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— Ch. 1 — Processes as diagrams —

Philosophy [i.e. physics] is written in this grand book—I mean the
universe—which stands continually open to our gaze, but it cannot be
understood unless one first learns to comprehend the language and
interpret the characters in which it is written. It is written in the
language of mathematics, and its characters are triangles, circles,
and other geometrical figures, without which it is humanly impossible
to understand a single word of it; without these, one is wandering
around in a dark labyrinth.

— Galileo Galilei, “Il Saggiatore”, 1623.

Here we introduce:
e process theories

e diagrammatic language
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— composing processes —
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— composing processes —
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— composing processes —
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— Ch. 1 — Processes as diagrams —
— process theories —

... consist of:

o set of systems S

e set of processes P, with ins and outs in 5,
which are:

e closed under ‘“plugging”.

They tell us:
e how to interpret boxes and wires,

e and hence, when two diagrams are equal.



— Ch. 1 — Processes as diagrams —

quicksort

— process theories —
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gs [1 =[]

gs (x :: xs) =
gs [y | y <= xs; y < x] ++ [x] ++
gs [y | y <= xs; y >= x]



— Ch.1-P

rocesses as diagrams —

— process theories —

(gs [1 = 0
| ) -
quicksort = qs (x :: xs8)
| as [y | y <= xs; y >= x]
quicksort |

— quicksort

quicksort
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— diagrams symbolically —
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— Ch. 1 — Processes as diagrams —

| B

— diagrams symbolically —
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Thm. Diagrams = these symbolic expressions.
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— Ch. 1 — Processes as diagrams —
— composing diagrams —
Two operations:

6‘][‘ ® g77 :: Céf While g 29
‘Gfog77 : “f after g”

These are:
® associative
e have as respective units:
— ‘empty’-diagram
— ‘wire’-diagram
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— Ch. 1 — Processes as diagrams —
— circuits —
Defn. ... := can be build with ® and o.
Thm. Circuit < no box ‘above’ itself.

Corr. Circuit admits ‘causal’ interpretation.
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— Ch. 1 — Processes as diagrams —

— special processes/diagrams —

State :=
Effect/Test :=
Number :=

P



— Ch. 1 — Processes as diagrams —
— special processes/diagrams —

Born rule :=

test {A
state {W |

> probability




— Ch. 1 — Processes as diagrams —
— special processes/diagrams —

Dirac notation :=
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— special processes/diagrams —

Separable = disconnected :=
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— Ch. 1 — Processes as diagrams —
— special processes/diagrams —

Separable = disconnected :=
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f
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— Ch. 1 — Processes as diagrams —
— special processes/diagrams —

Non-separable := way more interesting!



— Ch. 2 - String diagrams —

When two systems, of which we know the states by their respective
representatives, enter into temporary physical interaction due to known
forces between them, and when after a time of mutual influence the
systems separate again, then they can no longer be described in the
same way as before, viz. by endowing each of them with a representa-
tive of its own. I would not call that one but rather the characteristic

trait of quantum mechanics, the one that enforces its entire departure
from classical lines of thought.

— Erwin Schrodinger, 1935.

Here we:
e introduce a wilder kind of diagram
e define quantum notions in great generality

e derive quantum phenomena in great generality
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— process-state duality —

Exists state U and effect M:
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— process-state duality —

Exists state U and effect M:
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— Ch. 2 - String diagrams —
— process-state duality —

proof of duality:
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— process-state duality —

proof of duality:
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— process-state duality —

Change notation:
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— definition —
Thm. TFAE:

e circuits with process-state duality and:
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e diagrams with in-in and out-out connection:
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— definition —
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— Ch. 2 - String diagrams —
— transpose —
Prop. The transpose is an involution:
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— transpose —

Prop. Transpose of ‘cup’ is ‘cap’:



— Ch. 2 - String diagrams —
— transpose —
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— transpose —

Clever new notation:
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= just what happens when yanking hard!
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— transpose —

Prop. Sliding:
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— Ch. 2 - String diagrams —
— trace —

