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Abstract—It has been shown that for a general-valued con-
straint language Γ the following statements are equivalent: (1)
any instance of VCSP(Γ) can be solved to optimality using a
constant level of the Sherali-Adams LP hierarchy; (2) any instance
of VCSP(Γ) can be solved to optimality using the third level of
the Sherali-Adams LP hierarchy; (3) the support of Γ satisfies the
“bounded width condition”, i.e., it contains weak near-unanimity
operations of all arities.

We show that if the support of Γ violates the bounded with
condition then not only is VCSP(Γ) not solved by a constant
level of the Sherali-Adams LP hierarchy but it is also not solved
by Ω(n) levels of the Lasserre SDP hierarchy (also known as the
sum-of-squares SDP hierarchy). For Γ corresponding to linear
equations in an Abelian group, this result follows from existing
work on inapproximability of Max-CSPs. By a breakthrough
result of Lee, Raghavendra, and Steurer [STOC’15], our result
implies that for any Γ whose support violates the bounded width
condition no SDP relaxation of polynomial-size solves VCSP(Γ).

We establish our result by proving that various reductions
preserve exact solvability by the Lasserre SDP hierarchy (up to
a constant factor in the level of the hierarchy). Our results hold
for general-valued constraint languages, i.e., sets of functions on
a fixed finite domain that take on rational or infinite values, and
thus also hold in notable special cases of {0,∞}-valued languages
(CSPs), {0, 1}-valued languages (Min-CSPs/Max-CSPs), and Q-
valued languages (finite-valued CSPs).

I. INTRODUCTION

A. CSPs and exact solvability

Constraint satisfaction problems (CSPs) constitute a broad
class of computational problems that involve assigning labels
to variables subject to constraints to be satisfied and/or opti-
mised [27]. One line of research focuses on CSPs parametrised
by a set of (possibly weighted) relations known as a constraint
language [28]. In their influential paper, Feder and Vardi
conjectured that for decision CSPs every constraint language
gives rise to a class of problems that belongs to P or is NP-
complete [19]. While the dichotomy conjecture of Feder and
Vardi is still open in its full generality, it has been verified in
several important special cases [5], [8], [10], [26], [46] mostly
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using the so-called algebraic approach [3], [9]. Using concepts
from the extensions of the algebraic approach to optimisation
problems [16], the exact solvability of purely optimisation CSPs,
known as finite-valued CSPs, has been established [50] (these
include Min/Max-CSPs as a special case). Putting together
decision and optimisation problems in one framework, the
exact complexity of so-called general-valued CSPs has been
established [30], [34] (modulo the classification of decision
CSPs). A result that proved useful when classifying both finite-
valued and general-valued CSPs is an algebraic characterisation
of the power of the basic linear programming relaxation for
decision CSPs [35] and general-valued CSPs [31].

B. Approximation

Convex relaxations, such as linear programming (LP) and
semidefinite programming (SDP), have long been a powerful
tool for designing efficient exact and approximation algo-
rithms [53], [54]. In particular, for many combinatorial prob-
lems, the introduction of semidefinite programming relaxations
allowed for a new structural and computational perspective [1],
[22], [29]. The Lasserre SDP hierarchy [39] is a sequence of
semidefinite relaxations for certain 0-1 polynomial programs,
each one more constrained than the previous one. The kth level
of the Lasserre SDP hierarchy requires any set of k variables
of the relaxation, which live in a finite-dimensional real vector
space, to be consistent in a very strong sense. The kth level
of the hierarchy can be solved in time L · nO(k), where n
is the number of variables and L is the length of a binary
encoding of the input. If an integer program has n variables
then the nth level of the Lasserre SDP hierarchy is tight, i.e.,
the only feasible solutions are convex combinations of integral
solutions. The Lasserre SDP hierarchy is similar in spirit to the
Lovász-Schrijver SDP hierarchy [43] and the Sherali-Adams LP
hierarchy [48], but the Lasserre SDP hierarchy is stronger [40].

An important line of research, going back to a seminal
work of Yannakakis [55], focuses on proving lower bounds
on the size of LP formulations. Chan et al. [13] showed that
Sherali-Adams LP relaxations are universal for Max-CSPs
in the sense that for every polynomial-size LP relaxation
of a Max-CSP instance I there is a constant level of the
Sherali-Adams LP hierarchy of I that achieves the same
approximation guarantees. This result has been improved to
subexponential-size LP relaxations [32]. Moreover, [21] shows
that in fact the basic LP relaxation enjoys the same universality978-1-5090-3018-7/17/$31.00 c©2017 IEEE



property (among super-constant levels of the Sherali-Adams
LP hierarchy). For related work on the integrality gaps for the
Sherali-Adams LP and Lovász-Schrijver SDP hierarchies, we
refer the reader to [14], [15], [47] and the references therein.

Recent years have seen some remarkable progress on lower
bounds for the Lasserre SDP hierarchy. Using the idea of
expansion [6], Schoenebeck showed that certain problems have
integrality gaps even after Ω(n) levels of the Lasserre SDP
hierarchy. In particular, Schoenebeck showed, among other
things, that Ω(n) levels of the Lasserre SDP hierarchy cannot
prove that certain Max-CSPs (corresponding to equations on
the Boolean domain) are unsatisfiable. Tulsiani extended this
work to Max-CSPs corresponding to equations over Abelian
groups of prime power orders. Finally, Chan extended this to
Max-CSPs corresponding to equations over Abelian groups of
arbitrary size [12]. In a recent breakthrough, Lee et al. [42]
showed that the Lasserre SDP relaxations are universal for Max-
CSPs in the sense that for every polynomial-size SDP relaxation
of a Max-CSP instance I there is a constant level of the Lasserre
SDP hierarchy of I that achieves the same approximation
guarantees. One of the many ingredients of the proof in [42]
is to view the Lasserre SDP hierarchy as the Sum-of-Squares
algorithm [38], which relates to proof complexity [45]. (In fact,
Schoenebeck’s above-mentioned result had independently been
obtained by Grigoriev [23] using this view.)

C. Contributions

We study the power of the Lasserre SDP hierarchy for exact
solvability of general-valued CSPs. We have previously shown
that general-valued CSPs that are solved exactly by a constant
level of the Sherali-Adams LP hierarchy are precisely those
general-valued CSPs that satisfy the “bounded width condition”
(BWC), formally defined in Section II. In Theorem 2, we show
that general-valued CSPs that are not solved by a constant level
of the Sherali-Adams LP hierarchy are also not solved by Ω(n)
levels of the Lasserre SDP hierarchy. As a direct corollary,
the results of Lee et al. [42] imply that such general-valued
CSPs are not solved by any polynomial-size SDP relaxation.
Our main result, Theorem 2, generalises one of the two main
results in [49], namely the implication (i) =⇒ (iii) of [49,
Theorem 3.3], while the method of proof is closely related, as
discussed in Section III-D.

