
The 16th International Conference on Principles
and Practice of Constraint Programming (CP’10)

Doctoral Programme Proceedings

6 - 10 September 2010
St Andrews, UK

Welcome to the Proceedings of the 2010 Constraint Programming Doc-
toral Programme, held in conjunction with the 16th International Confer-
ence on Principles and Practice of Constraint Programming (CP’10) in St
Andrews, UK. The doctoral programme is open to (mostly doctoral) stu-
dents in all areas related to constraint programming. All participants present
work either within the doctoral programme or in the main technical pro-
gramme of the conference.

The papers in this proceedings are those which have been submitted
directly to the doctoral programme. They contain a wide variety of work,
either completed or in progress, being undertaken by the current generation
of PhD students. We also list all students who have papers accepted into
the main conference.

The Doctoral Program would not be possible without the support of
many people and organisations. In particular, we would like to thank the
program committee members and the sponsors of the CP conference. More-
over, we thank Google for funding the DP dinner.

We hope you have a great time in St Andrews!

Peter Nightingale and Standa Živný
Doctoral Programme Chairs, 2010

Programme Committee:

Sebastian Brand, NICTA and University of Melbourne
Hubie Chen, Universitat Pompeu Fabra
Chris Jefferson, University of St Andrews
Zeynep Kiziltan, University of Bologna
Michela Milano, University of Bologna
Justin Pearson, Uppsala University
Karen Petrie, University of Dundee
Claude-Guy Quimper, Google Inc.
Roland Yap, National University of Singapore
Neil Yorke-Smith, American University of Beirut and SRI International

ii

Students with papers in the main CP programme:

Karl Sundequist Blomdahl, Uppsala University
Siddhartha Jain, Brown University
Mehdi Khiari, Universite de Caen Basse-Normandie
Lars Kotthoff, University of St Andrews
Anastasia Paparrizou, University of Western Macedonia
Justyna Petke, University of Oxford
Elaine Sonderegger, University of Connecticut
Justin Yip, Brown University

iii

Table of Contents

Refining Portfolios of Constraint Models with Conjure 1
Ozgur Akgun

On the Power of Restarts for CSP 7
Lúıs Baptista

Facets for Alldifferent Systems 13
David Bergman

Energy-Efficient Task-Mapping for Data-Driven Sensor Network Macropro-
gramming Using Constraint Programming 19

Farshid Hassani Bijarbooneh
Mapping periodic applications on unary and cumulative resources 25

Alessio Bonfietti
Consistency Techniques for Hybrid Simulations 31

Marco Bottalico
A Semiring-based framework for fair resources allocation 37

Paola Campli
Symmetries and Lazy Clause Generation 43

Geoffrey Chu
A Soft Constraint for Cumulative Problems with Over-loads of Resource 49

Alexis De Clercq
Optimal Stopping rule-based algorithms for Computing Sub-Optimal solu-
tions in Satisfiability problems with Preferences 55

Emanuele Di Rosa
Synthesis of Search Algorithms from High-level CP Models 61

Samir A. Mohamed Elsayed
Maintaining Multiple Representations in DCOP Solving 67

Patricia Gutierrez
Arities of Symmetry Breaking Constraints in Binary CSPs 73

Tim Januschowski
Conflict and Solution Driven Constraint Learning in QBF 79

Paolo Marin
Constraints in the Cloud 85

Jacopo Mauro
Soft Constraints and Partially Ordered Preferences in a Multi Criteria Op-
timisation Environment 91

Conor O’Mahony
Efficient Load Balancing in Distributed Branch and Bound for Weighted
CSPs 97

Lars Otten
Using Abstract Domains in Constraint Programming 103

Marie Pelleau
Overview of thesis: Transformations of representation in constraint satisfac-
tion 109

iv

András Z. Salamon
Capturing Configuration Complexity 115

Evgenij Thorstensen
Two Preferences Based Conversational Recommender Systems 121

Walid Trabelsi

v

Refining Portfolios of Constraint Models
with Conjure

Ozgur Akgun, Ian Miguel, and Chris Jefferson
{ozgur,ianm,caj}@cs.st-andrews.ac.uk

School of Computer Science, University of St Andrews, St Andrews, Scotland, UK.

Abstract. Modelling is one of the key challenges in Constraint Pro-
gramming (CP). There are many ways in which to model a given prob-
lem. The model chosen has a substantial effect on the solving efficiency. It
is difficult to know what the best model is. To overcome this problem we
take a portfolio approach: Given a high level specification of a combina-
torial problem, we employ non-deterministic rewrite techniques to obtain
a portfolio of constraint models. The specification language (Essence)
does not require humans to make modelling decisions; therefore it helps
us remove the modelling bottleneck.

1 Introduction

Many interesting real life problems can be formalised as constraint satisfaction
problems (CSPs). A CSP consists of decision variables with associated domains,
constraints on the assignments of values to a subset of decision variables and
optionally an objective function. Solving a CSP is a well studied practice. There
are many existing solvers, which employ advanced algorithms to reason about
given constraints and run efficient search algorithms.

In order to solve a problem using a CSP solver, one needs to model the
problem at hand. CSP solvers have different input languages - a common input
language provides boolean and integer variables, arithmetic, logical and global
constraints on these variables. CSP solvers provide a relatively high level of
abstraction and expressivity when modelling a problem compared to MIP and
SAT, and they still provide fast and scalable black-box solvers.

Most real world problems contain complex combinatorial structures such as
sets, multi-sets, functions, relations, tuples, etc. Modelling a problem that can
naturally be specified using these high level constructs is not a straightforward
task - there are many ways to model a certain combinatorial object and a relation
between a number of combinatorial objects. Moreover these alternative ways of
modelling the same abstract expression do not dominate each other in terms
of efficiency. Thus, given an abstract problem specification, building an efficient
CSP model requires a great deal of expertise in CSP technologies and many
experiments.

This work is an ongoing attempt to automate the CSP modelling process. In
order to do so, we first design and implement a system to generate a selection

1

of valid CSP models given an abstract problem specification. The natural next
step is to study relative strengths of generated models and design a system to
select a good (if not the best) model. We will also explore the selection of a
portfolio of models (as opposed to just selecting one) and running multi-model
search techniques on this portfolio.

2 Tool chain

Our automated tool chain takes the approach of specifying the problem in an
abstract constraint specification language, then compiling it to a low level model
which current constraint solvers will accept. There are many decisions to be made
at every step. These decisions have crucial impact on the actual time we spend
on solving a given problem.

We employ different tools at different levels to best handle these tasks. Con-
jure takes Essence[1] specifications and generates a portfolio of Essence′ mod-
els. Tailor[2] takes Essence′ models as input and generates efficient Minion[3]
input files. Conjure and Tailor have the capability to work at the problem
class level, whereas Minion, the actual solver, works at the instance level.

Problem Essence Essence'
Conjure

Minion Inp.
Tailor

Solution
Minion

3 Current status

The implementation of a working version of the refinement system Conjure is
mostly complete. It is implemented as a non-deterministic term rewriting sys-
tem. The current design and implementation of Conjure uses Haskell, provides
an embedded implementation (EDSL) of the Essence language to be used by
the rule authors, and an actual implementation of the language to be used by
the problem owners. It successfully decouples the task of rewrite rule authoring
from the implementation of the language and the actual process of applying the
rewrite rules. The current rewrite rules database is a proof of concept demon-
strating the fact that we can handle almost all of the language structures.

There exists a prototype implementation of Conjure, presented in [4], which
refines a fragment of Essence limited to nested set-based decision variables into
models in the Essence′ solver independent modelling language1

Current implementation successfully supports most of the Essence types,
with minor limitations. For instance we currently do not handle function vari-
ables which map items from a nested combinatorial type to any other type.
Function variables mapping integers to any type are fully supported though.
1 Essence′ is, in turn, the input for the Tailor system [2], which transforms Essence′

models into input suitable for a particular constraint solver.

2

3.1 The Architecture of Conjure

This section gives an overview of the architecture of Conjure, which is a
compiler-like system. Like most of the compilers, it has a pipeline which starts
with parsing, validating the input, and type-checking. After these foundation
phases, it has several phases for preparing the input specification for the rewriting
phase, the actual rewriting phase, and some housekeeping phases. The pipeline
is summarised below:

1. Parsing
2. Validating the input
3. Type checking the input
4. Representations phase
5. Auto-Channelling phase
6. Adding structural constraints
7. Expression rewriting
8. Fixing auxiliary and quantified variable names

Phases 1–3 are the foundation phases. The representations, auto-channelling,
and adding structural constraint phases (4–6) prepare the input specification for
the actual task of rewriting (Phase 7). Phase 8 can be viewed as housekeeping,
it makes the output models easier to read and understand. Phase 7 (expression
rewriting) is described in detail in the following sections. We will now give brief
descriptions for the three preparatory phases preceding it.

Representation phase There are typically many ways to represent a combi-
natorial object. In this phase we make the representation decisions on the
input specification in every possible way, and create multiple copies of it.

Auto-Channelling phase If we choose more than one way of representing a
combinatorial object within a specification, we automatically add channelling
constraints between different representations of the same variable at this
phase. This way we link the different representations and make sure they
represent the same combinatorial object.

Adding structural constraints At this phase we add all necessary structural
constraints on every decision variable in the specification. The structural
constraint for a representation of a decision variable makes sure the selected
representation actually represents a valid combinatorial object with the in-
tended properties. We add these constraints before rewriting take place,
because they will be added regardless of the rest of the specification and
they only depend on the representation of a combinatorial object.

3.2 Non-deterministic Rewriting

Our automated modelling system employs a term rewriting system to refine
Essence specifications into the target language Essence′. Generally, rewrite
rules can be thought of as partial functions, which map from a subterm to an
equivalent subterm [5]. Given a set of rewrite rules and a term, a rewrite system

3

repeatedly applies the rules until no further rules can be applied. The term is
then said to be in normal form.

As noted earlier, in order to produce alternative models we wish to generate
not a single normal-form term, but all the normal-form terms that are attainable
by applying the given rules to the input term. For this purpose we slightly adjust
the definition of a rewrite rule: instead of a function that maps from a subterm
to an equivalent subterm, we define a rewrite rule to be a function that maps
from a subterm to a set of subterms.

Hence, a single rule in this definition is sufficient to represent the whole rule
database. This representation is natural while applying the rules, but it is not a
natural way to write them. It is, however, trivial to automate the combination
of a set of partial functions into the single function used by the implementation.

For example we can combine rule1, rule2 and rule3 in allRules as follows:

Subterms: {A,B,C,D}

rule1: A to B

rule2: A to C

rule3: B to D

allRules

{ (A, {B,C})
, (B, { D })
, (C, { C })
, (D, { D }) }

Here rule1, rule2 and rule3 are
partial functions. However the com-
bined allRules is a total function,
which maps from a subterm to a set
of equivalent subterms.

rule1 rewrites A into B, rule2
rewrites A into C and rule3 rewrites B
into D. Since there is no rule matching
C or D they are mapped to a singleton
set of themselves.

In what follows, we will present our rules as partial mappings from single
subterms to single subterms.

Figure 1 presents the elements of a rule: the mapping denoted by the ;

operator; the guards that the left hand side of the mapping must satisfy; and
the declarations to be used while constructing the right hand side of the mapping.
Any expression that matches with the left hand side of the ; symbol is replaced
by the right hand side, if all guards are satisfied.

Figure 2 shows an example rule that matches with asubseteq constraint
between two sets of same types. It rewrites the constraint into a universal quan-
tification over the first set. Can be read as every element in set a, must also be
an element of set b. Notice also that it creates a quantified variable of type τ ,
which is the type of the elements of the two sets a and b. The actual name of
the quantified variable is to be decided by the system.

essence_expression ; equivalent_expression

guards: properties that essence_expression must satisfy

declarations: newly created variables and local aliases for expressions

Fig. 1. Anatomy of a refinement rule

4

a subseteq b ; forall i : a . i elem b

guards: a ∼ set of τ
b ∼ set of τ

declarations: i = quantifiedVar(τ)

Fig. 2. An example rewrite rule, ruleSetSubsetEq

It is useful to view our rules as operating upon an Abstract Syntax Tree (AST)
representation of an Essence specification. In the AST, every node represents a
term in the specification and is also labelled with that term’s type. To illustrate,
Figure 3 presents a simple specification and its associated AST.

The root of the AST is the outer equality constraint, its immediate children
are the decision variable x and the intersection operator, and so on. An identifier
node, such as that associated with x, serves as a reference to the declaration of
that identifier in the specification (the find statement in the case of x).

The rewriting system works by traversing the AST and attempting to apply
the rules in the database at every node. A rule is allowed to modify the subtree
rooted at the current node, and, for contextual information, is allowed to access
(but not to modify) the remainder of the AST via the parent of the current
node. If a rule matches the current node, the whole subtree is replaced with the
equivalent subtree the rule suggests.

4 What’s next?

Having a robust implementation of the automated refinement system, we are
now one step closer to our ultimate goal, exploiting the opportunity of having
multiple equivalent models for a given problem and eventually removing the
modelling bottleneck from CSP to make it more accessible to wider audiences.

There is still a great necessity of improvements on the rules database. The
quality and quantity of generated models directly depend on the quality and
diversity of rules at hand.

given a,b : set of τ
find x : set of τ

such that

x = a intersect (b union c)

=

intersect

x

union

a

b

c

Fig. 3. A simple Essence specification and its AST view. Note that τ represents any
concrete type.

5

Once we are confident about the models we generate, we will start studying
effective model selection techniques. There are two basic stages where we can
benefit from having multiple models, as described below.

Static exploitation of multiple models. Most constraint models describe a
parameterised problem “class” (e.g. the class of sudoku puzzles). For input
to a constraint solver, an instance of the class is obtained by giving values for
the parameters (e.g. the pre-filled cells on the sudoku grid). We can exploit
multiple models of a problem class by using small sized training instances to
find the best-performing model, then we can use the best-performing model
to solve other instances of the problem class. Although the search through the
model space is initially uninformed, the system will learn which components
of models tend to lead to better models and use this information to inform
future model selection decisions.

Dynamic exploitation of multiple models. Constraint solvers typically em-
ploy a backtracking-style search combined with inference at each search node
(constraint propagation) in order to find solutions. Since each search deci-
sion results in a new sub-problem that differs slightly from that associated
with its parent node, our initial model selection might in fact be sub-optimal
after a few decisions have been made. Hence, we can exploit multiple models
dynamically by switching model mid-search. In order to do so, we must be
confident that the new model will perform better than our current selection.
The changing structure of the problem resulting from the decisions made by
the constraint solver will provide the basis for this model selection, again
employing a machine-learning methodology.

The result of these two approaches will be significantly enhanced performance
of constraint solving, which will benefit a wide variety of industrial and academic
users with combinatorial problems to solve. It will also remove the modelling
bottleneck, in that it will no longer be necessary to have the expertise to select
the “best” model.

References

1. Frisch, A.M., Grum, M., Jefferson, C., Hernández, B.M., Miguel, I.: The design of
ESSENCE: A constraint language for specifying combinatorial problems. In Veloso,
M.M., ed.: IJCAI. (2007) 80–87

2. Rendl, A.: Thesis: Effective compilation of constraint models. (2010)
3. Gent, I.P., Jefferson, C., Miguel, I. (In: ECAI 2006, 17th European Conference

on Artificial Intelligence, August 29 - September 1, 2006, Riva del Garda, Italy,
Including Prestigious Applications of Intelligent Systems (PAIS 2006), Proceedings)

4. Frisch, A.M., Jefferson, C., Hernández, B.M., Miguel, I.: The rules of constraint
modelling. In Kaelbling, L.P., Saffiotti, A., eds.: IJCAI, Professional Book Center
(2005) 109–116

5. N. Dershowitz, J.-P. Jouannaud: Rewrite Systems. In: Handbook of Theoretical
Computer Science. North-Holland (1990)

6

On the Power of Restarts for CSP

Luís Baptista
1,2

 (student) and Francisco Azevedo
1
 (supervisor)

1CENTRIA, Faculdade de Ciências e Tecnologia,

Universidade Nova de Lisboa, Portugal
2Instituto Politécnico de Portalegre, Portugal

lmtbaptista@gmail.com, fa@di.fct.unl.pt

Abstract. The use of restart techniques in solving Constraint Satisfaction

Problems (CSPs) is considered of small importance for backtrack search

algorithms. In this paper we propose to conduct a preliminary study on the

impact of restarts in randomized backtrack search algorithms for solving CSPs.

We show that the well-know n-queens problem has a heavy-tail distribution.

We present empirical evidences that restarts can effectively improve the time to

solve the n-queens problem. We implement a conflict-driven variable heuristic,

and present empirical evidences that this heuristic effectively improve the time

to solve the n-queens problem.

Keywords: search, constraint, restart, randomization, heuristic

1 Introduction

Constraint Satisfaction Problems (CSPs) are a well-known case of NP-complete

problems [1]. They have extensive application in areas such as scheduling,

configuration, timetabling, resources allocation, combinatorial mathematics, games

and puzzles, and many other fields of computer science and engineering.

In this paper we propose to conduct a preliminary study on the impact of restarts in

randomized backtrack search algorithms for solving CSPs. We also conduct a

preliminary study on the impact of using knowledge from the past runs of the

algorithm. We show that the runtime for computing the solution to the n-queens

problem, using a randomized backtrack search algorithm, has a heavy-tail

distribution. And we show that the use of restarts (restarting the algorithm) on a

randomized backtrack search algorithm, with state-of-the-art techniques, improves the

overall performance of backtrack search algorithm. And finally, adding a conflict-

driven heuristic is shown to be better than the traditional, widely used, fail-first

heuristic.

7

Luís Baptista and Francisco Azevedo

2 Constraint Satisfaction Problem

A Constraint Satisfaction Problem (CSP) consists of a set of variables, each with a

domain of values, and a set of constraints on a subset of these variables. In this paper

we will use a CSP with finite domains. A propositional satisfiability problem (SAT) is

a particular case of a CSP where the variables are Boolean, and the constraints are

defined by propositional logic expressed in conjunctive normal form.

Backtrack search algorithms are widely used for solving CSPs. It is commonly

accepted that those algorithms should incorporate advanced search pruning techniques

for space reduction, e.g., domain consistency techniques. Also, the use of heuristics

based on the fail-first principle [2] is of great importance for efficiently solving CSPs.

On the contrary, the use of restart techniques is considered of small importance for

backtrack search algorithms. As a consequence they are not standard on state-of-the-

art solvers.

The area of constraint satisfaction problems and the area of propositional

satisfiability (SAT) share many techniques [3]. In SAT the use of restarts is a standard

technique in state-of-the-art solvers. Restarts were essential in solving real-world

instances of SAT [4, 5].

3 Restarts

A complete backtrack search algorithm is randomized by introducing a fixed amount

of randomness in the branching heuristic [6]. The utilization of randomization results

in different sub-trees being searched each time the search algorithm is restarted.

For many combinatorial problems different executions of a randomized backtrack

search algorithms, on the same instance, can result in extremely different runtimes.

This large variability in the runtime of the complete search procedures can be

explained by the phenomena of heavy-tail distribution [6-8]. The heavy-tail

distribution is characterized by long tails, as we can see in figure 1. The curve gives

the cumulative fraction of successful runs as a function of the number of backtracks

[8].

A randomized complete search algorithm is repeatedly run, each time limiting the

maximum number of backtracks to a cutoff value. In practice a good cutoff values

eliminates the heavy-tail phenomena, but unfortunately such a value has to be found

empirically [6]. The resulting algorithm is not complete. A solution to this problem is

to implement a policy for increasing the cutoff value [9]. A simple policy is to

increment by a constant the cutoff value after each restart. The resulting algorithm is

complete, and thus able to prove unsatisfiability [4].

As noted in [10] the impressive progress in SAT, unlike CSP, has been achieved

using restarts and nogood recording [11, 12] (plus efficient lazy data structures). And

this is starting stimulate the interest of the CSP community in restarts and nogood

recording.

8

On the Power of Restarts for CSP

4 Experimental Results

In our empirical study we use the Comet System (http://www.comet-online.org),

using the constraint programming solver over finite domains.

4.1 The N-Queens Problem

For our study of the impact of restarts we focus on instances of the well-known n-

queens problem. This is a well studied problem [13], and has been used to illustrate

various techniques used in solving CSPs [14]. When solving this problem, the use of

domain consistence and fail-first heuristic are crucial.

We use the alldifferent global constraint to post all the constraint of the problem,

where the variables x1, …, xn, are the columns of the chessboard, and the domains are

the possible rows. All queens are placed in:

─ different rows: alldifferent(x1, x2, …, xn)

─ different downward diagonals: alldifferent(x1+1, x2+2, …, xn+n)

─ different upward diagonals: alldifferent(x1-1, x2-2, …, xn-n)

4.2 Heavy tail distribution

The heavy-tail distribution in figure 1 was created with 872649 runs of a randomized

backtrack search algorithm to solve the 8-queens problem. It selects the next variable

to label and its value randomly.

Figure 1 shows that 50% of the runs solve the instance in 5400 backtracks

(approximately) or less (the left part of the distribution). However, 1.2% of the runs

do not result in a solution after 100000 backtracks (the right part of the distribution,

the long tail).

Fig. 1. 8-queens heavy-tail distribution

0

20

40

60

80

100

0 20000 40000 60000 80000 100000

%
su

cc
es

s

#backtrack

9

Luís Baptista and Francisco Azevedo

As we can observe, the 8-queens problem has a heavy-tail distribution. Using a

randomized restart strategy, the long tails could be avoided [7]. So we will show that

the use of restarts solves the n-queens problem more efficiently.

4.3 Restarts

In this session we use as a base configuration for all algorithms a backtrack search

with constraint propagation and the fail-first heuristic. For the experimental results we

use the following algorithms:

─ BK, we are using the base configuration.

─ BK+Rand, base configuration and randomly choose among the possible values

for the variable.

─ BK+Rst, base configuration, randomly choose among the variables with the

three best values (according to the fail-first heuristic), and restart the search (the

initial cutoff value is 1; the increment to the cutoff value after each restart is 10).

The results of running the algorithms are the number of backtracks needed to solve

the instance. The backtrack limit for each instance was set to 500000. Since

randomization was used in the last 2 algorithms, the number of runs was set to 10.

Hence, the results shown correspond to the average values for all the runs.

Table 1. Results for different instances (with different number n of queens)

n 100 200 500 1000 1500 2000

BK 29 200217 (1) 2 4265 (1)

BK+Rand 58,8 35525,9 5791,8 103460,4 (2) 100310,2 (2) 50003,6 (1)

BK+Rst 84,2 63,1 352,7 846,2 2069,0 857,2

In table 1, the values in parenthesis specify the number of times the backtrack limit

was reached (without solving the instance).

The BK configuration was used for reference. Occasionally the algorithm is lucky,

as in the case of the 100-queens and the 1000-queens. This is because the runs are in

the left most part of the heavy-tail distribution. In the other cases the algorithm has

difficulties to solve the instances, or could not solve the instances. This is because the

runs are in the right most part of the heavy-tail distribution.

The BK+Rand configuration can be seen as a non-deterministic version of the BK

configuration. All the instances could be solved, but for some runs the algorithm

could not solve the instance. Again this is because those runs are in the right most part

of the heavy-tail distribution.

As we can observe, the results for the BK+Rst configuration uncover the power of

using restarts:

─ Restarts allow the algorithm to solve all the instances in all the runs.

─ Restarts allow the algorithm to solve the harder (bigger) instances more

efficiently (it needs fewer backtracks).

10

On the Power of Restarts for CSP

─ Without restarts the algorithms can exhibit long run times, because of the heavy-

tail distribution. But, as expected, with restart the algorithm avoid the long tail

of the distribution.

4.4 Conflict-driven heuristic

A very important decision heuristic in SAT is based on clause recording (nogood

recording) [5]. The general idea is to increment the value of literal involved in

conflicts. The heuristic then select the variables involved in more conflicts.

We implement one counter for each variable. When the algorithm does not have

more value to assign to a variable (a conflict) we increment that variable counter by 1.

The variable heuristic select the variable involved in more conflicts, and break ties

with the fail-first heuristic.

Table 2. Result for the conflict-driven heuristic

n 100 200 500 1000 1500 2000

BK+Rst 84,2 63,1 352,7 846,2 2069,0 857,2

BK+Rst+Conf 30,9 142,0 126,2 197,8 268,5 213,8

The label BK+Rst+Conf represent the backtrack search algorithm with restarts

and with the conflict-driven heuristic. As we can see this heuristic improves, except in

one case, the number of backtrack to solve the n-queens instances. So, in those

instances this heuristic is better than the fail-first heuristic.

In [5] the counters are periodically divided by a constant, but in our

implementation we do not divide the counters. This could be the reason why in some

situations this heuristic behaves poorly. Nevertheless, this heuristic show promising

results.

5 Conclusions

This paper gave a preliminary study on restarts applied in CSP. Restarts are not

standard in CSP backtrack search algorithms, and are not considered useful in

improving the algorithm. This paper contributes by contradicting the conventional

wisdom. It shows that:

─ Restarts can effectively improve the time to solve the n-queens problem.

─ Conflict-driven variable heuristic can also effectively improve the time to solve

the n-queens problem.

Restart do not substitute other techniques, it complements, empower other

techniques, like constraint propagation and heuristic decisions. Restarts are an open

area for CSP. Progress in SAT was due to restarts and nogoods [10].

11

Luís Baptista and Francisco Azevedo

In the near future we expect to:

─ Confirm the results with other CSP instances (real-world and randomly

generated).

─ Include in the study nogood recording from conflict (learning).

─ Study the impact of different cutoff and cutoff increment values.

─ Enhance the conflict-driven heuristic.

─ Test other forms of making the algorithm with restarts complete.

Acknowledgments. This work is supported by Fundação para a Ciência e a

Tecnologia (SFRH/PROTEC/49859/2009).

References

1. Apt, K.R.: Principles of constraint programming, Cambridge University Press (2003).

2. Haralick, R.M., Elliott, G.L.: Increasing tree search efficiency for constraint satisfaction

problems. Proceedings of the 6th international joint conference on Artificial intelligence.

pp. 356-364 Morgan Kaufmann Publishers Inc., Tokyo, Japan (1979).

3. Bordeaux, L., Hamadi, Y., Zhang, L.: Propositional Satisfiability and Constraint

Programming: A comparative survey, ACM Comput. Surv., vol. 38, 2006, p. 12.

4. Baptista, L., Silva, J.P.M.: Using Randomization and Learning to Solve Hard Real-World

Instances of Satisfiability. Proceedings of the 6th International Conference on Principles

and Practice of Constraint Programming. pp. 489-494 Springer-Verlag (2000).

5. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an

efficient SAT solver. Proceedings of the 38th annual Design Automation Conference. pp.

530-535 ACM, Las Vegas, Nevada, United States (2001).

6. Gomes, C.P., Selman, B., Kautz, H.: Boosting combinatorial search through

randomization. Proceedings of the fifteenth national conference on Artificial intelligence.

pp. 431-437 American Association for Artificial Intelligence, Madison, Wisconsin, United

States (1998).

7. Gomes, C., Selman, B., Crato, N.: Heavy-Tailed Distributions in Combinatorial Search,

Principles and Practices of Constraint Programming, 1997, pp. 121-135.

8. Gomes, C.P., Selman, B., Crato, N., Kautz, H.: Heavy-Tailed Phenomena in Satisfiability

and Constraint Satisfaction Problems, Journal of Automated Reasoning, vol. 24, 2000,

pp. 67-100.

9. Walsh, T.: Search in a Small World. Proceedings of the Sixteenth International Joint

Conference on Artificial Intelligence. pp. 1172-1177 Morgan Kaufmann Publishers Inc.

(1999).

10. Lecoutre, C.: Constraint Networks: Techniques and Algorithms, Wiley-ISTE (2009).

11. Lecoutre, C., Sais, L., Tabary, S., Vidal, V.: Nogood recording from restarts. Proceedings

of the 20th international joint conference on Artifical intelligence. pp. 131-136 Morgan

Kaufmann Publishers Inc., Hyderabad, India (2007).

12. Lecoutre, C., Saïs, L., Tabary, S., Vidal, V.: Recording and Minimizing Nogoods from

Restarts, Journal on Satisfiability, Boolean Modeling and Computation, vol. 1, 2007, pp.

147–167.

13. Bell, J., Stevens, B.: A survey of known results and research areas for n-queens, Discrete

Mathematics, vol. 309, Jan. 2009, pp. 1-31.

14. Rossi, F., Beek, P.V., Walsh, T.: Handbook of constraint programming, Elsevier (2006).

12

Facets for Alldifferent Systems

David Bergman
Supervisor: John N. Hooker - john@hooker.tepper.cmu.edu

Supervisor: Willem-Jan van Hoeve - vanhoeve@andrew.cmu.edu

Tepper School of Business, Carnegie Mellon University,

Pittsburgh PA 15213, USA

dbergman@andrew.cmu.edu

Abstract. We study the convex hull of integer points satisfying multiple

overlapping alldifferent constraints. We describe various general results

for the facial structure of the polytope and describe several classes of

facet-defining inequalities for particular families of alldifferent systems.

As there are exponentially many facets, we discuss how to separate the

inequalities in polynomial time and present one such separation algo-

rithm.

1 Introduction

The alldifferent constraint was introduced to constraint programming (CP) in
1978. The constraint requires that variables take pairwise different values. Thus if
X is a set of variables {x1, . . . , xn}, where each xi has domain Di, the constraint
alldifferent(X) is satisfied by tuples (d1, . . . , dn) such that each di ∈ Di and
di 6= dj for all i, j with i 6= j.

Although the single alldifferent constraint can be handled efficiently [13],
many practical problems require multiple overlapping alldifferent constraints in
their formulations; such systems are called alldifferent systems. Applications of
alldifferent systems include parallel processing [11], course timetabling [14], reg-
ister allocation [6], quasigroup completion and Latin square problems [3, 9],graph
coloring problems and a number of scheduling problems.

An alldifferent system is defined for any family of variable sets V1, . . . , Vq ⊂ X

and variable domains. The system is equivalent to the conjunction of the con-
straints alldifferent(Vf) for f = 1, . . . , q. In general, finding feasible solutions to
alldifferent systems is NP-hard [7], and with the recent push toward integrating
solution methods from CP and Integer Programming (IP), research has gone
into polyhedral characterizations of alldifferent systems in order to create tight
relaxations.