Partial ... ;=
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— trace —
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— trace —

Prop. Cyclicity:
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— ‘quantum’-like features —
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— Ch. 2 - String diagrams —

— ‘quantum’-like features —
Thm. All states separable = rubbish theory.
Lem. All states separable = wires separable.
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quantum’-like features —
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Perfect correlations:
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— ‘quantum’-like features —
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— ‘quantum’-like features —

Realising time-reversal (and make NY times):
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— Ch. 2 - String diagrams —
— ‘quantum’-like features —

Thm. No-cloning from assumptions:
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— Ch. 2 - String diagrams —
— adjoint & conjugate —
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— adjoint & conjugate —

Conjugate :=

Adjoint :=
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— adjoint & conjugate —

Unitarity/isometry :=
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— adjoint & conjugate —

Teleportation:

Bob
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— adjoint & conjugate —

Entanglement swapping:
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— designing teleportation —




— Ch. 2 - String diagrams —

— designing teleportation —

Bob’s problem now!



— Ch. 3 — Hilbert space from diagrams —

I would like to make a confession which may seem immoral: I do not
believe absolutely in Hilbert space any more.

— John von Neumann, letter to Garrett Birkhoff, 1935.

Here we introduce:

e ONBs, matrices and sums

e (multi-)linear maps & Hilbert space
and relate:

e string diagrams

e (multi-)linear maps & Hilbert space
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— ONB —
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— ONB -

Orthonormal :=

=0,
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Canonical :=

bt
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— matrix calculus —

Thm. We have:

(\ﬁ,j: f/%) = f/—j97
so there 18 a matrix:
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— matrix calculus —

But one also may want to ‘glue’ things together:
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— matrix calculus —

Sums := for { f;},; of the same type there exists:

(/) 1)) = | [m/ [S]

which ‘moves around’:
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— matrix calculus —
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the intuition 1s:

&

but better (see later):
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— Ch. 3 - Hilbert space from diagrams —
— definition —
Defn.
Linear maps := String diagrams s.t.:
e cach system has ONB

e 1 sums

e numbers are C

Hilbert space := states for a system with Born-rule.
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— model-theoretic completeness —

THM. (Selinger, 2008)

An equation between string diagrams holds, if and only
if 1t holds for Hilbert spaces and linear maps.

I.e. defining Hilbert spaces and linear maps in this man-
ner 1s a ‘conservative extension’ of string diagrams.



— Ch. 4 — Quantum processes —

The art of progress is to preserve order amid change, and to preserve
change amid order.

— Alfred North Whitehead, Process and Reality, 1929.

Here we introduce in terms of diagrams:
e pure quantum maps
e mixed/open quantum maps
e causality & Stinespring dilation

e general quantum processes done badly
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> probability
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— doubling —
Goal 1:
test T
> probability
state { \¥
Goal 2:
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— doubling —

Pure quantum state :=
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— doubling —

Pure quantum effect :=
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— doubling —
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— doubling —

Pure quantum map :=
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— doubling —
Thm. We have:

[/ - [/

if and only if there exist A\ = puji:
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— doubling —
Pf. Setting:

then:
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— open systems —

Discarding :=

T - Sy

(0 R

Thm. Discarding is not a pure quantum map.

Pf. Something connected ## something disconnected.
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— Ch. 4 - Quantum processes —
— open systems —
Quantum maps := pure quantum maps + discarding

E.g. ‘maximally mixed state :=
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— open systems —
Quantum maps := pure quantum maps + discarding
Prop. All quantum maps are of the form:
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— open systems —
Quantum maps := pure quantum maps + discarding

Prop. All quantum maps are of the form:
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... of quantum maps:

71
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— causality —
Prop. For pure quantum maps:

causality <= isometry

Pf.

\U U /=
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Prop. For general quantum maps:
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Prop. For general quantum maps:

Pf.

H
|

Cor. Stinespring dilation.
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— non-deterministic quantum processes —

E.g. quantum measurements.