In order to prove our result, we will strengthen the proof of
the implication (i) =⇒ (iii) of [49, Theorem 3.3] (stated below
as Theorem 1). The idea is to show that if supp(Γ) violates the
BWC, then Γ can simulate linear equations in some Abelian
group. It suffices to show that linear equations cannot be solved
by Ω(n) levels of the Lasserre SDP hierarchy and that the
simulation preserves exact solvability by the Lasserre SDP
hierarchy (up to a constant factor in the level of the hierarchy).
As discussed before, the former is actually known (in a stronger
sense of inapproximability of linear equations) [12], [23], [47],
[51] and will be discussed in Section III-D. Our contribution
is proving the latter. While the simulation involves only local
replacements via gadgets, it needs to be done with care. In
particular, we emphasise that the simulation involves steps,

such as going to the core and interpretations, which are
commonly used in the algebraic approach to CSPs but not
in the literature on convex relaxations and approximability of
CSPs [51]. Indeed, the algebraic approach to CSPs gives the
right tools for the intuitive (but non-trivial to capture formally)
meaning of “simulating equations”.

We remark that our main result is incomparable with results
from papers dealing with (in)approximability [12], [47], [51].
On the one hand, our results capture exact solvability rather than
approximability. On the other hand, we give a stronger result
as our result applies to general-valued CSPs rather than only
to Max-CSPs or finite-valued CSPs. General-valued CSPs are
more expressive than their special cases Max-CSPs and finite-
valued CSPs since general-valued CSPs also include decision
CSPs as a special case and thus can use “hard” or “strict”
constraints. The results on Max-CSPs [12], [47], [51] were
extended by (problem-specific) reductions to some problems
(such as Vertex Cover) which are not captured by Max-CSPs
but are captured by general-valued CSPs. Our results are not
problem specific and apply to all general-valued CSPs. In
particular, we give a complete characterisation of which general-
valued CSPs are solved exactly by the Lasserre SDP hierarchy.

D. Related work

We now informally describe the bounded width condition
(BWC). A set of operations on a fixed finite domain satisfies
the BWC if it contains “weak near-unanimity” operations
of all possible arities. An operation is called a weak near-
unanimity operation if the value of the operation does not
change assuming all the arguments but at most one are the
same. A simple example is a ternary majority operation, which
satisfies f(x, x, y) = f(x, y, x) = f(y, x, x) for all x and
y. Polymorphisms [9] are operations that combine satisfying
assignments to a CSP instance and produce a new satisfying
assignment. We say that a CSP instance I satisfies the BWC
if the clone of polymorphisms of I satisfies the BWC.

In an important series of papers [3], [11], [36], [44] it
was established that the BWC captures precisely the decision
CSPs that are solved by a certain natural local propagation
algorithm [19].

In our main result, Theorem 2, the BWC is required to hold,
as in [49], for the support of the fractional polymorphisms [16]
of the general-valued CSPs. Intuitively, fractional polymor-
phisms of a general-valued CSP instance I are probability
distributions over polymorphisms of I with some desirable
properties. (A formal definition is given in Section II.) This is
a natural requirement since polymorphisms do not capture
the complexity of general-valued CSPs but the fractional
polymorphisms do so [16], [30].

The BWC was also shown [4], [17] to capture precisely the
Max-CSPs that can be robustly approximated, as conjectured
in [24]. This work is similar to ours but different. In particular,
Dalmau and Krokhin showed that various reductions preserve
robust approximability of equations, and thus showing that Max-
CSPs not satisfying the BWC cannot be robustly approximated,
assuming P6=NP and relying on Håstad’s inapproximability



results for linear equations [25]. (Barto and Kozik [4] then
showed that Max-CSPs satisfying the BWC can be robustly
approximated.) However, note that linear equations can be
solved exactly using Gaussian elimination and thus this result
is not applicable in our setting. Our result, on the other hand,
shows that various reductions preserve exact solvability of
equations by a particular algorithm (the Lasserre SDP hierar-
chy) independently of P vs. NP. Moreover, the pp-definitions
and pp-interpretations used in [4], [17] were required to be
equality-free. We prove that our reductions are well-behaved
without this assumption.

Using different techniques (definability in counting logics),
Dawar and Wang have recently obtained a similar result in
the special case of Q-valued languages, i.e., for finite-valued
CSPs [18].

II. PRELIMINARIES

A. General-valued CSPs

We first describe the framework of general-valued constraint
satisfaction problems (VCSPs). Let Q = Q ∪ {∞} denote
the set of rational numbers extended with positive infinity.
Throughout the paper, let D be a fixed finite set of size at least
two, also called a domain; we call the elements of D labels.
We denote by [n] the set {1, . . . , n}.

Definition 1. An r-ary weighted relation over D is a mapping
φ : Dr → Q. We write ar(φ) = r for the arity of φ.

A weighted relation φ : Dr → {0,∞} can be seen as the
(ordinary) relation {x ∈ Dr | φ(x) = 0}. We will use both
viewpoints interchangeably.

For any r-ary weighted relation φ, we denote by Feas(φ) =
{x ∈ Dr | φ(x) <∞} the underlying r-ary feasibility relation,
and by Opt(φ) = {x ∈ Feas(φ) | ∀y ∈ Dr : φ(x) ≤ φ(y)}
the r-ary optimality relation, which contains the tuples on
which φ is minimised.

Definition 2. Let V = {x1, . . . , xn} be a set of variables. A
valued constraint over V is an expression of the form φ(x)
where φ is a weighted relation and x ∈ V ar(φ). The tuple x
is called the scope of the constraint.

Definition 3. An instance I of the valued constraint satisfaction
problem (VCSP) is specified by a finite set V = {x1, . . . , xn}
of variables, a finite set D of labels, and an objective function
φI expressed as follows:

φI(x1, . . . , xn) =

q∑
i=1

φi(xi),

where each φi(xi), 1 ≤ i ≤ q, is a valued constraint. Each
constraint may appear multiple times in I . An assignment to
I is a map σ : V → D. The goal is to find an assignment that
minimises the objective function.

For a VCSP instance I , we write ValVCSP(I, σ) for
φI(σ(x1), . . . , σ(xn)), and OptVCSP(I) for the minimum of
ValVCSP(I, σ) over all assignments σ.

An assignment σ with ValVCSP(I, σ) < ∞ is called
satisfying.

An assignment σ with ValVCSP(I, σ) = OptVCSP(I) is
called optimal.

A VCSP instance I is called satisfiable if there is a satisfying
assignment to I . Constraint satisfaction problems (CSPs) are a
special case of VCSPs with (unweighted) relations with the
goal to determine the existence of a satisfying assignment.

A general-valued constraint language (or just a constraint
language for short) over D is a set of weighted relations over
D. We denote by VCSP(Γ) the class of all VCSP instances in
which the weighted relations are all contained in Γ. A constraint
language Γ is called crisp if Γ contains only (unweighted)
relations. For a crisp language Γ, VCSP(Γ) is equivalent to
the well-studied (decision) CSP(Γ) [27]. We remark that for
{0, 1}-valued constraint languages, VCSP(Γ) is also known
as Min-CSP(Γ) or Max-CSP(Γ) (since for exact solvability
these are equivalent).

For a constraint language Γ, let ar(Γ) denote max{ar(φ) |
φ ∈ Γ}.

B. Fractional polymorphisms and cores

We next define fractional polymorphisms, which are alge-
braic properties known to capture the computational complexity
of the underlying class of VCSPs. We also introduce the
important notion of cores.

Given an r-tuple x ∈ Dr, we denote its ith entry
by x[i] for 1 ≤ i ≤ r. A mapping f : Dm → D
is called an m-ary operation on D; f is idempotent if
f(x, . . . , x) = x. We apply an m-ary operation f to m r-tuples
x1, . . . ,xm ∈ Dr coordinatewise, that is, f(x1, . . . ,xm) =
(f(x1[1], . . . ,xm[1]), . . . , f(x1[r], . . . ,xm[r])).