There are many instances where the benefit of integrating solution meth-
ods from CP and MIP is displayed. For example in [8], a CP algorithm with
an assignment problem relaxation is used to solve timetabling problems two to
fifty time faster than CP alone. Other uses of polyhedral characterization in-
clude using valid inequalities alongside CP filtering to prune search via bounds
propagation (see [10] for other methods of integrating CP and MIP).

13

Our task in this paper is to contribute to the polyhedral analysis of alldifferent
systems in which all the variable domains are equal, with the aim of constructing
a tight continuous relaxation. One way to obtain a relaxation for an alldifferent
system is to write a MIP formulation and investigate its polyhedral structure.
However, the MIP formulation introduces 0-1 variables that generally do not
occur in the original problem. Recent work has therefore focused on polyhedral
analysis in the original variables [1, 2, 12], which opens the door to describe valid
inequalities that are perhaps much different than those in the lifted system, and
hence tightening the relaxation in both the 0-1 formulation and in the space of
the original problem variables.

Relatively little is known about the polytope for a general alldifferent system.
It is proved in [2] that if the system has a certain inclusion property, its polytope
has no new facets beyond those of the individual alldifferent constraints. The
same authors identify a small class of new facets for systems of three alldifferent
predicates without the inclusion property. This class is extended somewhat to
comb-like structures of alldifferent constraints in [12] and is extended here as well.
In addition, since two alldifferent constraint always satisfy the aforementioned
inclusion property, a careful examination of three alldifferent constraints done
in [4] is a crucial step toward understanding more general and complex systems.

The remainder of the paper is organized as follows: first we describe a few
general observations about the polytope. We then present several classes of facet
defining inequalities for various families of alldifferent systems. Finally, we dis-
cuss how to separate these inequalities and present one such separation algo-
rithm.

2 Preliminaries

For a given alldifferent system, let PI be the convex hull of integral points sat-
isfying the alldifferent system. In other words,

PI = conv{x ∈ R
n : ∀i ∈ [n], xi ∈ d(xi) and xi, xj ∈ Vf , some f ∈ [q] → xi 6= xj}.

As in [1, 2, 12], we assume that all variables have the common domain set
D = {0, 1, . . . , k}.

In [10] PI is described for the single alldifferent constraint and it is shown
that the following inequalities provide a convex hull relaxation:

s(s − 1)

2
≤

∑

i∈S

xi ≤ ks −
s(s − 1)

2
,∀S ⊆ X, s = |S|

Using the above we can now define a linear relaxation for any alldifferent
system. Since for all sets of variables which are common to one constraint, the
inequalities above are valid, we have the following valid relaxation for any all-
different system:

PL = {x ∈ R
n : ∀f ∈ [q],∀S ⊆ Vf , s = |S|,

s(s − 1)

2
≤

∑

i∈S

xi ≤ ks −
s(s − 1)

2
}

14

These inequalities simply imply that for every subset of variables of size s in
each constraint, their sum cannot exceed the sum of the largest s domain values
and cannot be less than the sum of the smallest s domain values.

We will be working with this continuous relaxation and seeking facet defining
inequalities of PI .

3 General polyhedral results

In this section we present two general properties of the polytope. These prop-
erties hold for arbitrary alldifferent systems. The first result describes a certain
symmetry and the second property provides a necessary condition for the exis-
tence of facet defining inequalities with positive and negative coefficients.

Complement inequalities Suppose we have a facet defining inequality ax ≥ δ1

for some alldifferent system. If we let δ2 be the maximum value of ax over all
feasible x, consider the inequality ax ≤ δ2. Clearly this is a valid inequality, but
furthermore, if ax ≥ δ1 is facet defining, then ax ≤ δ2 is facet defining [5]. Hence,
for the remainder of the paper, we discuss inequalities and separation algorithms
only for inequalities of the form ax ≥ δ1.

Large domain set If |D| ≥ 2∆ + 2 (e.g., D = {0, 1, . . . , 2∆ + 1}), then any
facet defining inequality must have all coefficients of the same sign [5]. We see
how this manifests itself in [4], as one of the classes of facets described there are
valid if and only if the cardinality of the domain set is a particular value.

4 Inequalities

We now present the main results of the paper. We focus on path systems, pro-
viding both an example inequality and a separation algorithm. For the other
systems we present only a few of the known inequalities and note that [5] will
have a more thorough list of inequalities, along with detailed proofs and separa-
tion algorithms.

Paths An alldifferent system on V1, . . . , Vq forms a path if Vf ∩ Vf+1 = Sf is
nonempty for f = 1, . . . , q − 1 and Vf ∩ Vg = ∅ for all other pairs f, g. Let
xa ∈ Vg − Vg+1, xb ∈ Vh − Vh−1, and let xf ∈ Sf for the subpath corresponding
to f = g, . . . , h − 1. Then the inequality

2xa + 2xb + xg + xg+1 + . . . + xh−1 ≥
h − g + 4

2
(1)

is facet defining if and only if the length (h − g + 1) of the subpath is odd.

15

Example 1. Consider the following alldifferent system,

V1 = {x1, x2}, V2 = {x2, x3}, . . . , Vq = {xq, xq+1}

D = {0, 1, 2, 3, 4},

with q odd and the point

x0 = (0, 1, 1, 0, 1, 0, 1, 0, . . . , 0, 1, 0).

x0 is not feasible to the alldifferent system as x0
2 = x0

3. In addition, it is readily
shown that x0 does not violate any single alldifferent inequalities.

However, the following path inequality cuts this infeasible point:

2x1 + x2 + x3 + . . . + xq + 2xq+1 ≥
q + 3

2
.

If q ≥ 5, there are other path inequalities that can be generated; for example,

2x1 + x2 + x3 + x4 + x5 + 2x6 ≥ 4,

since the constraints covering these variables form a path of odd length.

Cycles An alldifferent system on V1, . . . , Vq forms a cycle if Vf ∩ Vf+1 is
nonempty for f = 1, . . . , q − 1 as is Vq ∩ V1, but Vf ∩ Vg = ∅ for all other
pairs f, g. Let Sf ⊆ Vf ∩ Vf+1 for f = 1, . . . , q − 1 and Sq ⊆ Vq ∩ V1, each of
cardinality s. The following is facet defining:

∑

i∈S

xi ≥
q

2
·
2s(2s − 1)

2

General A family of sets {Vf}
q
f=1 forms an intersecting family if for f =

1, 2, . . . , q the sets Z,Af and Wf are nonempty, where

Z =
⋂

f∈[q]

Vf , Af = Vf \
⋃

g∈[q]\{f}

Vg, Wf =
⋂

g∈[q]\{f}

Vg \ Vf

Z represents the intersection between all of the variables sets, Af represents
variables uniquely in each of the constraint sets Vf , and Wf represents variables
in the intersection of all sets Vg, g 6= f but not in Vf .

Let xf ∈ Af , Sf ⊆ Wf , |Sf | = s for all f = 1, 2, . . . , q with A =
⋃q

i=1{xi},
S =

⋃

f∈[q] Sf , and U ⊆ Z with |U | = u. The following are facet defining
inequalities:

Inequality 1 :

(qs + u)
∑

i∈A

xi +
q(q − 1)

2

∑

i∈S∪U

xi ≥
q(q − 1)

2

(qs + u)(qs + u + 1)

2

16

Inequality 2 :

qs
∑

i∈A

xi +
q(q − 1)

2

∑

i∈S

xi + q2s
∑

i∈U

xi ≥ δ

δ = qs(qu) +
q(q − 1)

2

[

usq +
sq(sq + 1)

2

]

+ q2s
u(u − 1)

2

5 Separation

All classes of facets described in this paper can be separated in polynomial time.
The separation algorithms follow the same general framework as the separation
algorithms presented in [2] and [12]. We present here a separation algorithm
for the path inequalities. We generate only the lower bounding inequalities; the
upper bounding inequalities can be separated similarly.

Let x̃ be the current solution of the relaxation.
For g = 1, . . . , q − 2

For h = g + 2, . . . , q

Let x̃a := min
i∈Vg\Vg+1

{x̃i}, x̃b := min
i∈Vh\Vh−1

{x̃i}

For f = g, g + 1, . . . , h − 1 let x̃f := min
i∈Vf∩Vf+1

{x̃i}

If 2(x̃a + x̃b) +
h−1
∑

f=g

x̃f <h−g+4
2 then

Generate the cut 2(xa + xb) +

h−1
∑

f=g

xf ≥h−g+4
2

It can be shown that if some path inequality is violated by x̃ then the algo-
rithm generates a separating cut in O(q2) + O(n) time.

6 Conclusion

In conclusion, we have presented additional facets for alldifferent systems, adding
to the facets from [1, 2, 12]. All inequalities presented here can be separated in
polynomial time. What remains to be resolved is whether or not these inequalities
are invariant with respect to domain sets, in that for the same alldifferent system
on domain set D1 and D2 there is a precise correspondence between the facets.
In [5] it is shown that if there is an affine mapping between the two domain sets,
then the polytopes are invariant, in that there exists a facet ax ≥ δ1 for the
system on domain set D1 if and only if there is a facet ax ≥ δ2 on domain set
D2. For arbitrary domain sets, the method described in [5] that allows facets to
be generalized to arbitrary domain sets seems to generalize all facets described
above.

17

References

1. G. Appa, D. Magos, and I. Mourtos. On the system of two all-different predicates.

Information Processing Letters, 94:99–105, 2004.

2. G. Appa, D. Magos, and I. Mourtos. A polyhedral approach to the alldifferent
system. manuscript, 2008.

3. G. Appa, D. Magos, I. Mourtos, and J. Janssen. On the orthogonal Latin square

polytope. Discrete Mathematics, 306:171–187, 2006.

4. D. Bergman. Facets for three alldifferent constraints. Technical report, Tepper

School of Business, Carnegie Mellon Univeristy, 2010.

5. D. Bergman and J.N. Hooker. Polyhedral results for alldifferent systems. in prepa-

ration.

6. G. J. Chaitin, M. Auslander, A. K. Chandra, J. Cocke, M. E. Hopkins, and P. Mark-

stein. Register allocation via coloring. Computing Languages, 6:47–57, 1981.

7. K. Elbassioni, I. Katriel, M. Kutz, and M. Mahajan. Simultaneous matchings:

Hardness and approximation. Journal of Computer and System Sciences, 74:884–

897, 2008.

8. F. Focacci, A. Lodi, and M. Milano. Cost-based domain filtering. In J. Jaffar,

editor, Principles and Practice of Constraint Programming (CP 1999), volume

1713 of Lecture Notes in Computer Science, pages 189–203. Springer, 1999.

9. C. P. Gomes and D. B. Shmoys. Completing quasigroups or Latin squares: A struc-

tured graph coloring problem. In Proceedings of the Computational Symposium on
Graph Coloring and Generalizations, 2002.

10. J. N. Hooker. Integrated Methods for Optimization. Springer, 2007.

11. D. Kaznachey, A. Jagota, and S. Das. Neural network-based heuristic algorithms

for hypergraph coloring problems with applications. Journal of Parallel Distributed
Computing, 63:786–800, 2003.

12. S. Kruk, S. Toma, and M. Wallace. Some facets of multiple alldifferent predicate.

In P. Belotti, editor, Workshop on Bound Reduction Techniques for Constraint
Programming and Mixed-Integer Nonlinear Programming, at CPAIOR, 2009.

13. J.-C. Régin. A filtering algorithm for constraints of difference in CSP. In National
Conference on Artificial Intelligence (AAAI 1994), pages 362–367. AAAI Press,

1994.

14. A. Schaerf. A survey of automated timetabling. Artificial Intelligence Review,

13:87–127, 1999.

18

Energy-Efficient Task-Mapping for Data-Driven
Sensor Network Macroprogramming

Using Constraint Programming

Student: Farshid Hassani Bijarbooneh,
Advisors: Pierre Flener, Justin Pearson, and Edith Ngai

Department of Information Technology
Uppsala University, Box 337, SE – 751 05 Uppsala, Sweden

{farshid.hassani, pierre.flener, justin.pearson, edith.ngai}@it.uu.se

Abstract Using constraint programming (CP), we address the task-
mapping problem in data-driven macroprogramming for wireless sensor
networks (WSNs). A task graph representing the flow of data among
tasks assists the application developer to specify the features of a WSN
at a higher level of abstraction. A problem that arises in this context is
how to map the tasks to nodes in the target network before the deploy-
ment of sensors, in order to achieve an energy efficient WSN. We take
a published formulation of the task-mapping problem solved by mixed
integer programming (MIP) solvers, and rewrite it as a constraint pro-
gram. We minimise the maximum energy spent by each node for real-life
instances of the problem, and show that our CP model results in signi-
ficantly better runtimes than the MIP model.

1 Introduction

Wireless sensor networks (WSNs) operate as distributed systems where sensors
cooperatively monitor or control a condition in an environment, such as tem-
perature, speed, or pressure [1]. Nodes in a WSN consist of processor, radio
transmitter, and a battery. It is of great concern to reduce the energy consump-
tion at each node before deploying the network to the environment. The lifetime
of a WSN depends critically on the energy consumption of the nodes, especially
in cases where the battery cannot be charged once it is drained [4].

In a WSN, a node is assigned to perform several tasks. Tasks are pieces of
code implementing applications of the network. The entire network repeats a
same behavior over a time period called a round. Nodes have an initial energy
level, which drops as the they communicate and process the assigned tasks [9].

Tasks are grouped in three categories: sensing tasks, operative tasks, and
actuator tasks. Sensing tasks call a sensor to collect data at each round. For
example, invoking a sensor to measure temperature in a room is performed by a
sensing task. Operative tasks perform operations on data that has been gathered
by the sensing tasks. Taking the temperature from different positioned sensors
in a room and computing the average is an example of such a task. Finally,
actuator tasks perform an action to affect the environment, which is based on

19

data processed by operative tasks. For example, consider a task that turns on a
heater to warm the room. Sensing tasks and actuator tasks can only run on nodes
with the appropriate sensors or actuators, while operative tasks are free to run on
any node with sufficient computational resources. Programming a task for each
sensor individually is a very time consuming process. We favour a methodology
that allows defining and deploying tasks regardless of WSN architecture. In
the WSN context, data-driven macroprogramming refers to an approach that
facilitates sensor network programming by specifying the features of a WSN as
a task graph representation [2,6]. Using this method, a task graph is created
based on data flow that is independent of the network topology.

Data-driven macroprogramming poses many challenges including how to map
the task graph efficiently onto the nodes in a WSN. A task mapping can be made
more efficient by reducing the energy consumption. Note that task mapping is
not only initiated at the deployment of the macroprogram, but also at any time
during the operation of the WSN if the energy level of a node drops under a
certain level.

In this paper, we optimise the task-mapping process in a multi-hop [1] hetero-
geneous [8] WSN to achieve overall minimum energy consumption by the sensors.
A multi-hop WSN allows several nodes to forward data toward their destination,
so nodes have to consider routing information. A heterogeneous WSN is a net-
work that is able to provide several wireless services simultaneously.

For the mapping process, we consider task computation costs, data rates,
node routing costs, and placement constraints with regard to a directed acyc-
lic graph representing a data-driven task graph. Our task graph and the general
modelling framework are the same as those in [2,10]. We take the framework and
instance data related to two real-life applications of the problem: the monitoring
of heating, ventilation, and air conditioning (HVAC) [3] and traffic manage-
ment [7]. We implement our model as a constrained optimisation problem. Our
approach follows the non-linear mathematical formulation of [10] and rewrites
it into a constraint programming (CP) model. We show that our CP model
achieves at least an order of magnitude speedup compared to the MIP model.

2 The Problem and Some Applications

We investigate two real-life applications. The first problem is a highway traffic
management system where the aim is to reduce the congestion of vehicles on
a highway by controlling speed limits and vehicle access to the highway. The
speed sensor on each lane senses the speed of passing vehicles, a presence sensor
indicates the presence of a vehicle on the ramp, and a red/green signal on the
ramp controls vehicle entry to the highway.

The second application is building environment management for monitoring
HVAC. This is similar to the traffic problem, but here the sensing tasks are
sampling humidity and temperature, and the actuator control these aspects. The
operative tasks collect the sampled data from sensors, compute averages, and

20

respond with a proper action for the actuator nodes. For each of the problems
we experimented with two instances taken from [10].

3 Model

We present a constraint model of the task mapping problem by formulating it as
a non-linear system of equations similar to the one of [10]. In our CP model, we
model the non-linear equations with binary expressions and logical operators,
and solve our model using Gecode [5].

3.1 The Decision Variables

Let t and n be the number of tasks and nodes respectively, and let v1 , v2 , . . . , vt
be an array of integer decision variables in the node domain [1, . . . , n], such
that vi denotes the node that is associated with task i. Also let x = {xip |
1 ≤ i ≤ t, 1 ≤ p ≤ n} be a two-dimensional array of redundant 0/1
decision variables, where the value of xip is 1 if and only if node p is associated
with task i (vi = p). In the MIP model, the solver directly operates on the x
variables, whereas in the CP model we branch on the v variables and maintain
the relationship between v and x variables with channeling. Throughout this
paper, the variables always have lowercase identifiers, and the constants have
uppercase identifiers, the indices i, j always refer to a task, and the indices p, q, r
always refer to a node.

As explained in Section 2, a sensing task or an actuator task may be limited
to some nodes, and therefore it cannot be mapped to any other nodes. This limit
is reflected in the model by dropping value p from the domain of variable vi for
every task i that cannot be mapped to node p (in other words, constraining xip

to be 0 for all tasks i that cannot be mapped to node p). Let ep be an array
of integer decision variables in the domain [0, . . . ,∞], such that ep is the total
energy spent by node p according to the tasks mapped to it by the vi variables.

3.2 The Problem Formulation

The total energy ep spent by node p in one round consists of two terms: com-
munication cost and computation cost. We can ignore the computation cost,
since it has a far smaller value in our problems than the communication cost.
The communication cost ep for each node p is the sum of the costs of routing
messages between every pair of nodes that are communicating:

ep =
∑

(i,j)∈A Fi · Sij ·Rvivjp ∀p (1 ≤ p ≤ n) (1)

where A is the set of arcs in the data-driven task graph, indicating if task i is
sending data to task j. Task i is fired Fi times at each round, and Sij is the size
of the data between tasks. The energy consumed by node p while routing one
unit of data from node q to node r is denoted by Rqrp. Intuitively ep is the cost

21

for a particular mapping given by v and it can also be calculated by including all
possible nodes vi and vj in (1) and multiplying by xiq · xjr to indicate whether
there is a message routed from node q to node r via node p:

ep =
∑

(i,j)∈A
∑n

q=1

∑n
r=1 Fi · Sij ·Rqrp · xiq · xjr ∀p (1 ≤ p ≤ n) (2)

The optimisation metric is defined by minimising the maximum fraction of en-
ergy spent by any node in the system at a round. This metric is defined regarding
the fact that, in task-mapping for WSNs, we aim at maximising the time to re-
configuration (TTR), which is the time that the energy level of some node goes
below a fraction of its initial energy Ep. By minimising the maximum fraction
of energy spent by all nodes, the value of TTR will be maximised. Thus, the
objective function to be minimised is the following:

max1≤p≤n
1
Ep
· ep (3)

3.3 The Constraints and Objective Function

Our CP model changes the non-linear part of (2) into a binary expression:

ep =
∑

(i,j)∈A
∑n

q=1

∑n
r=1 Fi · Sij ·Rqrp · (xiq ∧ xjr) ∀p (1 ≤ p ≤ n)

The conjunction constraint for binary operator ∧ (logical and) is more efficient
than the constraint mult in Gecode. This model does not require explicitly de-
fining a variable to replace xiq ∧ xjr.

We let the cost c (0 ≤ c ≤ 1) be a floating point decision variable that holds
the maximum fraction of the initial energy Ep spent by a node p in the network
at each round. To perform the minimisation of (3), we constrain the total energy
ep of each node p to be at most equal to the total cost c, subject to minimising c.
This implies posting constraints 1

Ep
· ep ≤ c ∀p (1 ≤ p ≤ n), but we can modify

it to involve only integer variables. We assume that the initial energy Ep for all
nodes is the same. Therefore, it does not affect the resulting total cost c in the
model, so we can avoid the fraction, and extend the domain of c to [0, . . . , Ep].
So the constraints to be posted are ep ≤ c ∀p (1 ≤ p ≤ n)

Finally, we maintain the relationship between the solution decision variables
vi and the binary variables xip by channelling between them as follows, using
the channel constraint of Gecode:

vi = p⇐⇒ xip = 1 ∀i, p (1 ≤ i ≤ t, 1 ≤ p ≤ n) (4)

We can implement the channelling (4) by either the element constraint, reific-
ation or channel of Gecode. We need to enforce constraints that each tasks is
mapped to exactly one node:

∑n
p=1 xip = 1 ∀i (1 ≤ i ≤ t), which is implied

in reification implementation. Reification performs faster than the element con-
straint both with and without the implied constraints, but it performs slower
than the channel constraint. In this paper, we only present the results based on
the channelling implementation of (4).

The search procedure branches on the vi variables only. It uses the first-
fail strategy for variable selection, and selects values greater than the mean of
smallest and largest values in the domain of the selected variable.

22

HVAC Highway Traffic

〈nodes, tasks〉 〈7, 6〉 〈106, 80〉 〈74, 36〉 〈124, 60〉
time and cost time cost time cost time cost time cost

Gecode 0.01 10.00 0.73 12960 1.74 300 13.35 300

Gurobi 0.29 10.00 0.00 12960 44.00 300 212.00 300

SCIP 0.14 10.00 3.22 12960 3600.00 300 3600.00 300

lpsolve 0.04 10.00 3600.00 12960 3600.00 320 3600.00 360

Table 1. Optimisation results of different solvers for four instances of the HVAC and
traffic management task mapping problems. The time unit is seconds. The boldface
values indicate best cost achieved before one hour timeout.

4 Experiments

We experimented with two representative instances for the problems in Section 2.
Our CP model is implemented in Gecode (revision 3.2.2) and runs under Mac
OS X 10.6.3 64 bit on an Intel Core 2 Duo 2.53 GHz with 3MB L2 cache and
4GB RAM. We set a timeout of one hour for each instance, recording the best
minimum cost achieved and the time at which it has been reached.

We also solved our instances using the MIP solvers Gurobi (revision 2.0.2),1

SCIP (revision 1.2.0),2 and lpsolve (revision 5.5)3 under the same system con-
figuration and experimental set-up. We chose lpsolve since it is the solver used
in [10]. We also chose to experiment with Gurobi and SCIP, as these two solvers
are among the fastest commercial and non-commercial MIP solvers respectively
(according to the SCIP home page).

In Table 1 we present the results of our CP model compared to the model
solved by the three MIP solvers. The boldface values indicate a best cost achieved
before timeout, whereas the rest were optimally solved under the timeout limit.
In the second HVAC instance, an MIP solver, namely Gurobi, is faster than
Gecode, because Gurobi managed to solve the problem in one simplex iteration.

We observe that, in the rest of the instances, Gecode can reach the same solu-
tion about 90% faster than the fastest MIP solver we used, Gurobi. We are also
always faster than the MIP approach in [10]. It is also worth mentioning that
MIP solvers use a pre-solve phase to eliminate as many variables and constraints
as possible before solving the actual problem, and pre-solve in the hardest in-
stance (traffic 〈124, 60〉) is taking 22 seconds, which is included in the runtime
in Table 1, and it is already longer than the total time spent by Gecode to find
a first optimal solution.

1 available from http://gurobi.com
2 available from http://scip.zib.de
3 available from http://lpsolve.sourceforge.net/5.5

23

5 Conclusion

Macroprogramming for WSNs is an evolving area, where efficiency of a WSN
can benefit considerably by task mapping in a configuration phase, as well as in
reconfiguration when the energy level of a node drops below a certain amount.

We presented a CP model for the task mapping problem in a multi-hop
heterogeneous WSN. Our model involves placement constraints and the cost of
routing. The optimisation is done by minimising the maximum energy spent by
each node. We model the non-linear formulation effectively using binary expres-
sions and show that it is competitive with the current MIP implementations.
To the best of our knowledge, there has been no work addressing a CP ap-
proach for a general case of task mapping in a multi-hop WSN achieving energy
optimisation under routing costs.

Acknowledgements. This research is sponsored by the Swedish Foundation for
Strategic Research (SSF) under research grant RIT08-0065 for the project Pro-
FuN: A Programming Platform for Future Wireless Sensor Networks. We thank
Animesh Pathak of INRIA Paris-Rocquencourt (France) for useful discussions
and datasets.

References

1. I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor
networks: a survey. Computer Networks, 38(4):393–422, 2002.

2. A. Bakshi, V. K. Prasanna, J. Reich, and D. Larner. The abstract task graph: A
methodology for architecture-independent programming of networked sensor sys-
tems. In EESR’05: Proceedings of the 2005 workshop on End-to-End, Sense-and-
Respond systems, applications and services, pages 19–24, 2005.

3. M. Demirbaş. Wireless sensor networks for monitoring of large public buildings.
Computer Networks, 46:605–634, 2005.

4. S. C. Ergen and P. Varaiya. Energy efficient routing with delay guarantee for
sensor networks. Wirel. Netw., 13(5):679–690, 2007.

5. Gecode Team. Gecode: Generic constraint development environment, 2006. Avail-
able from http://www.gecode.org.

6. R. Gummadi, O. Gnawali, and R. Govindan. Macro-programming wireless sensor
networks using kairos. In Distributed Computing in Sensor Systems (DCOSS),
pages 126–140, 2005.

7. T. T. Hsieh. Using sensor networks for highway and traffic applications. Potentials,
IEEE, 23(2):13–16, April–May 2004.

8. D. Kumar, T. C. Aseri, and R. Patel. Energy efficient heterogeneous clustered
scheme for wireless sensor. Computer Communications, 32(4):662–667, 2009.

9. A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson. Wireless
sensor networks for habitat monitoring. In WSNA’02: Proceedings of the 1st ACM
international workshop on Wireless sensor networks and applications, pages 88–97,
New York, NY, USA, 2002. ACM.

10. A. Pathak and V. K. Prasanna. Energy-efficient task mapping for data-driven
sensor network macroprogramming. IEEE Transactions on Computers, 59:955–
968, July 2010.

24

Mapping periodic applications on unary and
cumulative resources

Alessio Bonfietti and Michela Milano

DEIS, University of Bologna

Abstract. Synchronous Data-Flow Graphs (SDFGs) are a very power-
ful modeling abstraction for high-end multi-core embedded system appli-
cations. They intrinsically represent concurrency and compactly express
periodicity. Their optimal platform allocation and scheduling subject to
cumulative resource and real-time constraints is strongly NP-hard. State
of the art approaches mainly focus on incomplete algorithms. We have
developed a complete constraint-based framework based on graph mod-
ifications as search decisions and two global constraints. The first is an
efficient incremental version of the throughput constraint proposed in
[1] the second is a cumulative resource constraint properly extending the
Precedence constraint posting approach for periodic applications. An ex-
tensive experimental evaluation on realistic SDFGs shows the advantages
of the proposed approach.

1 Introduction

Multi-core systems-on-chip (MPSoCs) [2] are becoming truly distributed systems
at the micro-scale. They provide high performance and low power and have been
applied in many embedded computing domains like wireless communication,
imaging, audio and video processing, graphics. Applications in these areas feature
significant functional parallelism, which can effectively be expressed though a
data-flow model of computation

For this reason increased research effort is being focused on developing meth-
ods and tools for efficiently mapping data-flow applications onto many-core MP-
SoC platforms [3]. Synchronous data-flow (SDF, [4]) is one of the most widely
used models, as it is sufficiently semantically rich to express periodic applica-
tions, while being still analyzable with reasonable efficiency.

As most of the data-flow applications are resource and real-time constrained,
a key problem that must be addressed by SDF mapping tools is throughput-
constrained, resource-consistent allocation and scheduling. This is unfortunately
a NP-hard problem, and it is usually solved by sequential decomposition and
incomplete search. Recent results have however demonstrated that this problem
can be solved to optimality for non-trivial SDF graphs using advanced constraint-
programming approaches [1].

In this work, we devise an allocation and scheduling framework for managing
periodic applications, where decisions to be taken correspond to graph modifi-
cations, namely arcs and token additions; we propose an incremental filtering

25

algorithm for the throughput constraint that achieves one order of magnitude
speed-up w.r.t. the one described in [1] and we present an extension to the Prece-
dence Constraint Posting approach [5] for modeling cumulative resources in the
context of periodic applications.

An extensive experimental evaluation on realistic SDFGs shows the advan-
tages of the proposed approach.

2 SDFG

Synchronous Data-flow Graphs (SDFGs) [4] are used to model streaming appli-
cations with hard real-time constraints. They are very powerful modeling tools
that enable the representation of both pipelined streaming and cyclic dependen-
cies between actors. In SDFG, nodes represent tasks (activities), edges are data
dependencies, i.e., (precedence relations) and are labeled with numbers (called
rates) constraining the executions of nodes. Data are represented with tokens
upon edges (also called Delays).

Actor execution is defined in terms of firings. In detail, whenever an actor
fires it consumes a given and fixed amount of tokens from its input edges and
produces a known and fixed amount of tokens on its output edges. These amounts
are called rates. The rates determine how often actors have to fire w.r.t. each
other such that the distribution of tokens over all edges is not changed. This
periodicity property is captured by the repetition vector.

We define “iteration” of the graph a complete execution of all activities.
As the graphs describe periodic applications, the number of execution itera-
tions should be considered infinite. In real-time the performance of a periodic
application is measured with the throughput index (further details in sec. 3.2).

A B C
1 1 3 2

23
3

1

1 1

Repetition Vector [2,2,3]

Fig. 1. A Synchronous Data-
Flow Graph

The SDFG reported in figure 1 has three ac-
tors. Actor A has a dependency edge to itself with
one token on it. It means that the two firings of
A cannot be executed in parallel. Also, each time
A executes it produces one token that can be con-
sumed by B. Each time B executes it produces 3
tokens while C consumes 2 tokens. Also when C
executes it produces 2 tokens while B requires 3
tokens to fire. Thus, every 2 executions of B corre-
spond to 3 executions of C. This is captured in the
repetition vector reported in figure 1.

SDFGs in which all rates equal 1 are called Ho-
mogeneous Synchronous Data Flow Graphs (HS-
DFGs,[4]). Every SDFG G can be converted to an equivalent HSDFG G′, by
using the conversion algorithm in [6], sec. 3.8. For each node in the SDFG we
have a number of nodes in the HSDFG equal to the corresponding number in
the repetition vector. Equivalence means that there exists a one-to-one mapping
between the SDFG and HSDFG actor firings. As a consequence, the two graphs
have the same throughput.

