. Ra-
munno, and D. Vernizzi. An Open Trusted Computing Architecture
— Secure Virtual Machines Enabling User-Defined Policy Enforcement.
www.opentc.net, June 2006.

[25] H. Löhr, H. V. Ramasamy, A-R. Sadeghi, S. Schulz, M. Schunter,
and C. Stüble. Enhancing Grid Security Using Trusted Virtualization.
In Proceedings of the 4th International Conference on Autonomic and
Trusted Computing (ATC 2007), volume 4610 of Lecture Notes in Com-
puter Science (LNCS), pages 372–384, Hong Kong, China, 11–13 July
2007. Springer-Verlag, Berlin-Heidelberg.

[26] W. Mao, F. Yan, and C. Chen. Daonity: Grid Security with Behaviour
Conformity from Trusted Computing. In Proceedings of the 1st ACM

18

workshop on Scalable Trusted Computing (STC 2006), pages 43–46,
Alexandria, Virginia, USA, 3 November 2006.

[27] M. C. Mont, S. Pearson, and P. Bramhall. Towards Accountable Man-
agement of Identity and Privacy: Sticky Policies and Enforceable Trac-
ing Services. In Proceedings of the 14th International Workshop on
Database and Expert Systems Applications (DEXA 2003), pages 377–
382, Prague, Czech Republic, 1–5 September 2003. IEEE Computer
Society.

[28] M. C. Mont, S. Pearson, and P. Bramhall. Towards Accountable Man-
agement of Privacy and Identity Information. In E. Snekkenes and
D. Gollmann, editors, Proceedings of the 8th European Symposium on
Research in Computer Security (ESORICS 2003), volume 2808 of Lec-
ture Notes in Computer Science, pages 146–161, Gjøvik, Norway, 13-15
October 2003. Springer-Verlag, Berlin.

[29] A. Pashalidis and C. J. Mitchell. Single Sign-on using Trusted Platforms.
In C. Boyd and W. Mao, editors, Proceedings of the 6th International
Conference on Information Security (ISC 2003), volume 2851 of Lecture
Notes in Computer Science, pages 54–68, Bristol, UK, 1–3 October 2003.
Springer-Verlag, Berlin-Heidelberg.

[30] S. Pearson. Trusted Agents that Enhance User Privacy by Self-Profiling.
Technical Report HPL-2002-196, HP Labs, Bristol, UK, 15 July 2002.

[31] S. Pearson. How Trusted Computers can Enhance for Privacy Preserv-
ing Mobile Applications. In Proceedings of the 1st International IEEE
WoWMoM Workshop on Trust, Security and Privacy for Ubiquitous
Computing (WOWMOM 2005), pages 609–613, Taormina, Sicily, Italy,
13–16 June 2005. IEEE Computer Society, Washington, DC, USA.

[32] M. Peinado, Y. Chen, P. England, and J. Manferdelli. NGSCB: A
Trusted Open System. In H. Wang, J. Pieprzyk, and V. Varadhara-
jan, editors, Proceedings of 9th Australasian Conference on Information
Security and Privacy (ACISP 2004), volume 3108 of Lecture Notes in
Computer Science (LNCS), pages 86–97, Sydney, Austrailia, 13–15 July
2004. Springer-Verlag, Berlin-Heidelberg, Germany.

[33] M. Peinado, P. England, and Y. Chen. An Overview of NGSCB. In C. J.
Mitchell, editor, Trusted Computing, IEE Professional Applications of
Computing Series 6, chapter 7, pages 115–141. The Institute of Electrical
Engineers (IEE), London, UK, April 2005.

19

[34] G. Price. PKI—An Insider’s View (Extended Abstract). Technical Re-
port RHUL-MA-2005-8, Department of Mathematics, Royal Holloway,
University of London, Surrey, England, UK, June 2005.

[35] A. Pridgen and C. Julien. A Secure Modular Mobile Agent System. In
Proceedings of the 2006 International Workshop on Software Engineer-
ing for Large-Scale Multi-Agent Systems (SELMAS 2006), pages 67–74,
Shanghai, China, 22–23 May 2006. ACM Press, New York, USA.

[36] G. J. Proudler. Concepts of Trusted Computing. In C. J. Mitchell,
editor, Trusted Computing, IEE Professional Applications of Computing
Series 6, chapter 2, pages 11–27. The Institute of Electrical Engineers
(IEE), London, UK, April 2005.

[37] J. Reid, J. M. Gonzalez Nieto, and E. Dawson. Privacy and Trusted
Computing. In Proceedings of the 14th International Workshop on
Database and Expert Systems Applications (DEXA 2003), pages 383–
388, Prague, Czech Republic, 1–5 September 2003. IEEE Computer
Society.

[38] Electronic Frontier Foundation S. Schoen. Comments on LT Policy
on Owner/User Choice and Control 0.8. http://www.eff.org/

Infrastructure/trusted_computing/eff_comments_lt_policy.

pdf, December 2003.

[39] Electronic Frontier Foundation S. Schoen. Give TCPA an Owner Over-
ride. http://www.linuxjournal.com/article/7055, December 2003.

[40] Electronic Frontier Foundation S. Schoen. Comments on TCG
Design, Implementation and Usage Principles 0.95. http:

//www.eff.org/Infrastructure/trusted_computing/20041004\

_eff_comments_tcg_principles.pdf, October 2004.

[41] A-R. Sadeghi, M. Selhorst, C. Stüble, C. Wachsmann, and M. Winandy.
TCG inside?: a note on TPM specification compliance. In Proceedings
of the 1st ACM workshop on Scalable trusted computing (STC 2006),
pages 47–56, Alexandria, Virginia, USA, 2006. ACM, New York, NY,
USA.

[42] A-R. Sadeghi and C. Stüble. Property-based attestation for com-
puting platforms: caring about properties, not mechanisms. In C.F.
Hempelmann, editor, Proceedings of the 2004 workshop on New secu-
rity paradigms (NSPW 2004), pages 67–77, Nova Scotia, Canada, 2004.
ACM, New York, NY, USA.

20

[43] R. Sandhu and X. Zhang. Peer-to-peer access control architecture using
trusted computing technology. In E. Ferrari and G-J. Ahn, editors,
Proceedings of the 10th ACM symposium on Access control models and
technologies (SACMAT 2005), pages 147–158, 1–3 June 2005.

[44] L. F. G. Sarmenta, M. van Dijk, C. W. O’Donnell, J. Rhodes, and
S. Devadas. Virtual monotonic counters and count-limited objects using
a TPM without a trusted OS. In Proceedings of the 1st ACM workshop
on Scalable trusted computing (STC 2006), pages 47–56, Alexandria,
Virginia, USA, 2006. ACM, New York, NY, USA.

[45] S. E. Schechter, R. A. Greenstadt, and M. D. Smith. Trusted Comput-
ing, Peer-to-Peer Distribution, and the Economics of Pirated Entertain-
ment. In Proceedings of the 2nd Annual Workshop on Economics and
Information Security, 2003.

[46] S. Schoen. Trusted Computing: Promise and Risk. Whitepaper, Elec-
tonic Frontier Foundation, October 2003.

[47] SETCo. SET Secure Electronic Transaction 1.0 specification
— the formal protocol definition. http://www.setco.org/set_

specifications.html, May 1997.

[48] R. O. Sinnott. Development of Usable Grid Services for the Biomedical
Community. In Useability in e-Science Workshop: An International
Workshop on Interrogating Usability Issues in New scientific Practice,
within the Lab and within Society (NeSC 2006), Edinburgh, Scotland,
UK, 26–27 January 2006.

[49] A. Spalka, A. B. Cremers, and H. Langweg. Protecting the Creation
of Digital Signatures with Trusted Computing Platform Technology
against Attacks by Trojan Horse Programs. In M. Dupuy and P. Parad-
inas, editors, Proceedings of the 16th Annual Working Conference on
Information Security (IFIP/Sec’01) of Trusted Information: The New
Decade Challenge, volume 193 of IFIP Conference Proceedings, pages
403–419, Paris, France, 11–13 June 2001. Kluwer Academic Publishers,
Boston, Massachusetts, USA.

[50] E. Sparks. A Security Assessment of Trusted Platform Modules. Techni-
cal Report TR-2007-597, Department of Computer Science, Dartmouth,
Hanover, New Hampsire, USA, June 2007.

21

[51] R. Stallman. Free Software, Free Society: Selected Essays of Richard M.
Stallman, chapter 17 – Can You Trust Your Computer?, pages 115–119.
GNU Press, Boston, Massachusetts, USA, 2002.

[52] TCG. Interoperability Specification for Backup and Migration Services.
TCG specification version 1.0 revision 1.0, The Trusted Computing
Group (TCG), Portland, Oregon, USA, June 2005.

[53] TCG. Subject Key Attestation Evidence Extension. TCG specification
version 1.0 revision 7, The Trusted Computing Group (TCG), Portland,
Oregon, USA, June 2005.

[54] TCG. TCG Infrastructure Working Group Reference Architecture for
Interoperability (Part I). TCG specification version 1.0 revision 1, The
Trusted Computing Group (TCG), Portland, Oregon, USA, June 2005.

[55] TCG. TCG PC Client Specific Implementation Specification For Con-
ventional BIOS. TCG specification version 1.20 final, The Trusted Com-
puting Group (TCG), Portland, Oregon, USA, June 2005.

