Global constraints and decompositions

Christian Bessiere
Univ Montpellier, CNRS

(joined work with E. Hebrard, B. Hnich, G. Katsirelos, Z. Kiziltan, N. Narodytska C.G. Quimper, T. Walsh)

Outine

- Background (CSP, propagation)
- Global constraints
- Decompositions
- Decomposability wrt AC or BC
- Non decomposability result

Constraint network

- A set of variables
- $X=\left\{x_{1}, ., x_{n}\right\}$
- Their domains
$-D\left(x_{i}\right)$: finite set of values for x_{i}
- Constraints

$$
-\mathrm{C}=\left\{\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{i}}, \ldots\right\}
$$

c_{i} specifies the combinations of values allowed on the sequence of variables $X\left(c_{i}\right)=\left(x_{i 1}, \ldots, x_{i q}\right)$
$\mathrm{c}_{\mathrm{i}} \subseteq \mathrm{Z}^{|\times(\mathrm{i})|}$
$\mathrm{c}_{\mathrm{i}}=\left\{\right.$ allowed tuples on $\mathrm{X}\left(\mathrm{c}_{\mathrm{i}}\right)$ \}
So, a constraint c_{i} is defined by any Boolean function with domain $Z^{|X(\mathrm{ci})|}$

Solving a constraint problem

```
Function Solve(P)
    propagate(P)
if empty domain then return 0
if P fully instantiated then return 1
select variable Xi and value v
Xi:=v
if Solve(P + {Xi=v}) then return 1
return Solve(P + {Xi\not=v}
```


Efficient when propagate reduces the search space a lot

Propagate

$$
\begin{aligned}
& D(x)=\{0,2,4\}, D(y)=\{1,2,3\} \text {, } \\
& D(z)=\{\mathbb{R}, 1,2,3,4,5,6,7,8 \text { © } 9\} \\
& x+y=z \\
& x+y=z \\
& 011 \\
& 022 \\
& 033 \\
& 213 \\
& 224 \\
& 235 \\
& 415 \\
& 426 \\
& 437
\end{aligned}
$$

Propagate: arc consistency

Global constraints

- Constraints that can involve an arbitrary number of variables
- Alldifferent $\left(\mathrm{x}_{1}, ., \mathrm{x}_{\mathrm{n}}\right) \Leftrightarrow \mathrm{x}_{\mathrm{i}} \neq \mathrm{x}_{\mathrm{j}} \quad \forall \mathrm{i}, \mathrm{j}$
$-\operatorname{sum}\left(x_{1}, ., x_{n}, K\right) \Leftrightarrow \Sigma x_{i}=K$
- Frequent pattern in applications: useful to express complex relations between variables
- Alldifferent : two courses cannot occur simultaneously
- Atleast $t_{k, v}$: at least two hostesses must speak japanese
- Stretch: no more than 5 working days; not morning after night $-->$ N NRRMMAAAAR NMMRR (nurse rostering)

Why global constraints?

- Beyond their expressivity, they allow extensive propagation
\rightarrow Global constraints have helped in solving open problems
- Sport league scheduling, etc.
- Global constraints are a specificity of CP
- Most (all?) CP solvers contain global constraints
- More than 300 global constraints in Beldiceanu's catalog
- But generic arc consistency algorithms are in $O\left(d^{r}\right) \ldots$
\rightarrow we have to implement an ad hoc propagator for every constraint in the solver!

Do we need 300 global constraints?

- No!
- We can rewrite them in CNF (SAT solveurs)
- We can decompose them in 'simpler' constraints (e.g., fixed arity)

Why decompositions?

- Save the time of the designer of a solver
- SMT solvers:
- The SAT solver receives explanations from the global constraints
\rightarrow it is critical to have short explanations (see yesterday's invited talk)
- Inherently incremental

Decompositions

- What can be expected from a decomposition?
- To express the same thing
\rightarrow Semantic decomposition
- To allow the same propagation (e.g., arc consistency)
\rightarrow Operational decomposition
[Bessiere \& Van Hentenryck 2002]

Semantic decomposability
 (no extra variables)

- Alldiff

Solutions of the CSP on the right are the same as the allowed tuples of the Alldiff on the left

Semantic decomposability (extra variables)

- Atleast $t_{k, v}$

$$
\begin{array}{llllll}
\text { X1 } & \text { X2 } & \text { X3 } & \ldots . . . & X n-1 & X n
\end{array}
$$

Semantic decomposability (extra variables)