26

The research presented in this work adopts the Homogeneous version of the
graph.

3 The Framework

The problem considered in this work is the allocation and scheduling of an
HSDFG on a target set of unary and cumulative resources subject to throughput
(i.e., real time) constraints.

Given a HSDFG labeled with actor durations, given a target platform in
terms of cumulative resources, the problem is to assign each actor to a resource
element and to define an ordering between actors allocated on the same resource
such that the throughput constraint is satisfied and the execution is guaranteed
to be conflict-free. Note that our approach can easily handle optimal throughput
allocation and scheduling. This problem is strongly NP-HARD.

Allocation and scheduling problems are usually modeled in terms of variables
ranging on temporal domains i.e., activity starting point and ending point (in
case of variable duration). Synchronous Data-flow Graphs (SDFGs) represent pe-
riodic applications. For this reason, the representation using temporal variables
and their relations is not suitable. We have therefore adopted an alternative
approach where, instead of working on temporal variables, we consider graph
modifications: the graph representing the application is modified, by constraint
propagation and the search strategy, by adding arcs and tokens so as to tighten
the search space. Therefore, the global constraints proposed works on the graph
and modifies its structure.

3.1 The Scheduling model

For modeling the periodic scheduling problems, we adopt two sets of variables:
(1) Arci,j representing the existence of a directed arc between activity i and j
(i → j) and (2) Toki,j representing the number of tokens over the arc (i, j).

A precedence constraint appearing in the initial graph, such as Ei ≤ Sj , is
modeled with Arci,j = 1 and Toki,j = 0. The presence of a token (Toki,j ≥ 1)
implies that the activity j could fire at the same time of i. If A is the set of
activities, we say that ai precedes aj iff it exists a path without tokens that
connects ai with aj (ai ≺ aj).

Using this representation, the decision of allocating two activities i and
j on the same resource can be modelled by imposing two arcs between i
and j, namely Arci,j = 1 and Arcj,i = 1. A scheduling decision is instead
modelled as adding a token on the arc between i and j if j precedes i
and on the arc between j and i otherwise.

If a precedence constraint between i and j exists without tokens in the original
graph, this implies that a possible edge from j to i should have at least one token,
otherwise the execution of the graph deadlocks.

The scheduling problem we face considers alternative discrete and cumulative
resources. We introduce in the model a set of variables (Resi,j [0, 1]) defining the
allocation of the activity i on resource j.

27

We have developed a cumulative resource constraint whose purpose is to
avoid conflicts over the resources by modifying the application graph. In this
work we use the precedence constraint posting approach, proposed by [5] [8],
since it well integrates with graph modifications concept. The PCP framework
is indeed extended as graph modifications do not only refer to precedence con-
straint posting, but also to token addition.

The first extension to the PCP is needed as we handle applications with
periodic behaviors and it is necessary to consider resource conflicts over multiple
application executions. In the following, we detail how the extended PCP works
and how we solve conflicts over multiple executions. In PCP, possible resource
conflicts are resolved off-line by adding a fixed set of precedence constraints and
tokens between the involved activities. The resulting augmented graph defines
a conflict-free graph and if all activities are allocated, the augmented graph
becomes the solution.

Let A = {a0, a1, a2} be the set of three activities not in relation with each
other. The solver allocate them on the same unary resource and their execution
create a conflict. A solution could be a0 ≺ a1 ≺ a2. An intuitive way to map on a
graph a precedence constraints is adding an edge between the actors. Simulating
the execution we can notice that when the actor a0 terminates its execution,
it produces a token over the edge (a0, a1). At this point the activity a1 can
execute but, since the graph has a periodic behavior, a0 can re-execute too. As
the resource is unary, we have a multi-iteration conflict.

To avoid multi-iteration conflict we need to lock the re-execution of the first
one only after the last one finishes; this is done adding a third edge with token:
(a2, a0). The key is the positioning of the token which creates a single-token cycle.
In single-token cycles, the actors execute sequentially. Considering cumulative
resources, multiple activities could execute at the same time without conflicts.
We extend the concept of single-token cycle to cumulative resources. The idea is
that the activities finishing the execution of the iteration of the graph must be
connected (with edges and tokens) with the ones that start the execution.

3.2 The Throughput

Since SDF graphs model periodic behaviors, real time constraints refer in general
to the application throughput. From an intuitive point of view, this is best
defined in terms of the throughput of the associated HSDFG; this refers to how
often an activity fires and is inversely proportional to the weightest cycle.

Definition: Given a cyclic graph G, the maximum-cycle-mean is the maximum
of the sum of the execution time of the activities over the number of tokens of the
cycles in the graph. The throughput of the graph G is one over it’s maximum-
cycle-mean, that is the number of tokens over the sum of the execution times.

The objective function of the solver presented is to maximize the graph
throughput.

We developed a throughput constraint whose purpose is to reduce the search
space propagating over the graph by adding arcs and tokens, and computing
the graph throughput. This constraint is based on the one proposed in [1] and

28

is notably extended for making it incremental. It encapsulates a filtering algo-
rithm, originally proposed in [1]. However the algorithm turned out to be heavily
resource-hungry. Its computation takes up to 90% of the search time, and the
solver had a reduced scalability. Each time the graph is modified, the constraint
receives a new description of the graph, and computes the throughput value over
it. The solver reaches a feasible solution if and only if the throughput value found
during the search (Upper Bound) is higher than the maximum between the value
of the best solution found and the bound given by the problem instance (Lower
Bound).

The filtering algorithm is based on a recursive formula which computes, start-
ing from a source node, the weight of each path (execution times of the considered
nodes) of the graph. As soon as a cycle is found, the throughput is computed.
The final throughput value is the lowest found, that is the weightiest cycle.

4 Experimental Results

We have evaluated our model and the scalability of our code on various sets of
realistic but synthetic instances. The graphs belong to two distinct classes of
Synchronous Data-Flow Graph: cyclic and acyclic graphs. The class that better
better fits our solution approach is the Cyclic one. Clearly, if a graph contains
cycles, it has an implicit throughput upper bound defined by the longest cycle
in the graph. In contrast, acyclic graphs have no implicit bound and expose the
highest parallelism: this makes them the most challenging instances. The gener-
ated graph have been divided according to the number of nodes (from 10 nodes
to 14 nodes). Table 3 presents median and maximum complete search times for
cyclic (2nd and 3rd column) and acyclic (4th and 5th) istances. Times are pre-
sented in seconds with a time-limit of 900 seconds. As expected, the time to
solve the most constrained iteration and the average running time grows expo-
nentially with the size of the instances. However, the solution time is reasonable
for realistic size graphs. Results are comparable with state of the art CP ap-
proaches, that in turn are much simpler w.r.t. our approach as they do not face
periodicity and in some cases consider independent resources [10]. Moreover, the
experiments show that the incremental filtering algorithm gains over one order
of magnitude speed-up w.r.t. its non incremental version. The solver with the
incremental algorithm runs from 2.174 to 5.579 times faster. As expected, the
speed-up tends to increase with the dimension of the problem instance.

Node % Non-Incr % Incr

10 72.24 15.35
12 79.01 15.99
14 82.91 19.32

Fig. 2. Relative algorithms computa-
tion time

Node CMedian CMax AMedian AMax

10 0.12 118.84 2.58 303.44
11 0.96 186.48 14.48 472.77
12 2.67 446.39 30.15 675.56
13 8.33 647.14 75.08 759.32
14 18.64 825.14 189.43 834.32

Fig. 3. Search and Constraint execution times
and speed-up

29

The problem faced is strongly NP-HARD and clearly the computational time
grows up exponentially in the instance dimension. However, the reduced time
for constraint computations in the incremental solver increases scalability and
enables the solution of harder and larger problems. The table in figure 2 shows
the relative amount of time that the algorithm computation absorbs during the
search. It is evident that the new algorithm is definitely faster and lighter. Its
impact on the search time is lower than 20% of the total time while the non-
incremental version time stands over the 70%.

5 Conclusions

In this paper we presented a new framework for allocating and scheduling pe-
riodic applications modelled as Synchronous Data-Flow graphs with through-
put and resource constraints. The framework relies on a different approach to
scheduling applications where decisions to be taken are graph modifications
that restrict the search space. Both search and constraint propagation works
on graph modifications. We have devised a new incremental filtering algorithm
for a throughput constraint. We proved its efficiency and speed-up w.r.t. the non-
incremental version. We also proposed a cumulative resource constraint that uses
and extends the Precedence Constraint Posting Approach to consider periodic
applications. We now expect to gain the highest speed-ups from the optimization
of the search strategy; hence future research will mostly focus on this topic.

References

1. Bonfietti, A., Lombardi, M., Milano, M., Benini, L.: Throughput constraint for
synchronous data flow graphs. In: CPAIOR. (2009) 26–40

2. Blake, G., Dreslinski, R.G., Mudge, T.N.: A survey of multicore processors - a
review of their common attributes. IEEE Signal Processing Magazine 26 issue 6
(Nov 2009) 26–37

3. Haid, W., Huang, K., Bacivarov, I., Thiele, L.: Multiprocessor SoC Software Design
Flows - A focus on Kahn process networks. IEEE Signal Processing Magazine 26(6)
(November 2009) 64–71

4. Lee, E.A., Messerschmitt, D.C.: Synchronous dataflow. 75(9) (September 1987)
pp.1235–1245

5. Laborie, P.: Complete mcs-based search: Application to resource constrained
project scheduling. IJCAI (2005) 181–186

6. Sriram, S., Bhattacharyya, S.: Embedded Multiprocessors Scheduling and Syn-
chronization. Marcel Dekker, Inc (2000)

7. Baptiste, P., Pape, C.L., Nuijten, W.: Constraint-based scheduling: applying con-
straint programming to scheduling. Kluwer Academic Publisher (2001)

8. Policella, N., Cesta, A., Oddi, A., Smith, S.F.: From precedence constraint posting
to partial order schedules. a csp approach to robust scheduling. AI Communications
(2007) 163–180

9. Sriram, S., Lee, E.: Determining the order of processor transactions in statically
scheduled multiprocessors. Journal of VLSI Signal Processing 220 (1996) 15:207

10. Hooker, J.N.: A hybrid method for planning and scheduling. (2004) 305–3162

30

Consistency Techniques for Hybrid Simulations

Student: Marco Bottalico1,
Supervisor: Stefano Bistarelli2,

Co-Supervisor: François Fages3,
Tutor: Fabio Fioravanti1

1 Dipartimento di Scienze, Università “G. d’Annunzio”, Pescara, Italy
[bottalic,fioravanti]@sci.unich.it

2 Dipartimento di Matematica e Informatica, Università di Perugia, Italy
bista@dmi.unipg.it

3 EPI Contraintes, INRIA Paris - Rocquencourt, Le Chesnay Cedex, France
Francois.Fages@inria.fr

Abstract. In this paper, we investigate hybrid methods based on simula-
tion of stochastic and deterministic models for biochemical systems, with
consistency techniques in ordinary differential equations to have a pre-
liminary vision on dissimilar methods to simulate different biochemical
systems in Biocham.

Keywords: Ordinary differential equations, stochastic model, deterministic
model.

1 Introduction

System biology is an interdisciplinary science, integrating experimental activity
and mathematical modeling, which studies the dynamical behaviors of bio-
logical systems. An important problem in the modeling these systems is to
characterize the dependence of certain properties on time and space. One fre-
quently applied strategy is the description of the change of state variables by
differential equations. If only temporal changes are considered, ordinary differen-
tial equations (ODEs) are used; for changes in time and space, partial differential
equations are appropriate [6].

A variety of formalisms for modeling biological systems has been proposed
in literature but in this paper we want to investigate only the consistency tech-
niques in ordinary differential equations [5] and a new hybrid stochastic and
deterministic model for biochemical systems [1].
There are two formalisms for mathematically describing the time behavior of
a spatially homogeneous chemical system: the deterministic approach and the
stochastic approach.
The deterministic approach regards the time evolution as a continuous, wholly
predictable process which is governed by a set of coupled, ordinary differential
equations (the ”reaction-rate equations”). The stochastic approach regards the
time evolution as a kind of random-walk process which is governed by a single

31

differential-difference equation (the ”master equation”). Fairly simple kinetic
theory arguments show that the stochastic formulation of chemical kinetics has
a firmer physical basis than the deterministic formulation, but unfortunately
the stochastic master equation is often mathematically intractable [8].

There is also a way to make exact numerical calculations within the frame-
work of the stochastic formulation without having to deal with the master equa-
tion directly. We are talking about the Monte Carlo procedure to numerically
simulate the time evolution of the given chemical system. Like the master equa-
tion, this ”stochastic simulation algorithm” correctly accounts for the inherent
fluctuations and correlations that are necessarily ignored in the deterministic
formulation. Moreover this algorithm never approximates infinitesimal time
increments dt by finite time steps∆t. The feasibility and utility of the simulation
algorithm are demonstrated by applying it to several well-known model chemi-
cal systems, including the Lotka model, the Brusselator, and the Oregonator [8].

The goal of this paper is to show consistency techniques methods and hy-
brid stochastic/deterministic models to describe biochemical systems and their
behaviour through the ordinary differential equations.

2 Related Work

In literature there are many contributions in the field of hybrid approach for
problems which show a discrete and a continue behaviour at the same time.

In Biocham [3]: a software environment for modeling biochemical systems.
It is based on two aspects: the analysis and simulation of boolean, kinetic and
stochastic models and the formalization of biological properties in temporal
logic. A model is defined by a set of reaction rules, possibly equipped with
kinetic expressions, a list of parameter values and initial conditions. A speci-
fication that accounts for the relevant biological properties can also be added
to the model as a list of temporal logic formulae. A single Biocham file can be
used for boolean, continuous or stochastic analyses; for this reason it performs
a hybrid approach for biological analysis.

3 Stochastic and Deterministic Models

The stochastic effects play an important role in biological processes leading to
an increase in stochastic modelling attempts. The main problem related to the
stochastic simulations regards times and computations which are very expen-
sive [1].
The stochastic models have gained considerable attention when experiments
conducted at the level of single cells showed the existence of a non-negligible
level of noise in intracellular processes, like transcriptions and translation [7].
The dynamics of a stochastic system is described by the chemical master equation
and in the 1976 Gillespie devised two exact algorithms to numerically simulate
the stochastic time evolution of coupled chemical reactions, which are equiv-
alent to solving the chemical master equation [8]. Only recently, modifications

32

to the original chemical master equation have been proposed to further speed
up simulations. The most important methods involve the averaging over fast
reactions [10], application of quasi-steady-state theory [13], grouping together
reactions that occur in fast succession [2].

Another strategy is to model those processes that either involve large num-
ber of particles or have fast rates, in a deterministic way, keeping stochastic the
remaining ones [1]. There are two recent algorithms to simulate biochemical sys-
tems in such hybrid framework that have been proposed [11, 15]. In both cases,
the main idea is to first predict the time in which a stochastic event should be
occur and then evolve the system of ordinary differential equations. At specific
instant in time, the system is updated, and it is checked whether the stochastic
event has to be performed or not. Instead in [1] the authors propose a rigorous
mathematical ground for hybrid stochastic and deterministic modelling in a
natural way. There are three different algorithms: the direct hybrid method, the
first reaction hybrid method and the next reaction hybrid method. The main
difference between the first two approaches and the second one is essentially
one: they are based on a prediction correction heuristic for the realization of
the stochastic part that can be seen as an approximation to the simultaneous
solution of the system of ODEs which in [1] are precisely calculated.

Consider N chemical species S1, ..., SN involved in M reactions R1, ...,RM.
Chemical species are modelled in terms of number of molecules X(t) = (X1(t), ...,
XN(t)). The reaction rate for each reaction R j is specified by a so-called propensity
function a j = a j(X(t), t), which is equal to the product rate constant c j and the
number of possible combinations of reactant molecules involved in reaction R j.
Once a reaction R j is performed, the number of molecules for each species is
updated according to the state change vector v j, i.e., X(t)← X(t) + v j [1].

The deterministic model is based on the law of mass action, where a system
of coupled ordinary differential equations (ODEs) is established for the time
evolution of the number of molecules X(t) ∈ RN

+

d

dt
X(t) =

M
∑

j=1

v ja j(X(t), t) (1)

with some initial value X(t0) ∈ RN
+ . While the system should be described as

a vector of integers, this model needs real values for X(t). This is however
acceptable under the assumption of large number of molecules (Xi(t) >> 1) so
that the relative error can be neglected [1].

The stochastic model is based on physical laws and the idea that chemical
reactions are essentially random processes, the stochastic formulation of chem-
ical reactions is given in terms of a Markov jump process X(t) ∈ NN [9]. Its
characterization is based on the probability a j(X(t), t)dt of a reaction R j occur-
ring in the next infinitesimal time interval [t, t + dt]. Denoting by T j(t) the time
at which reaction R j first occur after t, this amounts to write that

P[T j(t) ∈ [t, t + dt]|X(t)] = a j(X(t), t)dt. (2)

33

In [1] the authors consider a partition of the reactions R1, ...,RM into those
modelled stochastically (labeled with index j ∈ S) and those modelled de-
terministically (labeled with index j ∈ D). Now we can write the evolution
equation for X(t) ∈ RN which is given by the following hybrid system

dX(t) =
∑

j∈D

v ja j(X(t), t)dt +
∑

j∈S

v jdN j(t) (3)

To partition the reactions the authors suggest some methods:

– run a fully stochastic realization and analyze the frequencies/propensities
of each reaction;

– use biological insight (i.e. in [1] the authors say that seems reasonable to
model gene regulatory parts stochastically, while metabolic reactions deter-
ministically);

– for each reaction choose adaptively between two approaches using a crite-
rion based on the number of the molecules and its propensity function.

To check if the algorithms based on hybrid model (direct hybrid method,
first and next reaction methods) obtained good results they tested them in a
intracellular growth of bacteriophage T7 derived by [14]. From the experiment
appears that the hybrid simulations are about 100 times as fast as the fully
stochastic ones without compromising the results accuracy (fig. 1).

Fig. 1. Hybrid kinetics for the bacteriophage T7 model (reaction R1, R2, R3 and R4 mod-
elled stochastically, reactions R5 and R6 modelled deterministically) compared to the the
reference fully stochastic model (based on 104 realizations) [1].

4 Consistency Techniques in Ordinary Differential Equations

How we have explained in the previous section, the ordinary differential equa-
tions (ODEs) play a crucial role in the deterministic model. A first order (ODE)
system O is a system of the form

34

u
′

1
(t) = f1(t, u1(t), ..., un(t))

u
′

2(t) = f2(t, u1(t), ..., un(t))
...

u
′

n(t) = fn(t, u1(t), ..., un(t))

In [5] the author uses the vector representation u
′

(t) = f (t, u(t)) or more
simply u

′

= f (t, u). At this point, there are two assumption:
(1) the function f is sufficiently smooth;
(2) the existence and uniqueness of a solution.
Now, given an initial condition u(t0) = u0 and for the second assumption, the
solution of O is a function s∗ : R → Rs satisfying O and the initial condition
s∗(t0) = u0.

Although for some classes of ODEs the solution can be represented in closed
form, most ODE systems cannot be solved explicitly [5]. The discrete variable
method aim at approximating the solution s∗(t) of any ODE system, not over
a continuous range of t, but only at some points t0, t1, ..., tm. This method in-
clude one-step methods and multi-step methods; in general these methods do not
guarantee the existence of a solution within a given bound.
The interval analysis method instead, was introduced by Moore [12] in the 1966.
These methods provide numerically reliable enclosures of the exact solution at
points t0, t1, ..., tm. To achieve the result, they typically apply a one-step Taylor
interval method and make extensive use of automatic differentiation to obtain
the Taylor coefficients[5].

The mayor problem of interval analysis methods on ODE systems is the
explosion of the size of resulting boxes at point t0, t1, ..., tm. For the author,
there are two reasons for this explosion: at first this method have a tendency to
accumulate errors from point to point, second the approximation of an arbitrary
region by a box (wrapping effect) may introduce considerable loss of accuracy
after a number of steps.

For all these reasons, in[4, 5] they show how to provide a unifying frame-
work to extend traditional numerical techniques to intervals providing reliable
enclosures. The first contribution is to extend explicit and implicit, one-step
and multi-step methods to intervals. The second one is to generalize interval
techniques into a two-step process: a forward process (to compute an enclosure)
and a backward process (to reduce this enclosure).

5 Future Work

The importance of precise analysis to study and comprise biological phenomena
involve different kind of models. On the one hand, it is necessary to describe
some parts in a rigorous and accurate numerical method (for example methods
based on ordinary differential equations or stochastic methods). In the other
hand, the lack of evidence, drives the analysis on purely qualitative models
(boolean or discrete models).

35

The goal is to implement in Biocham some techniques to realize hybrid sim-
ulation, combining different kinds and different nature models, in a qualitative
and quantitative optical, with discrete and continue dynamics. The solution is to
provide the specific language with a multi level description mechanism for the
modelization; the second step is to distinguish in the formalism, the common
characteristics from the details. At last we want to specify the criteria to change,
during the simulation, the formalism.

References

1. A. Alfonsi, E. Cancès, G. Turinici, B. Di Ventura, and W. Huisinga. Exact simulation
of hybrid stochastic and deterministic models for biochemical systems. Research
Report RR-5435, INRIA, 2004.

2. K. Burrage, T. Tian, and P. Burrage. A multi-scale approach for simulation chemical
reaction systems. Progress Biophys Mol Biol, 85:217–234, 2004.

3. L. Calzone, F. Fages, and S. Soliman. Biocham: an environment for modeling biolog-
ical systems and formalizing experimental knowledge. Bioinformatics, 22(14):1805–
1807, 2006.

4. Y. Deville, M. Janssen, and P. Van Hentenryck. Multistep filtering operators for
ordinary differential equations. In J. Jaffar, editor, CP, volume 1713 of Lecture Notes
in Computer Science, pages 246–260. Springer, 1999.

5. Y. Deville, M. Janssen, and P. Van Hentenryck. Consistency techniques in ordinary
differential equations. Constraints, 7(3-4):289–315, 2002.

6. K. Edda, H. Ralf, K. Axel, W. Christoph, and L. Hans. Systems Biology in Practice:
Concepts, Implementation and Application. Wiley-VCH, 1 edition, May 2005.

7. M.B. Elowitz, A.J. Levine, E.D. Siggia, and P.S. Swain. Stochastic gene expression in
a single cell. Science, 297(5584):1183–1186, 2002.

8. D.T. Gillespie. Exact stochastic simulation of coupled chemical reactions. J. Phys.
Chem., 81(25):2340–2361, 1977.

9. D.T. Gillespie. Markov Processes-An Introduction for Physical Scientists. Academic
Press, 1992.

10. E.L. Haseltine and J.B. Rawlings. Approximate simulation of coupled fast and slow
reactions for stochastic chemical kinetics. The Journal of Chemical Physics, 117:6959–
6969, 2002.

11. T.R. Kiehl, R.M. Mattheyses, and M.K. Simmons. Hybrid simulation of cellular
behavior. Bioinformatics, 20(3):316–322, 2004.

12. R.E. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs, N.J., 1966.
13. C.V. Rao and A.P. Arkin. Stochastic chemical kinetics and the quasi-steady-state

assumption: Application to the gillespie algorithm. The Journal of Chemical Physics,
118:4999–5010, 2003.

14. R. Srivastava, L. You, J. Summers, and J. Yin. Stochastic vs. deterministic modeling
of intracellular viral kinetics. Journal of Theoretical Biology, 218(3):309–321, October
2002.

15. K. Takahashi, K. Kaizu, B. Hu, and M. Tomita. A multi-algorithm, multi-timescale
method for cell simulation. Bioinformatics, 20:538–546, 2004.

36

A Semiring-based framework for fair resources
allocation

Paola Campli (campli@sci.unich.it),
Supervisor: Stefano Bistarelli (bista@dipmat.unipg.it)

Tutor: Maria Chiara Meo (meo@sci.unich.it)
Co-Supervisor: Barry O’Sullivan (b.osullivan@cs.ucc.ie)

University G.D’Annunzio - Pescara, Italy

Abstract. In this paper we propose a general framework to model and solve
the fair allocation problem (with indivisible objects) by using soft constraints.
Our formal approach allows to model different allocation problems, ranging from
goods and resources allocation to task and chore division. We use soft constraints
to find a fair solution by respecting the agents’s preferences; indeed these can
be modeled in a natural fashion by using the Semiring-based framework for soft
constraints. The fairness property is considered following an economical point of
view, that is, taking into account the notions ofenvy-freeness(each player likes
its allocation at least as much as those that the other players receive, so it does not
envy anybody else) andefficiency(there is no other division better for everybody,
or better for some players and not worse for the others).

1 Introduction and motivations

The problem of “fair division”, that is, fairly dividing resources or costs among a set
of people, is an important issue in real life scenarios; it can refer to several situations,
such as inheritance and divorce settlements, division of health resources, computer net-
working resources, voting power, intellectual property licenses, costs for environmental
improvements, etc. In these cases, formal protocols for division are needed. Many vari-
ations of the basic problem exist, for example, the situation with divisible resources is
quite different from the situation with indivisible objects; the items to be divided can
be goods or sometimes “bads” like chores or other burdens; some problems can involve
the division of money to compensate a “non fair share”, or a payoff in exchange for
performing a chore. Other aspects to consider are the number of objects with respect
to the number of people. If goods are scarce, anauction is needed and the items are
assigned to (usually) one winner; in this case fairness methods are studied in repeated
auctions to guarantee that not always the same player will be the winner.

But most of the variation comes from the fact that there are many reasonable ways to
formalize “fairness” includingmax-min fairness, proportional fairness, envy-freefair-
ness, etc. which may or may not lead to the same optimal allocation; if we take into
account aglobal viewthis means looking at the overall allocation in terms of social
welfare, while alocal viewfocus on the agents preferences.

Although there is wide literature on fair division within the fields of economics,
game theory, political science, mathematics, operations research and computer science,

37

it seems to lack a unified and general framework which allows to solve the different
kinds of problems, each one with different objects (desirable or undesirable items),
weights or preferences. Another issue encountered in previous works is that often it is
not possible to find a solution and the problem remains unsolved; our approach might
be applied in all these cases because the use of soft constraints allows to always find a
solution; moreover we provide a general framework which can model several cases by
choosing the appropriate semiring (see Sec. 3).

In this paper we investigate the allocation of indivisible objects which can be either
goods or bads; thus, given a set of items and a set of people, each person states a weight
for each object which, depending on the cases, can represent preferences or costs (such
as time, money, resources etc.). According our model, the solution will be anenvy-free
allocation of objects to the agents, reminding that envy-freeness is a fairness property
that guarantees that no agent would rather have one of the bundle allocated to any of
the other agents, that is, each player prefers his bundle.

The paper is organized as follow: in section 2 the various aspects of fair division
problems are illustrated; in section 3 we give a background on Soft Constraint Satis-
faction Problems and semirings; in section 4 we show how to use the SCSP framework
to model allocation problems; in section 5 the mapping between SCSP and allocation
problems is provided; finally, section 6 contains references to similar works in the field
of fair division and allocation problems, a short summary and our future works.

2 The problem of fair division

Fair division [6] is the problem of dividing one or several goods amongst two or more
agents in a way that satisfies a suitable fairness criterion. Fair division has been studied
in philosophy, political science, economics and mathematics for a long time, but is
also relevant to computer science and multiagent systems (MAS), in which resource
allocation is a central topic since the application or agents need resources to perform
tasks. It is assumed that agents are autonomous. A solution needs to respect and balance
their individual preferences; fairness definitions are required and once we have a well-
defined fair division problem, we require an algorithm to solve it.

The elements of a Fair Division Problem are a setP of n players:p1, p2, ..., pn and
a set ofm objectsO to be divided. The problem is to divide the setO into n shares (
o1, o2, ..., on) so that each player gets a fair share ofO. A fair shareis any share that,
in the opinion of the player receiving it, has a value that is at least1

n of the total value
of the set of goodsO. It is crucial to understand that share value is subjective, and that
each player may even have a different notion of how much the set to be divided is worth.

There are three types of fair division schemes: theContinuous Fair Division Schemes,
in which the setO is infinitely divisible (cake, land, etc.) and shares can be adjusted by
arbitrarily small amounts; theDiscrete Fair Division Schemeswhere the setO is made
up of indivisible objects (cars, houses, etc) and theMixed Fair Division Schemes. In
this paper, since we are dealing with indivisible objects, we will focus on the discrete
case.

38

3 Constraint Satisfaction Problems, Semirings and Soft
Constraints

The classic definition of a Constraint Satisfaction Problem (CSP) is as follows [10]. A
CSPP is a tripleP = 〈X, D, C〉whereX is an n-tuple of variablesX = 〈x1, x2, . . . , xn〉,
D is a corresponding n-tuple of domainsD = 〈D1, D2, . . . , Dn〉 such thatxi can
assume values within a determined domainDi, C is a t-tuple of constraintsC =
〈C1, C2, . . . , Ct〉. A constraintCj is a pair〈RlSj , Sj〉 whereRlSj is a relation on the
variables inSi = scope(Ci). A solution to the CSPP is an n-tupleA = 〈a1, a2, . . . , an〉
whereai ∈ Di and eachCj is satisfied in thatRlSj holds on the projection ofA onto
the scopeSj . In a given task one may be required to find the set of all solutions,sol(P),
to determine if that set is non-empty or just to find any solution, if one exists. If the set
of solutions is empty the CSP is unsatisfiable.

A c-semiring[5, 3] S (or simply semiring in the following) is a tuple〈A, +,×,0,1〉
whereA is a set with two special elements0,1 ∈ A (respectively the bottom and top
elements ofA) and with two operations+ and× that satisfy certain properties:+ is
defined over (possibly infinite) sets of elements ofA and is commutative, associative
and idempotent; it is closed,0 is its unit element and1 is its absorbing element;× is
closed, associative, commutative and distributes over+, 1 is its unit element and0 is its
absorbing element (for the exhaustive definition, please refer to [5]). The+ operation
defines a partial order≤S overA such thata ≤S b iff a + b = b; intuitively a ≤S b if b
represents a valuebetterthana. Other properties related to the two operations are that
+ and× are monotone on≤S , 0 is its min and1 its max,〈A,≤S〉 is a complete lattice
and+ is its lub.