[56] TCG. TPM Main, Part 1: Design Principles. TCG Specification Ver-
sion 1.2 Revision 94, The Trusted Computing Group (TCG), Portland,
Oregon, USA, March 2006.

[57] TCG. TPM Main, Part 2: TPM Data Structures. TCG Specification
Version 1.2 Revision 94, The Trusted Computing Group (TCG), Port-
land, Oregon, USA, March 2006.

[58] TCG. TPM Main, Part 3: Commands. TCG Specification Version 1.2
Revision 94, The Trusted Computing Group (TCG), Portland, Oregon,
USA, March 2006.

[59] TCG. TCG Specification Architecture Overview. TCG specification
revision 1.4, The Trusted Computing Group (TCG), Portland, Oregon,
USA, August 2007.

[60] F. von Lohmann. Meditations on trusted computing. Electronic Frontier
Foundation Article, 2003.

[61] A. Whitten and J. D. Tygar. Why Johnny Can’t Encrypt: A Usability
Evaluation of PGP 5.0. In Proceedings of the 8th Conference on USENIX
Security Symposium (SSYM 1999), pages 14–14, Washington, District of
Columbia, USA, 1999. USENIX Association, Berkeley, California, USA.

22

[62] Z. Yan and Z. Cofta. A Method for Trust Sustainability Among Trusted
Computing Platforms. In S. Katsikas, J. Lopez, and G. Pernul, editors,
Proceedings of the 1st International Conference on Trust and Privacy
in Digital Business (TrustBus 2004), volume 3184 of Lecture Notes in
Computer Science (LNCS), pages 11–19, Zaragoza, Spain, 30 August–1
September 2004. Springer-Verlag, Berlin-Heidelberg, Germany.

[63] M. Yung. Trusted Computing Platforms: The Good, the Bad, and
the Ugly. In R. N. Wright, editor, Proceedings of the 7th International
Conference of Financial Cryptography (FC 2003), volume 2742 of Lec-
ture Notes in Computer Science (LNCS), pages 250–254, Guadeloupe,
Frence West Indies, 27–30 January 2003.

23

Advances on PrivacyCAs

Martin Pirker, Ronald Toegl, Daniel Hein, Peter Danner

Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology, Inffeldgasse 16a, A–8010 Graz, Austria

{mpirker,rtoegl,dhein,pdanner}@iaik.tugraz.at

ETISS 2008 Workshop on Challenges for Trusted Computing

Abstract. Millions of Trusted Platform Modules (TPMs) have been shipped as part of
common personal computers until today. They introduce novel mechanisms which improve
the security of computer systems on the Internet. Their Attestation concept support a
remote verifiers decision on the trustworthiness of a host. An additional required trusted
third party, a PrivacyCA, certifies that the used Attestation Identity Key (AIK) is actually
a tamper-protected TPM hosted key. Consequently, a PrivacyCA is required to follow a
privacy policy, which a client has to trust in. Unfortunately, this required TC support
infrastructure is lacking general availability and does not scale to the number of TPMs
available.

In this paper we present a versatile, efficient and platform-independent PrivacyCA service.
We demonstrate how such a trusted service can be seamlessly integrated in virtualized
environments by creating a minimum Trusted Computing Base (TCB) for it. Furthermore,
we improve the trustworthiness on different layers. The protocol interface is generated from
a formal specification, the source code is open to inspection and the PrivacyCA is able
to attest its runtime state and policy to clients. Finally, we outline how these small, self-
contained service compartments can be integrated in future trusted datacenters, to allow
massive scalability.

1 Introduction

The current design of common computer systems and networks no longer fulfills the security needs
of modern applications in a worldwide connected infrastructure. The recent rise of the concept of
Trusted Computing introduces a dedicated hardware trust anchor in ordinary personal computers.
The Trusted Platform Module (TPM) is able to protect security critical cryptographic operations
from software-based attacks. However, the use of protected cryptographic mechanisms alone is not
sufficient to convince remote machines or human users that a service can actually be trusted. To
enable judgement of results and associated trust levels, keys need to be vouched for by suitable
entities. Thus, a Public Key Infrastructure (PKI) is required to support Trusted Computing on
an Internet scale deployment. So far hundreds of millions of TPMs have been shipped[14]. Conse-
quently, to support such an amount of potential clients a highly scalable architecture is needed.

A particular incarnation of the PKI concept is the PrivacyCA. It serves to protect the privacy
of the user in a trust-enabled networked environment. In this scenario Remote Attestation, the
process of supplying sufficient proof that a host is in a well defined state, is a central notion. To
achieve this, an entity is required to certify that the reported state is indeed witnessed by a real
TPM. Providing the unique identity of the TPM with every attestation would allow to trace the
activities of the user. Thus, in order to anonymize the client, it becomes necessary to provide an
anonymized certificate that attests that the client uses hardware hosted TPM keys. A PrivacyCA
is a PKI that performs this service. It confirms that keys are within the protection of specification-
compliant TPM implementations and thus may be trusted under certain conditions – but without
revealing the specific TPM host(s).

2 Martin Pirker, Ronald Toegl, Daniel Hein, Peter Danner

Outline of the Paper Section 2 gives a short introduction to Trusted Computing mechanisms
and related cryptographic keys and certificates. In addition, we argue the need for a Trusted Com-
puting supporting PrivacyCA infrastructure service. In Section 3 we apply different approaches
to show how the trustworthiness of such a service can be increased in practice. In Section 4 we
discuss how to apply a highly flexible architecture to solve the problem of TC PKI scalability.
Putting theory to practice, Section 5 presents a general process to minimize the size of compart-
ments for specialized Trusted-Computing enabled Java applications. Employing it we demonstrate
the integration of the PrivacyCA service in distributed and virtualized environments by creating
a special purpose compartment. The paper considers related work in Section 6 and concludes in
Section 7.

2 Background

2.1 Trusted Computing

Software enforced security can be broken by software based attacks. To overcome this dilemma,
the Trusted Computing Group (TCG) [26] has defined a set of specifications, which the Trusted
Platform Module (TPM) is the integral part of. A TPM is a distinct component on the mother-
board of the platform, supplying support for cryptography, random number generation, and secure
storage. This chip provides passive services for the system software running on the platform. The
TC concept does not claim to enforce perfect security under all conditions and tasks but defines
a trustworthy system as a system that behaves in the expected manner for the intended purpose.

A system configuration and therefore the system’s behavior is identified by the running software
stack of which measurements are recorded. A measurement is defined as the hash of the binary
executable. Each software component is measured before it is given control to, starting with the
Core Root-Of-Trust for Measurement (CRTM). In a PC platform, the BIOS typically takes over
the role of the CRTM. This process leads to a chain-of-trust, following the so-called transitive trust
model.

To prevent tampering with the platform measurements the TPM utilizes Platform Configura-
tion Registers (PCRs). The TPM receives measurements x from system software and hashes the
input to the PCR with index i and content PCRt

i using the extend operation

PCRt+1
i = SHA-1(PCRt

i||x).

The basic TCG model envisions a static chain-of-trust from hardware reboot onwards. Newer
developments in the areas of CPUs and chipsets provide the option of a dynamic switch to a
trusted system state. A special CPU instruction allows to switch the system into a defined se-
curity state and then runs a measured piece of software which has full system control. Close
hard-wired cooperation of main CPU, the chipset and the TPM guarantees that the result is a
system in a thoroughly measured state. Additionally, such TC-enabled hardware platforms [8] also
support hardware enforced virtualization, thus providing the concept of an isolated and measured
compartment.

In the proposed OpenTC architecture [15], Trusted Computing utilizing the TPM is applied
to virtualized environments. Based on a choice of the Xen [3] virtual machine monitor or the Fi-
asco/L4 [12] µ-kernel, it allows the creation, execution and hibernation of isolated compartments1,
each executing an unmodified guest OS.

We consider the sum of all layers of software which influence the integrity and behavior of an
software application to form its Trusted Computing Base (TCB). This is reflected in the chain-of-
trust which is unique for each specific service.

Thus, a report on the PCR state reflects the exact state of a system. Presented with such a
report an external stakeholder can form an informed opinion about a system’s trustworthiness.

1 Note that such hardware-emulating compartments are often called ”Virtual Machines”. In this paper
we use the term exclusively for the language-based Java Virtual Machine.

Advances on PrivacyCAs 3

This central concept of a TC-enabled platform is known as Remote Attestation. The authenticity
and integrity of this report must be preserved even if the TCB is compromised or the network
channel is insecure. To this end, the TPM acts as Core Root-Of-Trust for Reporting (CRTR).
Upon request, it signs the PCR state with a special key of which the private part is guaranteed to
never have left the protection of the TPM. These keys are referred to as Attestation Identity Keys
(AIKs). To verify the authenticity of the report’s signature and thus the secure status of the key,
credentials backed by a PKI are needed.

2.2 Trusted Computing PKI Components

In the following sections we outline the components present in a public key infrastructure sup-
porting Trusted Computing and their intended role. Security credentials may be instantiated in
different formats, however the credential standard document of the TCG [28] describes credentials
in the concrete instantiation of X.509 certificates [13] or attribute certificates [10].

Endorsement Key / EK Certificate Every TPM is designed to host a unique Endorsement
Key (EK) pair. The private part is stored in a non volatile memory inside the TPM and cannot
be retrieved, once inserted. A corresponding TPM Endorsement certificate hosts the public part
of the key pair. This certificate represents an assertion that the specific TPM conforms with the
required TCG specifications and that the private Endorsement Key is guarded by a TPM. It is
suggested that the TPM manufacturer, the entity which inserted the EK, creates and signs the
Endorsement certificate.