Definition 4. Let φ be a weighted relation on D and let f be
an m-ary operation on D. We call f a polymorphism of φ if,
for any x1, . . . ,xm ∈ Feas(φ), we have that f(x1, . . . ,xm) ∈
Feas(φ).

For a constraint language Γ, we denote by Pol(Γ) the set
of all operations which are polymorphisms of all φ ∈ Γ. We
write Pol(φ) for Pol({φ}).

The following notions are known to capture the complexity
of general-valued constraint languages [16], [34] and will also
be important in this paper. A probability distribution ω over
the set of m-ary operations on D is called an m-ary fractional
operation. We define supp(ω) to be the set of operations
assigned positive probability by ω.

Definition 5. Let φ be a weighted relation on D and let
ω be an m-ary fractional operation on D. We call ω a
fractional polymorphism of φ if supp(ω) ⊆ Pol(φ) and for
any x1, . . . ,xm ∈ Feas(φ), we have

E
f∼ω

[φ(f(x1, . . . ,xm))] ≤ avg{φ(x1), . . . , φ(xm)}.

For a general-valued constraint language Γ, we denote by
fPol(Γ) the set of all fractional operations which are fractional



polymorphisms of all weighted relations φ ∈ Γ. We write
fPol(φ) for fPol({φ}).

Definition 6. Let Γ be a general-valued constraint language
on D. We define

supp(Γ) =
⋃

ω∈fPol(Γ)

supp(ω).

Definition 7. Let Γ be a general-valued constraint language
with domain D and let S ⊆ D. The sub-language Γ[S] of Γ
induced by S is the constraint language defined on domain S
and containing the restriction of every weighted relation φ ∈ Γ
onto S.

Definition 8. A general-valued constraint language Γ is a core
if all unary operations in supp(Γ) are bijections. A general-
valued constraint language Γ′ is a core of Γ if Γ′ is a core
and Γ′ = Γ[f(D)] for some unary f ∈ supp(Γ).

III. LOWER BOUNDS ON LP AND SDP RELAXATIONS

Every VCSP instance has a natural LP relaxation known as
the basic LP relaxation (BLP). The power of BLP for exact
solvability of CSP(Γ), where Γ is a crisp constraint language,
has been characterised (in terms of the polymorphisms of Γ)
in [35]. The power of BLP for exact solvability of VCSP(Γ),
where Γ is a general-valued constraint language, has been
characterised (in terms of the fractional polymorphisms of Γ)
in [31].

The Sherali-Adams LP hierarchy [48] gives a systematic way
of strengthening the BLP relaxation. BLP being the first level,
the kth level of the Sherali-Adams LP hierarchy adds to the
BLP linear constraints satisfied by the integral solutions and
involving at most k variables. One can think of the variables
of the kth level as probability distributions over assignments
to at most k variables of the original instance.

The Lasserre SDP hierarchy [39] is a significant strengthen-
ing of the Sherali-Adams LP hierarchy: real-valued variables
are replaced by vectors from a finite-dimensional real vector
space. Intuitively, the norms of these vectors again induce
probability distributions over assignments to at most k variables
of the original instance (for the kth level of the Lasserre SDP
hierarchy). Since these distributions have to come from inner
products of vectors, this is a tighter relaxation. In particular,
it is known that the kth level of the Lasserre SDP hierarchy
is at least as tight as the kth level of the Sherali-Adams LP
hierarchy [40].

It is well known that for a problem with n variables, the
nth levels of both of these two hierarchies are exact, i.e., the
solutions to the nth levels are precisely the convex combinations
of the integral solutions. However, it is not clear how to solve
the nth levels in polynomial time. In general, taking an n-
variable instance of VCSP(Γ), where Γ is of finite size, the
kth level of both hierarchies can be solved in time L · nO(k),
where L is the length of a binary encoding of the input. In
particular, this is polynomial for a fixed k.

In this section, we will define the Sherali-Adams LP and
the Lasserre SDP hierarchies and state known and new results

regarding their power and limitations for exact solvability of
general-valued CSPs.

A. Sherali-Adams LP Hierarchy

Let I be an instance of the VCSP with φI(x1, . . . , xn) =∑q
i=1 φi(xi), Xi ⊆ V = {x1, . . . , xn} and φi : Dar(φi) → Q.

We will use the notational convention to denote by Xi the set
of variables occurring in the scope xi.

A null constraint on a set X ⊆ V is a constraint with a
weighted relation identical to 0. It is sometimes convenient
to add null constraints to a VCSP instance as placeholders,
to ensure that they have scopes where required, even if these
relations may not necessarily be members of the corresponding
constraint language Γ. In order to obtain an equivalent instance
that is formally in VCSP(Γ), the null constraints can simply
be dropped, as they are always satisfied and do not influence
the value of the objective function.

Let k be an integer. The kth level of the Sherali-Adams LP
hierarchy [48], henceforth called the SA(k)-relaxation of I , is
given by the following linear program. Ensure that for every
non-empty X ⊆ V with |X| ≤ k there is some constraint
φi(xi) with Xi = X , possibly by adding null constraints. The
variables of the SA(k)-relaxation, given in Figure 1, are λi(σ)
for every i ∈ [q] and assignment σ : Xi → D. We slightly
abuse notation by writing σ ∈ Feas(φi) for σ : Xi → D such
that σ(xi) ∈ Feas(φi).

We write OptLP(I, k) for the optimal value of an LP-
solution to the SA(k)-relaxation of I .

Definition 9. Let Γ be a general-valued constraint language.
We say that VCSP(Γ) is solved by the kth level of the Sherali-
Adams LP hierarchy if for every instance I of VCSP(Γ) we
have OptVCSP(I) = OptLP(I, k).

We now describe the main result from [49], which cap-
tures the power of Sherali-Adams LP relaxations for exact
optimisation of VCSPs.

An m-ary idempotent operation f : Dm → D is called a
weak near-unanimity (WNU) operation if, for all x, y ∈ D,

f(y, x, x, . . . , x) = f(x, y, x, x, . . . , x) =

· · · = f(x, x, . . . , x, y). (W)

Definition 10. A set of operations satisfies the bounded width
condition (BWC) if it contains a (not necessarily idempotent)
m-ary operation satisfying the identities (W), for every m ≥ 3.

Theorem 1 ( [49]). Let Γ be a general-valued constraint
language of finite size. The following are equivalent:

(i) VCSP(Γ) is solved by a constant level of the Sherali-
Adams LP hierarchy.

(ii) VCSP(Γ) is solved by the third level of the Sherali Adams
LP hierarchy.

(iii) supp(Γ) satisfies the BWC.

We remark that while it is not clear from the definition
that condition (iii) of Theorem 1 is decidable, it is known
to be equivalent to a decidable condition [33], see also [49,



minimise
q∑
i=1

∑
σ∈Feas(φi)

λi(σ)φi(σ(xi))

subject to
λi(σ) ≥ 0 ∀i ∈ [q] , σ : Xi → D (S1)
λi(σ) = 0 ∀i ∈ [q] , σ : Xi → D,σ(xi) 6∈ Feas(φi) (S2)∑
σ : Xi→D

λi(σ) = 1 ∀i ∈ [q] (S3)∑
σ : Xi→D
σ|Xj=τ

λi(σ) = λj(τ) ∀i, j ∈ [q] : Xj ⊆ Xi, |Xj | ≤ k, τ : Xj → D (S4)

Fig. 1. The kth level of the Sherali-Adams LP hierarchy, SA(k).