A soft constraint[5, 3] may be seen as a constraint where each instantiation of its
variables has an associated preference. GivenS = 〈A, +,×,0,1〉 and an ordered set
of variablesV over a finite domainD, a soft constraint is a function which, given an
assignmentη : V → D of the variables, returns a value of the semiring. Using this
notationC = η → A is the set of all possible constraints that can be built starting from
S, D andV . Any function inC depends on the assignment of only a finite subset ofV .
For instance, a binary constraintcx,y over variablesx andy, is a functioncx,y : V →
D → A, but it depends only on the assignment of variables{x, y} ⊆ V (thesupport,
or scope, of the constraint). Note thatcη[v := d1] meanscη′ whereη′ is η modified
with the assignmentv := d1. Notice thatcη is the application of a constraint function
c : V → D → A to a functionη : V → D; what we obtain is a semiring valuecη = a.
0̄ and 1̄ represent the constraint functions associating0 and1 to all assignments of
domain values; thēa function always returns the valuea.

Given the setC, the combination function⊗ : C×C → C is defined as(c1⊗ c2)η =
c1η × c2η [5, 3]. The⊗ builds a new constraint which associates with each tuple of
domain values for such variables a semiring element which is obtained by multiplying
the elements associated by the original constraints to the appropriate sub-tuples. Given
a constraintc ∈ C and a variablev ∈ V , theprojection [5, 3, 4] of c over V − {v},
written c ⇓(V \{v}) is the constraintc′ such thatc′η =

∑
d∈D cη[v := d]. Informally,

projecting means eliminating some variables from the support.
A SCSP [3] is a tupleP = 〈X, D, C, A〉 whereX is a set of variables,D is the

domain of the variables andC is a set of constraints overX associating values form a

39

c-semiringA. Thebest level of consistencynotion defined asblevel(P) = Sol(P) ⇓∅,
whereSol(P) =

⊗
C [3]. A problemP is α-consistent ifblevel(P) = α [3]; P is

instead simply “consistent” iff there existsα >S 0 such thatP is α-consistent [3].P is
inconsistent if it is not consistent.

4 The SCSP framework for allocations problems

In this section we define a quantitative framework to model fair division problems,
where each assignment of objects to people have an associated preference/weight and,
consequently, modeling this kind of problems as Soft CSPs (see Sec. 3) leads to an
allocation of goods to people that optimize the criteria defined by the chosen semiring.

For instance, theWeightedsemiring〈R+, min, +̂, 0, 1〉, where+̂ is the arithmetic
plus (0 = ∞ and1 = 0), can be used to model the undesirable objects case (such as
chore division) by expressing the (e.g. money) cost for performing a chore; the optimum
solution in this scenario corresponds to an allocation with minimum total cost.

The Fuzzysemiring〈[0..1], max,min, 0, 1〉 is well suited for modeling the play-
ers’s preferences with respect to each good; the solution we obtain with this semiring
corresponds in choosing the highest among the minimum preferences.

TheProbabilisticsemiring〈[0..1],max, ×̂, 0, 1〉 can be used when preferences are
unknown, thus, weights corresponds to probabilities; we can express for instance, that
personp1 prefers objecto3 with probability0.4. The arithmetic×̂ is used to compose
the probability values together (since we assume that preferences and thus probabilities
are independent).

By using theBooleansemiring〈{true, false},∨,∧, false, true〉 we can solve
the non weighted allocation problems, that is, each person state only the goods he/she
desires (or the tasks he is able to perform).

5 Mapping Allocation Problems to SCSPs

In this section we show a mapping from the allocation problem to SCSPs. An allocation
problem is formed by a set ofm indivisible objects (or items)O = {o1, o2, . . . , om}
and a set of people (or players)P = {p1, . . . , pn}. Each player has their own pref-
erences or costs regarding the allocation of goods/tasks to be selected. The problem
consists in partitioning the set of objects inn subsets (or bundles) in a way that each
person receives a (non-empty) bundle that satisfies a suitable fairness criterion. In or-
der to model this problem with a SCSP, we define a variable for each objectoi ∈ O,
i.e. V = {o1, o2, . . . , om} and the domain of each variable is the set of People inP :
D = {p1, . . . , pn}, meaning that an object can be assigned to a person in the setP ; for
exampleo1 = p2 means that playerp2 receives objecto1. A soft constraint associates
a semiring value for each assignment of the variables in its scope, which represent the
preference of the player for a given item; if no weights are considered , the correspond-
ing variable assignment isnot admittedor admittedand the values0 or1 of the boolean
semiring set are respectively returned.

40

Example1. As a simple example, suppose we must assign 3 objects (o1, o2, o3) to 2
players (p1, p2). The corresponding SCSP, by using (for instance) a Fuzzy semiring,
has three variables:o1, o2 ando3, each with the domainD = {p1, p2}; we define the
following unary constraints:Co1 := {(p1, 0.7); (p2, 0.2); } meaning that object 1 can
be assigned either to person 1 (who has a preference of 0.7 for this objects) or person
2 (with preference 0.2);Co2 := {(p1, 0.3); (p2, 0.1); } that is, object 2 can be assigned
either to person 1 or 2 with preferences 0.3 and 0.1 respectively;Co3 := {(p2, 0.7)}
meaning that object 3 can only be assigned to person 2 who desires the object with
preference 0.7;

the solution is illustrated in the table below:
o1 o2 o3 Sol(P)

p1 p1 p1 notallowed
p1 p1 p2 0.7 × 0.3 × 0.7 0.3
p1 p2 p1 notallowed
p1 p2 p2 0.7 × 0.1 × 0.7 0.1
p2 p1 p1 notallowed
p2 p2 p1 notallowed
p2 p2 p2 0.2 × 0.1 × 0.7 0.1
p2 p1 p2 0.2 × 0.3 × 0.7 0.2

The (unique) optimal solution of this problem iso1 = p1, o2 = p1o3 = p2 (with
preference 0.3).

Depending on the cases, the solution provided might not be fair if we only use the pre-
vious method. For example, with different preferences, the solution(p2, p2, p2) could
be returned, which is certainly unfair, since player 1 does not get any object and en-
vies player 2. For this reason, we need to specify additional constraints in order to solve
the allocation problem and guarantee theenvy-freenessproperty of fairness. Letxij be a
boolean variable which is equal to 1 if itemj is assigned to playeri and0 otherwise and
let ui(Bi) be the value for personi of the set of objects(Bi) assigned to him; this value
represents the valuation of the bundle (that is, the subset of items) for each person; an
issue encountered in this case is that requesting an input to the agents for every possible
combination of goods is NP-hard, in fact form object there are2m valuations for each
of then players. In order to reduce the size of the problem, we can automatically calcu-
late the value of the bundle, by specifying in the problem if the valuations areadditive
(thus, the value is obtained by summing the weights of the single objects in the bundle),
super-additive(the value of the bundle is greater than the values of the single objects),
sub-additive(the value of the bundle is lower than the values of the single objects) or
maximal(the value of the bundle corresponds to the maximum weight among the ob-
jects in the bundle); in this way we can compute the value of the entire bundleui(Bi);
the type of valuation depends on the kind of goods; for example if the items considered
arecomplementary(e.g. printers and ink cartridges) the valuation of the bundle might
be super-additive, or conversely, if the goods aresubstitute(e.g. petroleum and natural
gas), the valuation might be sub-additive. The defined constraints are the following:1

1. Each object must be assigned to at most one person∀j ∑
i xij = 1;

2. Each person must receive at least one item:∀i ∑
j xij ≥ 1;

3. Envy-freeness constraint.Each person does not prefer the set of objects assigned to
the other players:∀i ui(Bi) ≥ ui(Bj) for eachj 6= i;

1 constraints1 and 2 are based on those used in the Santa Claus Problem’s paper [2]

41

Moreover, since we are assuming that the number of objects is greater (or equal) than
the number of people, our solution is also efficient, as shown in [1], which proves that
whenm ≥ n envy-freeness implies efficiency.

6 Related works, conclusions and future works

In the indivisible resource area, most of the issues are based on theSanta Claus prob-
lem [2], in which the goal is to distributen presents amongk kids, in such a way
that the least lucky kid is as happy as possible; a linear programming is used with the
Max-min fairnessobjective function. Another variant is represented by the “housemate
problem” [9], where goods are associated with bads. The problem consists in assigning
different rooms to people sharing a house according the bid they submit, but also to de-
termine a price to be paid by each roommate for his assigned room. Concerning Chore
division, the problem of dividing an undesirable object has been investigated only for
divisible goods, where cake cutting algorithms have been adapted in order to deal with
chores instead of desirable goods. It is supposed that chores are infinitely divisible [8]
and valuations over bundles are additive. Other works view the problem from a com-
putational perspective and are based on approximation algorithms with the purpose of
finding a solution closest to the optimum [7].

We investigated on the use of the semiring-based framework for soft constraints in
order to model and solve the fair allocation of objects problem. According the chosen
semiring, we can easily represent the different set of preferences, their combination and
the various kind of objects. In the future we plan to use the framework for the Stable
Marriage Problem, which can be casted in a particular fair allocation problem involving
the same number of objects and people.

References

1. Ahmet Alkan, Gabrielle Demange, and David Gale. Fair allocation of indivisible goods and
criteria of justice.Econometrica, 59(4):1023–1039, 1991.

2. Nikhil Bansal and Maxim Sviridenko. The santa claus problem. InSTOC ’06: Proceedings
of the thirty-eighth annual ACM symposium on Theory of computing, pages 31–40, New
York, NY, USA, 2006. ACM.

3. S. Bistarelli. Semirings for Soft Constraint Solving and Programming, volume 2962 of
LNCS. Springer, 2004.

4. S. Bistarelli, U. Montanari, and F. Rossi. Soft concurrent constraint programming.ACM
Trans. Comput. Logic, 7(3):563–589, 2006.

5. S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based Constraint Solving and Optimiza-
tion. Journal of the ACM, 44(2):201–236, March 1997.

6. Ulle Endriss. Lecture notes on fair division. 2009.
7. Uriel Feige. On allocations that maximize fairness. InSODA ’08: Proceedings of the nine-

teenth annual ACM-SIAM symposium on Discrete algorithms, pages 287–293, Philadelphia,
PA, USA, 2008. Society for Industrial and Applied Mathematics.

8. Elisha Peterson and Francis Edward Su. Four-person envy-free chore division.Mathematics
Magazine, 2002.

9. Richard F. Potthoff. Use of linear programming to find an envy-free solution closest to the
bramskilgour gap solution for the housemates problem.Group Decision and Negotiation,
11:405–414, 2002.

10. F. Rossi, P. van Beek, and T. Walsh.Handbook of Constraint Programming. Elsevier Science
Inc., New York, NY, USA, 2006.

42

Symmetries and Lazy Clause Generation

Geoffrey Chu1 (student), Maria Garcia de la Banda2, Chris Mears2, and Peter
J. Stuckey1 (supervisor)

1 National ICT Australia, Victoria Laboratory,
Department of Computer Science and Software Engineering,

University of Melbourne, Australia
{gchu,pjs}@csse.unimelb.edu.au

2 Faculty of Information Technology,
Monash University, Australia

{chris.mears,mbanda}@infotech.monash.edu.au

Abstract. Lazy clause generation is a powerful approach to reducing
search in constraint programming. This is achieved by recording sets of
domain restrictions that previously lead to failure as new clausal prop-
agators. Symmetry breaking approaches are also powerful methods for
reducing search by recognizing that parts of the search tree are symmetric
and do not need to be explored. In this paper we show how we can suc-
cessfully combine dynamic symmetry breaking methods with lazy clause
generation. Further, we show that the more precise nogoods generated
by a lazy clause solver allows our combined approach to exploit redun-
dancies that cannot be exploited via any previous symmetry breaking
method, be it static or dynamic.

1 Introduction

Lazy clause generation [5] is a hybrid approach to constraint solving that com-
bines features of finite domain propagation and Boolean satisfiability. Finite
domain propagation is instrumented to record the reasons for each propagation
step. This creates an implication graph like that built by a SAT solver, which
may be used to create efficient nogoods that record the reasons for failure. These
nogoods can be propagated efficiently using SAT unit propagation technology.
The resulting hybrid system combines some of the advantages of finite domain
constraint programming (high level model and programmable search) with some
of the advantages of SAT solvers (reduced search by nogood creation). Lazy
clause generation provides state of the art solutions to a number of combina-
torial optimization problems such as Resource Constrained Project Scheduling
Problems [6].

Symmetry breaking methods aim to speed up execution by pruning parts
of the search tree known to be symmetric to those already explored. This can
be achieved via both static methods like lexical graphical constraints, and dy-
namic methods like Symmetry Breaking During Search (SBDS) [3] and Sym-
metry Breaking by Dominance Detection (SBDD) [1], [2]. Dynamic approaches
have the benefit that they do not interfere with the branching heuristic. In this
paper, we examine how to combine lazy clause generation with SBDS and show
that we can exploit types of symmetries that could not previously be exploited
by any other method.

43

2 Lazy Clause Generation

Lazy clause generation is a hybrid of finite domain and SAT solving where each
FD propagator is extended to be able to explain its propagations. An integer
variable x in problem P = (C,D) with initial domainD(x) = [l .. u] is channelled
with a set of Boolean variables representing {[[x = d]] | l ≤ d ≤ u}∪{[[x ≤ d]] | l ≤
d < u}. Each domain change inferred by a propagator f can be expressed as
fixing the value of one of these Boolean variables. The inference must be explain
in terms of the other boolean variables associated with the variables involved
in the propagator. An explanation for a domain change represented by literal
l is of the form S → l where S is a set of literals that are currently true. We
require that each propagator f return an explanation for every domain change
it makes. For example the propagator for x 6= y may explain the inference that
y 6= 3 given x = 3 as [[x = 3]]→ ¬[[y = 3]]. The explanations are stored, forming
an implication graph like that in a SAT solver.

A nogood N is a set of literals such that C ∧D ⇒ ¬ ∧l∈N l. That is, in all
solutions of P , the conjunction of the literals in N is false. Lazy clause solvers
derive nogoods from each conflict by analysing the implication graph. We begin
with the explanation of failure as the working clause. While the working clause
has more than 1 literal on the last decision level, we eliminate the literal which
was fixed last by resolving the working clause with the explanation clause for
that literal. When only one literal at the last decision level remains, we have what
is called the 1UIP (First Unique Implication Point) nogood. Another possible
nogood we could derive is the choice nogood, where we simply take the entire
set of decision literals leading to the failed subproblem as the nogood. Nogoods
are added to the solver as clausal propagators.

3 Symmetries and Nogoods

Nogoods are globally valid constraints, thus symmtries can be applied to nogoods
to derive additional correct nogoods.

Example 1. Consider the following constraint problem P = (C,D) where C ≡
{
∑5

i=1 xi ≤ 12, alldiff ([x1, x2, x3, x4, x5])} and D(xi) = [1 .. 8] , 1 ≤ i ≤ 5. This
problem has variable interchangeability symmetries since each of {x1, x2, x3, x4, x5}
are indistinguishable. Suppose the subproblem P ′ with x1 = 1, x2 = 2 fails, then
we can derive the choice nogood {x1 = 1, x2 = 2}. Clearly any symmetric version
is also a correct nogood, for example {x2 = 1, x1 = 2} or {x3 = 1, x5 = 2}. ut

Dynamic symmetry breaking techniques like SBDS and SBDD can be thought
of as propagating symmetric versions of the choice nogoods derived at each
node. SBDS works as follows. Suppose we reach subproblem P ′ via the deci-
sion sequence d1, d2, . . . , dn, dn+1, where each di is a literal representing the
decision assignment at the ith level. If P ′ fails, we can derive the following
choice nogood: {d1, . . . , dn, dn+1}. SBDS treats the nogoods as one-directional,
i.e. {d1, . . . , dn} → ¬dn+1. This constraint only propagates if d1, . . . , dn are true
in which case it asserts ¬dn+1. Suppose P ′′ was the parent subproblem of P ′.
When we backtrack to P ′′, i.e. to the point where we undo dn+1, we do the

44

following. For each symmetry ρ, we post the symmetric one-directional nogood
{ρ(d1), . . . , ρ(dn)} → ¬ρ(dn+1) as a local constraint in P ′′, ignoring those ρ for
which ∃i s.t. ¬ρ(di) is entailed in P ′′, as such nogoods are redundant within
subproblem P ′′. From this point on, we refer to normal SBDS as SBDS-choice
(since it uses choice nogoods).

4 Symmetries and Lazy Clause Generation

Naively, we can simply add SBDS-choice to a lazy clause solver. However, we
show that using the 1UIP nogoods normally derived by a lazy clause solvers lead
to even better performance.

4.1 SBDS-1UIP

It is easy to see how to adapt SBDS to use 1UIP nogoods. Suppose subprob-
lem P ′ fails and we derive the 1UIP nogood {l1, . . . , ln, ln+1} where ln+1 is the
asserting literal. When we backtrack to P ′′, the parent subproblem of P ′, we
do the following. For each symmetry ρ, we post the symmetric (one-directional)
nogood {ρ(l1), . . . , ρ(ln)} → ¬ρ(ln+1)}, ignoring those ρ for which ∃i s.t. ¬ρ(li)
is entailed in P ′′.

It is possible to show that SBDS-1UIP exploits strictly more symmetries
than SBDS-choice. We omit the proof for lack of space. This means that SBDS-
1UIP can prune even more than complete methods like SBDS-choice. Roughly
speaking, SBDS-choice can only exploit symmetries on the already labelled parts
of the problem, whereas SBDS-1UIP can exploit symmetries in the unlabeled
parts of the problem as well.

•
x3 = 3

~~~~~~~

///////////// •
x6 ∈ {1, 2, 3, 4, 5}

/////////////

@@@@@@@

•x2 = 2 •
x4 = 4