As the Endorsement Key uniquely identifies a TPM and hence a specific platform, the privacy
of the platform user(s) might be at risk if the EK would be utilized for frequently used operations.
As a consequence, the EK was defined to be used only with a strictly limited set of operations,
enforced by the TPM.

Platform Certificate A system manufacturer vouches for all parts of a platform except the TPM
with a Platform Endorsement (PE) credential. It represents an assertion that the specific platform
incorporates a properly certified TPM (thus a reference to the EK certificate is included) and the
necessary support components to enable an architecture conforming to TCG specifications.

Attestation Identity Key / AIK Certificate As an alternative to the unique and privacy
sensitive EK, the TCG introduced Attestation Identity Keys (AIKs) and associated AIK certifi-
cates, which do not contain direct evidence of their specific hosting TPM. A trusted third party,
a so called privacy certification authority service (PrivacyCA, PCA), issues these AIK certificates
and assures that identity keys are TPM hosted. Thus, in order to create an AIK certificate the
following protocol steps take place between a client system with a TPM and the PCA:

– A client application, running on a machine containing a TPM, initiates the TPM functions to
a) create a new attestation identity RSA key pair (identity key) and b) a certification request
structure intended for the PrivacyCA. The request is encrypted with the public key of the
PrivacyCA, which must be known to the client.

– The request is transported to the PrivacyCA.
– The PrivacyCA decrypts the request and validates the its content. Included are, among other

information, the EK and PE certificates of the platform. On successful validation the PCA
issues an AIK certificate, encrypted with the public key of the EK of the TPM. This assures
that the result package can only be decrypted by the intented recipient TPM.

– The PrivacyCA result is transported back to the client system.
– The client asks the systems TPM to decrypt the received data package using the private EK.

On successful completion of this protocol the plaintext AIK certificate is obtained.

4 Martin Pirker, Ronald Toegl, Daniel Hein, Peter Danner

To summarize, an activated AIK comprises an identity TPM key pair and an associated cer-
tificate issued by a third party PCA service, attesting that the key pair is bound to a TPM. An
AIK certificate contains information fragments from both, EK and PE certificate, but does not
contain a link back to the EK certificate. Additionally, an AIK certificate hosts a client chosen
random label string which allows for later recognition in a set of AIK certificates and may be
considered a pseudonymous identity. This label is a specific TCG certificate extension and must
not be confused with standard certificate naming fields.

The TCG standardized the steps, data structures and the PrivacaCA entity outlined above,
but no specific protocol is stipulated for exchange of the request and response packets.

3 Our Architecture

3.1 Guidelines for Trusted Services

In order to create a service that justifies being considered a trusted third party, a trade-off be-
tween trustworthiness and practicality of implementation needs to be made. Thus, based on our
experiences we propose a set of guidelines for building trusted services.

Where possible, a service should be secure by design. To formally proof the security properties
of all layers in a Trusted Computing design – including BIOS, Operating System, libraries and
application code – is currently not feasible. However, critical elements and especially interfaces can
be designed and analyzed in a formal way. Likewise, even informal arguing of security is difficult
with today’s bloated platforms. Thus, it is desirable to keep the Trusted Computing Base as small
as possible. This includes the removal and deactivation of unnecessary features. In addition, the
use of mature components is a pragmatic way to gain confidence in the trustworthiness of a host.
It is also essential that all components are maintained. The choice of the runtime environment
should be guided by the needs of a service and help to prevent implementation errors. Trusted
Computing should be considered in the design of trusted services. A service should be built in a
way that it can attest its state and mode of operation to its clients. Finally, iterative refinement
should eliminate questionable components, at design time as well as later in the lifetime of the
service.

3.2 A Trustworthy PrivacyCA in a Box

We now apply these guidelines to the creation of a PrivacyCA and describe the decisions taken
on the different layers.

Network Interface Network entity interaction requires a common protocol understood by all
participants. Multiple protocols are available in the area of PKI and credential management. For
Trusted Computing a protocol should be able to support common PKI services as well as TC
specific attributes, queries and data blobs.

The TCG considered this infrastructure problem in [27]. The two candidates mentioned were
the CMC protocol [17] for X.509 certificates and the XKMS protocol [18] for XML-based creden-
tials. The XKMS option appears attractive because it is able to wrap legacy CA services designed
for X.509 certificates and express certificate management in XML, as well as providing an attrac-
tive upgrade option. However, the significant implementation overhead and complexity introduced
by XML weighs against its deployment. A PrivacyCA implementation which uses XKMS was
published at [19] and has been operational since 2007.

The exchange of data in the AIK cycle (see Section 2.2) consists of transferring opaque Binary
Large OBject data (”BLOBS”) and is one of the primary functions of a PrivacyCA. This voids
one advantage of XML, which is to keep structured data human-legible. Thus, we believe a simple
wrapping representing just the command description and the payload blob(s) is sufficient. Instead
of using a verbose XML based protocol, we implement a simple and more compact protocol that
can be (semi)-autogenerated from formal specifications. Thus, protocol design can be performed

Advances on PrivacyCAs 5

by way of state machine design, which in addition provides an easy, human-understandable level
of abstraction.

The notion of a trusted-third-party (TTP) implies that a client connecting to it assumes a
secured end-to-end communication channel. We propose the client to use a key derived from the
a priori known public PrivacyCA key to establish an encrypted TLS-session.

Trusted Java For the creation of a security aware network service, the Java platform provides
a compelling choice. As outlined in [25], Java not only provides a mature platform and several
language features which aid programmers in creating robust implementations, but also several
libraries for using Trusted Computing features [19] are readily available.

Special Purpose Compartment For functionality and security assessment the code base should
be as small as possible. One should aim to include only components which are absolutely necessary
for operation. This includes not only the selection of packages which provide just enough function-
ality, but also custom stripping of selected packages of functionality are deemed unnecessary. It
is tempting to intuitively argue that less Lines-of-Code generally equal less defects. However, the
vulnerability density is not always linear to size. Overall, the reduction of code base complexity
aids the goal of detecting and understanding security issues.

We eschew the creation of a special purpose platform, instead we use a well maintained off-
the-shelf operating system and mature library components. This is a practical oriented approach
which cannot compete with specifically designed solutions, built and verified from scratch. It offers,
however, a good balance of prototyping speed, maturity, features, invested effort and security, thus
providing practical trustworthiness for all but the most critical intended service purposes.

Remote Attestation of the Service A PrivacyCA may provide different certification and data
retention policies, with the privacy options in the range from remember nothing to remember
everything. In the first case the PCA checks the credentials presented by the client and, if all are
found valid, it issues an AIK certificate for the presented public key. Immediately afterwards all
information is wiped out from memory. The PCA relies solely on its own certificate signature for
certificate validation at a later stage. In the latter case the PCA keeps (more or less) detailed
records of credentials received and issued. This offers the opportunity for e.g. mass revocation of
certificates linked to a compromised TPM series, but also establishes the risk of information leaks
of EK – AIK certificate associations.

Thus, it improves the trustworthiness if a client is able to get a proof of an enforced policy
by the means of remote attestation. The Java runtime environment with TC support libraries
allow the easy implementation of such a service [9]. Building upon our assumption that we restrict
ourselves to a self-contained compartment, its image can easily be measured (hashed) at startup
and be part in the chain-of-trust. It can be attested which PrivacyCA software image is running.
Additionally, using open source software only, this image is completely open to any method of
security and privacy assessment.

4 A Scalable Scenario

In an future trust-enabled Internet a PrivacyCA potentially has to serve millions of customers.
Following the thought of previous sections we outline a scenario how a scalable Trusted PrivacyCA
(TPCA) could be implemented. Figure 1 illustrates the structure of our TPCA proposal and
illustrates its major players.

A datacenter is required to provide the infrastructure that is capable of handling the expected
workload. The security of any CA depends on keeping its signing key(s) secret. To ensure this,
the scenario presented herein necessitates a Trusted Virtual Datacenter (TVDc) [5]. A TVDc is a
datacenter that uses hardware isolation mechanisms to separate the virtual machines that handle

6 Martin Pirker, Ronald Toegl, Daniel Hein, Peter Danner

Fig. 1. Structure of a scalable Trusted PrivacyCA (TPCA)

its workload. We also assume that the operator handles physical and operational security in a way
appropriate for the services he offers.

For the remainder of the text a virtual machine isolated thus, will be called a secure compart-
ment or just compartment. These compartments are equipped with a virtual TPM (vTPM) [4]
[23]. The trustworthiness of the vTPM is extended from a hardware TPM. A trusted compartment
is run on a thin hypervisor layer that abstracts the hardware and handles the actual isolation.

The “PrivacyCA in a Box” (PBox) design introduced in Section 3 is the integral component
of the TPCA and is run in a secure compartment. It is a minimalistic PrivacyCA implementation
that is intentionally kept as simple as possible (of which a prototype will be detailed in Section
5). In this scenario the image of PBox is publicly available for review.

Only two mutable data items that are not part of this image are needed for operation. The first
is the signing key that is used to create the AIK certificates issued to a client and the second is a
certificate serial number range. This secret key has to remain under the control of the datacenter
operator at all times. Yet, to allow seamless scalability of the number of PBoxes running in parallel,
it must be distributed to each instance of the PBox. A sealing-based solution is an adapted [24]
secret distribution scheme [21]. The serial number range assignment enables the datacenter to run
several instances of the same PBox concurrently. It also implicitly defines the maximum lifetime
of a PBox. To minimize maintenance and maximize scalability a PBox is build as a fire and

Advances on PrivacyCAs 7

forget mechanism. After its alloted serial numbers are depleted the compartment is destroyed and
depending on the current workload optionally replaced by one or several new instances.