- Atleast $t_{k, v}$

- $\mathrm{B}_{0} \ldots \mathrm{~B}_{\mathrm{n}}, \mathrm{D}\left(\mathrm{B}_{\mathrm{i}}\right)=\{0, \ldots, \mathrm{n}\}$
- $\left(x_{i}=v \& B_{i}=B_{i-1}+1\right) v\left(x_{i} \neq v \& B_{i}=B_{i-1}\right), \forall i$
- $B_{0}=0, B_{n} \geq k$

Solutions of this CSP projected on the Xi's are the same as the tuples allowed by Atleast

Semantic decomposability today

- Not discriminant:
- Any polynomial Boolean function can be decided by unit propagation on a poly size CNF decomposition [Jones\&Laaser74]
- Any CNF can be expressed by constraints with fixed arity (because UP on CNF \Leftrightarrow UP on 3CNF)
\rightarrow Any global constraint is semantically decomposable (though we don't necessarily know the decomposition --see Tuesday's best paper talk)

Operational decomposability (AC-decomposition)

- AC-decomposition not only preserves the semantics of the global constraint, but also the level of propagation (i.e., arc consistency)

For any $\mathrm{D}^{\prime} \mathrm{x} \subseteq \mathrm{D}_{\mathrm{x}}: \mathrm{AC}(\{\mathrm{c}\})=\left.\mathrm{AC}(C)\right|_{\mathrm{x}}$

Example 1

This decomposition hinders propagation

Example 2

- Atleast

- $B_{0} \ldots B_{n}, D\left(B_{i}\right)=\{0, \ldots, n\}$
- ($\left.x_{i}=v \& B_{i}=B_{i-1}+1\right) v\left(x_{i} \neq v \& B_{i}=B_{i-1}\right), \forall i$
- $\mathrm{B}_{0}=0, \mathrm{~B}_{\mathrm{n}} \geq \mathrm{k}$

Acyclic hypergraph
This decomposition preserves propagation

‘Chain-like’ AC-decomposition

- Many constraints can be decomposed as a chain of ternary constraints that form a Bergeacyclic hypergraph (\rightarrow AC preserved)
- E.g., Atmost, consecutive-1, lex, stretch, regular

Taxonomy?

- Tools of computational complexity can help us
- c a global constraint on $X(c)=\left(x_{1} \ldots x_{n}\right)$
- checker $(c) \Leftrightarrow \ll$ is there a tuple in $D\left(x_{1}\right) \times \ldots \times D\left(x_{n}\right)$ satisfying c? »
- If checker(c) is NP-complete then propagate c is NP-hard then there is no AC-decomposition for c

NP-hard constraints

- They can be detected by polynomial reductions... and there are a lot!
- Examples:
- Nvalue($N, x_{1}, . ., x_{n}$) ($N=$ number of values used by $x_{1}, . ., x_{n}$)
$-\operatorname{Sum}\left(\mathrm{x}_{1}, . ., \mathrm{x}_{\mathrm{n}}, \mathrm{K}\right)$
- This allowed to discover that some propagators are not complete (they don't prune all arc inconsistent values)

Relax propagation: bound consistency (BC)

$$
\begin{aligned}
& D(x)=\{0,2,4\}, D(y)=\{1,2,3\}, \\
& D(z)=\{2,1,2,3,4,5,6,7,8, \\
& x+y=z
\end{aligned}
$$

Suppose 2 removed from $\mathrm{D}(\mathrm{y})$

$x+y=z$
011
022
033
213
224
235
415
426
437

BC-decompositions

- Several common constraints for which AC is NP-hard allow BC-decompositions in ternary constraints arranged as a chain (sum) or a pyramid (Nvalue, see tomorrow's talk)

Warning: size of the 'gadget' Example: $\operatorname{sum}\left(\mathrm{x}_{1}, . ., \mathrm{x}_{\mathrm{n}}, \mathrm{K}\right)$

- $Y_{i}=Y_{i-1}+X_{i}, \forall i$
- $Y_{0}=0, Y_{n}=K$
- $\mathrm{D}\left(\mathrm{Y}_{\mathrm{i}}\right)=$???
$D\left(X_{1}\right)=\{0,1, \ldots 9\} ; D\left(X_{2}\right)=\{0,10, \ldots 90\} ; D\left(X_{3}\right)=\{0,100, \ldots 900\} ;$
$D\left(X_{4}\right)=\{0,1000, \ldots 9000\} \ldots$
\rightarrow For $A C, D\left(Y_{4}\right)$ must contain 10^{4} values \rightarrow exponential size
$\rightarrow B C$ can use the interval domain [0,..,999]

Until now we have:

- Constraints NP-hard to propagate
\rightarrow no AC-decomposition
(sometimes a BC-decomposition)
- Constraints polynomial to propagate
\rightarrow AC-decomposition when we find one (atleast, stretch, etc.)
\rightarrow And the others???