~~~~~~~

/////////////

OOOOOOOOOOOOOO •x7 ∈ {1, 2, 3}

�������������

•x1 = 1 •
x10 ∈ {2, 3, 5}

•

x5 = 5

oooooooooooooo

@@@@@@@ •x8 ∈ {1, 2, 3}

•

~~~~~~~

x9 ∈ {1, 2, 3}

Fig. 1. A graph colouring problem where we can exploit additional symmetries

Example 2. Consider the graph colouring problem shown in Figure 1, where
we are trying to colour the nodes with at most 5 colours. After making the
decisions x1 = 1, x2 = 2, x3 = 3, x4 = 4, x5 = 5, we have domains as shown in

45



Figure 1. Suppose we label x6 = 1 next. Then propagation gives x7 ∈ {2, 3}, x8 ∈
{2, 3}, x9 ∈ {2, 3}. Now, suppose we try x7 = 2. This forces x8 = 3, x9 = 3, which
conflicts. The (one-directional) 1UIP nogood from this conflict is {x8 6= 1, x8 6=
4, x8 6= 5, x9 6= 1, x9 6= 4, x9 6= 5} → x7 6= 2. After propagating this nogood,
we have x7 = 3, which after further propagation, once again conflicts. At this
point, we backtrack to before x6 is labelled and derive the nogood {x7 6= 4, x7 6=
5, x8 6= 4, x8 6= 5, x9 6= 4, x9 6= 5} → x6 6= 1.

Now, let’s examine what SBDS-1UIP can do at this point. It is clear that
if we apply the value symmetries � 1��� 2� or � 1��� 3� to this
nogood, the LHS remains unchanged while the RHS changes. Therefore, we can
post these two symmetric nogoods and immediately get the inferences x6 6= 2
and x6 6= 3. On the other hand, SBDS-choice can’t do anything. The choice
nogood is {x1 = 1, x2 = 2, x3 = 3, x4 = 4, x5 = 5} → x6 6= 1, and it is easy to
see that no matter which value symmetry we use on it, the LHS will have a set
of literals incompatible with the current set of decisions and thus cannot imply
the RHS. ut

The kind of redundancy we exploit here is extremely difficult to exploit.
Roughly speaking, we can say that we are exploiting the symmetry that exists
in the sub-component of a subproblem which is the actual cause of failure. In
this case, they are the variables x6, x7, x8, x9, their current domains in the sub-
problem, and the constraints linking them. Neither static symmetry breaking
constraints or conditional symmetry breaking constraints are capable of exploit-
ing this symmetry. It is only because a lazy clause solver gives us such precise
information about which variables are involved in failures that SBDS-1UIP can
exploit this.

5 Experiments

We now perform experiments on the the Concert Hall Scheduling problem and
the Graph Colouring problem. We take the benchmarks used in [4].

We implemented SBDS in Chuffed, which is a state of the art lazy clause
solver. We run Chuffed with three different versions of SBDS. The first ver-
sion is choice, where we use symmetric versions of choice nogoods. The second is
1UIP, where we use symmetric versions of 1UIP nogoods. The third version we
call crippled, where we use symmetric versions of 1UIP nogoods, but only those
nogoods derived from symmetries where choice could also exploit the symme-
try. We also compare against Chuffed with no symmetry breaking (none), and
with static symmetry breaking constraints (static). Finally, we compare against
an implementation of SBDS in [4], which is called Lightweight Dynamic Sym-
metry Breaking (LDSB). LDSB is implemented on the Eclipse constraint pro-
gramming platform and was the fastest implementations of dynamic symmetry
breaking on the two problems we examine, beating GAP-SBDS and GAP-SBDD
by significant margins.

All versions of Chuffed are run on Xeon Pro 2.4GHz processors. The results
for LDSB were received from the authors of [4], where Eclipse LDSB was run on
quad-core Intel Xeon E5310 1.66GHz processors. We group the instances by size,
so that the times displayed are the average run times for the instances of each

46



Table 1. Comparison of three SBDS implementations in Chuffed, static symmetry
breaking in Chuffed, and LDSB in Eclipse, on the Concert Hall Scheduling problem

Size none 1UIP crippled choice static LDSB
Time Fails Time Fails Time Fails Time Fails Time Fails Time Nodes

20 259.8 686018 0.04 84 0.05 130 0.07 350 0.05 134 0.29 3283
22 381.5 749462 0.07 181 0.08 299 0.17 1207 0.07 183 0.73 7786
24 576.9 1438509 0.10 275 0.11 316 0.78 3426 0.15 486 2.70 12611
26 483.4 1189930 0.10 282 0.19 677 2.26 5605 0.25 685 2.71 12724
28 530.7 1282797 0.68 1611 1.12 2613 3.64 10530 0.42 1041 9.94 57284
30 581.3 1251980 0.27 761 0.53 2042 19.52 48474 0.52 2300 121.50 722668
32 542.4 936019 0.40 1522 1.01 4845 21.48 65157 1.31 5712 97.90 641071
34 600.0 1039051 1.10 2636 3.22 8761 19.86 48837 1.60 4406 72.73 425718
36 600.0 1223864 1.40 3156 5.02 13606 59.70 131142 2.37 5707 171.14 938439
38 600.0 1027778 1.91 5053 12.56 26556 82.77 178170 3.51 10518 268.05 1211086
40 600.0 1447604 2.96 6648 10.27 27028 102.1 219454 6.40 18169 240.84 1220934

Table 2. Comparison of three SBDS implementations in Chuffed, static symmetry
breaking in Chuffed, and LDSB in Eclipse, on the Graph Colouring problems

Uniform
Size none 1UIP crippled choice static LDSB

Time Fails Time Fails Time Fails Time Fails Time Fails Time Nodes
30 140.7 282974 0.00 14 0.06 474 0.26 3049 0.02 277 19.63 56577
32 211.4 390392 0.00 17 0.00 146 0.24 3677 0.00 84 14.11 27178
34 213.9 272772 0.00 25 0.29 1182 3.53 11975 0.03 433 22.06 30127
36 195.9 296358 0.00 36 0.04 467 6.91 23842 0.01 200 35.66 85505
38 224.0 297138 0.00 55 0.04 516 23.55 69480 0.03 526 51.18 107574
40 250.9 423326 0.00 83 0.31 1879 21.07 78918 0.06 878 84.16 185707

Biased
Size none 1UIP crippled choice static LDSB

Time Fails Time Fails Time Fails Time Fails Time Fails Time Nodes
20 13.25 39551 0.00 27 0.00 32 0.01 639 0.00 29 0.72 1376
22 11.53 63984 0.00 25 0.00 34 0.02 727 0.00 25 0.16 538
24 66.60 154409 0.00 35 0.00 47 0.07 1992 0.00 32 1.91 2114
26 74.77 277290 0.00 55 0.00 93 0.12 3385 0.00 104 9.56 34210
28 130.5 280649 0.00 62 0.00 84 0.58 6402 0.00 103 9.14 37738
30 267.6 480195 0.00 101 0.01 239 10.48 43835 0.01 359 57.18 215932
32 331.7 600772 0.01 232 0.24 1597 9.98 44216 0.16 1864 110.16 288707
34 219.9 387213 0.20 806 0.40 1946 10.26 47470 0.45 1730 64.14 165943
36 442.6 709888 0.01 317 0.04 857 27.39 113252 0.80 3226 152.62 327472
38 382.5 631403 0.10 798 1.01 5569 31.63 138787 4.12 9413 193.40 508164
40 465.6 531285 0.02 410 0.36 2660 24.68 91847 0.12 2133 196.02 476486

size. A timeout of 600 seconds was used. Instances which timeout are counted
as 600 seconds. The results are shown in Tables 1 and 2. Chuffed none and
Eclipse LDSB fails to solve many instances before timeout, and choice fails to
solve a few instances. 1UIP, crippled and static all solve every instance in the
benchmarks.

47



It is clear from the results that SBDS-1UIP is far superior to SBDS-choice.
Comparison between SBDS-1UIP and SBDS-crippled shows that the additional
symmetries that we can only exploit with SBDS-1UIP indeed gives us reduced
search and additional speedup. Comparison with static shows that dynamic sym-
metry breaking can be superior to static symmetry breaking on appropriate
problems. The comparison with LDSB shows that lazy clause solvers can be
much faster than normal CP solvers, and that they retain this advantage when
integrated with symmetry breaking methods.

The total speed difference between 1UIP and LDSB is up to 2 orders of mag-
nitude for the Concert Hall problems and up to 4 orders of magnitude for the
Graph Colouring problems. Most of this speedup can be explained by the dra-
matic reduction in search space, which is apparent from the node counts in
the results table. The redundancies exploited by lazy clause solvers are differ-
ent from those redundancies caused by symmetries, and it is very clear here
that by exploiting both at the same time with SBDS-1UIP, we get much higher
speedups than possible with either of them separately. It should also be noted
that Chuffed with symmetry breaking constraints is also quite competitive.

6 Conclusion

In this paper we have examined how we can extend SBDS to make use of the
better nogoods generated by lazy clause solvers. We have built a prototype im-
plementation combining SBDS with lazy clause generation, which we call SBDS-
1UIP. The resulting system can exploit types of redundancies previously impos-
sible to exploit, and can outperform LDSB by several orders of magnitudes on
some problems.

Acknowledgments. NICTA is funded by the Australian Government as repre-

sented by the Department of Broadband, Communications and the Digital Economy

and the Australian Research Council.

References

1. T. Fahle, S. Schamberger, and M. Sellmann. Symmetry breaking. In Principles
and Practice of Constraint Programming - CP 2001, 7th International Conference,
pages 93–107, 2001.

2. F. Focacci and M. Milano. Global cut framework for removing symmetries. In
Proceedings of the International Conference on Principles and Practice of Constraint
Programming, pages 77–92, 2001.

3. I. Gent and B.M. Smith. Symmetry breaking in constraint programming. In 14th
European Conference on Artificial Intelligence, pages 599–603, 2000.

4. C. Mears. Automatic Symmetry Detection and Dynamic Symmetry Breaking for
Constraint Programming. PhD thesis, Clayton School of Information Technology,
Monash University, 2010.

5. O. Ohrimenko, P.J. Stuckey, and M. Codish. Propagation via lazy clause generation.
Constraints, 14(3):357–391, 2009.

6. A. Schutt, T. Feydy, P.J. Stuckey, and M. Wallace. Why cumulative decomposition
is not as bad as it sounds. In I. Gent, editor, Proceedings of the 15th International
Conference on Principles and Practice of Constraint Programming, volume 5732 of
LNCS, pages 746–761. Springer-Verlag, 2009.

48



A Soft Constraint for Cumulative Problems with

Over-loads of Resource

Alexis De Clercq,
supervised by Thierry Petit, Nicolas Beldiceanu, and Narendra Jussien

Mines-Nantes, LINA UMR CNRS 6241,

4, rue Alfred Kastler, FR-44307 Nantes, France.

{Alexis.De-Clercq,Thierry.Petit,Nicolas.Beldiceanu,
Narendra.Jussien}@mines-nantes.fr

Abstract. This paper deals with cumulative problems where the re-

source capacity may be over-loaded, using constraint programming. We

propose a generic soft constraint and we show its use in several practical

cases. We adapt to our constraint the most recent edge-finding filtering

algorithm of the Cumulative constraint.

1 Introduction

Scheduling problems consist of ordering activities. In cumulative scheduling, each
activity ai requires for its execution the availability of a certain amount of renew-
able resource. ai has an earliest starting time estai

, a latest starting time lstai
, an

earliest completion time ectai
and a latest completion time lctai

. Given a set of
activities Ω, estΩ = minj∈Ω(estj), lstΩ = minj∈Ω(lstj), ectΩ = maxj∈Ω(ectj),
lctΩ = maxj∈Ω(lctj). In Constraint Programming, activities are represented by
variables. Many problems can be encoded using the Cumulative constraint [1].

Definition 1. Let A be a set of n non-preemptive activities. For each ai ∈ A,
start[ai] is the variable representing its starting point in time. Its domain is
the interval D(start[ai]) = [estai

, lstai
]. dur[ai] is its duration variable, s.t.

D(dur[ai]) = [di, di]. Variable res[ai] (height of ai) represents the discrete amount
of resource consumed by ai, s.t. D(res[ai]) = [ri, ri]. We assume here ri ≥ 0.

We have ectai
= estai

+ di and lctai
= lstai

+ di. The energy of an activity is
eai

= ri ∗ di. The energy of a set of activities Θ ⊆ A is eΘ =
∑

ai∈Θ eai
.

Definition 2. Given one resource with a capacity limited by capa and a set A
of n activities, at each point in time t the cumulated height ht of the activities
overlapping t is ht =

∑

ai∈A,start[ai]≤t<end[ai]
ri. The Cumulative(A, capa) con-

straint [1] enforces C1: For each activity ai ∈ A, start[ai] + dur[ai] = end[ai],
and C2: At each point in time t, ht ≤ capa.

In this article, we study the case of cumulative problems where the time hori-
zon (maximum latest completion time among all activities) is fixed, so as some
problems have no solution if no over-loads on the resource capacity are tolerated.
In this case, since the user wants to obtain a solution, over-loads are accepted

49



providing that some constraints expressing when and how such over-loads appear
are satisfied. In this context, Section 2 presents SoftCumulative, a generaliza-
tion of the SoftCumulativeSum constraint [7], and some practical examples of
problems. Section 3 presents a filtering technique for SoftCumulative, including
an adaptation of the O(knlog(n)) Viĺım’s Edge-finding algorithm [12].

2 SoftCumulative and its Applications

Definition 3. Let A be a set of activities s.t. starting times are scheduled be-
tween time 0 and m − 1, a maximum capacity capa and:

– A sequence P = [p0, . . . , pk] of k + 1 distinct integers sorted in increasing
order and s.t. p0 = 0 and pk = m, which defines a partition of [0, m[ in
sub-intervals s.t. each pair (j, j + 1), j < k, defines an interval [pj , pj+1[.

– A sequence of integer cost variables Cost = [cost0, . . . , costk−1] one-to-one
mapped with P\{pk}, s.t. variable costj corresponds to the interval [pj , pj+1[.

– A sequence of ideal capacities IC = [ic0, . . . , ick−1] one-to-one mapped with
P\{pk}, s.t. ∀ icj ∈ IC, icj ≤ capa.

– A variable obj, a flag ctr ∈ (sum-max, sum-sum, max-max, max-sum).

The SoftCumulative(A, capa, P, Cost, IC, obj,ctr) enforces:

– C1 and C2 (see Definition 2).
– C3: A constraint on each variable costj ∈ Cost: If ctr = sum-max or

max-max, it is costj = max(0, maxt∈[pj,pj+1[(ht − icj)), otherwise it is costj =
P

t∈[pj,pj+1[ max(0, ht − icj), with j < k.

– C4: An objective constraint depending on ctr: If ctr = max-max or max-
sum it is obj = maxj∈[0,k−1] costj, otherwise it is obj =

P

j∈[0,k−1] costj

8

capa

ic0

ic1

t=mt=0

p0 p1 p2

ic2

1 2 3 4 5 6 7

Fig. 1: SoftCumulative with 3 fixed activities: a1 starts at 0 and ends at 3,
res[a1] = 2. a2 starts at 2 and ends at 7, res[a2] = 2. a3 starts at 5 and ends
at 7, res[a3] = 2. If ctr is sum-max then cost0 = 1, cost1 = 0, cost2 = 1,
obj = 2. If it is max-max then cost0 = 1, cost1 = 0, cost2 = 1, obj = 1. If it is
max-sum then cost0 = 1, cost1 = 0, cost2 = 2, obj = 2. If it is sum-sum then
cost0 = 1, cost1 = 0, cost2 = 2, obj = 3.

Figure 1 shows a SoftCumulative with three fixed activities and over-loads
in the first and in the third interval of the partition of [0, 9[ given by P = [0, 3, 5].

50



It is possible to add practical constraints on variables in Cost to control over-
loads over ideal capacities IC. Consider for instance cumulative problems where
time unit is one hour, intervals defined by P have a length of one day (e.g., 8
hours, except on Saturday, 4 hours) and the resource is the salaries, electricity
or maintenance cost. For each day j the available budget is defined by icj.

⋄ Smooth changes w.r.t. over-loads A frequent requirement consists of limit-
ing the number of huge changes w.r.t. over-loads. It can be expressed by adding
to SoftCumulative some instances of Smooth(N, tol, X) [2], where N is a vari-
able, tol an integer and X = [x0, . . . , xn] a sequence of variables, which imposes
that the number of times that |xi+1 −xi| > tol is equal to the value of N . In our
case, X is Cost. In practice, for example, when a company hires extra-employees,
their number should not vary too much from one period to another.

⋄ Fair distribution of over-loads The fair distribution of over-loads, for in-
stance during one month, can be expressed by adding to SoftCumulative some
balancing constraints [6, 9] on variables in Cost, or by using cardinality con-
straints [8] (for instance, at most one over-loaded day each week).

⋄ Dependencies w.r.t. over-loads In some problems, dependencies exist w.r.t.
over-loads in different days. For instance, one may impose that if the maximum
over-load on May 18th is > 3, then the maximum over-load on May 19th should
be ≤ 1. Dependencies can be encoded by primitive constraints on pairs of vari-
ables in Cost or, if they are more complicated, thanks to an automaton [5].

3 Filtering algorithm for SoftCumulative

The objective obj, the sequence Cost and the set A are variables. We describe
bound-propagation techniques for these variables. A fail is detected when a
domain has a lower-bound strictly greater than its upper-bound. For sake of
space, we focus in this section on sum-max, the most useful parameter ctr for
SoftCumulative. Variable obj is pruned according to the objective constraint
obj =

∑

j∈[0,k−1] costj , which can be also back-propagated on variables in Cost.

3.1 Pruning cost variables

Similarly to SoftCumulativeSum [7], minimum values of domains of variables
in Cost can be pruned according to the cumulative profile computed with com-
pulsory parts of activities [4]. Similarly to the filtering algorithms of Cumula-

tive and SoftCumulativeSum, sweep [3] can be used to compute this profile.
Then, each minimum of a variable costj ∈ Cost can be updated thanks to the
difference between the maximum height of the profile within the interval cor-
responding to costj and the value icj, iff such a difference is positive. W.r.t.
maximum values of variables in Cost, they can be reduced either by external
events (for instance the constraints Smooth, balancing constraints or automaton
described in section 2), or thanks to a back-propagation of the objective con-
straint. Obviously, such reductions have a significant impact on the pruning of
starting date variables described in next section.

51



3.2 Pruning starting dates from upper bounds of cost variables

This section presents a filtering technique inspired from the O(knlog(n)) Edge-
finding filtering algorithm proposed by Viĺım [12] for Cumulative, in order to
prune, within SoftCumulative, the variable start[ai] for each activity ai ∈ A.

Principle of energetic reasoning The principle of energetic reasoning is to
compare the resource necessarily required by a set of activities within a given
interval of points in time with the available resource within this interval. In
classical cumulative problems, this area of available resource within an interval
[ts, te[ of k points in time is equal to k∗capa. In the context of SoftCumulative,
we consider maximum values of variables in Cost instead of capa. W.l.o.g., the
considered intervals are not necessarily the intervals given by the set P . Thus,
we define formally the free area of an arbitrary interval w.r.t. the ideal capacities
and to the maximum cost on each interval of P .

Notation 1 Given a SoftCumulative(A, capa, P, Cost, IC, obj,ctr), ts and te
two time points in [0, m[ s.t. ts < te, we denote by succ(ts) the smallest index
i ∈ [0, k] such that pi is greater than or equal to ts and prev(te) the greatest
index j ∈ [0, k] such that pj is strictly less than te. Given pj ∈ P , we use the
notation capaj = min(capa, icj + max(D(costj))).

Definition 4. Given ts and te in [0, m[ s.t. ts < te, Area(ts,te) is the number of
free resource units in [ts, te[ according to the upper bounds of variables in Cost:

– If prev(te) < succ(ts) then Area(ts,te) = (te − ts) ∗ capaprev(te).
– If prev(te) ≥ succ(ts) then Area(ts,te) = (succ(ts) − ts) ∗ capasucc(ts)−1 +

(te − prev(te)) ∗ capaprev(te) +
∑

j∈[succ(ts),prev(te)−1[(pj+1 − pj) ∗ capaj.

Viĺım’s edge finding algorithm [12] is divided into two phases. First, it de-
tects precedences among activities, and then it prunes starting dates of activities.
These two phases use the notion of energy envelope. In the case of SoftCumu-

lative, given a set of activities Θ1, the energy envelope is computed according
to the maximum values of variables in Cost, instead of capa.

Definition 5. Let Θ be a set of activities s.t. Θ ⊆ A. The energy envelope of
Θ is: Env(Θ) = maxΩ⊆Θ(Area(p0,estΩ) + eΩ).

Detecting precedence relations We use the definition given in [12].

Definition 6 (Precedences [12]). An activity ai ∈ A ”ends before the end”
of an activity aj ∈ A iff, in all solutions end[ai] ≤ end[aj ]. It is denoted by the
relation ai ⋖aj. It can be extended to a set of activities: a set of activities Θ can
end before the end of an activity aj in the same way. We can write Θ ⋖ aj.

To detect precedences w.r.t. an activity aj, we consider all the activities ai

having a latest completion time greater than the latest completion time of ai.

1 Since our reasoning is exclusively based on energy, determining the relevant set Θ

will be identical to the Cumulative case [12], both for detecting precedences and

pruning start variables of activities.

52



Definition 7. The Left Cut of A by an activity aj ∈ A is a set of activities
such that: LCut(A, aj) = {ai, ai ∈ A & lctai

≤ lctaj
}.

Given a set Θ of activities in A (which should be a Left Cut), the energy
envelope is used to compute a lower bound lb(ectΘ) for the earliest completion
time ectΘ of Θ. In [12], this point in time is simply: lb(ectΘ) = ⌈Env(Θ)/capa⌉.
In the case of SoftCumulative, it is also possible to compute this lower bound.
We can determine the greatest index in variables Cost corresponding to a point
in time less than or equal to lb(ectΘ).

Definition 8. Given a SoftCumulative(A, capa, P, Cost, IC, obj,ctr), P =
[p0, . . . , pk−1], and x a positive integer, inf(x) is the greatest index j ∈ [0, k− 1]
s.t. x ≤ Area(p0,pj) (if it exists).

Proposition 1. Given a Left Cut Θ, a lower bound of ectΘ is:

lb(ectΘ) = pinf(Env(Θ)) +

⌈

Env(Θ) − Area(p0,pinf(Env(Θ))

capainf(Env(Θ))

⌉

Proof. (Sketch) Env(Θ) − Area(p0,pinf(Env(Θ)) is the energy that remains from

Env(Θ) when all the free area between p0 and pinf(Env(Θ)) is filled. By dividing
this quantity by capainf(Env(Θ)), we obtain the smallest number of points in
time to add after pinf(Env(Θ)). ⊓⊔

Viĺım introduced in [11], [12] a tree data structure to efficiently compute the
energy envelope Env(Θ) for a given set Θ ∈ A, the Θ-tree. In a Θ-tree, leaves
are the activities sorted by their earliest starting dates (estai

, ∀i ∈ A). Each
node v of the Θ-tree holds two values (see [10], [12] for their computation) : (1)
ev, the total energy contained in that node, that is, the sum of the energies of
direct descendants. (2) Envv, the total energy envelope of the set of descendants
leaves. The formulas given in [12] do not need to be adapted to our case because
they are based on energy in each node. The capacities are not involved in the
computation. Once the energy envelopes are available, from [12], it is possible
to detect precedences thanks to the following rule: lb(ect(LCut(A, aj)∪{ai})) >
lctaj

⇒ LCut(A, aj) ⋖ ai. Finally, the algorithm used to compute precedence
detections uses“Θ−Λ-tree” to obtain a precedence list for each activity with at
least one activity that ends before its end. It is an extension of the Θ-tree. The
principle is the same, and the formulas can be directly re-used in our framework.

Pruning the starting date variables An adjustment can be made on the
earliest starting time for each activity ai that ends necessarily after the end of a
set of activities Θ. Θ can only overlap the interval [estΘ, lctΘ], by definition. If
it overlaps more than the area available while ai is processed then the remaining
area should be placed before ai, so that estai

can be updated. The earliest
starting time can only be revised if we consider a set Θ that can compete2 with

2 Θ competes with ai iff, within [estΘ, lctΘ], reducing the available resource by the

resource necessary for ai makes that eΘ does not fit in this interval.

53



ai (that is : eΘ > Area(estΘ ,lctΘ)−ri∗(lctΘ−estΘ)). In the original algorithm [12],
the revised earliest starting time of ai is:

estai
= estΘ +

⌈

eΘ − (capa − ri)(lctΘ − ectΘ)

ri

⌉

In the case of SoftCumulative, we have to consider Area(estΘ ,lctΘ). The revised
earliest starting time of ai is:

estai
= estΘ +

⌈

eΘ − Area(estΘ ,lctΘ) + ri ∗ (lctΘ − estΘ)

ri

⌉

4 Conclusion and Perspectives

We presented SoftCumulative, which generalizes the SoftCumulativeSum [7].
We showed some practical applications of this constraint. We adapted the
O(knlog(n)) Edge-finding filtering algorithm proposed by Viĺım [12] for Cu-

mulative to SoftCumulative. Currently, as it is usually done for soft global
constraints, we do not prune the starting time variables of activities from events
occurring on the lower bounds of domains of variables in Cost, although it may
be useful (e.g., w.r.t. the example with Smooth in Section 3). Our perspectives
are to include that pruning and to experiment our constraint.

References

1. A. Aggoun and N. Beldiceanu. Extending CHIP in order to solve complex schedul-

ing and placement problems. Mathl. Comput. Modelling, 17(7):57–73, 1993.
2. N. Beldiceanu and M. Carlsson. Revisiting the cardinality operator and introducing

the cardinality-path constraint family. Proc. ICLP, 2237:59–73, 2001.
3. N. Beldiceanu and M. Carlsson. A new multi-resource cumulatives constraint with

negative heights. Proc. CP, pages 63–79, 2002.
4. A. Lahrichi. The notions of Hump, Compulsory Part and their use in Cumulative

Problems. C.R. Acad. sc., t. 294:20ç–211, 1982.
5. G. Pesant. A regular language membership constraint for finite sequences of vari-

ables. Proc. CP, 3258:482–495, 2004.
6. G. Pesant and J.-C. Régin. Spread: A balancing constraint based on statistics.

Proc. CP, pages 460–474, 2005.
7. T. Petit and E. Poder. Global propagation of side constraints for solving over-

constrained problems. To appear in the Annals of 0perations Research, 2010.
8. T. Petit, J-C. Régin, and C. Bessière. Meta constraints on violations for over

constrained problems. Proc. IEEE-ICTAI, pages 358–365, 2000.
9. P. Schaus, Y. Deville, P. Dupont, and J-C. Régin. The deviation constraint. Proc.

CPAIOR, 4510:260–274, 2007.
10. P. Viĺım. Max energy filtering algorithm for discrete cumulative resources. Proc.

CPAIOR, 5547:294–308, 2009.
11. Petr Viĺım. Global Constraints in Scheduling. PhD thesis, Charles University in

Prague, Faculty of Mathematics and Physics, Department of Theoretical Computer

Science and Mathematical Logic, August 2007.
12. Petr Viĺım. Edge finding filtering algorithm for discrete cumulative resources in

O(knlog(n)). Proc. CP, pages 802–816, 2009.

54



Optimal Stopping rule-based algorithms for

Computing Sub-Optimal solutions

in Satisfiability problems with Preferences

Student: Emanuele Di Rosa1.
Supervisors: Enrico Giunchiglia1 and Barry O’Sullivan2

1 DIST, Università di Genova, Viale Causa, 13 – 16145 Genova, Italy

{emanuele,enrico}@dist.unige.it
2 Cork Constraint Computation Centre

Department of Computer Science, University College Cork, Ireland

b.osullivan@4c.ucc.ie
Abstract. Satisfiability problems with preferences allow to enrich the

expressive power of the Boolean Satisfiability problem (SAT) and make it

able to handle qualitative/quantitative preferences on literals/formulas,

defining an optimization problem. In some cases, it is not strictly nec-

essary to compute an optimal solution, but it is enough to compute a

sub-optimal solution, i.e. of high quality, and, possibly, provide a lower

bound on the probability to find an optimal solution. The 1
e
-rule is the

optimal stopping rule for the secretary problem, and guarantees to find

an optimal solution with probability at least 1
e
. In this paper, (1) we show

how to apply the 1
e
-rule for solving satisfiability problems with prefer-

ences; (2) we show that its theoretic success percentage of about 37% is

greater than 90% on random benchmarks; (3) we show that the perfor-

mance of the 1
e
-rule on structured benchmarks is sometimes many order

of magnitude worse than that of complete search-based algorithms, and

we explain the reasons why. (4) We propose an algorithm approximating

the idea underlying the 1
e
-rule, which needs the generation of just two

solutions: the experimental evaluation shows that the average success

percentage of the proposed algorithm approximates very well the theo-

retic one of the 1
e
-rule, since it is about 48.33% on randomly generated

instances.

1 Introduction

Boolean satisfiability (SAT) solvers return one assignment satisfying the input
set of clauses, assuming at least one exists. However, in many cases, it is not
enough to compute assignments satisfying all the input clauses: Indeed, the re-
turned assignments have also to be “optimal” i.e. they have to satisfy as many
other constraints –expressed as preferences– as possible. Satisfiability problems
with preferences allow to enrich the expressive power of the SAT problem and
make it able to handle qualitative/quantitative preferences on literals/formulas,
defining an optimization problem. Three complete search-based approaches have
been presented in order to solve these kinds of problems: optsat-hs [2], optsat-
bf [3], and sat&pref [4]. Even though complete search-based approaches guar-
antee that the returned solution is optimal, they may require too much compu-
tation time to return an optimal solution (optsat-hs modifies the SAT solver

55



heuristic and may have an exponential degradation in its performance [3]) or
may generate an exponential number of intermediate solutions before finding
the optimal one (as optsat-bf and sat&pref). Moreover, in some cases, we
do not necessarily need an optimal solution, but we only want to compute a
sub-optimal solution of high quality by applying the simplest method, and, if
possible, providing guarantees about a lower bound on the probability to find
an optimal solution. The 1

e
-rule is the optimal stopping rule for the secretary

problem, and guarantees to find an optimal solution (the best secretary) in at
least the 37% of the cases [1]. It is constituted by two phases. In the former
phase, it interviews and rejects n

e
applicants (where n is the known total num-

ber of applicants), and keeps the score related to the best one interviewed so far:
this score becomes a lower bound concerning the quality of the next secretary
to interview. In the latter phase, it interviews and rejects secretaries until the
one with a score greater than the lower bound is found.

In this paper: (1) we show how to apply the 1
e
-rule for solving satisfiability

problems with preferences, which does not require any modification in the in-
ternals of SAT solvers (as in optsat-hs and in sat&pref), neither to add new
formulas to improve the quality of the last solution computed (as in optsat-bf
and in sat&pref); (2) we show that its theoretic success percentage of about
37% is greater than 90% on random benchmarks; (3) we show that the per-
formance of the 1

e
-rule on structured benchmarks is sometimes many order of

magnitude worse than that of complete search-based algorithms, and we explain
the reasons why. (4) We propose an algorithm approximating the ideas under-
lying the 1

e
-rule, which needs the generation of just two solutions: the first one

approximates the first phase of the 1
e
-rule, while the second solution approxi-

mates the second phase. The experimental evaluation shows that the average
success percentage of the proposed algorithm approximates very well that of the
1
e
-rule, since it is about 48.33% on randomly generated instances.

2 Satisfiability problems with Preferences

In three papers [2–4], complete search-based algorithms to compute an optimal
solution w.r.t. a given set of qualitative preferences, expressed as a partially
ordered set of literals 〈S,≺〉, have been shown: Intuitively, S represents the pref-
erences that we would like to have satisfied, ≺ models their relative importance,
and a model µ of a formula ϕ (i.e. an assignment satisfying ϕ) is optimal if it
is a minimal element of the partial order on the models of ϕ induced by 〈S,≺〉
(see [2]). For example, let M , B , and C be Boolean variables for Moto, Bike,
and Car , respectively; the preference 〈{M,B,C}, {M ≺ B}〉 models the fact that
we would like to have both Moto and Bike, and that we would like to avoid Car;
moreover, having Moto is more important than having Bike. If we are given a set
ϕ of constraints imposing that we can buy exactly one among Moto, Bike, and
Car , the resulting partial order on the models of ϕ induced by the preference is
{M,B,C} ≺ {M,B,C} ≺ {M,B,C} and the optimal model is {M,B,C}. Since
qualitative/quantitative preferences on literals/formulas and also their mixing,
can be reduced to the basic framework of qualitative preferences on literals [2],
in the following, for simplicity, we consider only these kinds of problems.

56



3 The Secretary Problem and the 1

e
-rule

In the secretary problem there is a single secretarial position to fill, and n ap-
plicants for the position; the value of n is apriori known. The applicants are
interviewed sequentially in a random order, with each order being equally likely.
After each interview, the applicant can be compared with the previous ones,
and has to be accepted or rejected. The decision to accept or reject an applicant
can be based only on the relative ranks of the applicants interviewed so far, and
rejected applicants cannot be recalled. The object is to select the best applicant.
The 1

e
-rule is the optimal stopping rule for the secretary problem, and says to

interview and reject the first n

e
applicants (where e is the base of the natural

logarithm), and accept the next applicant who is better than all the applicants
previously interviewed. As shown in [1], as n goes to infinite, the probability of
selecting the best applicant from the pool goes to 1

e
, i.e. about 37% of the times:

it provides a useful theoretic lower bound on the success probability.

4 Applying the 1

e
-rule for Computing Sub-Optimal

solutions in Satisfiability problems with Preferences

In order to apply the 1
e
-rule to satisfiability problems with preferences, we need

(i) to count the exact number n of models of the input formula before starting
the algorithm (e.g. by the exact model counter cachet [5]); (ii) a random heuristic
to choose decision variables to assign and a random polarity (these are default
options in modern sat solvers) to obtain at each generation a different model,
and simulate a random order on models; (iii) a test that enables us to say if the
new model found is better than our current best model found with respect to
preferences. Last point is carried out because of the preference formula ψ for a
model µ wrt (S,≺), presented in [3]. An assignment µ′ is preferred to µ wrt (S,≺)
iff µ′ satisfies the preference formula. In figure 1 we report the function 1

e
-rule

that applies the 1
e
-rule to satisfiability problems with qualitative preferences on

literals. It returns false if the input formula ϕ is unsatisfiable, returns true if
it exists at least a model of ϕ, and, in this case, prints the model that is better
than the best model found within the generation of n

e
models. In figure 1 we

used the following functions:

– countModels returns the exact number of models of the input formula ϕ.
– generateModel returns one model of ϕ, if it exists, by using any SAT solver

as a black box, which uses both random heuristic and random polarity.
– isBetter returns true if model µ is better than µB wrt preferences; false

otherwise. For this purpose, it is enough to add the clauses of the formula
ψ in ϕ and all literals in µB (as unit clauses), in an empty instance of any
SAT solver; then we perform a simple Boolean constraint propagation.

– BlCl returns a blocking clause, i.e. a clause containing the negated version
of all literals in µ, that allows to cut the last generated model µ off from ϕ.

With respect to the standard rule we keep µB as a way to know the quality of the
best model generated so far: this is due to the fact that in this framework it is
easier and more practical to directly compare two models, instead of calculating
a score on them, and then compare them according to that score. Notice that
all functions but isBetter are already implemented and available.

57



function 1
e
-rule(ϕ,S,≺)

1 n = countModels(ϕ);

2 µB = generateModel(ϕ);

3 if (∅ ∈ µB) return false; // ϕ is unsatisfiable

4 return 1
e
-ruleCore(ϕ,S,≺,⌈n

e
⌉ − 1,µB ,false)

function 1
e
-ruleCore(ϕ,S,≺,numGen,µB ,newBest)

5 µ = generateModel(ϕ);

6 if (∅ ∈ µ) Print(µB); return true; // µB is Optimal

7 if (isBetter(µ, µB , S,≺)) µB = µ; newBest = true;

8 if (numGen <= 0 and newBest) Print(µ); return true;

9 return 1
e
-ruleCore(ϕ ∪ BlCl(µ),S,≺,numGen-1,µB ,false)

Fig. 1. The 1
e
-rule for solving satisfiability problems with qualitative preferences on

literals.

5 The algorithm approximating the 1

e
-rule

Even though the 1
e
-rule is easy to apply and does not require any modification

in the SAT solvers, it has two main drawbacks: (1) the computation of the exact