— Ch. 5 — Quantum measurement —

The bureaucratic mentality is the only constant in the universe.

— Dr. McCoy, Star Trek I'V: The Voyage Home, 2286.

Here we briefly address:
e Next-best-thing to observing
e Measurement-induced dynamics

e Measurement-only quantum computing
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— Ch. 5 — Quantum measurement —
— 1S quantum measurement weird? —

Thm. Observing is not a quantum process i.e. 3:

Prop. Condition can only hold for orthogonal states.

= “measurement’ is next-best-thing to observing
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— Ch. 5 = Quantum measurement —

— 1S quantum measurement weird? —

Heisenberg-Bohr:

any attempt to observe is bound to disturb

Newtonian equivalent:

locating a baloon by mechanical means

Resulting diagnosis:

we suffer from quantum-blindness



— Ch. 5 - Quantum measurement —

— 1S quantum measurement weird? —

BUT, the stuff that people call quantum measure-
ment turns out to be extremely useful nonetheless!
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— what people call measurement —

ONB-measurement ;=
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— what people call measurement —

ONB-measurement ;=

NIV ¢

E.g. for {3;}; Pauli-matrices:

( )
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— Ch. 5 — Quantum measurement —
— what people call measurement —

Thm. All quantum maps arise from ONB-measurements.

Pf. There are ‘enough ONB’s’ such that:
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— measurement-only quantum computing —

2b

2a
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— Ch. 5 — Quantum measurement —

— measurement-only quantum computing —
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e/ \L



— Ch. 6 — Picturing classical processes —

Damn it! I knew she was a monster! John! Amy! Listen! Guard your
buttholes.

— David Wong, This Book Is Full of Spiders, 2012.

Here we fully diagrammatically describe:
e all quantum processes
e special ones
e protocols
and introduce the humongously important notion of:

e spiders
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— Ch. 6 - Picturing classical processes —
— classical vs. quantum wires —

They should meet:

quantum wires <— classical wires

but retain their distance:

quantum wires # classical wires

which can be realised via ‘un-doubling’:

classical wire normal (i.e. 1)

quantum wire  boldface (i.e. 2)
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) %7/7 := “providing classical value ¢”
o 41’& ;= “testing for classical value 2"
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— encoding classical data —

Classical data = ONB:

o %7 := “providing classical value 7"
o él := “testing for classical value ¢”

Sanity check:
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Non-deterministic quantum process:

( A (
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Non-deterministic quantum process:

( A (

o @\ ~ <§7\>

\ )’I: \ J

Process controlled by outcome:

AR
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Prop. Braces = sums

Pf.

/- test for value j

J

DIEAVE Z%' =12\
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Non-deterministic quantum process:

tv - sy

Process controlled by outcome:

Ae] - A%
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Classical map :=
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Classical map examples:

YR gxs

copy deleté

A::; 457@ AN :_;ZNQ

match compare
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The name explains the action:

G- % -
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The name explains the action:

W\’V _

o
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Classical-quantum map examples:

WL LYY
Y

encode

LV
o
::T"jzz@ :Z@
S IV

measure
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Thm. ... are always of the form:

where f is a quantum map.
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Thm. ... are always of the form:
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Thm. Causality:
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Lem.

b
—

Tofh - T
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Thm. Causality:
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Thm. Causality:

7 -



S.t.:
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Thm. Controlled isometry:
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Aleks
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Cft.

\V:E@X 7= oA

copy delete

/k::; 4&% AN ::;@@

match compare
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For example:
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— spiders —

... and 1n particular:
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Thm. Spiders = ONBs
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Thm. Spiders = ONBs

Pf. Consider copy spider:

VAV

so claim follows by only-orthogonals-are-clonable.
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THM. (CPV) All families of linear maps:
¢ m \

n,m

which ‘behave’ like spiders, are spiders.
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Classical spider :=
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Quantum spider :=




— Ch. 6 - Picturing classical processes —

— spiders —

Bastard spider :=
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Bastard spider :=
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