The datacenter manager is the entity with the authorization to manage the compartments. It is
also responsible for deciding when to destroy an exhausted PBox and when to create new PBoxes.
It inter-operates with the PrivacyCA client interface, basically a load balancing layer which allows
transparent client-PBox interaction, to determine the necessary number of concurrent PrivacyCA
compartments.

The virtual TPMs enable PrivacyCA-to-client attestation. In extension binary attestation
of the PBox image allows to determine the level of privacy (LOP), which a specific PBox-
compartment supplies. It is probably safe to assume that operating a PrivacyCA for the workload
projected in this scenario is expensive. A business case might be build on providing different levels
of privacy at varying costs.

A paying customer might very well demand proofs that his requests receive the appropri-
ate LOP. What better way to ascertain that than by using the same tools that necessitate the
PrivacyCA in the first place?

Keeping track of binary attestation values and mapping them to a property [20] like the
associated level of privacy is subject to ongoing research [16] [7] [30]. We assume that the simplicity
of the PBox implementation will facilitate this process. Nevertheless its complexity could seriously
impede the acceptance of TPCA services.

It is obvious that a PBox-setup issuing the AIK certificates for attesting its own configuration
would create a ”singularity of trust”. To prevent this and to hide the complexity of achieving
property based attestation we introduce a trusted fourth party (TFP). Its function is that of an
independent observer, or to that end a commercial competitor, who provides additional certifica-
tion that the customer receives the appropriate privacy level, also considering an analysis of the
PBox images used.

The TFP determines the LOP provided by a specific PBox by analyzing the state of a com-
partment based on a measurement report created and signed using the compartments vTPM. The
signature on the report needs to be backed by an AIK-certificate. The AIK authority is derived
from an endorsement certificate for the vTPM. The vTPM CA provides these certificates. The
exact procedure for this is subject to further research. The same is true for the question whether
the vTPM CA should be part of the TVDc, the TFP or if it should be an independent entity.

4.1 Client requesting an AIK

To facilitate the understanding of the TPCA operation, we detail the additional steps necessary
for a client to receive an AIK certificate in a trust enabled manner.

1. The client requests an AIK certificate. In addition to the parameters prerequisite to perform
the default AIK certificate request cycle, the client also submits an identifier. This is necessary
in order to grant the client a specific privacy level.

2. The PrivacyCA client interface forwards the request to one of the PBox compartments ap-
propriate for the expected LOP. The PBox supplements its response with the compartments
attestation information and sends it back to the client.

3. The client sends the signed measurement log of the PBox to the fourth party. This entity
performs the mapping of the binary measurement values to a privacy level. Also, it verifies
the authenticity of the signature on the attestation information depending on the vTPM CA
to provide a certificate for the virtual TPM. If the TFP is satisfied, it sends an appropriate
response to the client, which is then able to complete the transaction.

5 Prototype Implementation

We implemented parts of the architecture and scenario described in the previous sections. We
implemented a basic, yet usable PrivacyCA service and at the same time assembled a minimum-
sized compartment that provides an environment suitable to run it.

8 Martin Pirker, Ronald Toegl, Daniel Hein, Peter Danner

The supported PrivacyCA operations and thus the required runtime components are very
limited. The target to minimize the environment severely restricts the available components, but
it becomes easier to estimate what adding a new feature entails on the runtime side. The following
sections summarize our efforts and choices made.

5.1 PrivacyCA Features

Our first prototype of a PrivacyCA supports the following command set:

ekcert create This command creates a TPM endorsement certificate for a supplied public key.
To our knowledge only one vendor, Infineon, supplies its TPM with an Endorsement certificate.
For all other TPMs a trusted entity must create an Endorsement certificate.

ekcert validate This command validates a TPM endorsement certificate. Our PrivacyCA recog-
nizes Infineon certificates and certificates issued by the previous command.

aik create Implements the AIK certificate creation cycle as specified by the TCG.
aik validate Provides a function to validate the AIK certificates issued by our PrivacyCA.
aik locate Offers a search function for retrieval of a specific AIK certificate, with the AIK label

used as the search key.
aik revoke After revocation the PrivacyCA no longer successfully validates an AIK certificate.

For a compact and robust communication protocol we devised a simple ASCII based solution.
Basically, for most commands it is sufficient to prefix a command identifier, followed by the data.
Binary data payload is transmitted as Base64 encoded strings. The following example illustrates
the basic command request and response of the aik create command:

Request: Response:
"CREATE_AIK_REQUEST" "\n" "CREATE_AIK_RESPONSE" "\n"
"Blob: " base64 "\n" "Blob1: " base64 "\n"
".\n" "Blob2: " base64 "\n"

".\n"

The command emitter code is reduced to a straightforward line by line output of a command
and thus not very error prone. The server side parsing is implemented using the Ragel state machine
compiler2 resulting in mostly automatically generated parsing code. Ragel generates executable
finite state machines from a regular-expression based input language. It allows to generate code
for multiple target languages, not only for Java and thus we hope this encourages development
of clients in alternative languages. The operations implemented so far can be mapped to an one
request requires one response approach. Looking ahead, however, we expect interaction to become
more complex and thus the application of a state machine not only to raw protocol parsing but
also for modeling complex series of commands promises a solid foundation.

5.2 Software Image Reduction

The interacting components can be assigned to the following layers: PrivacyCA application,
JVM/JRE, OS runtime support, OS kernel and TPM.

At the top level is the actual PrivacyCA application. In order for the Java bytecode to execute,
a Java Runtime Environment (JRE) with a Java Virtual Machine (JVM) at its core is required.
It consists of a runtime library providing a set of common basic Java classes and a bytecode
interpreter (or just-in-time compiler). The virtual machine makes use of the capabilities offered
by the native environment. The native environment is composed of a set of high-level application
libraries (e.g. graphics, printing, and sound), the C/C++ standard libraries and operating system
functions. The operating system kernel implements the low-level services.

2 A. Thurston, Ragel State Machine Compiler, http://research.cs.queensu.ca/~thurston/ragel/,

http://research.cs.queensu.ca/~thurston/ragel/

Advances on PrivacyCAs 9

This full software stack is able to run in a designated virtualized compartment, unaware of
the underlying virtualization layer. Hardware virtualization ensures protection from interference
of compartments running in parallel on the same machine.

We tailored an environment for the execution of our specific PrivacyCA application program
by starting with a running configuration and then reducing the included functionality in the
respective layers to the absolute minimum. The process of minimizing the software components
by identifying and removing features which are not relevant to the execution of the PrivacyCA, is
as follows:

Java Environment To provide the best possible Java compatibility and allow reuse of existing
code we choose IcedTea3, which is based on Sun’s official OpenJDK4. IcedTea supplies a new
build process for OpenJDK which employs only software components available as free-licensed
open source software, thus aiding maximum modifiability.

The runtime of a current Java platform well exceeds 100MB in its default configuration. The
actual part of it which is needed to run a PrivacyCA is much smaller. First, we can reduce the
runtime environment with a dynamic analysis of the classes being loaded while the PrivacyCA
is executed. This is accomplished by enabling the class loading profiling feature of the Java VM.
Subsequently these classes are copied from the original full-sized runtime and accumulated into
a new custom environment. Of course, Exception and Error classes which are required in case
the application’s behavior changes due to external events are included. In addition, the set of
dynamically loaded .so libraries is monitored by using the debug features of the system dynamic
linker/loader ld.so. This enables us to carry over only those native libraries needed. Additionally, we
manually prune miscellaneous unnecessary data files, such as dispensable localization data, images
and unused configuration files. This approach reduces the Java runtime for a specific application
to a more manageable size in the range of 10 to 20MB. Note that this approach requires manual
intervention and reasonable completeness is only achievable for small applications.

A Small Kernel After selection of a target JVM we require an OS which is small in size, yet
powerful enough to support the IcedTea Java Virtual Machine. As a further trait, we prefer a
candidate which is known for maturity and availability of maintenance.

Of the open source operating systems, GNU/Linux is widely used and actively maintained
by a large global community. Virtualization of Linux compartments is possible using the Xen
hypervisor5. Also, GNU/Linux easily hosts the most recent Java environments, including running
and building IcedTea. The Linux kernel features hardware drivers for TPMs of all vendors. It
also provides fine-grained configuration options on which parts to include in the resulting kernel
image or built as kernel modules. This allows selection of only those capabilities required by our
application. This configuration consists of essential kernel functionality and a small set of drivers
to enable running standalone or in a virtualized compartment.

A Minimal Runtime The standard glibc system library interface to the Linux kernel uses
about 20 to 25MB disk space on a typical installation, including several support tools and data
files. Additional system tools for simple file manipulation, kernel module loading utilities and the
standard bash system shell required for the boot process accumulate to over 3MB. The size of an
off-the-shelf Linux distribution violates our requirement of a small and manageable system image.