Proposition 3.33]. Moreover, [49, Section 3.6] discusses how
to obtain a solution to an instance I of VCSP(Γ) from the
optimal value of the SA(3)-relaxation of I . Finally, Theorem 1
says that if supp(Γ) violates the BWC then VCSP(Γ) requires
more than a constant level of the Sherali-Adams LP hierarchy
for exact solvability. [49] actually shows that assuming the
BWC is violated then Ω(

√
n) levels are required for exact

solvability of n-variable instances of VCSP(Γ).

B. Lasserre SDP Hierarchy

Let I be an instance of the VCSP with φI(x1, . . . , xn) =∑q
i=1 φi(xi), Xi ⊆ V = {x1, . . . , xn} and φi : Dar(φi) → Q.

For σi : Xi → D and σj : Xj → D, if σi|Xi∩Xj = σj |Xi∩Xj
then we write σi ◦ σj : (Xi ∪ Xj) → D for the assignment
defined by σi ◦ σj(x) = σi(x) for x ∈ Xi and σi ◦ σj(x) =
σj(x) otherwise.

Let k be an integer with k ≥ maxi(ar(φi)).1 The kth level
of the Lasserre SDP hierarchy [37], [38], henceforth called
the Lasserre(k)-relaxation of I , is given by the following
semidefinite program (we follow the presentation from [51]).
Ensure that for every non-empty X ⊆ V with |X| ≤ k there is
some constraint φi(xi) with Xi = X , possibly by adding null
constraints. The vector variables of the Lasserre(k)-relaxation,
given in Figure 2, are λ0 ∈ Rt and λi(σ) ∈ Rt for every
i ∈ [q] and assignment σ : Xi → D. Here t is the dimension
of the real vector space.2

For any fixed k and any t polynomial in the size of I , the
Lasserre(k)-relaxation of I is of polynomial size in terms of

1It also makes sense to consider relaxations with k < maxi(ar(φi)), in
particular for positive (algorithmic) results, such as the implication (iii)⇒ (ii)
in Theorem 1. For our main (impossibility) result, we will be interested in k
which is linear in the number of variables of I .

2Typically, t = (nd)O(k) for an instance with n variables over a domain
of size d.

I and can be solved in polynomial time [20].3 Note that k
may not necessarily be constant but it could depend on n, the
number of variables of I .

We write ValSDP(I,λ, k) for the value of the SDP-solution
λ to the Lasserre(k)-relaxation of I , and OptSDP(I, k) for
its optimal value.

Definition 11. Let Γ be a general-valued constraint language.
We say that VCSP(Γ) is solved by the kth level of the Lasserre
SDP hierarchy if for every instance I of VCSP(Γ) we have
OptVCSP(I) = OptSDP(I, k).

We say that an instance I of VCSP(Γ) is a gap instance for
the kth level of the Lasserre SDP hierarchy if OptSDP(I, k) <
OptVCSP(I).

Definition 12. Let Γ be a general-valued constraint language.
We say that VCSP(Γ) requires linear levels of the Lasserre
SDP hierarchy if there is a constant 0 < c < 1 such that for
sufficiently large n there is an n-variable gap instance In of
VCSP(Γ) for Lasserre(bcnc).

C. Main Results

We are now ready to state our main results.

Theorem 2. Let Γ be a general-valued constraint language
of finite size. The following are equivalent:

(i) VCSP(Γ) requires linear levels of the Lasserre SDP
hierarchy.

(ii) Γ can simulate linear equations.
(iii) supp(Γ) violates the BWC.

Theorems 1 and 2 give the following.

3Under technical assumptions which are satisfied by the Lasserre relaxation,
SDPs can be solved approximately; for any ε there is an algorithm that
given an SDP returns vectors for which the objective function is at most
ε away from the optimum value and the running time is polynomial in
the input size and log(1/ε) [20], [52]. For any language Γ of finite
size there is ε = ε(Γ) such that solving the SDP up to an additive
error of ε suffices for exact solvability. For instance, take ε such that
ε < minφ∈Γ minx,y∈Feas(φ),φ(x) 6=φ(y) |φ(x) − φ(y)|. Since this paper
deals with impossibility results these matters are not relevant but we mention
it here for completeness.



minimise
q∑
i=1

∑
σ∈Feas(φi)

||λi(σ)||2φi(σ(xi))

subject to
||λ0|| = 1 (L1)
〈λi(σi),λj(σj)〉 ≥ 0 ∀i, j ∈ [q] , σi : Xi → D,σj : Xj → D (L2)

||λi(σ)||2 = 0 ∀i ∈ [q] , σ : Xi → D,σ(xi) 6∈ Feas(φi) (L3)∑
a∈D
||λi(a)||2 = 1 ∀i with |Xi| = 1 (L4)

〈λi(σi),λj(σj)〉 = 0 ∀i, j ∈ [q] , σi : Xi → D,σj : Xj → D (L5)
σi|Xi∩Xj 6= σj |Xi∩Xj

〈λi(σi),λj(σj)〉 = 〈λi′(σi′),λj′(σj′)〉 ∀i, j, i′, j′ ∈ [q] , Xi ∪Xj = Xi′ ∪Xj′ (L6)
σi : Xi → D,σj : Xj → D,σi′ : Xi′ → D,σj′ : Xj′ → D

σi ◦ σj = σi′ ◦ σj′

Fig. 2. The kth level of the Lasserre SDP hierarchy, Lasserre(k).

Corollary 1. Let Γ be a general-valued constraint language.
Then, either VCSP(Γ) is solved by the third level of the Sherali-
Adams LP relaxation, or VCSP(Γ) requires linear levels of
the Lasserre SDP relaxation.

Proof. Either supp(Γ) satisfies the BWC, in which case
VCSP(Γ) is solved by the third level of the Sherali-Adams
LP relaxation by Theorem 1, or supp(Γ) violates the BWC,
in which case VCSP(Γ) requires linear levels of the Lasserre
SDP hierarchy by Theorem 2.

A constraint language Γ is called finite-valued [50] if for
every φ ∈ Γ it holds φ(x) < ∞ for every x. In this special
case, we get the following result, which was independently
obtained (using a different proof) in [18].

Corollary 2. Let Γ be a finite-valued constraint language.
Then, either VCSP(Γ) is solved by the first level of the Sherali-
Adams LP relaxation, or VCSP(Γ) requires linear levels of
the Lasserre SDP relaxation.

Proof. Let D be the domain of Γ. If VCSP(Γ) is not solved
by the first level of the Sherali-Adams LP relaxation then [50,
Theorem 3.4] shows that there are distinct a, b ∈ D such
that Γ can simulate a weighted relation φ with argminφ =
{(a, b), (b, a)}. This implies that the BWC is violated and
Theorem 2 proves the claim.

Finally, using the recent work of Lee et al. [42], Theorem 2
gives the following.

Corollary 3. Let Γ be a general-valued constraint language.
Then, either VCSP(Γ) is solved by the third level of the
Sherali-Adams LP relaxation, or VCSP(Γ) is not solved by
any polynomial-size SDP relaxation.

Lee et al. [41], [42] give some very strong results on
approximation-preserving reductions between SDP relaxations.