number of models of the input formula before the start of the “core” algorithm;
(2) the generation of at least n

e
models. Intuitively, the reason why the first

phase of the 1
e
-rule generates at least n

e
models is based on the idea that by

generating so many models, it is likely to find a model that has a good quality;
in such a way, it is possible to use the information (or the score) associated to
its quality, as a lower bound for the quality of the models that will be generated
in the second phase. In such a way, when is generated a model that is better
than the best model found within n

e
generations, it is likely to be optimal. The

proposed algorithm takes advantage from the result presented in [4]: imposing
to the sat solver heuristic to assign the polarity according to the preferences,
the first solution computed has a high quality. Moreover, the sat&pref does
not present the drawbacks of the optsat-hs approach, and limits the ones of
the optsat-bf approach. Of course, it is still possible for sat&pref the gen-
eration of exponentially many intermediate models before finding an optimal
solution. Thus, we propose an approximated algorithm (ApprAl from here on)
that is a slightly modified version of the sat&pref algorithm, where only the
first two models of the sat&pref algorithm are generated. Our hypothesis is
that, the generation of the first model by sat&pref approximates the genera-
tion of the n

e
models in the 1

e
-rule (the first phase), and that the generation of

the second model approximates the second phase of the 1
e
-rule.

6 Experimental Analysis

We started our evaluation considering 100 randomly generated 3-SAT formu-
las with 60 variables and 240 clauses, and 100 randomly generated preferences
(S,≺), with ≺= ∅ and three kinds of polarity for the literals in the preference:
random, all positive and all negative, respectively (indicated with R, P, and N

58



in Table 2(a)). We counted the exact number of models by Cachet [5] and the
number of optimal models wrt the preferences as in [2], for all formulas: the
average percentage to find an optimal model using a random algorithm is about
0.87%, 1.32%, and 1.03%, for random, positive, and negative polarity, respec-
tively. The results reported in Table 2(a) are obtained running the experiments
on a Linux box equipped with a Pentium IV 3.2GHz processor and 1GB of
RAM, and show that both the 1

e
-rule and ApprAl compute an optimal solu-

tion with a high percentage (about 90%). However, the 1
e
-rule needs to compute

always at least 2345.12 solutions (ANM column, i.e. average number of models)
before finding an optimal solution, while ApprAl needs, on average, less than
2 solutions: this confirms our initial hypothesis. Notice that for the 1

e
-rule each

instance has been run 10 runs, since it uses a random heuristic and a random
polarity: in Table 2(a), * indicates that an optimal solution is found for all runs;
ˆ indicates that an optimal solution is found at least 6 out of 10 times. Moreover,
we ran the 1

e
-rule on structured benchmarks representing 21 Partial Min-ONE

problems as in [3], where complete search-based algorithms compute an optimal
solution for all instances and in a average time of less than 15 seconds. On these
structured instances the most of the computation resources used by the 1

e
-rule

are dedicated to the preliminary step to count models by Cachet: we obtained
10 timeout (set to 200 seconds) and 4 memory-out (set to 1GB) out of 21 in-
stances, only in the counting process; when it terminates within the timeout,
there are even three order of magnitude wrt the best complete solver. Instead,
ApprAl managed to find an optimal model in 19 out of 21 instances. In or-
der to test the success percentage of the algorithms on instances with 〈S,≺〉
of increasing size, we considered the 2400 randomly generated instances with
200 variables and 800 clauses, as in [4]. We remember that ≺ is the transitive
closure of the directed acyclic graph (DAG) whose nodes are the literals in S

and with an arc between two nodes with probability ρ = 0, T/2, T, 2T, 4T, 1,
where T = ln(|S|)/|S|: Fixing ρ = 0 generated problems with an empty partial
order, while increasing ρ corresponds (on average) to increasing | ≺ | up to the
point in which ρ = 1, corresponding to a totally ordered set of preferences. The
average success percentage to find an optimal solution for ApprAl, calculated
on all 2400 instances, is about 48.33%; in particular, the 58.36% of the times the
first solution computed is already optimal, while the second solution computed
is optimal in the remaining 41.64%. We analyzed in more detail the success per-
centage obtained, and the results are shown in Figure 2. Here, on the x-axis we
have 24 points, each corresponding to a pair 〈|S|, ρ〉: The pairs are first ordered
according to |S| and then to ρ. Thus, the first point has |S| = 25% of the vari-
ables, and ρ = 0, the second point has again |S| = 25% of the variables but
ρ = T/2, and analogously for the others. Thus, points 6, 12, 18, 24 have ρ = 1,
i.e., they are the points corresponding to a totally ordered set of preferences.
The y-axis is the average success percentage for ApprAl on the 100 instances
having the same 〈|S|, ρ〉: all instances are solved within the timeout, fixed to
600 seconds. Notice that, only for the point 19 of the x-axis, the first solution
computed is guaranteed to be optimal (and the 100% is reached): all variables

59



are in the set S of preferences, ≺ is empty, and the heuristic of the SAT solver
assigns decision variables according to the polarity specified in the preferences.
Nonetheless, the approximated algorithm reaches a success percentage greater
than 60%, especially for points corresponding to ρ = 0, T/2.

Algo Succ.Perc. T ANM

* ˆ (sec) *

R
1
e
-rule 89% 96% 0,29 2394,09

ApprAl 87% - 0,00 1,22

P
1
e
-rule 89% 98% 0,28 2345,12

ApprAl 89% - 0,00 1,19

N
1
e
-rule 90% 97% 0,29 2499,51

ApprAl 94% - 0,00 1,18

(a) A comparison between the 1
e
-rule

and ApprAl on 100 random 3-SAT

formulas and preferences with empty

partial order. 0 %

20 %

40 %

60 %

80 %

100 %

 1  6  12  18  24

"AverageSuccessPercentage"

(b) The average success percentage for 2400

random instances and 〈S,≺〉 of increasing

size.

Fig. 2. Results of the average success percentage for randomly generated 3-SAT in-

stances.

7 Future work

In the future work we will analyse the amount of the cpu-time saved and the
success percentage on structured problems, with respect to the complete ap-
proaches. Moreover, we plan to apply the 1

e
-rule in dynamic environments, e.g.

in sat-based planning with uncertainty on the initial state.

References

1. F. T. Bruss, ‘A Unified Approach to a Class of Best Choice Problems with an

Unknown Number of Options’, in The Annals of Probability, Vol. 12, No. 3, 1984,

pp. 882–889.

2. E. Di Rosa, E. Giunchiglia, and M. Maratea, ‘Solving Satisfiability Problems

with Preferences’, accepted to the Journal Constraints, in press and available here:

http://www.star.dist.unige.it/˜emanuele/Data/10constraints.pdf.

3. E. Di Rosa, E. Giunchiglia, and M. Maratea, ‘A new approach for solving satisfia-

bility problems with qualitative preferences’, in Proc. ECAI’08, pp. 510–514.

4. E. Di Rosa, E. Giunchiglia, and B. O’Sullivan, ‘Combining approaches for solv-

ing Satisfiability problems with Preferences and their Evaluation’, available here:

http://www.star.dist.unige.it/˜emanuele/Data/10DiRosa Giunchiglia OSullivan.pdf.

5. T. Sang, F. Bacchus, P. Beame, H. Kautz, and T. Pitassi, ‘Combining component

caching and clause learning for effective model counting’, in Proc. SAT’04.

60



Synthesis of Search Algorithms from High-level
CP Models

Samir A. Mohamed Elsayed (Student), Laurent Michel (Advisor)

Computer Science Department, University of Connecticut.

Abstract. The ability to specify CP programs in term of a declarative
model and a search procedure is a central feature primarily responsible
for the industrial CP successes. However, writing search procedures is of-
ten difficult for novices or people accustomed to mathematical program-
ming tools where this step is absent. Several attempts have been made
to produce generic black-box searches that would be suitable for the vast
majority of benchmarks. This paper offers an alternative viewpoint and
argues for the synthesis of a search from the declarative model to exploit
the problem instance structures. The intent is not to eliminate the search
altogether. Instead, it is to have a default that performs adequately in
the majority of cases while retaining the ability to write full-fledged pro-
cedures for experts. Preliminary empirical results demonstrate that the
approach is viable delivering search procedures approaching and some-
times rivaling hand-crafted code produced by experts.

1 Introduction

Constraint programming (CP) techniques are successfully used in various in-
dustries and quite successful when confronted with hard constraint satisfaction
problems. Parts of this success can be attributed to the considerable amount of
flexibility that arise from the ability to write completely custom search proce-
dures. Indeed, constraint programming has often been described from the basic
belief that

CP = Model + Search

where the model is responsible for providing a declarative specification of the
constraints that solutions of the problem must satisfy and the search is a specifi-
cation of how to explore the search space to produce such a solution. In a number
of languages designed for constraint programming, the search can be quite so-
phisticated. It can often concisely specify variable and value selection heuristics,
search phases [5], restarting strategies [3], large neighborhood search [1], explo-
ration strategies like depth-first-search, best-first search or limited discrepancy
search [4] to name just a few.

This capability is in stark contrast with, for instance, mathematical pro-
gramming where the search is a so-called black-box that can only be controlled
through a collection of parameters affecting pre-processing, cut generation or

61



the selection of predefined global heuristics. Users of mathematical program-
ming are accustomed to solely rely on modeling techniques and reformulations
to indirectly influence and hopefully strengthen the search process effectiveness.

Unsurprisingly, many users of one technology often bring their baggages,
habits and expectations when discovering a new technology like CP. Too often,
newcomers overlook the true potential of open search specification and fail to
exploit it. The observation prompted a number of efforts to rethink constraint
programming tools and mold them after mathematical programming tools by
eliminating open search procedures in favors of intelligent black-box procedures.
Efforts of this type include [5] and [2] while others, e.g., [7] elected to provide a
number of predefined common heuristics.

Our contention in this paper is that it is possible to get the best of both
world, retaining the ability to write custom search procedures and synthesizing
model-specific search procedures that are competitive with procedures hand-
crafted by experts. The central contribution of this paper is Cp-as, a model-
driven automatic search procedure generator. Cp-as is written in Comet [9], an
object-oriented programming language with support for constraint-programming
at large and finite domains solving in particular. Cp-as analyzes a CP model
instance at runtime, examining the variable declarations, the arithmetic and
logical constraints as well as the global constraints to synthesize a procedure that
is likely to perform reasonably well on this model instance. Cp-as is evaluated on
a collection of CP models that require custom searches such as scene allocation,
progressive party and warehouse allocation. The rest of the paper is organized as
follows. Section 2 presents some related work. Section 3 provides details about
the synthesis process of Cp-as. Experimental results are reported in section 4.
Finally, section 5 concludes.

2 Related Work

Minion [2] offers a black-box search and combines it with matrix based model-
ing, aiming for raw speed alone to produce ‘model and run’ solutions. The idea
of deriving the search from the model appeared in [10] for CBLS. Aeon [6] is
closely related and focuses exclusively on scheduling. Given a scheduling model
specified in a high-level modeling language, Aeon recognizes and classifies its
structures, and synthesizes an appropriate search algorithm. The classification
result drives the selection of a search template. Aeon provides synthesizers for
Constraint-based Scheduling (complete search) or Constraint-based local search
(incomplete). Experimental results indicate that this approach may be com-
petitive with state-of-the-art search algorithms. This paper extends this line of
thinking with synthesis of search for general non-scheduling CP models.

3 The Synthesis Process

Cp-as, which is written in Comet generates search procedures for Comet mod-
els. Cp-as is defined in term of an extensible collection of rules meant to recognize

62



features of the model for which good heuristics are known. Each rule can issue
a set of recommendations where a recommendation is characterized by a score
indicating its fitness, a subset of variables to which it applies and three heuristics
to be used for labeling these variables, namely: a variable, value and symmetry-
breaking heuristic. Cp-as applies all the rules to a model to obtain a set of
recommendations which fully specify the search procedure. Recommendations
are applied in decreasing order of scores, hence if several recommendations ap-
ply to the same subset of variables, the highest-scoring one will take precedence.
This section details this process.

3.1 Preliminaries
A Constraint Satisfaction Problem (CSP) is a triplet <X,D,C>, where X is
a set of variables, D is a set of domains, and C is a set of constraints. Each
xi ∈ X is associated with a domain Di ∈ D. An assignment α associates a
value v ∈ Di to each variable xi, i.e., α(xi) = v ∈ Di. A constraint c ∈ C, over
variables xi, · · · , xj , specifies a subset of the Cartesian product Di × · · · × Dj

indicating mutually-compatible variable assignments. A tuple v = (vi, · · · , vj)
satisfies a constraint c(xi, · · · , xj) if v ∈ c. A solution α is a complete assignment
that satisfies all the constraints. A Constraint Optimization Problem (COP)
<X,D,C,f> is a CSP with an objective function f .

A variable selection heuristic hx maps a subset of variables of cardinality
k to a permutation of those variables: hx : 2X → N → X. For instance, the
familiar first-fail variable selection heuristic over a set of variables X returns a
permutation function π : N→ X of the naturals 0..k − 1 that satisfies

∀i, j ∈ 0..k − 1 : i < j ⇒ |Dxπ(i) | ≤ |Dxπ(j) |

A value selection heuristic hv is a function that maps a set of finite values of
cardinality k to a permutation: hv : 2Z → N → Z. For instance, the min-value
heuristic for xi with domain Di of cardinality k specified as hv(Di) denotes the
permutation function π satisfying

∀a, b ∈ 0..k − 1 : a < b⇒ Di(π(a)) ≤ Di(π(b))

A value symmetry breaking heuristic hs is a function that maps a set of finite
values of cardinality k to a subset of non-symmetric values: hs : 2Z → 2Z.

3.2 Rules and Recommendations
Given a CSPM = 〈X,D,C〉, a Cp-as rule r ∈ Rules is a quadruple 〈S,P,V,H〉
where S is a scoring function S : M → R and P is the priority assigned to the
rule. All scores are normalized in the 0..1 range with 1 representing the strongest
fit. V : 2X → 2X is a function that returns the subset of variables to be subjected
to the search heuristic recommended by the rule. Finally,H is a triple of heuristic
functions 〈hx, hv, hs〉 as specified above.

A recommendation 〈S, P, V,H〉 results from applying a rule r = 〈S,P,V,H〉
to a CSP M = 〈X,D,C〉 and captures a score S = S(M), a priority P = P, a
subset of variables V = V(X), and a triple of heuristics hx(V ), hv, hs.

63



3.3 Rules Library

Cp-as rules are meant to exploit modeled structures and properties such as
global constraints, domain sizes, or variables degree to name just a few.
Degree rule: Intuitively, the rule determines whether the static degree of vari-
ables in the constraint hyper-graph are sufficiently diverse. If the degrees are all
very similar, a degree based heuristic is inappropriate. Conversely, a very diverse
set of degrees indicates a a strong fit. Therefore, the rule defines

– S = σ({deg(x) : x ∈ X})/maxx∈X deg(x) where σ stands for standard
deviation, and deg(x) for the static degree of x.

– P = P
– V is simply the identity function (all variables are selected).
– hx(V )(i) = −deg(xi)
– hv is the min-value heuristic
– hs is the result of a symmetry breaking analysis. See [8].

3.4 Rules Composition & Calibration

Recommendations compose to derive an effective search procedure. Cp-as sorts
the recommendations by score while breaking ties with priorities. The search
template is shown in Figure 1. Cp-as iterates over the recommendations in
lexicographic order of score and priority. Line 2 invokes the polymorphic label-
ing method label of the recommendation. Once all the variables are bound, the
search ends in line 3. The search is complete as the set of variables it labels is⋃

r∈rec

(
∪x∈V (r)

)
= X.

1 forall(r in rec.getKeys()) by (−rec{r}.getScore(), −rec{r}.getPriority()) {
2 rec{r}.label();
3 if (solver.isBound()) break;
4 }

Fig. 1. A skeleton for a synthesized search procedure

Figure 2 depicts the implementation of label method of a variable first recom-
mendation, i.e., a recommendation that first selects a variable and then chooses
a value as opposed to a value first recommendation that selects a value and then
chooses the variable to assign it to. Line 12 retrieves the variables the recommen-
dation operates on and line 14 selects a variable according to the heuristic hx

of the recommendation. Line 16 retrieves the set of values to try for the chosen
variable. Note that the values method encapsulates the use of value symmetry-
breaking. If there are no exploitable value symmetries, the values method returns
the complete domain for the variable theVar. The value selection is driven by
the heuristic hv on line 17 which embodies the value permutation adopted by
the recommendation.

64



1 interface Recommendation {
2 var<CP>{int}[] getVars();
3 set{int} values();
4 set{int} unboundVars(var<CP>{int}[] x);
5 var<CP>{int} getVar(int rank);
6 int getValue(int rank);
7 int hx(var<CP>{int}[] x,int rank);
8 int hv(set{int} vals,int rank);
9 }

10 class VariableRecommendation implements Recommendation { ...
11 void label() {
12 var<CP>{int}[] x = getVars();
13 while(!bound(x)) {
14 selectMin(i in unboundVars(x))(hx(x,i)) {
15 var<CP>{int} theVar = getVar(i);
16 set{int} theVals = values(theVar);
17 tryall<solver>(t in theVals) by (hv(theVals,t))
18 solver.label(theVar,getValue(t));
19 onFailure solver.diff(theVar,getValue(t));
20 }
21 }
22 }
23 }

Fig. 2. A snippet of the labelVars method

4 Experimental Results

Preliminary experiments show the practicality of Cp-as on a range of problems.
It compares synthesized, custom and first fail procedures on the same models.
The custom procedures were taken from the state-of-the art. Table 1 reports the
number of choices, the average CPU time (in ms) and its standard deviation.

Problem #cp,t (FF) #cp,t,σ (Cp-as) #cp,t,σ (cust.)
Slab Mill Too long time 883,2772,636 1656,4755,666

Scene Allocation 7754783, 1390186 17615,3233,799 4331,621,88
Car Sequencing Too long time 475,557,78 77,172,25
Perfect Square Too long time 74,196,27 74,182,26

Progressive Party Too long time 326,163,23 326,158,22
Warehouse 1645, 72 106,12,6 29,6,8
SGP (8-4-7) 168, 298 533,514,72 146,146,138
Sports Avenue Too long time 11069,10226,1432 11062,9471,1326

Table 1. Results obtained using some benchmarks.
The selected benchmarks are well-known CSP and COP problems that use

custom searches. All results were obtained from 50 runs with COMET 2.1 on
2.33GHz Intel Core Duo machine with 2GB RAM running Ubuntu 9.10. The
results show that the synthesized search is often reasonably close to the custom

65



search procedures. For the scene allocation problem, the static-degree selected by
the synthesizer is quite competitive with the custom search. Perhaps even more
surprisingly, the synthesized search outperforms the custom search for the steel
slab mill problem (the synthetic search uses a variable heuristic first driven by the
weights of the knapsack, then by domain size). The overhead on other instances
is due to the generic data structures manipulated by the templated search. In a
nutshell, the synthesized searches are competitive to tailored algorithms offering
a reasonable first search with no efforts beyond modeling.
5 Conclusion & Future Work
Cp-as is a framework to automatically generate search algorithms from high-
level CP models. Given a Comet CP model, Cp-as recognizes and classifies its
structure to synthesize an appropriate search algorithm. Preliminary empirical
results indicate that the technique appears to be competitive with state-of-the-
art procedures on several classic benchmarks.

While the approach demonstrates potential, work remains to augment the
rule set. Ideally, rules should capture as many strategies as possible and recognize
when they are applicable. Improvements to the composition mechanism, the
symmetry breaking capabilities, as well as an ability to handle search strategies
are needed. Finally, an in-depth empirical evaluation is absolutely essential.

References
1. R.K. Ahuja, Ergun, J.B. Orlin, and A.P. Punnen. A survey of very large-scale

neighborhood search techniques. Discrete Applied Mathematics, 123(1-3):75–102,
2002.

2. I.P. Gent, C. Jefferson, and I. Miguel. Minion: A fast, scalable, constraint solver.
In ECAI 2006: 17th European Conference on Artificial Intelligence, August 29-
September 1, 2006, Riva del Garda, Italy: including Prestigious Applications of
Intelligent Systems (PAIS 2006): proceedings, page 98. Ios Pr Inc, 2006.

3. C.P. Gomes, B. Selman, N. Crato, and H. Kautz. Heavy-tailed phenomena in
satisfiability and constraint satisfaction problems. Journal of automated reasoning,
24(1):67–100, 2000.

4. W.D. Harvey and M.L. Ginsberg. Limited discrepancy search. In International
Joint Conference on Artificial Intelligence, volume 14, pages 607–615, 1995.

5. SA ILOG. ILOG Concert 2.0.
6. J.N. Monette, Y. Deville, and P. Van Hentenryck. Aeon: Synthesizing scheduling

algorithms from high-level models. Operations Research and Cyber-Infrastructure,
pages 43–59, 2009.

7. G. Team. Gecode: Generic constraint development environment, 2006. Available
fro m http://www. gecode. org.

8. P. Van Hentenryck, P. Flener, J. Pearson, and M. Ågren. Compositional derivation
of symmetries for constraint satisfaction. Abstraction, Reformulation and Approx-
imation, pages 234–247, 2005.

9. P. Van Hentenryck and L. Michel. Constraint-based local search. The MIT Press,
2005.

10. Pascal Van Hentenryck and Laurent Michel. Synthesis of constraint-based local
search algorithms from high-level models. In AAAI’07, pages 273–278. AAAI Press,
2007.

66



Maintaining Multiple Representations in DCOP Solving

Patricia Gutierrez (student) and Pedro Meseguer (supervisor)

IIIA, Institut d’Investigació en Intel.ligència Artificial
CSIC, Consejo Superior de Investigaciones Cientı́ficas

Campus UAB, 08193 Bellaterra, Spain.
{patricia|pedro}@iiia.csic.es

Abstract. For DCOP solving, maintaining soft arc consistency during search
has been very beneficial. However, including higher levels of soft arc consistency
breaks usual privacy requirements. To avoid this, we propose to keep different
representations of the same problem on each agent, on which soft arc consisten-
cies respecting privacy are enforced. Deletions caused in one representation can
be legally propagated to others. Experimentally, this causes significant benefits.

1 Introduction

Recently, a number of methods for solving Distributed Constraint Optimization Prob-
lems (DCOP) have appeared [8–11] possibly as consequence of the rise of multiagent
technology. In this problems variables and constraints are distributed into several agents
and the task of interest is to find a global optimal assignment in a distributed way.

Distributed search solves DCOP by exploring the search space using messages.
Lately, the BnB-ADOPT+ algorithm has been enhanced with some forms of soft arc
consistency maintenance (specifically, AC∗ and FDAC∗) [2], which have been shown
very beneficial for performance, saving an important number of exploratory messages.
Moving into the next soft arc consistency level, EDAC∗, we have found that its enforce-
ment breaks the privacy requirements usually assumed in the distributed setting. With
the double aim of improving as much as possible distributed search performance while
respecting agent privacy, we present the following approach. To enforce FDAC∗ agents
must be ordered. At each agent, we propose to keep several orderings among agents,
with different cost function representations associated from which some values can be
deleted. Interestingly, these deletions can be legally propagated among representations.
Experimentally, our approach causes communication savings on the benchmarks tested.

2 Preliminaries

COP. A binary Constraint Optimization Problem (COP) is defined by 〈X ,D, C〉, where
X = {x1, . . . , xn} is a set of variables, D = {D(x1), . . . , D(xn)} is a set of finite do-
mains (xi takes values in D(xi)), and C is a set of unary and binary cost functions; C ∈
C specifies the cost of every combination of values of var(C),C :

∏
xi∈var(C)D(xi) 7→

N∪{0,∞}. The cost of a complete tuple is the sum of all individual cost functions eval-
uated on that particular tuple. An optimal solution is a complete tuple with minimum
cost. This definition assumes the weighted model of soft constraints [7].

67



Soft Arc Consistency. Considering a single COP: (i, a) means the value a of variable
xi,> is the lowest unacceptable cost, Cij is the binary cost function between xi and xj ,
Ci is the unary cost function on xi values, Cφ is a zero-ary cost function that represents
a necessary global cost of any complete assignment. As [5, 1], we consider the following
local consistencies (variables connected by a cost function are ordered):

• Node Consistency*: (i, a) is node consistent* (NC∗) if Cφ+Ci(a) < >; xi is NC∗

if all its values are NC∗ and there is a ∈ Di such that Ci(a) = 0; a COP is NC∗ if
every variable is NC∗.
• Arc consistency*: (i, a) is arc consistency (AC) with respect to cost function Cij if

there is b ∈ Dj s.t. Cij(a, b) = 0; b is a simple support of a; xi is AC if all its values
are AC with respect to every binary cost function involving xi; a COP is AC∗ if
every variable is AC and NC∗.
• Directional arc consistency*: (i, a) is directional arc consistent (DAC) with respect

to cost function Cij , j > i, if there is b ∈ Dj such that Cij(a, b) + Cj(b) = 0; b is
a full support of a; xi is DAC if all its values are DAC with respect to every Cij ,
j > i; a COP is DAC∗ if every variable is DAC and NC∗.

• Full DAC*: a COP is FDAC∗ if it is DAC∗ and AC∗.
• Existential arc consistency*: Variable xi is existential arc consistent (EAC) if there

is at least one value a ∈ D(xi) such that Ci(a) = 0 and it has a full support in
every cost function Cij ; a COP is EAC∗ if every variable is NC∗ and EAC.
• EDAC*: a COP is EDAC∗ if it is FDAC∗ and EAC∗.

AC∗/FDAC∗ can be reached forcing simple/full supports and pruning values not NC∗.
Simple supports can be forced on every value by projecting the minimum cost from its
binary cost functions to its unary costs, and projecting the minimum unary cost into
Cφ. Full supports can be forced in the same way, but first it is needed to extend from
the unary costs of neighbors to the binary cost functions the minimum cost required
to perform in the next step the projection over the value. The systematic application
of these operations (projection and extension) do not change the minimum cost nor
the optimal solution [5]. When we prune a not NC∗ value from xi we need to recheck
AC∗/FDAC∗ on every variable that xi is constrained with, since the deleted value could
be a simple/full support.
DCOP. A Distributed Constraint Optimization Problem (DCOP) is defined by a tuple
〈X ,D, C,A, α〉, where 〈X ,D, C〉 define a COP, A is a set of agents, and α : X → A
maps each variable to one agent. We assume that each agent holds one variable and cost
functions are unary and binary only. Agents communicate through messages, which
could be delayed but never lost, and they are delivered in the order they were sent.
BnB-ADOPT / BnB-ADOPT+. BnB-ADOPT [11] is a reference algorithm for DCOP.
It is a depth-first version of ADOPT [8], showing a better performance. As ADOPT,
it arranges agents in a DFS tree. Each agent holds a context, which is a set of assig-
naments involving the agent’s ancestors, and will be updated with message exchange.
BnB-ADOPT uses three message types: VALUE(i , j , val , th) – i informs descendant j
that i takes value val with threshold th– COST(k , j , context , lb, ub) –k informs parent
j that its bounds are lb/ub in context– and TERMINATE(i, j) –i informs child j that i
terminates– (for detailed definitions of these concepts see [11]). A BnB-ADOPT agent

68



executes the following loop: it reads and processes incoming messages and takes value.
Then, it sends a VALUE to each descendant and a COST to its parent.

BnB-ADOPT+ [3] is a version of BnB-ADOPT that saves most of the redun-
dant messages, causing substantial reductions in communication costs with respect to
the original algorithm. BnB-ADOPT+ keeps the optimality and termination of BnB-
ADOPT. It stores the last VALUE and COST messages sent to each destination, and it
checks if some VALUE or COST messages to be sent at the current iteration might be
redundant. If messages are found redundant, they are not sent in most of the cases (for
detailed explanation see [3]).

3 Connecting Distributed Search with Soft Arc Consistency

Combining search with soft arc consistency brings substantial benefits to search per-
formance. Taking BnB-ADOPT+ as the distributed search algorithm, its combination
with AC∗ and FDAC∗ soft arc consistency levels [2] have provided very good results.
Soft arc consistency is maintained during distributed search, initially in a preprocess
step where soft arc consistency is assured, and then it is enforced during execution
every time soft arc consistency is broken. AC∗/FDAC∗ levels are achieved implement-
ing the projection and extension operators for the distributed case, and pruning node
inconsistent values on every agent. This is done in the following way. In addition to
the VALUE, COST and TERMINATE messages of BnB-ADOPT+, AC∗/FDAC∗ en-
forcing requires two new message types: DEL(i , j , val) –i notifies j that it has deleted
val– and UCO(j , i , vectorOfExtensions) –j informs i that it extends the unary costs of
vectorOfExtensions into the binary Cij . Also, to enforce soft arc consistencies, some
ordering is needed: we take the order in which agents appear in each branch of the
DFS tree used by BnB-ADOPT+. The resulting algorithms maintain BnB-ADOPT+

optimality and termination, improving its performance: soft arc inconsistent values are
removed from their domains, reducing the search space, which causes substantial re-
ductions in the search effort. All value deletions considered during AC∗/FDAC∗ main-
tenance are unconditional (a deleted value does not have to be restored at any time).

In the distributed case, it is usually assumed that each agents knows its variable
and the cost functions that it has with other agents. This second assumption implies
that it knows the domain of the variables it is constrained with. To enforce soft arc
consistencies higher than NC∗, it is required that if agent i is constrained with agent j
by Cij , i has to represent locally D(xj). For privacy reasons, we assume that the unary
costs of the values of an agent are held by itself, who knows them and updates them
accordingly. An agent neither can know nor update unary costs of other agents.

Maintaining AC∗/FDAC∗ during distributed search requires each agent to know the
binary cost functions in which it is involved and the unary costs of its values. These
requirements are in agreement with the privacy requirements not permitting an agent to
know the unary costs of values of other agents. However when moving to EDAC∗ (the
next soft arc consistency level) this privacy requirement is broken. EDAC∗ maintenance
requires that at each variable there is a value with unary cost 0 which is fully supported
in both directions (cost functions linking ancestors with this variable, cost functions
linking this variable with descendants). Let us consider two agents i, j, i < j that share a

69



cost function Cij . To assure that j has a value fully supported by i, i has to extend some
of its unary costs into the binary ones, which will be projected on the unary costs of j
values. However, i will only extend its unary costs if it is sure that from this operation
Cφ will increase (otherwise termination is not guaranteed). But this condition can only
be assured if i knows the unary costs of j1. Therefore, aiming at EDAC∗ maintenance
breaks the natural privacy requirements explained above, which represents a serious
drawback in the distributed environment.

A way to partially avoid this issue, while enforcing some soft arc consistency that
prunes more than FDAC∗, comes from the following fact. Observe that the first variable
in a FDAC∗ ordering satisfies the EDAC∗ property: for FDAC∗ each value has a sim-
ple/full support and there is a value with cost 0 (for NC∗); since it is the first variable in
the ordering, these supports have to be full supports. This suggests an alternative way
for the distributed setting: instead of having a single ordering of agents, we may have
several orderings. On each ordering we enforce FDAC∗, and the first variable on every
ordering satisfies EDAC∗. Next we show that having different orderings and propagat-
ing deletions among them is legal and does not compromise the correctness of this idea.
However, enforcing FDAC∗ n times (with a different first variable at each order) is not
necessarily as strong as maintaining EDAC∗ on all variables.

4 Multiple Representations

It is known that with different variable orderings FDAC∗ maintenance prune different
values depending on the ordering used [4]. This fact motivates the present approach. It
is unclear how to determine the best ordering, in the sense of the ordering that prunes
most. Instead of looking for that ordering, we consider as alternative to keep multiple or-
derings O1, ..., Or at each agent, on which FDAC∗ is separately enforced. Maintaining
FDAC∗ in Op may cause the deletion of value a of variable i: this deletion is propa-
gated to all other orderings O1, ..., Op−1, Op+1, Or, that is, value a is also removed in
the domain of variable i for O1, ..., Op−1, Op+1, Or.

Propagating value deletions among different orderings is legal. Let us assume that
enforcing FDAC∗ on the ordering O1 causes to delete value (i, a), while enforcing
FDAC∗ on the ordering O2 causes to delete value (j, b). Then, both values can be
deleted without losing any optimal solution. If enforcing FDAC∗ using ordering O1

we delete value (i, a), this means that value a for variable i will not appear in any
optimal solution of the problem. This fact derives directly from soft arc consistency,
and it is independent of the ordering used. The same situation happens with ordering
O2 and value (j, b). Therefore, it is legal to remove both values from their domains,
independently of the ordering used. Since cost functions evolve depending on the or-
dering used, we prefer to talk about different representations of cost functions instead
of different orderings (clearly, each ordering defines a representation).

The idea of multiple representations can be included in BnB-ADOPT+, producing
the new BnB-ADOPT+-FDAC∗-MR algorithm. For single order FDAC∗ enforcing, we

1 This can be clearly seen in line 1 of function FindExistentialSupport of [1]. The expression
of α involves Ci(a) and Cj(b), unary costs of values of xi and xj . While this causes no
difficulties in a centralized approach, it becomes a real issue in a distributed setting.

70



maintain a single copy of the cost functions in which we enforce FDAC∗, following the