For support of the boot process of the system, we replace the commonly used GNU core
utilities along with kernel module tools and the default bash shell with the much smaller Busybox 6

toolkit. It provides a minimal userland program environment. We further minimize the boot time

3 http://icedtea.classpath.org/
4 http://openjdk.java.net/
5 Operating environments based on the L4 microkernel can likewise run a paravirtualized version of the

Linux kernel.
6 http://www.busybox.net/

http://icedtea.classpath.org/
http://openjdk.java.net/
http://www.busybox.net/

10 Martin Pirker, Ronald Toegl, Daniel Hein, Peter Danner

complexity by using a set of base and init shell files provided by the sys-apps/baselayout-lite
package made available by the Embedded Gentoo project7. In contrast to the variants usually
employed in desktop-oriented distributions this package features a minimal set of configuration
files needed for starting and running a GNU/Linux system.

Considering the requirement on size we chose the uClibc8 as an alternative C library with a
drastically reduced footprint. It only needs about half the size of the library files compared to
glibc for a complete installation. uClibc implements parts of the GNU libc API, but omits some
specialized and nowadays rarely used functions. However, this provides enough functionality to
startup and run Java.

Results for a minimal PBox Compartment The size of the components in a snapshot of our
current prototype can be approximated as follows, with the total compartment reaching a size of
approximately 16 Megabytes.

OS Kernel : 900kB Linux kernel; OS runtime: 451kB BusyBox, 65kB Baselayout-lite; C li-
braries: 3545kB libstdc++, 1096kB uClibc, 45kB GCC runtime; Java Core: 8100kB Stripped
Icedtea JRE; Java Application: 102kB PrivacyCA server core, 789kB lib IAIK JCE, 140kB lib
JTSS TSP, 48kB lib TCcert.

6 Related Work

To our knowledge the first experimental public PrivacyCA responder9 service was put into op-
eration at IAIK as part of the OpenTC10 project and served as basis for the advanced results
reported in this paper.

A seemingly private effort to offer a PrivacyCA was announced11, but this responder only
supports creation of AIK certificates. Others works [31] demonstrate interaction with a PrivacyCA
service, however have not released any prototype so far.

Java is still evolving and thus older results may not reflect newer research developments or
productive services. In a recent proposal, Anderson et al. [2] created a small sized Xen library OS
running exclusively on top of the Xen hypervisor. Due to the lack of basic features it is not able to
run a modern Java Runtime Environment such as OpenJDK. There also exists a significant body of
research on Java virtual machines and using Java as an operating system or a component thereof.
However, most previous results [11], [29] or projects (SanOS12) are currently unmaintained. Also,
mobile Java platforms such Sun’s KVM13 may be smaller, however their feature set is massively
restricted and not compatible with full Java applications or libraries. More recent efforts like
JNode14 or [1] do not consider that binary size is a goal, thus resulting in a TCB is too large
for our purposes. The ongoing Java Kernel15 project features a method of dividing JRE libraries
into separate bundles, which are later fetched at runtime as required. The dynamic loading of
classes from remote services and the reliance on a full-featured Windows environment introduces
additional overhead and possible extra points of attack.

As alternative to the trusted third party concept of PrivacyCA, [6] proposes Direct Anonymous
Attestation. TPM implementations are available, yet the required software infrastructure has not
been provided for. It remains a theoretical concept so far.

7 http://www.gentoo.org/proj/en/base/embedded/
8 http://www.uclibc.org/
9 http://opentc.iaik.tugraz.at/

10 http://www.opentc.net/
11 http://sourceforge.net/mailarchive/forum.php?thread_name=da7b3ce30801131643j74be4064l52daa8c0e90efa83%

40mail.gmail.com&forum_name=trousers-users
12 http://www.jbox.dk/sanos/
13 http://java.sun.com/products/cldc/wp/KVMwp.pdf
14 http://www.jnode.org/
15 http://weblogs.java.net/blog/enicholas/archive/2007/05/java_kernel_unm.html

http://www.gentoo.org/proj/en/base/embedded/
http://www.uclibc.org/
http://opentc.iaik.tugraz.at/
http://www.opentc.net/
http://sourceforge.net/mailarchive/forum.php?thread_name=da7b3ce30801131643j74be4064l52daa8c0e90efa83%40mail.gmail.com&forum_name=trousers-users
http://sourceforge.net/mailarchive/forum.php?thread_name=da7b3ce30801131643j74be4064l52daa8c0e90efa83%40mail.gmail.com&forum_name=trousers-users
http://www.jbox.dk/sanos/
http://java.sun.com/products/cldc/wp/KVMwp.pdf
http://www.jnode.org/
 http://weblogs.java.net/blog/enicholas/archive/2007/05/java_kernel_unm.html

Advances on PrivacyCAs 11

7 Conclusions and Future Work

In this paper we describe the creation of an advanced PrivacyCA service. We incorporate the results
of operating a experimental public prototype setup for more than a year. We also demonstrate
how a trusted service may be built using technologies such as protocol generation or virtualization.
We demonstrate a way to reduce the TCB of a Java-based service significantly and provide a self-
contained, trusted PrivacyCA-service compartment image that requires less than 16 MB. We also
propose to apply such images in parallel in the context of trusted virtual data centers, thus handling
the problem of PKI scalability.

Future work will consider use cases in the context of distributed computing and grids [30] and
advanced certification mechanisms for virtual TPMs. An integration of the newest TCG credential
type, an unified credential [28], may stimulate new workflows. We also desire to work on closing
the gap between automatic generation of an implementation and the formal security analysis of
network protocols and to apply this to future extended PrivacyCA interfaces. We identify the
need for an automated process for the identification of required runtime components, using e.g.
employing static source analysis.

Singaravelu et al. [22] suggest to extract security critical modules out of the legacy application.
Each of these modules is transferred into a separate, trusted compartment called AppCore which
features a small TCB. We believe that our reduced Java environment is ideally suited to implement
similar modifications for Java applications and hope to demonstrate this in the future.

References

1. G. Ammons, J. Appavoo, M. Butrico, D. D. Silva, D. Grove, K. Kawachiya, O. Krieger, B. Rosenburg,
E. V. Hensbergen, and R. W. Wisniewski. Libra: a library operating system for a jvm in a virtual-
ized execution environment. In VEE ’07: Proceedings of the 3rd international conference on Virtual
execution environments, pages 44–54, New York, NY, USA, 2007. ACM.

2. M. J. Anderson, M. Moffie, and C. I. Dalton. Towards trustworthy virtualisation environments: Xen
library os security service infrastructure. Technical Report HPL-2007-69, HP Research, 2007.

3. P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization. In SOSP ’03: Proceedings of the nineteenth ACM
symposium on Operating systems principles, pages 164–177, New York, NY, USA, 2003. ACM.

4. S. Berger, R. Cáceres, K. A. Goldman, R. Perez, R. Sailer, and L. van Doorn. vTPM: virtualizing the
trusted platform module. In USENIX-SS’06: Proceedings of the 15th conference on USENIX Security
Symposium, pages 305–320, 2006.

5. S. Berger, R. Cáceres, D. Pendarakis, R. Sailer, E. Valdez, R. Perez, W. Schildhauer, and D. Srinivasan.
TVDc: managing security in the trusted virtual datacenter. SIGOPS Oper. Syst. Rev., 42(1):40–47,
2008.

6. E. Brickell, J. Camenisch, and L. Chen. Direct anonymous attestation. In CCS ’04: Proceedings of
the 11th ACM conference on Computer and communications security, pages 132–145, New York, NY,
USA, 2004. ACM.

7. L. Chen, R. Landfermann, H. Löhr, M. Rohe, A.-R. Sadeghi, and C. Stüble. A protocol for property-
based attestation. In STC ’06: Proceedings of the first ACM workshop on Scalable trusted computing,
2006.

8. David Grawrock. The Intel Safer Computing Initiative. Number ISBN 0-9764832-6-2. Intel Press,
2006.

9. K. Dietrich, M. Pirker, T. Vejda, R. Toegl, T. Winkler, and P. Lipp. A practical approach for
establishing trust relationships between remote platforms using trusted computing. In G. Barthe and
C. Fournet, editors, Trustworthy Global Computing, volume 4912 of LNCS, pages 156–168. Springer
Verlag, 2008.

10. S. Farrell and R. Housley. An Internet Attribute Certificate Profile for Authorization. http://www.

ietf.org/rfc/rfc3281.txt, Apr. 2002.
11. M. Golm, M. Felser, C. Wawersich, and J. Kleinöder. A Java operating system as the foundation of

a secure network operating system. Technical report tr-i4-02-05, Univ. of. Erlangen, Dept. of Comp.
Science, Lehrstuhl 4, 2002.

12. M. Hohmuth. The Fiasco kernel: Requirements definition. Technical Report ISSN 1430-211X, Dresden
University of Technology, 1998.

http://www.ietf.org/rfc/rfc3281.txt
http://www.ietf.org/rfc/rfc3281.txt

12 Martin Pirker, Ronald Toegl, Daniel Hein, Peter Danner

13. R. Housley, W. Polk, W. Ford, and D. Solo. Internet X.509 Public Key Infrastructure Certificate and
Certificate and CRL Profile. http://www.ietf.org/rfc/rfc3280.txt, Apr. 2002.

14. IDC. The Future of Trusted Computing. https://www.trustedcomputinggroup.org/news/Industry_
Data/IDC_Presentation.pdf.

15. D. Kuhlmann, R. Landfermann, H. V. Ramasamy, M. Schunter, G. Ramunno, and D. Vernizzi. An
open trusted computing architecture — secure virtual machines enabling user-defined policy enforce-
ment. Research Report RZ 3655, IBM Research, 2006.