The results in [41], [42] are formulated for the sum-of-squares
SDP hierarchy, which is equivalent to the Lasserre SDP
hierarchy: the kth level of the sums-of-squares SDP hierarchy
is the same as the (k/2)th level of the Lasserre SDP hierarchy.
We will only need a special case of one of their results. We
remark that [41], [42] deals with maximisation problems but
for exact solvability we can equivalently turn to minimisation
problems.

Proof. If supp(Γ) violates the BWC then, by Theorem 2,
we have that VCSP(Γ) requires linear levels of the Lasserre
SDP hierarchy. [41, Theorem 6.4] gives a general reduction
turning lower bounds on the number of levels of the Lasserre
SDP hierarchy to lower bounds on the size arbitrary SDP
relaxations.4 In particular, with the right parameters (e.g.,
setting the number of variables, N , and the function giving the
number of levels of the Lasserre SDP hierarchy, d(n), so that
n = Θ(logN) and d(n) = Θ( logN

log logN ) – see also the end of
Section 6 in [41]), [41, Theorem 6.4] gives that if VCSP(Γ)
requires linear levels of the Lasserre SDP hierarchy then no
polynomial-size SDP relaxation solves VCSP(Γ).

D. Proof of Theorem 2

Let Γ be a general-valued constraint language of finite size. If
supp(Γ) violates the BWC then we aim to prove that VCSP(Γ)
requires linear levels of the Lasserre SDP hierarchy.

We will follow the approach used to prove the implication
(i) =⇒ (iii) of Theorem 1. This is based on the idea that
if supp(Γ) violates the BWC, then Γ can simulate linear
equations in some Abelian group. In order to establish the
implications (iii) =⇒ (ii) =⇒ (i) of Theorem 2, it suffices
to show that linear equations require linear levels of the

4We note that [41, Theorem 6.4] is stated only for Boolean Max-CSPs and
proved using [41, Theorem 3.8]. However, a generalisation to non-Boolean
domains follows from [41, Theorem 7.2]. We thank Prasad Raghavendra and
David Steurer for clarifying this.



Lasserre SDP hierarchy and that the simulation preserves exact
solvability by the Lasserre SDP hierarchy (up to a constant
factor in the level of the hierarchy). Our contribution is proving
the latter. The former is known [23], [47], [51], as we will
now discuss.

Let G be an Abelian group over a finite set G and let r ≥ 1
be an integer. Denote by EG,r the crisp constraint language
over domain G with, for every a ∈ G, and 1 ≤ m ≤ r, a
relation Rma = {(x1, . . . , xm) ∈ Gm | x1 + · · ·+ xm = a}.

Theorem 3 ([12]). Let G be a finite non-trivial Abelian group.
Then, VCSP(EG,3) requires linear levels of the Lasserre SDP
hierarchy.

For Abelian groups of prime power orders, Tulsiani showed
that there is a constant 0 < c < 1 such that for every large
enough n there is an instance In of VCSP(EG,r) on n variables
with OptVCSP(In) =∞ and OptSDP(In, bcnc) = 0; i.e., In
is a gap instance for Lasserre(bcnc) [51, Theorem 4.2].5 This
work was based on the result of Schoenebeck who showed
it for Boolean domains [47], thus rediscovering the work of
Grigoriev [23]. A generalisation to all Abelian groups was
then established by Chan in [12, Appendix D]. We remark
that the results in [12], [47], [51] actually prove something
much stronger: Ω(n) levels of the Lasserre SDP hierarchy not
only cannot distinguish unsatisfiable instances of VCSP(EG,3)
from satisfiable ones, but also cannot distinguish unsatisfiable
instance from those in which a certain (large) fraction of
the constraints is guaranteed to be satisfiable. (Moreover, the
quantitative statements are optimal [12], [51].)

The following notion of reduction is key in this paper.

Definition 13. Let Γ and ∆ be two general-valued constraint
languages of finite size. We write ∆≤L Γ if there is a
polynomial-time reduction from VCSP(∆) to VCSP(Γ) with
the following property: there is a constant c ≥ 1 depending
only on Γ and ∆ such that for any k ≥ 1, if Lasserre(k) solves
VCSP(Γ) then Lasserre(ck) solves VCSP(∆).

By Definition 13, ≤L reductions compose. Let ∆≤L Γ. By
Definitions 12 and 13, if VCSP(∆) requires linear levels of the
Lasserre SDP hierarchy then so does VCSP(Γ). An analogous
notion of reduction for the Sherali-Adams LP hierarchy, ≤SA,
was used in [49].

We now describe the various types of gadget constructions
needed to establish Theorem 2.

Definition 14. We say that an m-ary weighted relation φ
is expressible over a general-valued constraint language Γ
if there exists an instance I of VCSP(Γ) with variables
x1, . . . , xm, v1, . . . , vp such that

φ(x1, . . . , xm) = min
v1,...,vp

φI(x1, . . . , xm, v1, . . . , vp).

For a fixed set D, let φD= denote the binary equality relation
{(x, x) | x ∈ D}. We denote by 〈Γ〉 the set of weighted

5We note that [51] uses different terminology from ours: Max-CSP(P ) for
a k-ary predicate P applied to literals rather then variables.

relations obtained by taking the closure of Γ ∪ {φD=}, where
D is the domain of Γ, under expressibility and the Feas and
Opt operations.

Definition 15. Let Γ and ∆ be general-valued constraint
languages on domain D and D′, respectively. We say that
∆ has an interpretation in Γ with parameters (d, S, h) if there
exists a d ∈ N, a set S ⊆ Dd, and a surjective map h : S → D′

such that 〈Γ〉 contains the following weighted relations:
• φS : Dd → Q defined by φS(x) = 0 if x ∈ S and
φS(x) =∞ otherwise;

• h−1(φD
′

= ); and
• h−1(φi), for every weighted relation φi ∈ ∆,

where h−1(φi), for an m-ary weighted relation φi, is the dm-
ary weighted relation on D defined by h−1(φi)(x1, . . . ,xm) =
φi(h(x1), . . . , h(xm)), for all x1, . . . ,xm ∈ S.

Remark 1. A weighted relation being expressible over Γ∪{φD=}
is the analogue of a relation being definable by a primitive
positive (pp) formula (using existential quantification and
conjunction) over a relational structure with equality. Indeed,
when Γ is crisp, the two notions coincide. Also, for a crisp Γ
the notion of an interpretation coincides with the notion of a
pp-interpretation for relational structures [7].

We can now give a formal definition of the notion of
simulation used in the statement of Theorem 2. Let CD =
{{(a)} | a ∈ D} be the set of constant unary relations on the
set D.

Definition 16. Let Γ′ be a core of a general-valued constraint
language Γ on domain D′ ⊆ D. We say that Γ can simulate a
general-valued constraint language ∆ if ∆ has an interpreta-
tion in Γ′ ∪ CD′ .

The following theorem is the main technical contribution of
the paper. It shows that a general-valued constraint language
can be augmented with various additional weighted relations
while preserving exact solvability in the Lasserre SDP hierarchy
up to a constant factor in the level of the hierarchy. It is a
strengthening of Theorem [49, Theorem 5.5], which showed
that the same additional weighted relations preserve exact
solvability in the Sherali-Adams LP hierarchy.