order in which agents appear in the DFS tree branches. Implementing r representations
requires each agent holding a set of r cost functions {C1, C2...Cr}. On all r cost func-
tions agents enforce FDAC∗. The direction of the arc consistency enforcement will be
defined by the set of partial orders among agents {O1, O2, ..Or}.

Having different orders produces different flows of costs and as result, some val-
ues may be found not NC∗ in some representation. These values are deleted from all
representations. Every time there is a deletion, the agent will need to reinforce FDAC∗

over the r representations. For this agents will need to store (i) an order for each rep-
resentation, (ii) a copy of the binary and unary cost functions for each representation,
(iii) a Cφ value for every representation (since different projections and extensions are
performed on each representation, different Cφ values may be obtained), (iv) all chil-
dren subtreeContribution to Cφ for each representation (since different projections
and extensions are performed on each representation, agents will contribute to the Cφ
differently) [3].

The following changes in messages are needed to maintain the previous structures:
(i) VALUE –a vector Cφ[] is sent containing the Cφ values for every representation–
(ii) COST –a vector subtreeContribution[] is sent containing the subtree contribution
to the Cφ for every representation– (iii) UCO –a vector vectorOfExtensions[][] is
sent containing the extensions for every representation–.

5 Experimental Results

We evaluate the efficiency of BnB-ADOPT+-FDAC*-MR with respect to BnB-ADOPT+-
FDAC* (which maintains FDAC∗ on a single representation) on unstructured instances
with binary random DCOPs, and on structured distributed meeting scheduling. We have
generated binary random DCOP instances of 10 variables, domain size 10, and network
connectivity p1 = 0.3, 0.4, 0.5, 0.6. Costs are selected from an uniform cost distribu-
tion. Two types of binary cost functions are used, small and large. Small cost func-
tions extract costs from the set {0, . . . , 10} while large ones extract costs from the set
{0, . . . , 1000}. The proportion of large cost functions is 1/4 of the total cost functions
(this is done to introduce some variability among costs). On the meeting scheduling for-
mulation, variables represent meetings, domains represent time slot assigned for each
meeting, and there are constraints between meetings that share participants. We present
4 cases obtained from the DCOP repository with different hierarchical scenarios [12] .

Table 1 shows the details of the experiments maintaining 6 representations. On
random DCOPs, BnB-ADOPT+-FDAC∗-MR showed clear benefits on communica-
tion costs with respect to BnB-ADOPT+-FDAC∗. Maintaining 6 representations, the
number of exchanged messages is divided by a factor of at least 2. Also, the number
of cycles required to reach the solution is divided by a factor from 2 to 3. For meeting
scheduling instances we also observe a decrement in the number of cycles and messages
exchanged, although to a smaller extent. Assuming that processing each message type
requires approximately the same time, a decrement in cycles combined with a decre-
ment in the number of messages per cycle is an improvement indicator. Since agents
need to process less information coming from their neighbors on each iteration, and

71



(a) Random DCOPs
p1 #Msgs #VALUE #COST #DEL #UCO #Cycles #NCCC #Deletions

6,128 2,795 3,047 230 28 1,039 519,112 80
3,068 1,335 1,391 245 69 480 1,778,525 86

110,696 48,281 62046 288 53 17,937 9,910,897 78
0.4 41,147 19,309 21,357 311 142 5,561 22,063,034 85

510,411 225,155 284,781 366 82 85,710 121,453,697 78
0.5 198,474 91,506 106,299 397 244 30,659 318,565,730 85

1196935 475,416 720,975 408 108 199,971 470,462,443 74
0.6 524,406 209,150 314,454 459 314 87,357 1,217,511,858 84

(b) Distributed Meeting Scheduling
#Msgs #VALUE #COST #DEL #UCO #Cycles #NCCC #Deletions
2,524 1,056 1,240 200 5 462 382,676 49

A 2,001 820 921 216 9 329 1,762,278 53
5,405 2,323 2,863 184 7 1,080 659,314 53

B 3,556 1,513 1,7821 210 23 650 2,487,359 61
1,467 697 505 225 6 125 71,439 80

C 1,156 509 353 238 21 83 352,795 85
1,251 526 448 234 8 132 56,447 83

D 1,067 423 345 241 24 98 327,749 85

Table 1. Experimental results of BnB-ADOPT+-FDAC* (first row) compared to BnB-ADOPT+-
FDAC*-MR (second row) maintaining 6 representations.

they perform less iterations to reach the optimum, this combined reduction is bene-
ficial. Notice that maintaining FDAC* on multiple representations has produced only
few extra DEL and UCO messages.

The number of NCCCs (non concurrent constraint checks) [6] increases since more
projection and extensions are needed to maintain FDAC* on all representations. How-
ever, observe that this increment is not linear with respect to the number of representa-
tions maintained, it is smoothed by the fact that less messages are generated and more
deletions are performed. So there are messages on the BnB-ADOPT+-FDAC* algo-
rithm that will not be needed to process with multiple representations, and also there
are values that will not be needed to assign or to check for node consistency.

References

1. S. de Givry, F. Heras, J. Larrosa, and M. Zytnicki. Existential arc consistency: getting closer
to full arc consistency in weighted CSPs. Proc. of IJCAI-05, pages 84–89, 2005.

2. P. Gutierrez and P. Meseguer. BnB-ADOPT+ with several soft arc consistency levels. Proc.
ECAI, 2010.

3. P. Gutierrez and P. Meseguer. Saving messages in BnB-ADOPT. Proc. AAAI-10, 2010.
4. F. Heras and J. Larrosa. Intelligent variables orderings and re-orderings in dac-based solvers

for wcsp. Journal of Heuristics, pages 4–5, 2006.
5. J. Larrosa and T. Schiex. In the quest of the best form of local consistency for weighted CSP.

Proc. of IJCAI-03, pages 239–244, 2003.
6. A. Meisels, E. Kaplansky, I. Razgon, and R. Zivan. Comparing performance of distributed

constraint processing algorithms. AAMAS Workshop on Distributed Constraint Reasoning,
pages 86–93, 2002.

7. P. Meseguer, F. Rossi, and T. Schiex. Handbook of Constraint Programming. Chapter 9, Soft
Constraints. Elsevier, 2006.

8. P. J. Modi, W.M. Shen, M. Tambe, and M. Yokoo. Adopt: asynchronous distributed constraint
optimization with quality guarantees. Artificial Intelligence, 161:149–180, 2005.

9. A. Petcu and B. Faltings. A scalable method for multiagent constraint optimization. Proc. of
IJCAI-05, pages 266–271, 2005.

10. M. Silaghi and M. Yokoo. Nogood-based asynchronous distributed optimization (ADOPT-
ng). Proc. of AAMAS-06, pages 1389–1396, 2006.

11. W. Yeoh, A. Felner, and S. Koenig. BnB-ADOPT: An asynchronous branch-and-bound
DCOP algorithm. Proc. of AAMAS-08, pages 591–598, 2008.

12. Z. Yin. USC dcop repository. Meeting scheduling and sensor net datasets,
http://teamcore.usc.edu/dcop, 2008.

72



Arities of Symmetry Breaking Constraints in Binary
CSPs

Tim Januschowski ?

Cork Constraint Computation Centre and Computer Science Department
University College Cork Ireland

janus@cs.ucc.ie

Abstract. Static symmetry breaking is a well-established technique to speed up
the solving process of symmetric Constraint Satisfaction Problems (CSPs). Static
symmetry breaking suffers from two inherent problems: symmetry breaking con-
straints come in great numbers and are of high arity. Here, we consider the prob-
lem of high arity from a theoretical point of view. We show that in special cases
of binary CSPs, we can completely break symmetries with binary constraints. We
show that for more general binary CSPs, this does not hold.

1 Introduction

Symmetry breaking in Constraint Programming has been the subject of intense inves-
tigation for almost two decades, see e.g. [6]. Symmetry breaking has an empirically
proved potential to speed up constructive search methods. The classic and practically
most used technique in symmetry breaking is the addition of symmetry breaking con-
straints before search [2, 13].

Two of the inherent problems with the addition of symmetry breaking constraints
for complete symmetry breaking are that symmetry breaking constraints may come in
great numbers and that symmetry breaking constraints may come in high arity. The
known general and complete methods add one symmetry breaking constraint per sym-
metry and the arity of each symmetry breaking constraint is the same as the number
of variables. In the worst case, we can have an exponential number of symmetries. So,
for complete symmetry breaking, we have to add an exponential number of symmetry
breaking constraints and each symmetry breaking constraint is of highest possible ar-
ity. Adding an exponential number of constraints to a CSP is prohibitively costly due
to space consumption. High arity slows down propagation as the time complexity of
the known propagation algorithm depends on the arity [4]. Various remedies have been
proposed in the literature: for special symmetry groups, we can find polynomial sized
sets of constraints with reasonable arity that completely break an exponential number of
symmetries [7], or sometimes one can use the problem structure in combination with the
symmetries to reduce the number and arity of the constraints [10, 14]. Also, various re-
duction rules [5, 12] are known that reduce both the number and the arity of commonly

? Tim Januschowski studies under the supervision of Dr. Marc van Dongen, Computer Science
Department, University College Cork, Ireland. Tim Januschowski is supported by the Embark
initiative of the Irish Research Council for Science, Engineering and Technology.

73



used symmetry breaking constraints. Another remedy, that we do not want to consider
here, is the addition of symmetry breaking constraints only for selected symmetries,
so-called partial symmetry breaking.

In this paper, we consider complete symmetry breaking for binary CSPs for the com-
plete group of constraint symmetries. Binary CSPs have a special historic importance in
Constraint Programming. More important for the cause of this paper is that binary CSPs
suit the study of constraint symmetries [1] particularly well because constraint symme-
tries are defined in terms of the microstructure: the microstructure of binary CSPs is a
graph as opposed to a hypergraph as is the case of CSPs with arbitrary arity. Typically,
it is much easier to visualise and inspect graphs compared to hypergraphs. In Section 4,
we provide special cases of binary CSPs in which we can break all symmetries with
binary constraints. Unfortunately, for the general case, even in binary CSPs and with
complete knowledge of the CSP, we may have to rely on at least ternary constraints to
completely break the symmetries, as we show in Section 5. We provide an example of
a binary CSP where complete symmetry breaking with binary constraints is not possi-
ble, thereby answering a question posed in [8]. The consequence of the latter result is a
lower bound for the arities of symmetry breaking constraints: our example shows that
in a general setting, binary symmetry breaking constraints do not always completely
break symmetries in binary CSPs.

2 Notation and Definitions

A constraint satisfaction problem CSP is a triple (V,D,Cons), where V is the set of
variables of the CSP, every variable x has a domain D(x) ∈ D, and Cons is the set of
constraint of the CSP. Every constraint has an arity. The k-ary constraint c is a pair
〈s,r〉, where s is a list of k variables x1, . . . ,xk which is called the scope and r⊆D(x1)×
·· ·×D(xk) is called the relation of c consisting of the tuples that c forbids. The arity of
a CSP is the maximum arity over all constraints in the CSP. A CSP is called binary if all
constraints are of arity at most 2. A literal is a (variable,value)-assignment. A partial
assignment is a set of literals in which no variable appears twice. If a partial assignment
is allowed by the constraints of the CSP we call it consistent. A solution is a consistent
assignment on all variables. If a CSP has a solution, the CSP is satisfiable, otherwise it
is unsatisfiable.

We associate to any binary CSP a graph called the microstructure [3, 9]. The mi-
crostructure has as nodes the literals of the CSP. We have an edge between every pair
of literals that is allowed by the constraints of the CSP. The microstructure complement
(MSC) is the complement graph of the microstructure. The constraint symmetries [1] of
a binary CSP are the automorphisms of the microstructure of the CSP. Symmetries parti-
tion the set of solutions of a CSP into a set of equivalences classes or orbits. Apart from
constraint symmetries, other symmetries exist as well, notably solution symmetries.
However, constraint programmers work with constraint symmetries mostly [1]. Here,
we only consider constraint symmetries which we shall abbreviate to symmetries. We
always use the entire group of constraint symmetries and never a subgroup.

Given a CSP P, a valid reduction P′ [8, 13] is a CSP on the same variables, subsets of
the domains of P and supersets of the constraints, such that for every orbit of solutions

74



in P, at least one solution in P′ exists. A single-representative valid reduction (SRVR) is
a valid reduction such that exactly one solution in P′ exists per orbit of solutions in P.
We call a solution in P′ an orbit representative solution.

The members of a family of constraints are called symmetry breaking constraints,
if the addition of the family to a CSP leads to a valid reduction. Lexleader constraints
(LLCs) [2] are a well-known example of symmetry breaking constraints. SRVRs allow
us to study symmetry breaking constraint independent of particular constraints and the
results that we obtain are valid for any type of symmetry breaking constraints. SRVRs
exist for any CSP: we can find a SRVR constructively using LLCs [2, 15]. With LLCs,
the choice of the orbit representative solutions depends on the order of the variables
that we choose to define the LLCs as well as the orders on the domains of the variables.
However, also for arbitrary choices of orbit representatives, a SRVR always exists—
we could simply add an n-ary constraint excluding any non-representative solution [8].
Here, we prove that for certain binary CSPs, we do not have to rely on n-ary constraints,
but that also binary constraints suffice to produce a SRVR. We go on to show that this is
not in general so.

3 Related Work

This paper is based on Puget’s approach to systematically introduce symmetry breaking
constraints via valid reductions [13]. This approach was generalised and extended in [8].
There we also posed the question, whether in a binary CSP, we can produce a SRVR with
at most binary constraints. Here, we will give a negative answer to this question.

Reduction rules have been studied in [5, 7, 12]. These reduction rules reduce the
arity and number of LLCs. Grayland et al. [7] manage to show the minimality of certain
sets of constraints in terms of the reduction rules. Here, we show that in binary CSPs
symmetry breaking constraints cannot always be reduced to binary constraints. This
is true independent of the concrete reduction rule and independent of the constraints
used for symmetry breaking. Solely based on Puget’s abstract framework for symmetry
breaking constraints, we show that no symmetry breaking constraints can always be
reduced to binary constraints. In particular, our results hold for LLCs.

The number of symmetry breaking constraints is naturally connected to the arity.
Luks and Roy [11], prove that the number of essential LLCs is exponential, from which
follows than one cannot always reduce LLCs to a fixed arity.

4 Special Cases Where Binary Constraints Suffice

In this section, we sum up some special cases in which binary constraints suffice to
obtain a SRVR for binary CSPs.

We define PATH as the class of CSPs whose MSC is a path, i.e., we can think of the
constraints as generalised implications. We note that any CSP in path has at most binary
domains. The class of CSPs is clearly tractable. For reasons of space restrictions, we
omit our proofs.

Proposition 1. Any CSP in PATH admits a SRVR obtained by adding binary constraints.

75



x1
0

1
x2
0

1

x5
0

1
x6
0

1

x9
0

1
x10
0

1

x3 0

1

x7 0

1

x40

1

x80

1

Fig. 1: The MSC of a binary CSP that does not allow a SRVR with binary constraints.
The only symmetry of the CSP is a reflection about the dashed line.

Similar results hold for CSPs whose MSC consists of connectivity components that
are paths and/or cycles.

We can furthermore prove that binary CSPs where the solutions are limited in a
certain way admit SRVRs obtained by adding binary constraints. In the following we
list some of these conditions.

Proposition 2. Let P be a binary CSP. In all of the following conditions, P has a SRVR
obtained by adding binary constraints, if P has

1. 3 variables and arbitrary domains,
2. 4 variables and binary domains,
3. no more than 3 orbits of solutions,
4. only one orbit of solutions of cardinality greater than 1,
5. solutions such that any pair of solutions from different orbits of solutions in P does

not share literals.

Case 4 of Proposition 2 subsumes the case of CSPs consisting of an all-different
constraint. For this case, Puget proved that binary symmetry breaking constraints suf-
fice [14]. Proposition 2 is unlikely to be useful in practice because it requires knowledge
of the solutions. However, Proposition 2 does tell us that a binary CSP which does not
have a SRVR obtained by adding binary constraints needs to have a certain number of
solutions and that the solutions must interact in a non-trivial way. In the next section,
we provide such a CSP.

5 Binary Constraints Do Not Always Suffice

In this section, we show that in binary CSPs and even with knowledge of the solutions
of the CSP, we must rely on non-binary constraints to produce a SRVR. This provides
a lower bound for the afore-mentioned reduction rules. The reasoning for this is as
follows. If any reduction rule in the case of binary CSPs can always reduce the arity of
the constraints to the lower bound we provide here, then the reduction rule is optimal.

We consider a binary CSP whose MSC is a tree such that we need at least ternary
constraints to obtain a SRVR.

76



Theorem 1. For binary CSPs, a SRVR obtained by adding binary constraints may not
always exist.

Proof (Sketch). We consider the 10 variable CSP Ptree whose MSC is depicted in Fig-
ure 1. Every variable has domains {0,1}, the MSC of Ptree is a tree. By inspection of the
MSC, it is obvious that there is only one non-trivial symmetry of the MSC. The symmetry
swaps literals (xi, j) with (xi+1, j) for odd i and j ∈ {0,1}. The symmetry is a reflec-
tion about the dotted line in Figure 1. We define a set L := ∪i∈{1,2,5,6,9,10}{(xi,1)}. The
solutions of Ptree we consider in the following, have the set L in common. We consider
the following four self-symmetric solutions of Ptree:

L∪{(x3,1),(x4,1),(x7,0),(x8,0)} , L∪{(x3,1),(x4,1),(x7,1),(x8,1)} ,
L∪{(x3,0),(x4,0),(x7,1),(x8,1)} , and L∪{(x3,0),(x4,0),(x7,0),(x8,0)}.

Orbits of solutions that consist of more than one solution contain exactly two solutions
because the CSP only has one non-trivial symmetry. From the orbits of solutions with
two members, we consider the following eight solutions:

A1 = L ∪ {(x3,1),(x4,0),(x7,1),(x8,1)} ,
A2 = L ∪ {(x3,0),(x4,1),(x7,1),(x8,1)},
B1 = L ∪ {(x3,1),(x4,1),(x7,0),(x8,1)} ,
B2 = L ∪ {(x3,1),(x4,1),(x7,1),(x8,0)},
C1 = L ∪ {(x3,1),(x4,0),(x7,0),(x8,1)} ,
C2 = L ∪ {(x3,0),(x4,1),(x7,1),(x8,0)},
D1 = L ∪ {(x3,1),(x4,0),(x7,1),(x8,0)} ,

and

D2 = L ∪ {(x3,0),(x4,1),(x7,0),(x8,1)} .

Members of the same orbit have the same capital letter. In order to find a SRVR we need
to choose an orbit representative among solutions A1 and A2. We note that the only pairs
of literals in A1 that is not contained in any of the four self-symmetric solutions is pair
p := {(x3,1),(x4,0)}. If we disallow p, we remove some solutions from the other orbits
and we can then easily conclude that A2 cannot be an orbit representative solution. A
symmetric argumentation holds if we choose solution A2 as an orbit representative,
which shows that Ptree does not have a binary realisable SRVR.

At the time of writing, it is not clear, whether ternary constraints suffice to produce a
SRVR in the CSP that proves Theorem 1. With four-ary constraints, it is straight-forward
to prove that a SRVR exists in the case of the afore-mentioned CSP.

6 Conclusion and Future Work

In this paper, we considered arities of symmetry breaking constraints. Using Puget’s
abstract framework of valid reductions for symmetry breaking constraints, we presented

77



the following result: in a number of binary CSPs, binary constraints suffice to completely
break all symmetries. However, we also proved that for general binary CSPs, we may
have to rely on non-binary constraints.

Our results on binary symmetry breaking constraints are existence results and do
not come with an algorithm. Future work could try to identify ordering heuristics that
allow us to reduce the arities of LLCs.

Acknowledgements

The author would like to thank Barbara M. Smith for helpful discussions and Marc van
Dongen for the same as well as proof reading.

References

1. D. Cohen, P. Jeavons, C. Jefferson, K. Petrie, and B. Smith. Symmetry definitions for con-
straint satisfaction problems. Constraints 11, 2006.

2. J. Crawford, M. Ginsberg, E. Luks, and A. Roy. Symmetry-breaking predicates for search
problems. In Principles of Knowledge Representation and Reasoning (KR ’96). Morgan
Kaufmann, 1996.

3. E. C. Freuder. Eliminating interchangeable values in constraint satisfaction problems. In
Proceedings AAAI’91, pages 227–233, 1991.

4. A. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, and T. Walsh. Global constraints for lexicographic
orderings. In Principles and Practice of Constraint Programming (CP 02), 2002.

5. A. M. Frisch and W. Harvey. Constraints for breaking all row and column symmetries in a
three-by-two matrix. In In Proceedings of SymCon’03, 2003.

6. I. P. Gent, K. E. Petrie, and J.-F. Puget. Symmetry in constraint programming. In F. Rossi,
P. van Beek, and T. Walsh, editors, Handbook of Constraint Programming, pages 329–376.
Elsevier, 2006.

7. A. Grayland, C. Jefferson, I. Miguel, and C. Roney-Dougal. Minimal ordering constraints
for some families of variable symmetries. Annals of Mathematics and AI, 2009.

8. T. Januschowski, B. M. Smith, and M. R. C. van Dongen. Foundations of symmetry breaking
revisited. In Proceedings of SymCon’09, 2009.

9. P. Jégou. Decomposition of domains based on the micro-structure of finite constraint-
satisfaction problems. In Proceedings AAAI, pages 731–736, 1993.

10. V. Kaibel and M. E. Pfetsch. Packing and partitioning orbitopes. Mathematical Program-
ming, 114, Number 1 / July, 2008:1–36, 2008.

11. E. M. Luks and A. Roy. The complexity of symmetry-breaking formulas. Annals of Mathe-
matics and Artificial Intelligence, 41:2004, 2002.

12. H. Öhrmann. Breaking symmetries in matrix models. Master’s thesis, Dept. Information
Technology, Uppsala University, 2005.

13. J.-F. Puget. On the satisfiability of symmetrical constrained satisfaction problems. In
Methodologies for Intelligent Systems, pages 350–361, London, UK, 1993. Springer-Verlag.

14. J.-F. Puget. Breaking symmetries in all-different problems. In International Joint Confer-
ences on Artificial Intelligence, pages 272–277, 2005.

15. T. Walsh. General symmetry breaking constraints. In Principles and Practice of Constraint
Programming – CP 2006, volume 4204/2006 of Lecture Notes in Computer Science 4204,
2006, pages 650–664, 2006.

78



Conflict and Solution Driven
Constraint Learning in QBF

Student: Paolo Marin
Advisors: Enrico Giunchiglia and Massimo Narizzano

DIST - Università di Genova
Viale Causa 13, 16145 Genova, Italy

name.lastname@unige.it

Abstract. In this paper we describe the Conflict and Solution Driven
Constraint Learning (CSDCL) developed in QuBE7, a modern search-
based QBF solver which incorporates the latest SAT techniques in terms
of data structures, search heuristics and learning mechanisms, extending
them to the QBF case. The new learning mechanism implemented in
QuBE7 improves the effectiveness of non-chronological backtracking by
producing asserting clauses and terms that lead to longer back-jumps
and greater reduction in the search space to be explored. We also report
the positive impact given by modifying the heuristic function, so that it
assigns a variable with the polarity it had before the last backtrack, also
called progress saving in RSat. In the experimental analysis we compare
QuBE in the current and previous versions, showing that the new algo-
rithm is far more effective in reducing the search space to explore, espe-
cially when combined with progress saving, resulting in greater efficiency
and more solved problems. The comparison with other state-of-the-art
solvers shows that QuBE7 is the fastest search based QBF solver.

1 Introduction

Propositional Satisfiability (SAT) is a success story in Computer Science: Cur-
rent state-of-the-art solvers can efficiently solve problems with millions of vari-
ables and are routinely used to solve many different problems in formal verifi-
cation. Essential features in nowadays’ SAT solvers are (i) learning mechanisms
for non chronological backtracking and learning; and (ii) search heuristics used
to explore the search space, which is again based on the learning mechanism of
the solver. Because of the importance of the learning mechanism, these solvers
are often called “Conflict Driven Clause Learning” (CDCL) solvers.

Quantified Boolean Formulas are a powerful extension of the SAT problem,
allowing the variables to be existentially as well as universally quantified. The
added expressiveness allows many different problems to be efficiently encoded
into QBF instances, such as in Verification [1, 2] and Planning [3, 4]. Despite
the fact that the encoding of the problem is more compact, in practice solving a
QBF problem in many cases is still harder than solving its SAT encoded version.
One of the reasons is that current state-of-the-art QBF solvers implement only

79



few of the modern techniques developed for SAT. Indeed, (i) in many cases it
is not trivial how to generalise SAT techniques to the QBF case; (ii) it is a
priori not clear whether they are going to pay-off; and (iii) the effort required
by the implementation is far more substantial: To get an idea of the different
complexity, MiniSat consists of roughly 900 lines of code, and QuBE of almost
8000.

In this paper we describe the CSDCL procedure developed into the QBF
solver QuBE7, which also incorporates the latest SAT techniques in terms of
data structures, search heuristics and learning mechanisms, extending them to
the QBF case. This paper extends [5] as we concentrate on the learning mecha-
nism implemented in the core solver, which improves that of QuBE6, and whose
implementation in the QBF setting is far more complicated than in the SAT
case. Indeed, assuming the current assignment (defined as a set of consistent
literals) is µ and that we are backtracking from a conflict, in the QBF case it
might be the case that the resolution involves clauses with more than one open
(i.e., not assigned by µ) literals or with a subsumed literal (i.e., with a literal
which is satisfied by µ). This cannot happen in the SAT case, and avoids the
complications one has to deal in the QBF case, such as the problem of dealing
with tautological clauses (i.e., containing both a variable and its negation) while
backtracking. Further, in the QBF case, the conflict analysis procedure has to
allow for non-chronologically backtracking and learning not only when a conflict
is discovered, but also when a solution is found.

In the experimental analysis we compare QuBE in the current and previous
versions, showing that the new algorithm is far more effective in reducing the
search space to explore, in particular when combined with progress saving [6],
resulting in greater efficiency and more solved problems. The comparison with
other state-of-the-art solvers shows that QuBE7 is the fastest search based QBF
solver.

2 UIP Learning in QuBE

QuBE7 engine is a modern, CSDCL implementation of QDLL [7], and features
many of the latest techniques developed for improving the effectiveness and the
efficiency of SAT solvers, like separate data structures for binary and n-ary
constraints 1 or progress saving [6, 8], but also techniques which are specific to
QBF solvers, like pure literal detection and propagation and prime implicant
construction for solution learning [9]. Progress saving imposes which value to
assign a splitting variable by caching the assignment values the variables have
before a backtrack takes place. It was extended to QBF in depqbf [10]. See [5] for a
description of QuBE7 from the user perspective, and refer to [9] for an extensive
introduction to QBF logic and the notation we will use in the following.

The concept of Unique Implication Point was introduced for SAT in [11], and
in the form of 1-UIP is now the most widely used stop criterion in the conflict
1 With the term constraint we mean either a clause or a term (or cube) without

distinction.

80



analysis procedure of CDCL-based SAT solvers. 1-UIP schema lets the clause
to learn (usually called asserting clause) X to be the first one obtained during
the conflict analysis procedure through resolution steps having exactly one literal
assigned at the maximum decision level among all the literals in X. Learning was
extended to QBF in [12–14]. Differently from SAT, in QBF 3 special cases may
happen during the clause (resp. term) resolution process when backtracking from
a conflict (resp. solution): (i) an unassigned universal (resp. existential) literal,
or (ii) a satisfying universal (resp. existential) literal, or (iii) a pair of universal
(resp. existential) literals which are occurrences of the same variable but with
opposite polarities. The latter produces a tautological clause/term, which can
be either learned and used anyway if the procedures involved in the forward
phase of the search, i.e. propagation, allow for that, or turned to an asserting
constraint by resolving out the literals that do not allow the conflicting literals
being removed by minimisation [9].QuBE exploits the second option.

Our procedure to calculate the asserting constraint is an extension to QBF
of that of Chaff [15] in which tautological constraints are not produced, nor
allowed in the search. A different approach for extending Chaff’s procedure to
QBF where tautological clauses are allowed was proposed in Quaffle [13]. The
idea is that, starting from an empty clause (resp. term), that is a disjunctive
(resp. conjunctive) set of literals which are all assigned to false, only the existen-
tial (resp. universal) literals can be resolved by replacing each of them with the
set of literals that implied their assignment, and the Unique Implication Point
must be an existential (resp. universal) literal as well. In practice, we keep the
highest decision level d of the existential (resp. universal) variables we met while
backtracking, marking as unassigned the universal (resp. existential) variables
and resolving the existential (resp. universal) variables till we have only one ex-
istential (resp. universal) literal l in the current “asserting” clause (resp. term)
X having assignment level d: In the problematic case in which the asserting
clause (resp. term) X contains also an unassigned universal (existential) literal
occurring to the left of l in the prefix (this is possible only if l was assigned as
a unit, because of the restrictions imposed on the branching order by the prefix
dependencies), we cannot use X as asserting clause (resp. term) for assigning l
as unit, and thus we have to persist in backtracking resolving out l. This allows
to directly remove the conflicting literals, e.g. universal (resp. existential) literals
l′, l′ occurring with both polarities, when they occur to the left of l in the prefix
(also this case is possible only if l was assigned as a unit). Roughly speaking,
we can always keep on doing resolution following the assignment stack order,
meaning that we follow the graph of implications, unless we find an asserting
clause (resp. term) X, having l as the only existential (resp. universal) literal
assigned at the highest level d, and some conflicting literals that occur to the
right of l. In this case, l cannot be assigned as unit, and thus we cannot gen-
eralise the previous case as well. Instead, we have to resolve all the existential
(resp. universal) literals in X that follow l in the prefix, until all the conflicting
literals can be removed by minimisation. This can be safely done, since they
are guaranteed to be assigned as unit, but can introduce variables coming from

81



parts of the implication graph which are not strictly related to the current con-
flict/solution. In QuBE6 this kind of “out-of-order resolution” is performed more
often, as it switches from implication graph order to prefix order as soon as a
pair of conflicting literals is found.

With respect to QuBE6 (see [16]) the new algorithm can allow for longer-
range back-jumps: Indeed, the back-jump level we consider is not anymore that
of the node at the maximum decision level among the literals in the UIP con-
straint excluding l, but the maximum decision level among (i) the literals in the
constraint that precede l in the prefix, and (ii) the existential (resp. universal)
literals in the constraint that follow l in the prefix. Consider for example the
asserting clause X = x ∨ y ∨ z derived through Q-Resolution steps while back-
tracking from a conflict (the prefix is ∃x . . .∀y . . .∃z). Let’s say that the decision
levels for {x, y, z} are, respectively, {10, 8, 7}; then x is the UIP literal. We can
safely back-jump to decision level 7 and assign x as unit since at that level y
does not belong to the clause because of minimisation (or universal reduction).
Instead, if {7, 8, 10} are the decision levels for {x, y, z}, z will be the unit literal
at decision level 8.

3 Experimental Analysis

As environment, we use a cluster made of 4 IBM HS21 computing nodes, each
with 2 Quad Core Xeon 2.5 GHz, 16 GB RAM, running Linux CentOS 5; the
time limit was set to 1200 s and the memory limit to 2 GB; for each node we
ran 4 processes at the time.

We first compare QuBE7.0 against QuBE6.6, and the other two best solvers
according to the latest QBF Evaluation. These are AQME-10 [17], a self-adaptive
QBF solver based on QBFEVAL’06 state-of-the-art systems, and depqbf, a
search based solver that exploits dependency schemes in the decision and back-
track strategies [10]. 2 We used the same pool of (568) fixed-structure QBF
instances selected for the main track of QBF Evaluation 2010 [18]. Results are
shown in Table 1, where for each solver (in Column 1) we report, respectively,
the time needed to solve the testset3, the total number of instances solved within
the given time, and the number of SAT and UNSAT solved instances. Thank
to its multi-engine nature, AQME is still the fastest solver, able to solve the
highest number of problems: This is to be expected because it is well known
that in the QBF case some of the problems which cannot be solved by search
based solvers are easy for solvers based on variable elimination, and vice-versa.
Significant is the fact that QuBE7.0 is a great improvement of QuBE6.6, being
able to solve up to 53 more benchmarks. Furthermore, QuBE7 can solve 4 more
SAT problems than AQME. The row QuBE7.0-ps refers to a slightly different
2 A preliminary version of QuBE7 took part to the last QBF evaluation and solved

more problems than depqbf. Unfortunately, the submitted version contained a bug
which caused the solver to return incorrect results on 7 instances.

3 Time is expressed in seconds; a penalty of 1200 s is given for each time-out or
memory-out.

82



version of QuBE7.0 where progress saving was disabled. It is noticeable how this
technique improves the performance of the solver, in particular being effective
for solving satisfiable problems.

Solver Total (s) Total (#) SAT (#) UNSAT (#)

AQME-10 171,231.30 447 196 251

QuBE7.0 198,995.40 430 200 230

QuBE7.0-ps 234,435.00 408 185 223

QuBE6.6 267,608.09 377 165 212

depqbf0.1 256,801.85 369 165 204
Table 1. Performance on QBFEVAL’10 Testset.

Solver Time (s) #Sol. avg(term) #Confl. avg(clause)