16. U. Kühn, M. Selhorst, and C. Stüble. Realizing property-based attestation and sealing with commonly
available hard- and software. In STC ’07: Proceedings of the 2007 ACM workshop on Scalable trusted
computing, 2007.

17. M. Myers, X. Liu, J. Schaad, and J. Weinstein. Certificate Management Messages over CMS. http:

//www.ietf.org/rfc/rfc2797.txt, Apr. 2000.
18. S. H. Mysore and P. Hallam-Baker. XML key management specification (XKMS 2.0). W3C recom-

mendation, W3C, June 2005. http://www.w3.org/TR/2005/REC-xkms2-20050628/.
19. M. Pirker, T. Winkler, R. Toegl, and T. Vejda. Trusted computing for the JavaTMplatform. http:

//trustedjava.sourceforge.net/, 2008.
20. A.-R. Sadeghi and C. Stüble. Property-based attestation for computing platforms: caring about

properties, not mechanisms. In C. Hempelmann and V. Raskin, editors, NSPW, pages 67–77. ACM,
2004.

21. P. E. Sevinç, M. Strasser, and D. Basin. Securing the distribution and storage of secrets with trusted
platform modules. In WISTP 2007, pages 53–66, 2007.

22. L. Singaravelu, C. Pu, H. Härtig, and C. Helmuth. Reducing TCB complexity for security-sensitive
applications: three case studies. In EuroSys ’06: Proceedings of the ACM SIGOPS/EuroSys European
Conference on Computer Systems 2006, pages 161–174, New York, NY, USA, 2006. ACM.

23. F. Stumpf, M. Benz, M. Hermanowski, and C. Eckert. An approach to a trustworthy system archi-
tecture using virtualization, 2007.

24. R. Toegl, A. Leung, G. Hofferek, K. Greimel, R. Phan, and R. Bloem. Formal analysis of a TPM-
based secrets distribution and storage scheme. In Proceedings of TrustCom 2008, 2008. Accepted for
publication.

25. R. Toegl and M. Pirker. An ongoing game of tetris: Integrating trusted computing in Java, block-by-
block. In Proceedings of Future of Trust in Computing. Vieweg + Teubner, 2008. in print.

26. Trusted Computing Group. https://www.trustedcomputinggroup.org/.
27. Trusted Computing Group. TCG Reference Architecture for Interoperability (Version 1.0). https:

//www.trustedcomputinggroup.org/specs/IWG, June 2005.
28. Trusted Computing Group. TCG Credential Profiles Specifications (Version 1.1, rev 1.014). https:

//www.trustedcomputinggroup.org/specs/IWG, May 2007.
29. L. van Doorn. A secure Java virtual machine. In Proceedings of the 9th UESENIX Security Symposium.

USENIX Association, 2000.
30. T. Vejda, R. Toegl, M. Pirker, and T. Winkler. Towards Trust Services for Language-Based Virtual

Machines for Grid Computing. In Proceedings of TRUST 2008, LNCS. Springer Verlag, 2008. in print.
31. J. Zic and S. Nepal. Implementing a portable trusted environment. In Proceedings of Future of Trust

in Computing. Vieweg + Teubner, 2008. in print.

http://www.ietf.org/rfc/rfc3280.txt
https://www.trustedcomputinggroup.org/news/Industry_Data/IDC_Presentation.pdf
https://www.trustedcomputinggroup.org/news/Industry_Data/IDC_Presentation.pdf
http://www.ietf.org/rfc/rfc2797.txt
http://www.ietf.org/rfc/rfc2797.txt
http://www.w3.org/TR/2005/REC-xkms2-20050628/
http://trustedjava.sourceforge.net/
http://trustedjava.sourceforge.net/
https://www.trustedcomputinggroup.org/
https://www.trustedcomputinggroup.org/specs/IWG
https://www.trustedcomputinggroup.org/specs/IWG
https://www.trustedcomputinggroup.org/specs/IWG
https://www.trustedcomputinggroup.org/specs/IWG

Attacking the BitLocker Boot Process

Sven Türpe, Andreas Poller, Jan Steffan, Jan-Peter Stotz
and Jan Trukenmüller

Fraunhofer-Institute for Secure Information Technology SIT
Rheinstrasse 75,

64295 Darmstadt, Germany
{tuerpe,poller,steffan,stotz,truken}@sit.fraunhofer.de

We discuss attack scenarios against the TPM-based boot process of Bit-
Locker. BitLocker is a disk volume encryption feature included in some recent
versions of Microsoft Windows. BitLocker is capable of using the TPM to
manage all or a portion of its secret encryption keys. Specifically it uses the
sealing feature to ensure keys are released only if the platform is in a pre-
defined, trusted state. We present six ways in which an attacker may gain
access to secret key material by manipulating the boot process in ways not
prevented by the trusted computing technology. We also discuss their causes
and contributing factors.

1 Introduction

The trusted computing platform as specified by the Trusted Computing Group does not
support secure booting [1, 13]. Not in a strict sense, that is: there are indeed features in
the platform that allow the TPM to keep track of the boot process and notice tampering
with most (but not all [5]) components involved. Other functions of the TPM, such as
remote attestation and sealing, are designed to use the result of it.

This leads to the question what exactly the capabilities and limitations of the existing
functions are. In this paper we explore this question along one particular software de-
sign and implementation: BitLocker. Included with some editions of Microsoft Windows
Vista and Windows Server, BitLocker encrypts volumes on disk and uses the sealing func-
tion of a v1.2 TPM for some aspects of its key management. We discuss several attack
scenarios against the BitLocker boot process. So far, our work is limited to theoretical
considerations and to analysis. We do not (yet) discuss practical implementation of the
attacks we describe, and we try to fully understand the problem before devising solu-
tions. Our analysis is based on the version of BitLocker included with pre-SP1 versions

1

of Windows Vista Ultimate. We expect our points to remain valid for the SP1 version
but haven’t verified this yet.

The remainder of this paper is organized as follows. Section 2 briefly describes the
design of BitLocker, focusing on its key management and how it is using the TPM. Our
adversary model is outlined in section 3. Section 4 describes attack scenarios that seem
feasible and either yield secret key or data or achieve some important steps towards a
successful attack. Causes and contributing factors are discussed in section 5, followed
by the conclusions in section 6. Related literature is referenced where appropriate but
not specifically discussed.

A Disclaimer Note that there are two distinct attack strategies against which BitLocker
should ideally protect. Opportunistic attacks use only what is easily obtained under com-
mon real-world conditions. An example is recovering data on a disk or computer that
has been bought in used condition from somebody else, or stolen somewhere. A tar-
geted attack is different in that the attacker attempts to get access to data on a specific,
predetermined disk or machine, usually within some time and resource constraints. Ac-
cording to Microsoft, BitLocker is designed to withstand at least opportunistic attacks.
Considering targeted attacks as we are doing here may be beyond its specification. How-
ever, disk encryption along with TPM-based key management might be expected and
perceived to be more powerful than what the manufacturer is willing to promise, and
we deem it useful to explore the actual security properties and limitations regardless of
claims and cautionary notes.

2 An Overview of BitLocker

2.1 Security and Attack Objectives

The primary security objective is confidentiality of any data stored on the encrypted
volume. As a corollary, secret keys that could be used, along with the contents of the
disk, to obtain the cleartext are to be kept confidential as well. An attack against
BitLocker can be considered successful if through the attack:

• the attacker obtains the cleartext of all data on the encrypted volume, or a con-
siderable portion thereof, or

• the attacker obtains such supposedly secret key material that obtaining the clear-
text from ciphertext becomes trivial, and obtaining the ciphertext is not more
difficult than it would be to obtain cleartext from an unencrypted volume, all side
conditions being the same.

Manipulating either the BitLocker instance itself or its execution environment would
be an obvious and straightforward way of obtaining both cleartext data and secret key
material. Integrity of the BitLocker software and the platform executing it is therefore
an important secondary security objective. A tertiary objective is availability; there

2

are few usage scenarios where it is acceptable to risk losing all data just to keep them
confidential under all circumstances.

2.2 Integrity Model and Design Constraints

BitLocker works, at boot time, as a component of the boot loader and later as a driver of
the operating system kernel. Its design assumes that the kernel boots from a BitLocker-
protected volume, that BitLocker sufficiently protects the integrity of data on this vol-
ume, and that anything that happens after initiating the OS boot process is sufficiently
controlled by other security mechanisms. We do not challenge these assumptions here;
see [6, 8] for two known attacks against the running system.

According to these assumptions, BitLocker has to protect the integrity of the boot
loader and its execution environment up to the point where the kernel can be read from
the locked volume. This code is read from an unencrypted part of the disk and needs to
be supplied with a secret key for the AES algorithm. This is where the TPM is being
used in. BitLocker uses the sealing function to store all or part of its key material in
such a way that it becomes accessible only if the platform configuration as represented
by the PCR values is in line with the reference configuration. The reference configura-
tion is determined by the administrator accepting the current system configuration at
some point in time. This adoption of a reference configuration is initially done during
BitLocker activation but can be repeated at any time from the running Windows system.

2.3 Key Management and Recovery Mechanisms

Apart from special cases—BitLocker can also be operated without a TPM or with all key
material being managed by the TPM—key material is divided. One part is managed by
the TPM and released only if the platform is in the trusted state, the other is supplied
by the user as a password and/or key file on a USB memory stick.