Theorem 4. Let Γ be a general-valued constraint language
of finite size on domain D. The following holds:

1) If φ is expressible in Γ, then Γ ∪ {φ}≤L Γ.
2) Γ ∪ {φD=}≤L Γ.
3) If Γ interprets the general-valued constraint language ∆

of finite size, then ∆≤L Γ.
4) If φ ∈ Γ, then Γ ∪ {Opt(φ)}≤L Γ and Γ ∪
{Feas(φ)}≤L Γ.

5) If Γ′ is a core of Γ on domain D′ ⊆ D, then Γ′∪CD′ ≤L Γ.

Proof. The proof is to a large extent based on a technical
lemma, Lemma 4, which is stated and proved in Section IV.
This lemma shows that, subject to some consistency conditions,
a polynomial-time reduction between two constraint languages
∆ and Γ that is based on locally replacing valued constraints



with weighted relations in ∆ by gadgets expressed in Γ can
be turned into an ≤L-reduction. The same approach was used
in [49, Theorem 5.5] for constructing ≤SA-reductions for (1–
3), and (5). In these cases, it therefore essentially suffices to
replace the applications of [49, Lemma 6.1] by applications of
Lemma 4 in the proofs of [49, Lemmas 6.2–6.4, and 6.7]. For
case (3), we remark that our definition differs slightly from that
of [49] in that we incorporate applications of the operations
Opt and Feas in the definition of 〈Γ〉. To accommodate for
this in the proof, it suffices to add an application of (4). For
case (5), the proof in [49, Lemmas 6.7] also refers to [49,
Lemma 5.6] which also hold for ≤L-reductions by Lemma 1
below, and cases (1) and (4).

The remaining two reductions in (4) are shown in a more
straightforward way for ≤SA-reductions in [49, Lemmas 6.5
and 6.6]. Here, we argue that the proof of [49, Lemmas 6.5]
goes through for ≤L-reductions as well, which shows that
Γ ∪ {Opt(φ)}≤L Γ. We omit the analogous argument for the
reduction Γ ∪ {Feas(φ)}≤L Γ. An instance I of VCSP(Γ ∪
{Opt(φ)}) is transformed into an instance of VCSP(Γ) by
replacing all occurrences of Opt(φ) by multiple copies of
φ. In the proof of [49, Lemmas 6.5], it is then shown that
if I is a gap instance for the SA(k)-relaxation, and λ is an
optimal solution to this relaxation, then λ is also a solution
to the SA(k)-relaxation of J . Moreover, λ attains a better
value than OptVCSP(J), hence J is also a gap instance. This
argument goes through also if we take I to be a gap instance
for the Lasserre(k)-relaxation, and λ an optimal solution to
this relaxation. The exact same solution λ then also shows that
J is a gap instance for the Lasserre(k)-relaxation.

In order to finish the proof of Theorem 2, we need few
additional results. The following result follows, as described
in the proof of [49, Theorem 5.4], from [2], [33].

Theorem 5 ([49, Theorem 5.4]). Let ∆ be a crisp constraint
language of finite size that contains all constant unary relations.
If Pol(∆) violates the BWC, then there exists a finite non-trivial
Abelian group G such that ∆ interprets EG,r, for every r ≥ 1.

The following two lemmas, together with cases (1) and (4)
of Theorem 4, extend [49, Lemma 5.6 and Lemma 5.7] from
≤SA-reductions to ≤L-reductions.

Lemma 1. Let Γ be a general-valued constraint language
over domain D and let F be a set of operations over D. If
supp(Γ)∩F = ∅, then there exists a crisp constraint language
∆ ⊆ 〈Γ〉 such that Pol(∆)∩F = ∅. Moreover, if Γ and F are
finite then so is ∆.

Proof. By [49, Lemma 2.9], for each f ∈ F ∩ Pol(Γ), there
is an instance If of VCSP(Γ) such that f 6∈ Pol(Opt(φIf )).
Let ∆ = {Opt(φIf ) | f ∈ F} ∪ {Feas(φ) | φ ∈ Γ} ⊆ 〈Γ〉.
For f ∈ F ∩ Pol(Γ), we have f 6∈ Pol(Opt(φIf )) ⊇ Pol(∆).
For f ∈ F \Pol(Γ), we have f 6∈ Pol(φ), for some φ ∈ Γ, so
f 6∈ Pol(∆). It follows that Pol(∆) ∩ F = ∅.

Lemma 2. Let Γ be a general-valued constraint language of
finite size. If supp(Γ) violates the BWC, then there is a crisp

constraint language ∆ ⊆ 〈Γ〉 of finite size such that Pol(∆)
violates the BWC.

Proof. Since supp(Γ) violates the BWC, there exists an m ≥ 3
such that supp(Γ) does not contain any m-ary WNU. Let F
be the (finite) set of all m-ary WNUs. The result follows by
applying Lemma 1 to Γ and F .

We are now ready to prove Theorem 2.

Proof of Theorem 2. Theorem 1 gives the implication (i) =⇒
(iii) by contraposition: if supp(Γ) satisfies the BWC then, by
Theorem 1, VCSP(Γ) is solved by any constant level k of the
Sherali-Adams LP hierarchy with k ≥ 3, and thus also by the
kth level of the Lasserre SDP hierarchy for k ≥ ar(Γ).

Now, suppose that supp(Γ) violates the BWC. Let Γ′ be
a core of Γ on a domain D′ ⊆ D and let Γc = Γ′ ∪ CD′ .
By [49, Lemma 3.7], supp(Γc) also violates the BWC. By
Lemma 2, there exists a finite crisp constraint language ∆
such that ∆ has an interpretation in Γc and Pol(∆) violates
the BWC. Since CD ⊆ Γc, we may assume, without loss of
generality, that CD ⊆ ∆. By Theorem 5, there exists a finite
non-trivial Abelian group G and an interpretation of EG,3 in
∆. It is easy to see that interpretations compose, and hence,
EG,3 has an interpretation in Γc. Therefore, Γ can simulate
EG,3 which gives the implication (iii) =⇒ (ii).

Finally, by Theorem 3, VCSP(EG,3) requires linear levels
of the Lasserre SDP hierarchy. By Theorem 4(3) and (5),
we have EG,3≤L Γc≤L Γ. Consequently, VCSP(Γ) requires
linear levels of the Lasserre SDP hierarchy as well. This gives
the implication (ii) =⇒ (i).

IV. AN ≤L-REDUCTION SCHEME

In this section, we will prove Lemma 4, which is a key
technique used to establish cases (1)–(3) and (5) of Theorem 4.
It is an analogue of [49, Lemma 6.1], which does the same for
the ≤SA-reductions. In order to generalise [49, Lemma 6.1] to
the ≤L-reductions we will use Lemma 3 proved below.

The following observation will be used throughout this
section: since the set of vectors {λi(τ) | τ ∈ DXi}
for a feasible solution λ is orthogonal by (L5), it follows
that ‖

∑
τ∈T λi(τ)‖2 =

∑
τ∈T 〈λi(τ),λi(τ)〉 for any subset

T ⊆ DXi .

Lemma 3. Every feasible solution λ to the Lasserre(k)-
relaxation satisfies, in addition to (L1)–(L6):∑

τ : τ |Xj=σ

λi(τ) = λj(σ)

∀i, j ∈ [q], Xj ⊆ Xi, |Xi| ≤ k, σ : Xj → D. (L7)

Proof. Consider the norm of the vector
∑
τ : τ |Xj=σ λi(τ)−

λj(σ).