Non AC-decomposability result

- AC-decomposition for c \Leftrightarrow decomposition into CNF which computes AC [Bessiere, Hebrard, Walsh 2003]
\Leftrightarrow CNF checker (= decides if the constraint has a solution tuple)
- CNF checker
\Rightarrow monotone circuit of polynomial size

Theorem no poly-size monotone circuit \Rightarrow no ACdecomposition (and no CNF computes AC)

Circuit complexity

- Classes of functions that cannot be computed by monotone circuits of poly size [Rasborov 85, Tardos 88]
- Example:
- perfect matching
- Subsumed by checker(alldiff) [Knuth92, Regin94]

$\mathrm{x}_{1} \in 1,2$
$x_{2} \in 1,2,3$
$x_{3} \in 3,4$
$\mathrm{x}_{4} \in 3$
\rightarrow alldiff has no AC-decomposition
- Other examples: gcc, Nvalue, etc.

So what?

- Constraint programming cannot be reduced to CNF (i.e., to SAT)
- Constraint programming cannot be reduced to constraints with fixed arity

Summary

- NP-hard constraints
- Use a lower level of consistency
- AC-decomposable constraints
- Use the decomposition (when we know it!)
- Constraints that are poly but non ACdecomposable
- You must implement the poly algorithm :(
- ...or use a lower level of consistency

Canonical language?

- Idea: provide solvers with a set \mathcal{E} of a few (a dozen?) of global constraints that would encode all others
- $\mathrm{AC}(\mathcal{L})$-decomposability of c :
\rightarrow c can be decomposed into constraints of \mathcal{L}
\rightarrow No new propagator to implement!
- Examples:
- range + roots can easily express around 70 constraints in the catalog (version with 214 constraints)
- slide (or Beldiceanu's counter constraint [Beldiceanu et al. 2004]) expresses many others
- Extending the result in CP'10 best paper would help!

Some references

Deriving Filtering Algorithms from Constraint Checkers N.Beldiceanu, M. Carlsson, T. Petit.

Proceedings CP’04, Toronto CA, pages 107-122.
Global Constraint Catalogue: Past, Present and Future N. Beldiceanu, M. Carlsson, S. Demassey, T. Petit.

Constraints 12 (1): 21-62 (2007).
The Problem of Compatible Representatives
D.E. Knuth, A. Raghunathan.

SIAM J. Discrete Math. 5(3): 422-427 (1992).
A Filtering Algorithm for Constraints of Difference in CSPs J.C. Régin.

Proceedings AAAl'94, Seattle WA, pages 362-367.

To be or not to be...a global constraint
C. Bessiere and P. Van Hentenryck.

Proceedings CP'03, Kinsale, Ireland, pages 789-794.
Local consistencies in SAT
C. Bessiere, E. Hebrard and T. Walsh.

Proceedings SAT'03, LNCS 2919, pages 299-314.
The Complexity of Reasoning with Global Constraints
C. Bessiere, E. Hebrard, B. Hnich, T. Walsh.

Constraints, volume 12(2), pages 239-259 (2007).
Range and Roots: Two Common Patterns for Specifying and Propagating Counting and Occurrence Constraints C. Bessiere, E. Hebrard, B. Hnich, Z. Kiziltan, T. Walsh. Artificial Intelligence, volume 173(11), pages 1054-1078 (2009).

Circuit Complexity and Decompositions of Global Constraints
C. Bessiere, G. Katsirelos, N. Narodytska, T. Walsh.

Proceedings IJCAI'09, Pasadena CA, pages 412-418.
Decompositions of All Different, Global Cardinality and Related Constraints
C. Bessiere, G. Katsirelos, N. Narodytska, C.G. Quimper, T. Walsh.

Proceedings IJCAI'09, Pasadena CA, pages 419-424.
SLIDE: A Useful Special Case of the CARDPATH Constraint
C. Bessiere, E. Hebrard, B. Hnich, Z. Kiziltan, T. Walsh.

Proceedings ECAI'08, Patras, Greece, pages 475-479.