If the TPM works as desired, there is no way according to the design to gain access to
all required key material if the platform state measured is different from the reference
state. This is intended if the platform state is modified by an attack, it is not, if state
is modified for a legitimate reason and the change can not be reverted easily, e.g. after
component failure and repair. BitLocker therefore offers two recovery mechanisms, the
recovery password and the recovery key. Both are designed to circumvent the TPM
and supply BitLocker with its secret key independent of the current platform state. The
recovery mechanisms don’t correct the problem, though. This is left to the administrator
who, after the recovery boot, may set a new reference state from the running system.

The actual encryption key does not change during the recovery process.

2.4 User Experience

The user experience hides most of the details. When switching on their PC, users will
experience a text-mode prompt for their PIN and/or USB stick if the platform is in
reference state. Otherwise they will be prompted for their recovery key or password.
Depending on how the computer is being used, users may experience a recovery prompt

3

from time to time, e.g. after accidentally leaving a bootable CD or DVD in the drive or
a bootable USB stick plugged into their computer.

3 Adversary Model

As any disk encryption scheme, BitLocker is supposed to protect the confidentiality of
data against an adversary who gets physical access to the computer or even brings the
computer into his possession. We therefore assume the attacker is interested in the data
stored on the BitLocker-protected volume. Furthermore, we limit our discussion to such
attacks that do actually exploit physical access in some way.

• Copy the encrypted volume and any other data on disk but return the computer

• Modify the encrypted volume and any other data on disk and return the computer

• Modify the hardware and return the computer

• Take away the computer, returning it later or not

• Replace the computer with an identical-looking copy

• If modified software gets executed on the machine, use any peripheral component
of the system

We will not discuss the effort required in each case but assume that each of these attack
building blocks is considerably cheaper than brute-forcing AES. We further assume that
each of these physical attack building blocks may be executed an arbitrary number of
times in combination with any other, provided a single rule is observed: if the attack
becomes obvious, the user and administrator will be cautious in all subsequent steps. In
other words, the user and administrator will not knowingly support an attack.

4 Attack Scenarios

4.1 Replace and Relay

This is a hardware-level phishing attack. The attacker replaces the entire target machine
with another computer prepared for the attack. The replacement, when turned on,
produces all the messages and prompts that the original machine would have produced.
Up to the point where BitLocker would start, it takes all user inputs (via keyboard or
USB) and relays them to the attacker, e.g. using radio. The attacker, being in possession
of the unmodified original system, uses this information to start up the stolen computer.

4

Requirements This attack requires that:

• the attacker is capable of replacing the BitLocker-protected machine altogether
with an identically-looking copy, and

• the machine is plausibly turned off or in suspend-to-disk mode when the legitimate
user returns, and

• the replacement device is capable of relaying user input to the attacker.

The attacker will have to remain—or leave some device—in proximity to the target
until the next boot is initiated by the victim. The attacker will also need some prior
knowledge of non-secret facts, specifically everything that might be needed to perfectly
reproduce the user experience.

Result As a result of this attack, the attacker receives the user-controlled secrets. De-
pending on the mode in which BitLocker is deployed on the target system, the result
is either key material or authentication credentials or both. Either one can be used
in conjunction with the unmodified system to start up the operating system. Security
mechanisms of the operating system remain intact; another attack will be required to
actually access any encrypted data. Such attacks exist [6, 8]. The attack will likely be
noticed right after the victim provided credentials or keys to the spoofed machine. This
attack may be combined with any attack that yields the TPM-managed portion of the
key material.

Extensions and Variants A more sophisticated version of this attack involves two-way
communications, turning the replacement into a terminal of the stolen target machine.
This would probably require quite some additional effort but might extend the time
span between success and detection of the attack. All variants of this attack may also be
attempted against recovery mechanisms, which yields sufficient key material to decrypt
disk contents immediately.

4.2 Plausible Recovery

The attacker modifies the BitLocker code on disk, adding a backdoor. Such a backdoor
could be as simple as saving a clear key in some location on disk or elsewhere in the
system from where it can be retrieved later. This modification will of course be detected
the next time the system is started by a legitimate user. However, the attacker hopes
that the user applies one of the TPM-independent recovery mechanisms to overcome the
problem. The attacker later visits the system again to collect the key. Encrypted volume
data could be copied during each visit to the target system as the actual encryption key
does not usually change.

5

Requirements This attack requires:

• that recovery mechanisms are used at all, and

• that the attacker can physically access the target machine at just the right time
without taking it away permanently, and

• that the reported platform validation error seems plausible for the victim.

One obvious implementation of this attack would be to wait for a situation that
plausibly changes the state of the platform, such as a repair. It may also be possible
to provoke such a situation. The attacker will then have to sneak into the process
somewhere before the user accepts the seemingly legitimate modification. This would
mask the malicious change with the legitimate one.

Result If the attack succeeds, the attacker has successfully planted a backdoor into the
system in such a way that all software-based security features could be circumvented.
The attack is unlikely to be noticed by the victim. In order to get both the encrypted
data and the secret key the attacker will have to visit the target system at least twice.
However, the backdoor may also use other channels to leak cleartext data, possible
increasing the risk of detection.

4.3 Spoofed Prompt

Similar to the plausible recovery attack, the attacker modifies BitLocker on the target
system and lives with the fact that the TPM will detect this modification. The attacker
adds code that spoofs the user interface of BitLocker up to the point where the user has
given up his secrets. The malicious code may spoof either the normal-operations UI or
the prompt for a recovery key.

Requirements This attack requires that the attacker can physically access the target
system. It is not necessary that the attacker takes the system away permanently.

Result The attack is easily detected as soon as secrets have been provided to the
spoofed prompt. After detection it is generally possible to prevent the attacker from
interacting with the compromised system again. Also, the TPM will refuse to unseal
its part of the key material while the platform is in this modified state. If a recovery
prompt is successfully spoofed and operated by the user, the attack will yield sufficient
key material for decryption of a volume.

Extensions Although it may work under some circumstances, this attack does not
appear very critical. However, the next subsection describes a more critical extension.

6

4.4 Tamper and Revert

The tamper and revert attack extends the spoofed prompt attack. Instead of simply
accepting that platform modifications can be detected, the attacker attempts to exploit
tampering yet hiding it. This becomes surprisingly easy if one additional boot cycle is
possible. The attacker could make a temporary modification to TPM-verified code. If
we stick to the spoofed prompt example, this means to add a cleanup function to the
malicious code, whose purpose it is to restore the former platform state. After a reboot—
which might be initiated by the malicious code after showing a bogus error message—the
platform state as measured will be compliant with the reference PCR values again.

Requirements Requirements are similar to those of the spoofed prompt attack. In
addition the attacker needs to get away with a boot cycle after platform integrity failure
without disturbing the victim so much as to spoil further steps of the attack. Depending
on how the credentials or keys obtained are transmitted to the attacker, a further visit
to the system may or may not be required.

Results This attack yields copies of keys controlled by the user. In a simple implemen-
tation these keys will end up in clear somewhere on the target system itself but more
sophisticated approaches can be imagined, for instance sending key somewhere using a
built-in WLAN interface. Additional effort is required on the attacker’s part to gain
access to TPM-managed key material.

4.5 Preemptive Modification

This attack is similar to the plausible recovery attack, but at a different point in time.
The recovery attack targets systems on which BitLocker has already been activated.
Preemptive modification attacks earlier, before BitLocker has been activated at all.

When defining the reference state for future booting, the operator has no choice other
than using the current platform state. BitLocker does not provide the user with any
means of verifying that this current state has or hasn’t any particular property. If an
attacker manages to modify critical parts of the platform before BitLocker is activated,
this modification therefore goes unnoticed and will be incorporated into the trusted (but
not trustworthy) platform state.

Requirements Preemptive modification requires that the attacker gets physical access
to the target system before BitLocker is activated. Arbitrary modifications are possible
at that time that would weaken the security of the BitLocker instance affected forever.
Another physical visit may be required later to retrieve a disk image for decryption or
leaked cleartext. However, the system may also be modified in such a way that it leaks
data at runtime. Everyone who gets physical access to the machine or OS installation
media before BitLocker setup is a potential attacker.

7

Results The attacker potentially gains read and write access to all data handled on the
system throughout its lifetime. This attack is hard to detect unless there are additional
means of verifying the integrity of executable code against external references.

4.6 TPM Reset

TPM reset attacks have been described in the literature before and are included here
for the sake of completeness. The attacker, in temporary or permanent possession of
the target system, attaches equipment to the hardware to record the measurements sent
to the TPM during a clean boot process. Next the machine is booted with a system
of the attacker’s choice, e.g. from a CD. While this system is running, the attacker
performs the reset attack and replays the clean sequence of measurements to the TPM.
As a result, the attacker will be able to unseal the TPM-managed portion of the key
material outside the trusted operating system.

Reset attacks have been described and demonstrated against implementations of ver-
sion 1.1 of the TCG specification. The current version 1.2 contains mitigations that
make such attacks more difficult to mount but by no means impossible.

Requirements The attacker needs to be in possession of or co-located with the target
computer for some amount of time. This would be the case e.g. after the attacker has
stolen the target computer. Mounting the reset attack may require irreversible modifi-
cations to the hardware, traces of which could be detected at least by close examination.

Results As a result of this attack, an attacker in possession of the target computer
is able to extract key material sealed by the TPM. The only prerequisite is that the
attacker must be able to boot the machine into the trusted platform state at least once.
In other words, this attack cannot be applied after one that modified the platform in a
detectable way unless this modification is reversible.