‖
∑

τ : τ |Xj=σ

λi(τ)− λj(σ)‖2

= ‖
∑

τ : τ |Xj=σ

λi(τ)‖2 − 2〈
∑

τ : Xi→D
λi(τ),λj(σ)〉+ ‖λj(σ)‖2

= ‖
∑

τ : τ |Xj=σ

λi(τ)‖2 − 2
∑

τ : Xi→D
〈λi(τ),λj(σ)〉+ ‖λj(σ)‖2

= ‖
∑

τ : τ |Xj=σ

λi(τ)‖2 − 2
∑

τ : Xi→D
〈λi(τ),λi(τ)〉+ ‖λj(σ)‖2

= −‖
∑

τ : τ |Xj=σ

λi(τ)‖2 + ‖λj(σ)‖2,

where the next to last equality follows from (L6) since Xj ⊆ Xi

and σ = τ |Xj . We see that the equality in the lemma is
equivalent to:

‖
∑

τ : τ |Xj=σ

λi(τ)‖2 = ‖λj(σ)‖2. (1)

We finish the proof by induction on |Xi \Xj | ≥ 1. There
are two base cases:

(i) If |Xi\Xj | = 1 and Xj = ∅, then (1) follows immediately
from (L1) and (L4).

(ii) If |Xi \ Xj | = 1 and Xj 6= ∅, then let Xr = {x} =
Xi \ Xj be a scope on the single variable x, and, for
a ∈ D, let σa be the assignment σa(x) = a. Now, (1)
follows from:

‖
∑

τ : τ |Xj=σ

λi(τ)‖2 =
∑
a∈D
〈λi(σa ◦ σ),λi(σa ◦ σ)〉

(L6)
=

∑
a∈D
〈λr(σa),λj(σ)〉

= 〈
∑
a∈D

λr(σa),λj(σ)〉

(i)
= 〈λ0,λj(σ)〉,

(L6)
= 〈λj(σ),λj(σ)〉.

Finally, assume that |Xi \Xj | > 1 and that x ∈ Xi \Xj .
Let r be an index such that Xr = Xj ∪ {x}, and, for a ∈ D,
let σa be the assignment σa(x) = a. Then,∑

τ : τ |Xj=σ

λi(τ) =
∑
a∈D

∑
τ : τ |Xr=σ◦σa

λi(τ)

=
∑
a∈D

λr(σ ◦ σa)

= λj(σ),

where the last two equalities follow by induction.

For a solution λ to the Lasserre(k)-relaxation of I with
the objective function

∑q
i=1 φ(xi), we denote by supp(λi)

the positive support of λi, i.e., supp(λi) = {σ : Xi → D |
||λi(σ)||2 > 0}.

We extend the convention of denoting the set of variables
in xi by Xi to tuples y′i, whose sets are denoted by Y ′i .

The following technical lemma is the basis for the reductions.

Lemma 4. Let ∆ and ∆′ be general-valued constraint
languages of finite size over domains D and D′, respectively.

Let (I, i) 7→ Ji be a map that to each instance
I of VCSP(∆) with variables V and objective function∑q
i=1 φi(xi), and index i ∈ [q], associates an instance Ji

of VCSP(∆′) with variables Yi and objective function φJi .
Let J be the VCSP(∆′) instance with variables V ′ =

⋃q
i=1 Yi

and objective function
∑q
i=1 φJi .

Suppose that the following holds:

(a) For every satisfying and optimal assignment α of J , there
exists a satisfying assignment σα of I such that

ValVCSP(I, σα) ≤ ValVCSP(J, α).

Furthermore, suppose that for any k ≥ ar(∆), and any
feasible solution λ of the Lasserre(k)-relaxation of I , the
following properties hold:

(b) For i ∈ [q], and σ : Xi → D with positive support in λ,
there exists a satisfying assignment ασi of Ji such that

φi(σ(xi)) ≥ ValVCSP(Ji, α
σ
i );

(c) for i, r ∈ [q], any X ⊆ V with Xi ∪ Xr ⊆ X , and
σ : X → D with positive support in λ,

ασii |Yi∩Yr = ασrr |Yi∩Yr ,

where σi = σ|Xi and σr = σ|Xr .
Then, I 7→ J is a many-one reduction from VCSP(∆) to

VCSP(∆′) that verifies ∆≤L ∆′.

Proof. First, we show that OptVCSP(I) = OptVCSP(J).
From condition (a), if J is satisfiable, then so is I and
OptVCSP(I) ≤ OptVCSP(J). Conversely, if I is satisfiable,
and σ is an optimal assignment to I , then the Lasserre(2k)
solution λ, where k ≥ ar(∆), that assigns a fixed unit vector
to σ|X for every X ⊆ V with |X| ≤ 2k is feasible. Let
σi = σ|Xi . By (b), there exist satisfying assignments ασii of
Ji, for all i ∈ [q], such that OptVCSP(I) ≥ OptSDP(I, 2k) ≥∑
i∈[q] ValVCSP(Ji, α

σi
i ). Define an assignment α : V ′ → D′

by letting α(y) = ασii (y) for an arbitrary i such that y ∈ Yi.
We claim that α|Yi = ασii , for all i ∈ [q]. From this it
follows that α is a satisfying assignment to J such that∑
i∈[q] ValVCSP(Ji, α

σi
i ) = ValVCSP(J, α) ≥ OptVCSP(J),

and hence that OptVCSP(I) ≥ OptVCSP(J). Indeed, let
y ∈ V ′ and assume that y ∈ Yi and y ∈ Yr. Let X = Xi∪Xr.
Then, since k ≥ ar(∆) and ||λ(σ|X)||2 > 0, it follows from
(c) that ασii (y) = ασrr (y).

Let k′ be arbitrary and let k = max{k′, ar(∆′)} · ar(∆).
Assume that I is a gap instance for the Lasserre(2k)-relaxation
of VCSP(∆), and let λ be a feasible solution such that
ValSDP(I,λ, 2k) < OptVCSP(I) (where OptVCSP(I) may
be ∞, i.e. I may be unsatisfiable). We show that there is
a feasible solution κ to the Lasserre(k′)-relaxation of J



such that ValSDP(J,κ, k′) ≤ ValSDP(I,λ, 2k).6 Then, by
condition (a), we have OptVCSP(I) ≤ OptVCSP(J). Hence,
ValSDP(J,κ, k′) ≤ ValSDP(I,λ, 2k) < OptVCSP(I) ≤
OptVCSP(J), so J is a gap instance for the Lasserre(k′)-
relaxation of VCSP(∆′). Since k′ was chosen arbitrarily, we
have ∆≤L ∆′.

To this end, augment I with null constraints on
Xq+1, . . . , Xq′ so that for every at most 2k-subset X ⊆ V ,
there exists an i ∈ [q′] such that Xi = X . Rewrite the objective
function of J as

∑p
j=1 φ

′
j(y
′
j), φ′ ∈ ∆′, where, by possibly

first adding extra null constraints to J , we will assume that for
every at most k′-subset Y ⊆ V ′, there exists a j ∈ [p] such
that Y ′j = Y . For each i ∈ [q], let Ci be the set of indices
j ∈ [p] corresponding to the valued constraints in the instance
Ji.

Extend ασi to indices i ∈ [q′]\ [q] as follows. For X ⊆ V , let
YX =

⋃
j∈[q]:Xj⊆X Yj . For σ ∈ supp(λi), and any r, s ∈ [q]

such that Xr ∪ Xs ⊆ Xi and y ∈ Yr ∩ Ys, by (c), it holds
that ασrr (y) = ασss (y). Therefore, we can uniquely define
ασi : YXi → D′ by letting ασi (y) = ασrr (y) for any choice of
r ∈ [q] with Xr ⊆ Xi and y ∈ Yr. This definition is consistent
with ασi for i ∈ [q] in the sense that (c) now holds for all
i, r ∈ [q′].

For m ≥ 1, let X(≤m) = {X =
⋃
i∈S Xi | S ⊆ [q], |X| ≤

m}, and for Y ⊆ V ′ with |Y | ≤ k′, let X(≤m)(Y ) = {X ∈
X(≤m) | Y ⊆ YX}.

Let j ∈ [p] be arbitrary and let X =
⋃
i∈S Xi ∈ X(≤n)(Y

′
j ),

for some S ⊆ [q], where n = |V |. For each y ∈ Y ′j , let i(y) ∈
S be an index such that y ∈ Yi(y) and let X ′ =

⋃
y∈Y ′

j
Xi(y).

Then, Y ′j ⊆ YX′ , X ′ ⊆ X , and |X ′| ≤ max{k′, ar(∆′)} ·
ar(∆) ≤ k, so X ′ ∈ X(≤k)(Y

′
j ). In other words,

for all X ∈ X(≤n)(Y
′
j ), there exists i ∈ [q′] such that

Xi ⊆ X and Xi ∈ X(≤k)(Y
′
j ). (2)

In particular (2) shows that for every j there exists i ∈ [q′]
such that Xi ∈ X(≤2k)(Y

′
j ), since

⋃
i∈[q]Xi ∈ X(≤n)(Y

′
j ) for

all j.
For j ∈ [p], α : Y ′j → D′, and i ∈ [q′] such that Xi ∈

X(≤2k)(Y
′
j ), define

µij(α) =
∑

σ : ασi |Y ′
j

=α

λi(σ). (3)

Claim: Definition (3) is independent of the choice of Xi ∈
X(≤2k)(Y

′
j ). That is,

µrj = µij ∀r, i ∈ [q′] such that Xr, Xi ∈ X(≤2k)(Y
′
j ).

(4)

6We remark here that the vectors in the feasible solution κ will live in the
same space Rt as those of λ. This is not a problem as long as t is chosen
sufficiently large enough for both of the relaxations.

First, we prove (4) for Xr ⊆ Xi with Xr ∈ X(≤k)(Y
′
j ) and

Xi ∈ X(≤2k)(Y
′
j ). We have

µrj(α)
(3)
=

∑
τ : ατr |Y ′

j
=α

λr(τ)

(L7)
=

∑
τ : ατr |Y ′

j
=α

∑
σ : σ|Xr=τ

λi(σ)

=
∑

σ : ασrr |Y ′
j

=α

λi(σ)

(c)
=

∑
σ : ασi |Y ′

j
=α

λi(σ)

(3)
= µij(α),

Next, let Xr ∈ X(≤2k)(Y
′
j ) and Xi ∈ X(≤2k)(Y

′
j ) be

arbitrary. From (2), it follows that Xr contains a subset Xs ∈
X(≤k)(Y

′
j ) and that Xi contains a subset Xt ∈ X(≤k)(Y

′
j ).

Since |Xs ∪Xt| ≤ 2k, there exists an index u such that
Xu = Xs ∪ Xt. The claim (4) now follows by a repeated
application of the first case: µrj = µsj = µuj = µtj = µij .

By (4), we can pick an arbitrary Xi ∈ X(≤2k)(Y
′
j ) and

uniquely define κj = µij .
We now show that this definition of κ satisfies the equations

(L1)–(L6).
• The equation (L1) holds as κ0 =

∑
σ λi(σ) = 1 for an

arbitrary i by (L7).
• The equations (L2) holds by the linearity of the inner

product.
• The equations (L3) hold trivially if φ′j is a null constraint.

Otherwise, j ∈ Ci for some i ∈ [q]. This implies that
Xi ∈ X(≤k)(Y

′
j ), and by (4) we have κj = µij . Then,

α ∈ supp(κj) implies that there is a σ ∈ supp(λi) such
that ασi |Y ′

j
= α. By condition (b) and equation (L3) for

λi, the tuple ασi (y′j) ∈ Feas(φ′j), so κj satisfies (L3).
• We show that the equations (L4) hold for κ. Let Y ′j = {y}

be a singleton and let Xi ∈ X(≤k)(Y
′
j ). We have∑

a′∈D′

||κj(a′)||2

(3)
=

∑
a′∈D′

〈
∑

σ : ασi (y)=a′

λi(σ),
∑

σ : ασi (y)=a′

λi(σ)〉

(L5)
=

∑
a′∈D′

∑
σ : ασi (y)=a′

〈λi(σ),λi(σ)〉

=
∑
σ

〈λi(σ),λi(σ)〉

= ||
∑
σ

λi(σ)||2

(L7)
= 1.

• The equations (L5) hold by linearity of the inner product
and by the equations (L5) for λ.

• Finally, we show that the equations (L6) hold for κ. Let
Y ′r , Y

′
s , Y

′
r′ , Y

′
s′ be such that Y ′r ∪ Y ′s = Y ′r′ ∪ Y ′s′ and



|Y ′r |, |Y ′s |, |Y ′r′ |, |Y ′s′ | ≤ k. Furthermore, let αr : Y ′r →
D′, αs : Y ′s → D′, αr′ : Y ′r′ → D′, αs′ : Y ′s′ → D′ be
such that αr ◦αs = αr′ ◦αs′ . Let Xi ∈ X(≤2k)(Y

′
r ∪Y ′s ).

Then,

〈κr(αr),κs(αs)〉
(3)
= 〈

∑
σ : ασi |Y ′

r
=αr

λ(σ),
∑

σ′ : ασ
′
i |Y ′

s
=αs

λ(σ′)〉

=
∑

σ : ασi |Y ′
r

=αr

∑
σ′ : ασ

′
i |Y ′

s
=αs

〈λ(σ),λ(σ′)〉

(L5)
=

∑
σ : ασi |Y ′

r∪Y
′
s

=αr◦αs

〈λ(σ),λ(σ)〉

Since Y ′r∪Y ′s = Y ′r′∪Y ′s′ and σr◦σs = σr′◦σs′ , it follows
that the right-hand side is identical for 〈κr(αr),κs(αs)〉
and 〈κr′(σr′),κs′(σs′)〉.

We conclude that κ is a feasible solution to the Lasserre(k′)-
relaxation of J .

Let i ∈ [q] and note that by (4), for every j ∈ Ci, we have
κj = µij . Therefore,∑

j∈Ci

∑
α∈Feas(φ′

j)

||κj(α)||2φ′j(α(y′j))

=
∑
j∈Ci

∑
α∈Feas(φ′

j)

∑
σ : ασi |Y ′

j
=α

||λi(σ)||2φ′j(α(y′j))

=
∑

σ : ασi |Y ′
j
∈Feas(φ′

j)

||λi(σ)||2
∑
j∈Ci

φ′j(α
σ
i (y′j))

≤
∑

σ∈supp(λi)

||λi(σ)||2φi(σ),

(5)

where the inequality follows from assumption (b). Summing
inequality (5) over i ∈ [q] shows that ValSDP(J,κ, k′) ≤
ValSDP(I,λ, k) and the lemma follows.
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