5 Causes and Contributing Factors

This section identifies factors that make the overall system—a PC with BitLocker and
Trusted Computing technology—vulnerable to the attacks described above. Factors
include fundamental properties of the security mechanisms involved as well as features
in the design and implementation of BitLocker and the Trusted Computing platform.

Passive TPM. Theory suggests that secure booting requires an appropriate action if
the measured state deviates from the reference. For instance the boot process
might be halted, or it may be possible to fix the issue once it had been detected
[13]. The Trusted Computing platform, however, has been designed to work with a
passive TPM: functions like sealing and attestation depend on prior measurements
of platform state, but the TPM does not actively enforce anything. Our attack
scenarios confirm the requirement of active enforcement for secure boot. The
spoofed prompt and tamper and revert attacks would be much harder to carry out

8

if the boot process would stop immediately after a modification had been detected.
However, recovery features may also be harder to implement in this case.

No trusted path to the user. BitLocker uses secrets to authenticate the user: the PIN
and key material. The channel between the legitimate user and the system in
a trusted state is prone to spoofing and man-in-the-middle attacks (replace and
relay; spoofed prompt; and tamper and revert). or specifically, the system lacks
context-awareness and the user is unable of authenticating the system. Similar
problems exist elsewhere, e.g. ATM skimming. Both directions of authentication
can be discussed separately:

No context-awareness. The BitLocker has no means of determining whether the
computer is under control of a legitimate user or somebody else. It simply
assumes that whoever provides the correct key or credential is a legitimate
user. Although requesting a PIN or key may be interpreted as authentication,
it is not a very strong one, and adding stronger authentication may be difficult.

Lack of system authentication. While BitLocker is capable of authenticating its
user at least in the weak sense described above, the user has no means of
verifying authenticity and integrity of the device. Keys and passwords are to
be entered into an unauthenticated computer.

History-bounded platform validation. The Trusted Computing platform detects and
reports platform modifications only within the scope of the current boot cycle.
BitLocker uses this feature through the sealing function of the TPM and does
not add anything. The system is therefore unable to detect, and react to, any
tampering in the past that has not left permanent traces in the system.

Incomplete diagnostic information. If current and reference state are out of sync, it is
difficult or even impossible for the user or administrator to determine the exact
cause(s). This leaves the user with a difficult choice: to use recovery mechanisms
blindly, or not to use them at all. The lack of diagnostic information contributes to
the plausible recovery attack. Note that detailed diagnostic information may not
be required where a trusted state can be enforced, e.g. by re-installing software
from trusted sources.

Lack of external reference. This is another issue that has already been discussed in
the literature. BitLocker is capable only of using any current platform state as a
reference for future boot cycles. There are no means of verifying that this reference
state is trustworthy, opening the road to preemptive modification attacks.

TPM reset. TPM reset attacks imply that the TPM cannot reliably detect platform
modifications if the attacker is in physical possession of the computer for sufficiently
long time. This may be critical here since theft and other physical-access attacks
are the key component of the adversary model.

9

Recovery mechanisms that circumvent the TPM altogether. Except for TPM reset and
preemptive modification, all attacks described above do or may profit from the
recovery mechanisms built into BitLocker. These mechanisms pose a particularly
attractive target as they yield a key that is independent from the TPM and thus
can be used more flexibly. The plausible recovery attack would not even be possible
without recovery mechanisms.

Large amount of unprotected disk space. This is a secondary contributing factor to
attacks involving purposeful, detectable modification of the platform (plausible
recovery; spoofed prompt; tamper and revert). Large amounts of disk space are
available for the attacker to install software or data in. This may be difficult to
avoid, though.

Almost arbitrary sequence of partial attacks. Another, possibly application-specific,
secondary factor is an effect of BitLocker’s function and key management. In
order to succeed, the attacker needs to accomplish several intermediate goals: copy
ciphertext, and get access to various components of the encryption key. Due to the
design of BitLocker, the respective attack operations can be executed in arbitrary
order, unless one operation permanently changes the platform, the TPM or the
knowledge of the victim in such a way that other operations become impossible.

The barn door property. This term has been coined by Whitten and Tygar [12], de-
scribing the fact that security often involves operations that are not easily reversed.
There is often no undo. This is particularly true for confidentiality: once broken,
it cannot be restored. There are many ways for the attacker to gain at least some
partial success, but there are few situations where the attacker could lose any-
thing achieved before. This may be different in applications with different security
objectives and a different adversary model.

Table 1 shows how these causes and factors contribute to the attacks described before.
Each column represents an attack, each line a cause or factor. If a factor contributes to
an attack—makes it possible, makes it easier, or makes the result more useful for the
attacker—the respective cell is marked with an X. The last two lines contain question
marks in all cells: the authors do not fully understand the impact of these factors yet.

6 Conclusion

The caution exercised by Microsoft regarding claims about the security of BitLocker
seems justified. While BitLocker may indeed protect against opportunistic theft of a
computer that is turned off at the time, there are several plausible scenarios for targeted
attacks. The trusted computing platform combined with the specific purpose, design
and implementation of BitLocker fails to protect against these attacks. Although this
does not necessarily imply grave deficiencies on either part, developers and users alike
should be aware of these scenarios and the limitations of trusted computing.

10

Table 1: Attack scenarios and contributing factors.

R
ep

la
ce

an
d

re
la

y

P
la

us
ib

le
R

ec
ov

er
y

Sp
oo

fe
d

pr
om

pt

T
am

pe
r

an
d

re
ve

rt

P
re

em
pt

iv
e

m
od

ifi
ca

ti
on

T
P

M
re

se
t

Passive TPM X X X
No trusted path to user X X X

No context awareness X
Lack of system authentication X X

History-bounded platform validation X X
Incomplete diagnostic information X
Lack of external reference X X
TPM reset X X X X
Recovery mechanisms circumventing TPM X X X X
Unprotected disk space X X X
Arbitrary sequence of partial attacks ? ? ? ? ? ?
The barn door property ? ? ? ? ? ?

Our results yield various questions for further research. How easy or difficult is im-
plementing these attacks in practice? Are there issues that we may have overlooked, or
are some of the attacks even easier than they appear? Are there countermeasures that
can be implemented easily? Where do countermeasures belong, into the application or
the trusted computing technology? Is it possible to overcome the fundamental trade-off
and implement secure recovery mechanisms? If so, how?

This paper represents a preliminary theoretical analysis. The authors intend to con-
tinue this work in three directions. First, the analysis needs to be refined. The final
result shall contain an exact description of what an attacker can or cannot achieve in
each scenario and what the side conditions are. It would be interesting to determine ex-
act limits to attack optimization. Estimations of the effort required for and risk involved
in each step of an attack will also be part of further analysis.

Second, we plan to implement the attacks described here. The purpose is not to create
new hacker tools but to gain a deeper understanding of what works and what doesn’t,
and a better idea of parameters such as effort, time and side effects.

The final step is to devise specific countermeasures. They shall cover two distinct
fields: improvements to the trusted computing technology, and recommendations for
software implemented on top of it.

11

References

[1] Chris J. Mitchell (editor). Research workshop on future TPM functionality: Final
report. http://www.softeng.ox.ac.uk/etiss/trusted/research/TPM.pdf.

[2] Niels Fergusson. AES-CBC + Elephant diffuser: A disk encryption algorithm for
windows vista. Technical report, Microsoft, 2006.

[3] David Grawrock. The Intel Safer Computing Initiative: Building Blocks for Trusted
Computing. Intel Press, 2006.

[4] Trusted Computing Group. TCG platform reset attack mitigation spec-
ification. https://www.trustedcomputinggroup.org/specs/PCClient/TCG
PlatformResetAttackMitigationSpecification 1.00 0340308-1.pdf.

[5] James Hendricks and Leendert van Doorn. Secure bootstrap is not enough: Shoring
up the trusted computing base. In Proceedings of the Eleventh SIGOPS European
Workshop, ACM SIGOPS. ACM Press, 2004.

[6] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William
Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, and Edward W.
Felten. Lest we remember: Cold boot attacks on encryption keys. Technical report,
Princeton University, 2008.

[7] J. D. Tygar and Bennet Yee. Dyad: A system for using physically secure copro-
cessors. Technical report, Proceedings of the Joint Harvard-MIT Workshop on
Technological Strategies for the Protection of Intellectual Property in the Network
Multimedia Environment, 1991.

[8] Michael Becher, Maximillian Dornseif, and Christian N. Klein. Firewire: all
your memory are belong to us. Slides, http://md.hudora.de/presentations/
#firewire-cansecwest.

[9] Saar Drimer and Steven J. Murdoch. Chip & PIN (EMV) relay attacks. http:
//www.cl.cam.ac.uk/research/security/banking/relay/.

[10] Saar Drimer and Steven J. Murdoch. Keep your enemies close: Distance bounding
against smartcard relay attacks. In USENIX Security 2007, 2007.

[11] Evan R. Sparks. Security assessment of trusted platform modules. Technical report,
Dartmouth College, 2007.

[12] Alma Whitten and J. D. Tygar. Why Johnny can’t encrypt. In Proceedings of the
8th USENIX Security Symposium, 1999.

[13] William A. Arbaugh, David J. Farbert, and Jonathan M. Smith. A secure and reli-
able bootstrap architecture. In In Proceedings 1997 IEEE Symposium on Security
and Privacy, pages 65–71. IEEE Computer Society, 1997.

12

	Advances on PrivacyCAs
	Martin Pirker, Ronald Toegl, Daniel Hein, Peter Danner