QuBE7.0 13515.72 12422 99.75 8094 74.48

QuBE7.0-ps 18657.68 18060 94.91 27454 39.95

QuBE6.6 31373.58 13823 99.77 28256 40.47
Table 2. Comparison of the search space explored by QuBE in 3 versions.

In Table 2 we compare the size of the search trees explored by QuBE7 (with
and without progress saving) and QuBE6 on the 335 benchmarks solved by
all the 3 systems. For each solver (in Column 1) we report, respectively, the
cumulative solving time, the averages of the number of solutions, learned term
size, number of conflicts and learned clause size. The first immediate observation
is that the new search engine is more efficient, needing far less time to solve
the same problems. This is due to the significant reduction of the search space
explored, as witnessed by the much lower number especially of conflicts, but of
solutions as well, discovered. It is noticeable that progress saving has a valuable
role in that. On the other hand, we see that the size of the learned constraints
is much higher, which seems somehow counter-intuitive given the fact that in
QuBE7 binary constraints are propagated first and this in SAT reduces the size
of the learned clauses [19]: This will be matter of future investigation. QuBE7
binary is available at www.star-lab.it/~qube.

4 Conclusion

In this paper we presented the new learning algorithm implemented in QuBE7,
a search-based QBF solver. In particular, the new learning algorithm allows
for more effective pruning of the search space, especially when combined with
progress saving. This algorithms together with the new data structure make
QuBE7 much faster than its previous version. Experimental results confirm that

83



QuBE is a state-of-the-art solver. In the future we want to investigate the indi-
vidual effects given by the new data structures and algorithms, to try different
unlearning strategies and to take advantage of dependency schemes.

References

1. Ayari, A., Basin, D.A.: Bounded model construction for monadic second-order
logics. In: Proc. CAV ’00. (2000)

2. Scholl, C., Becker, B.: Checking equivalence for partial implementations. In: Proc.
DAC. (2001) 238–243

3. Castellini, C., Giunchiglia, E., Tacchella, A.: Improvements to SAT-based confor-
mant planning. In: Proc. ECP. (2001)

4. Rintanen, J.: Constructing conditional plans by a theorem prover. Journal of
Artificial Intelligence Research 10 (1999) 323–352

5. Giunchiglia, E., Marin, P., Narizzano, M.: QuBE7.0, System Description. In:
SAT’10 workshop “Pragmatics of SAT” (POS 2010). To appear in Journal on
Satisfiability, Boolean Modeling and Computation (system description category).
(2010)

6. Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for
satisfiability solvers. In: Proc. SAT. (2007)

7. Cadoli, M., Giovanardi, A., Schaerf, M.: An algorithm to evaluate quantified
Boolean formulae. In: Proc. AAAI. (1998)

8. Pipatsrisawat, K., Darwiche, A.: Rsat 2.0: Sat solver description. Technical Re-
port D–153, Automated Reasoning Group, Computer Science Department, UCLA
(2007)

9. Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/term resolution and learning
in the evaluation of quantified Boolean formulas. Journal of Artificial Intelligence
Research (JAIR) 26 (2006) 371–416

10. Lonsing, F., Biere, A.: Integrating dependency schemes in search-based qbf solvers.
In: Proc. SAT. (2010 (To appear))

11. Marques-Silva, J.P., Sakallah, K.A.: GRASP - A New Search Algorithm for Satisfia-
bility. In: Proceedings of IEEE/ACM International Conference on Computer-Aided
Design. (November 1996) 220–227

12. E. Giunchiglia and M. Narizzano and A. Tacchella: Backjumping for quantified
Boolean logic satisfiability. In: Proc. IJCAI. (2001)

13. Zhang, L., Malik, S.: Conflict driven learning in a quantified Boolean satisfiability
solver. In: Proc. ICCAD. (2002)

14. Letz, R.: Lemma and model caching in decision procedures for quantified Boolean
formulas. In: Proc. of Tableaux, Springer (2002)

15. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engi-
neering an Efficient SAT Solver. In: Proc. DAC. (2001)

16. Giunchiglia, E., Narizzano, M., Tacchella, A.: QuBE++: An efficient QBF solver.
In: Proc. FMCAD. (2004)

17. Pulina, L., Tacchella, A.: A self-adaptive multi-engine solver for quantified Boolean
formulas. Constraints 14 (2009) 80–116

18. Peschiera, C., Pulina, L., Tacchella, A., Bubeck, U., Kullmann, O., Lynce, I.: The
seventh qbf solvers evaluation (qbfeval’10). In: Proc. SAT. (2010)

19. Ryan, L.: Efficient Algorithms for Clause-Learning SAT Solvers. PhD thesis, SFU
University (2003)

84



Constraints in the Cloud

Student: Jacopo Mauro
Supervisors: Maurizo Gabbrielli and Zeynep Kiziltan

Department of Computer Science, University of Bologna, Italy.
{jmauro,gabbri,zeynep,}@cs.unibo.it

1 Introduction

Parallelising constraint solving based on tree search has become a popular re-
search topic (see [2] for a brief overview). One approach is search-space splitting
in which different parts of the search space are explored in parallel (e.g. [6]).
Another approach is the use of algorithm portfolios. This technique exploits
the significant variety in performance observed between different algorithms and
combines them in a portfolio [3]. In constraint solving, an algorithm can be a
solver or a tuning of a solver. Portfolios have often been run in an interleaving
fashion (e.g. [8]). Their use in a parallel context is relatively new [5, 2].

Recent years have witnessed considerable interest in large-scale parallelism as
can be observed by the ever growing number of volunteer/grid/cloud computing
projects that use wast amount of processors. Considering the complexity of the
constraint problems and thus the computational power needed to tackle them,
it is appealing to benefit from large-scale parallelism and push for a massive
number (hundreds if not thousands) of CPUs. Bordeaux et. al have started to
investigate large-scale parallelism in constraint solving [2] by using the portfo-
lio and search-space splitting strategies. They have conducted experiments on
constraint problems using a parallel computer with the number of processors up
to 128. They reported that the parallel portfolio approach scales very well in
SAT, in the sense that utilizing more processors consistently helps solving more
instances in a fixed amount of time.

As done also in [2], most of the prior work in parallel constraint solving as-
sumes a parallel computer with multiple CPUs. This architecture is fairly reliable
and has low communication overhead. However, such a computer is costly and is
not always at our disposal, especially if we want to push for massive parallelism.
Jaffar et al addressed this problem in [6] by using a bunch of computers in a
network. They employed 61 computers in a search-space splitting approach and
showed that such a method is effectively scalable.

Our aim is to combine the parallelization benefits of [2] and [6] when solving
constraint satisfaction problems (CSPs). We present an architecture in which
massive number of volunteer computers can run several (tunings of) constraint
solvers in parallel in a portfolio approach. The goal is to maximise the prob-
ability of solving many CSPs in a fixed amount of time and/or minimise the
power consumption required to solve the CSP instances. To reach our goals, we

85



would like to exploit certain information such as expected solving time, proba-
bility of solving an instance in a fixed amount of time, and expected resource
consumption, by using machine learning techniques.

We are developing our architecture using the service-oriented computing
paradigm (SoC) which is an emerging paradigm where services are autonomous
computational entities that can be composed to obtain more complex services
for developing massively distributed applications (see e.g [4] or the Sensoria
Project at http://www.sensoria-ist.eu/). The architecture is designed and
implemented in Jolie [7] which is the first full-fledged programming language
based on SoC paradigm. The reasons behind the choice of SoC, and thus Jolie,
can be summarised as follows. First, it is scalable; massive number of commu-
nications with different computers can easily be handled. Second, it is modular;
new services can easily be integrated and organised in a hierarchy. This is par-
ticularly important in an architecture like ours which has several sub services.
Third, it allows us to deploy the framework in a number of different ways. Jolie
indeed provides interaction between heterogeneous services, like in the case of
web services (e.g integrating a google map application in a hotel-search applica-
tion). We can therefore easily interact with other services (even graphical ones)
in the future, make our architecture be part of a more complex system or deploy
the architecture on modern cloud computing networks such as Amazon EC2 or
Microsoft Azure.

We report experiments up until 100 computers using a first naive prototype.
As the results confirm, the architecture is effectively scalable.

2 Architecture

Fig. 1 depicts our architecture using a notation similar to UML communica-
tion diagrams. When services are used, we can have two kinds of messages: one
way message denoted by the string 〈message name〉(〈data sent〉) and a request
response message denoted by 〈message name〉(〈data sent〉)(〈data received〉).

The figure is read as follows. The user utilises the redirecting service to get the
location of the preprocessing service and then sends to the preprocessing service
a problem instance ik to be solved. Once ik is sent, the preprocessing service
contacts the CBR service which runs a case-based reasoning system to provide
the expected solving time tk of ik. The preprocessing server then sends tk and ik
to the instance distributor service. This service is responsible for scheduling the
instances for different (tunings of) solvers and assigning the related jobs to the
volunteer computers. This can be done in a more intelligent way thanks to tk
provided by the CBR service. This value can be used for instance to minimize the
average solving time. Finally, the volunteer service asks the redirecting service
the location of the instance distributor service and then requests a job from it
using a request response message. Note that the use of the redirecting service
makes it possible to have multiple preprocessing and instance distributor services
in the future. It is even possible to consider the concurrent use of different services
exploiting machine learning algorithms to predict the solving times.

86



Fig. 1. Architecture.

An input instance of the architecture is specified in XCSP which is a rela-
tively new format to represent constraint networks using XML (http://www.
cril.univ-artois.fr/CPAI08/XCSP2_1.pdf). The reasons of this choice are
that XCSP format has been used in the last constraint solver competitions (and
therefore many solvers support it) and that such a low level representation is
useful to extract the feature vectors needed by a CBR algorithm.

3 Preliminary Experimental Results

We have developed a first prototype to serve as a proof of concept. Since our ini-
tial concern is scalability, we have discarded the CBR service from the first
prototype. In the experiments, up to 100 computers of our labs computers
are employed for running the volunteer services and only one for the remain-
ing services. We consider the instances of the 2009 CSP Solver Competition
(http://www.cril.univ-artois.fr/CPAI09/), six of its participating solvers
(Abscon 112v4 AC, Abscon 112v4 ESAC, Choco2.1.1 2009-06-10, Choco2.1.1b
2009-07-16, Mistral 1.545, SAT4J CSP 2.1.1) and one solver (bpsolver 2008-06-
27) from the 2008 competition (http://www.cril.univ-artois.fr/CPAI08/).
These solvers are provided as black-box, their tunings is not possible. As an
experiment is affected by the current work load of the computers, we perform
and report three runs. We implemented an instance distribution service that
for every instance received tries to use in parallel every solver in the portfolio
without interrupting a job whenever it has started. The experiments focus on
the following instances:

– Easy SAT: 1607 satisfiable instances solved in less than 1 minute

87



– Easy UNSAT: 1048 unsatisfiable instances solved in less than 1 minute
– Hard SAT: 207 satisfiable instances solved in between 1 and 30 minutes
– Hard UNSAT: 106 unsatisfiable instances solved in between 1 and 30 minutes

Such times refer to the best solving times of the competition.

n◦ Easy SAT (30 min) Easy UNSAT (30 min) Hard SAT (1h) Hard UNSAT (1h)
20 15 14 15 17 18 18 3 3 6 7 7 9
40 132 128 135 150 150 150 8 8 7 16 17 13
60 141 140 140 320 318 322 19 15 14 23 23 22
80 144 145 151 335 323 328 25 21 25 29 30 30
100 179 179 192 336 345 334 25 25 25 44 33 36

Table 1. Experimental results.

In Table 1, we present the number of instances solved in 30 minutes for the
easy instances and in 1 hour for the hard instances.

The results are promising. Even without the CBR service and the different
tunings of solvers, the number of the instances solved in a fixed amount of time
increases as the number of computers increases, no matter how busy the labora-
tory computers are. Note that only one computer is used to run the preprocessing
and the instance distributor services, and yet the system can handle 100 comput-
ers without any problems. Performing this experiments we have found that this
first prototype does not reach good (i.e.. linear) speed ups because some solvers
cannot solve even the easy instances in less then 30 minutes. Hence, many com-
puters are spending more than 30 minutes for solving an already solved instance.
These observations suggest we shall allow the interruption of a computation if
the related instance is already solved.

4 Related Work

There is considerable amount of prior work on parallel constraint solving. We
here discuss only those that use massive parallelism. Our work is similar to the
one described in [2] in the sense that we too use the portfolio approach. However,
there are a number of differences. First, we consider CSP instances and several
different constraint solvers (including SAT and CP solvers), as opposed to SAT
instances and one SAT solver. Second, we create portfolios by running each
instance on several computers and several (tunings of) solvers at the same time.
The solver-independent approach of [2] instead uses only different tunings of
the same solver. Third, whilst we assume a cloud of independent computers, [2]
assumes a dedicated cluster of computers.

Jaffar et al [6] as well propose an architecture based on volunteer comput-
ing. Unlike ours, this architecture uses the search-space splitting strategy and
the experiments confirm scalability on ILP instances using 61 computers. There
are however other substantial differences. In many environments like laborato-
ries and home networks, computers stay behind a firewall or network address

88



translation (NAT) which limit their access from outside. We are able to access
such computers by using only the request response messages instead of using
direct messages as done in [6]. This choice brings further advantages over [6] like
smaller number of messages sent, the applicability to the majority of networks,
and having only the server as a possible bottleneck. The price to pay is the im-
possibility of using certain protocols that allow, for instance, the interruption of
tasks that are searching for a solution that has been already found.

Our architecture owes a lot to CPhydra [8] , the winner of 2008 CSP Solver
Competition. It combines many CP solvers in a portfolio. CPhydra determines
via CBR the subset of the solvers to use in an interleaved fashion and the time
to allocate for each solver, given a CSP instance. Our work can thus be seen as
the parallel version of CPhydra which eliminates the need of interleaving, giving
the possibility of running several (tunings of) solvers at the same time. This
brings the chance of minimising the expected solving time as there is no order
among the solvers. Moreover, parallelism gives the opportunity of updating the
base case of CBR even in a competition environment.

5 Future Work

We have presented an architecture in which massive number of computers can
run several (tunings of) constraint solvers in parallel in a portfolio approach. The
architecture is implemented in SoC which is becoming the choice of paradigm
for the development of scalable and massively distributed systems. The initial
experimental results confirm the scalability. Our future plans are to make the
architecture more efficient, useful and reliable.

As for efficiency, we are developing the CBR service to predict the run time of
the solvers. We are currently adapting the CPhydra framework for the develop-
ment of this service. As the preliminary tests suggest, we are facing a scheduling
problem that is too big to be solved optimally in the CPhydra fashion. For this
reason, we are developing different kind of scheduling algorithms using different
heuristics which aim at minimising the average solving time and/or minimis-
ing the power consumption of the system. We are also interested in considering
other machine learning approaches such as support vector machines and artifi-
cial neural networks. Moreover, to the best of our knowledge, we are not aware
of works that have studied in detail what features of a CP instance should be
considered to enhance the prediction reliability of machine learning algorithms.
We are therefore also interested in studying good feature vectors that can be
used to predict the solving time or the resource consumption of a CSP solver.

We are as well considering the use of randomized solvers to exploit the com-
putational power of idle nodes of the system. When some nodes of the system are
not used, we can exploit them to increase the probability of solving an instance
using the randomized solvers for a short amount of time.

As for usability, we aim at tackling two limitations. First, our architecture
gets XCSP instance format which is too low level for a CP user. The good news is
that the architecture can easily be integrated to a high level modelling and solv-

89



ing platform such as Numberjack (http://4c110.ucc.ie/numberjack) which
will soon output to XCSP. In this way, we can obtain a system in which the
user states her problem easily at a high-level of abstraction, then the problem
gets converted to XCSP and then our cloud solver is invoked. Second, our ar-
chitecture is focused on the portfolio approach. We intend to investigate how
to exploit massive number of computers in search-space splitting when solving
CSPs or constraint optimization problems. In particular, we would like to adapt
heuristics like the ones described in [9, 1].

Finally, should the computers go off or malfunction, we might want to repli-
cate the jobs assigned to the computers or redirect them to other computers.
This is something very important since in cloud computing nodes can fail but
when this happens usually a new node is quickly given. So we will study methods
to make the architecture more reliable from this perspective.

Acknowledgements

We would like to thank Emmanuel Hebrard, Eoin O’Mahony, and Barry O’Sullivan
for useful discussions and their input for the implementation.

References

1. Boivin, S., Gendron, B., Pesant, G.: A load balancing procedure for
parallel constraint programming, https://www.cirrelt.ca/DocumentsTravail/

CIRRELT-2008-32.pdf

2. Bordeaux, L., Hamadi, Y., Samulowitz, H.: Experiments with massively parallel
constraint solving. In: IJCAI. pp. 443–448 (2009)

3. Gomes, C.P., Selman, B.: Algorithm portfolios. Artif. Intell. 126(1-2), 43–62 (2001)
4. Guidi, C., Montesi, F.: Reasoning about a service-oriented programming paradigm.

In: YR-SOC. pp. 67–81 (2009)
5. Hamadi, Y., Jabbour, S., Sais, L.: Manysat: Solver description. SAT-Race 2008

(2008)
6. Jaffar, J., Santosa, A.E., Yap, R.H.C., Zhu, K.Q.: Scalable distributed depth-first

search with greedy work stealing. In: ICTAI. pp. 98–103 (2004)
7. Montesi, F., Guidi, C., Lucchi, R., Zavattaro, G.: Jolie: a java orchestration language

interpreter engine. Electr. Notes Theor. Comput. Sci. 181, 19–33 (2007)
8. O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using case-

based reasoning in an algorithm portfolio for constraint solving. Proceedings of the
19th Irish Conference on Artificial Intelligence (AICS’08) (2009)

9. Perron, L.: Search procedures and parallelism in constraint programming. In: CP.
pp. 346–360 (1999)

90



Soft Constraints and Partially Ordered
Preferences in a Multi Criteria Optimisation

Environment

Conor O’Mahony (PhD student)

and Nic Wilson (supervisor)

Cork Constraint Computation Centre,
University College Cork, Ireland.

c.omahony@4c.ucc.ie; n.wilson@4c.ucc.ie

Abstract. This paper introduces some concepts of multi-criteria deci-
sion making and multi-criteria optimisation problems, and relates them
to soft constraints formalisms, specifically when there exists some in-
comparability between the preference levels of the problem solutions. It
also outlines some future work that will be carried out in this area to
investigate the strengthening the partial orderings used to compare the
preference levels of problem solutions.

Keywords: preferences, multi-criteria decision making, multi-criteria
optimisation, soft constraints

1 Introduction

Combinatorial optimisation involves the consideration of a discrete set of items
and finding the best combination of these items according to a particular crite-
rion. In a multi-criteria optimisation problem, there is more than one criterion
on which each alternative or solution to the problem must be evaluated. An alter-
native or solution to a problem can be expressed as an evaluation vector, where
each term in the vector represents an evaluation of the alterative with respect
to a particular criterion. One such type of valuation that can be assigned to an
alternative for a particular criterion is the score or preference level of an agent
for that alternative. The set of evaluation vectors can then be ordered in some
way to derive information about the corresponding alternatives, for example,
which vector corresponds to the optimal alternative.

There are various different approaches for comparing alternatives, the study
of which is covered in the theory of multi-criteria decision making. This relates
also to soft constraints frameworks, where the evaluation of each soft constraint
corresponds to a criterion, and the value of the soft constraint when applied to
an alternative corresponds to an evaluation of the alternative. However there are
a number of scenarios where there is some incomparability between alternatives,
which results in the set of alternatives being partially ordered.

91



This paper details some of the work that will be carried out to investigate
situations in multi-criteria optimisation where preference levels of problem so-
lutions are partially ordered, and ways in which to strengthen the ordering of
preference levels in solving these problems in a soft constraints setting. Section 2
deals with some background material in relation to multi-criteria decision mak-
ing and optimisation, and also how this relates to soft constraints formalisms
and Section 3 details the proposed work in this area.

2 Preliminaries

2.1 Alternatives and Evaluation Vectors

In this section we introduce the concepts of an alternative and the corresponding
evaluation vector which provides an evaluation of the alternative over one or
more criteria.

An alternative is defined as a solution to a combinatorial optimisation prob-
lem, which usually involves a complete assignment to the set of variables of the
problem. For an alternative a in the set A of alternatives and for some eval-
uation function e := A → S, let e(a) represent an evaluation of alternative a
over a particular criterion (where S is some set of possible evaluations). Let A
be a set of m-dimensional evaluation vectors of the alternatives over m criteria,
where ei(a), represents the valuation for alternative a over criterion i, i.e., for
alternative a ∈ A, let e(a) ∈ A = (e1(a), e2(a), . . . , em(a)). In the remainder of
this paper, we will use a shorter notation to represent an evaluation vector, i.e.,
an evaluation vector α = (α1, α2, . . . , αm) ∈ A, where each αi = ei(a), for some
alternative a ∈ A.

In a situation where there is more than one criterion on which alternatives are
evaluated, there needs to be a way of performing a comparison between alterna-
tives, taking into account all the criteria. It might also occur that the evaluation
vectors of alternatives α and β are incomparable, where neither alternative is
preferred over the other.

2.2 Multi-criteria Decision Making and Preferences

In this section we introduce some theory behind multi-criteria decision making,
specifically how alternatives are compared with one another using their evalua-
tion vectors. This will complement some of the later material on how alternatives
and evaluation vectors are compared in a soft constraint setting.

There are a number of different approaches for comparing evaluation vectors,
and by extension, alternatives, which are based on multi-criteria aggregation
procedures (MCAP) (see [6]). The first class of MCAP approaches involve ag-
gregating the m preference levels of each evaluation α ∈ A to produce an overall
evaluation, and assigning each alternative to a position on a scale. Approaches
based on this technique are called approaches based on a synthesizing criterion,
since it leads to a definition of a single criterion which synthesize the m crite-
ria. For instance, when each evaluation of an alternative over each criterion is a

92



numerical value, one way of computing an overall evaluation of the evaluation
vector is the sum of the individual evaluations of the alternative, e.g., where h(α)
represents an overall evaluation of α, i.e, h(α) = h(α1, α2, . . . , αm) =

∑m
i=1 αi.

Another class of MCAP approaches determine how each evaluation vector
α ∈ A compares to each other evaluation vector β ∈ A from a preference point
of view. This will result in a preference relation � on the set A, which is a
binary relation that is usually reflexive, i.e., ∀α ∈ A, α � α, and transitive, i.e.,
∀α, β, γ ∈ A, if α � β and β � γ, then α � γ. Methods which use this approach
are called outranking methods. The preference relation allows for incomparability
between evaluation vectors, where if α � β and β � α, then α and β are
incomparable.

2.3 Soft Constraints and Multiple Criteria Optimization

In this section we introduce some soft constraint formalisms, we relate them to
multi-criteria optimisation and discuss how previous research has implemented
some multi-criteria decision making approaches and multi-criteria optimisation
with soft constraints.

A soft constraint formalism involves an ordered set,R, of preferences degrees,
with some methods for combining these degrees. For a set of variables W, a soft
constraint is a function from the set of assignments toW, i.e., the domain ofW,
to R, associating a preference degree to each assignment to a set of variables.
The preference degrees inR may be numerical, e.g., a real number, or they might
be ordinal, e.g., taking a discrete set of values such as: ‘unsatisfied’, ‘poor’, ‘OK’,
‘good’, and ‘very good’.

Soft constraints connect with multiple criteria decision making methods and
preferences, where the evaluation of each soft constraint corresponds to a crite-
rion, and the value of the soft constraint when applied to a solution corresponds
to an evaluation of an alternative. Therefore, a solution to a multi-criteria op-
timisation problem gives rise to a vector of preference values, one for each soft
constraint. Applying the previous notation for alternatives and evaluation vec-
tors as described in Section 2.1 to soft constraints, an evaluation α ∈ A of
alternative a ∈ A is defined as α = (k1(a), k2(a), . . . , km(a)), where each ki(a)
is the evaluation of a with respect to soft constraint ki, i.e. ki is a function from
the set of assignments to W, to Ri, where Ri is the set of preference degrees
associated with each soft constraint ki from i = 1, . . . ,m.

Chapter 9 of [10] contains an introduction to various specific and general
formalisms of soft constraints. Many specific soft constraint formalisms can be
generalised into a framework called semiring CSPs [2]. A semiring KCSP =
(R,⊗S ,⊕S) is an algebraic structure consisting of a set R of preference degrees,
with two binary operators, ⊗S specifying how to combine preferences, and ⊕S

is used to induce an ordering on the set. In a multi-criteria context, [1] has
modelled multi-criteria optimisation problems as multi-criteria semiring CSPs,
where each of the m criteria ki is modelled over a semiring CSP KCSPi

and the
problem as a whole is modelled using the product of the semirings.

93



Other research where multi-criteria decision making approaches that have
been integrated into a soft constraints setting for performing multi-criteria op-
timisation include [8], [7] and [11]. [4] concentrated on algebraic representations
of bi-polar optimisation problems (where there are both positive and negative
evaluations), with a view to using soft constraint mechanisms to solve these
problems, and [12] looked at a general logic for soft constraints for partially
ordered preferences.

3 Extensions of Pareto

This section details some of the proposed and ongoing work in relation to multi-
criteria optimisation and soft constraints formalisms.

As described in Section 2.3, an alternative can be represented as a vector of
evaluations, for example, preference values, where each preference value in the
vector is given by a soft constraint associating a preference level to that solu-
tion. When comparing alternatives via their evaluation vectors, there are some
situations where it is not appropriate to use a method based on a synthesizing
criterion, i.e., a method in which the valuations of the m criteria for each al-
ternative are aggregated into one valuation which is placed on a scale that is
totally ordered. For example, where the preference degrees are ordinal, it is not
possible to use a summation of individual valuations for each criteria into one
overall valuation. Also, it could be the case that there are a number of sources of
the constraints, e.g., from different experts, and comparing these vectors using
a summation or some other simple aggregation operator, is not always desirable
as the different experts may have different ways of using their scales. This can
be modelled as having a criterion corresponding to each expert, and a way of
comparing each vector or alternative over the criteria.

A standard ordering applied to compare the evaluation vectors is based on
Pareto dominance �P (or Pareto optimality), where one evaluation vector is
preferred to another if it is preferred in all individual criteria, i.e., for some
α, β ∈ A, α �P β if and only if α1 ≥ β1, α2 ≥ β2, . . . , αm ≥ βm. This results
in a partial order, as some comparisons of evaluation vectors will not result in
one vector dominating another according to Pareto optimality, and due to this
the Pareto ordering is very weak. Other approaches such as a fuzzy compari-
son [10] of alternatives attribute great, sometimes excessive, importance to the
worst valuation in a vector. The proposed work will include the investigation
of approaches and methods that will result in ordering of preferences that are
stronger than the ordering induced by Pareto dominance and will take into ac-
count situations where aggregation into one valuation is not desired.

Sorted Pareto

An example of an ordering stronger than the Pareto ordering is the sorted Pareto
ordering, which involves sorting each vector of valuations and then applying
the Pareto ordering to the sorted vector. The sorted-permutation of a vector

94



α = (α1, α2, . . . , αn) ∈ A is αS = (α(1), α(2), . . . , α(m)) such that α(1) ≥ α(2) ≥
. . . ≥ α(m). For all α, β ∈ A, vector α sorted-Pareto dominates vector β (written
as α %S β), if and only if αS �P βS , i.e., the sorted-permutation αS of α Pareto
dominates the sorted-permutation βS of β. Some properties of this sorted Pareto
ordering are proposed as follows:

Proposition 1. %S is transitive, i.e., ∀α, β, γ ∈ A, if α %S β and β %S γ, then
α %S γ.

Proposition 2. %S extends the Pareto ordering, i.e., ∀α, β ∈ A, if α �P β,
then α %S β.

The sorted Pareto ordering can be given a semantics in terms of utility func-
tions. Define a compatible utility function U to be a real-valued monotonic func-
tion on the ordered set of preference degrees. For alternative α we define U(α)
to be

∑n
i=1 U(αi). It can be shown that α %S β holds if and only if for all

compatible utility functions, U(α) ≥ U(β). Stronger ordering relations can then
be generated by placing extra constraints on the compatible utility functions.

Other orderings that will be considered and investigated include the maximin
approach [3], discrimin ordering [5], and various lexicographical orderings [9].

Properties of Soft Constraint Systems

We will analyse various natural properties of the soft constraint systems. One
such property, monotonicity, concerns the relationship between the preference
ordering and a combination operator. For an order relation � on set A, the
combination operator ⊗ is monotonic over � if the combination preserves the
given order, i.e., if and only if ∀a, b, c,∈ A, a � b ⇒ a⊗c � b⊗c. The proposed
work will include the investigation of monotonicity of different soft constraint
combination operators —such as multiset union and pointwise +,×,max,min
—over different partial order relations with a view to evaluating alternatives.

Optimisation

A further consideration for multi-criteria optimisation in soft constraints is the
generation of optimal solutions in an efficient manner. To find an optimal solution
in an optimisation problem usually involves a branch-and-bound tree search,
where at each node of the tree, some form of propagation is used to generate
upper bound information which is used to prune the tree during the search. Both
[13] and [7] looked at a branch-and-bound search for soft constraints problems
where the preferences are partially ordered. The proposed work includes further
investigation on the techniques described in [13] for branch-and-bound search,
specifically using a mini-buckets approach to establish suitable bounds which
can then be used at search nodes in the tree to provide efficient pruning of the
search space.

95



4 Conclusion

In this paper we introduced some concepts from multi-criteria decision making,
and discussed relationships with soft constraints formalisms. We introduced some
proposed and ongoing work in relation to strengthening partial orders such as
the Pareto order, and developing these in a soft constraints setting.

Acknowledgements. This material is based upon works supported by the
Science Foundation Ireland under Grant No. 08/PI/I1912.

References

1. Bistarelli, S., Gadducci, F., Larrosa, J., Rollon, E.: A soft approach to multi-
objective optimization. In: de la Banda, M.G., Pontelli, E. (eds.) ICLP. Lecture
Notes in Computer Science, vol. 5366, pp. 764–768. Springer (2008)

2. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and
optimization. Journal of the ACM 44, 201–236 (1997)

3. Dubois, D., Fargier, H., Prade, H.: Refinements of the maximin approach to
decision-making in a fuzzy environment. Fuzzy Sets and Systems 81(1), 103 –
122 (1996)

4. Fargier, H., Wilson, N.: Algebraic structures for bipolar constraint-based reasoning.
In: ECSQARU ’07: Proceedings of the 9th European Conference on Symbolic and
Quantitative Approaches to Reasoning with Uncertainty. pp. 623–634. Springer-
Verlag, Berlin, Heidelberg (2007)

5. Fargier, H., Wilson, N.: Local computation schemes with partially ordered pref-
erences. In: ECSQARU ’09: Proceedings of the 10th European Conference on
Symbolic and Quantitative Approaches to Reasoning with Uncertainty. pp. 34–
45. Springer-Verlag, Berlin, Heidelberg (2009)

6. Figueira, J., Greco, S., Ehrgott, M.: Multiple Criteria Decision Analysis: State of
the Art Surveys. Springer Verlag, Boston, Dordrecht, London (2005)

7. Gavanelli, M.: An implementation of Pareto optimality in CLP(FD). In: Jussien,
N., Laburthe, F. (eds.) CP-AI-OR - International Workshop on Integration of AI
and OR techniques in Constraint Programming for Combinatorial Optimisation
Problems. pp. 49–64 (2002)

8. Huédé, F., Grabisch, M., Labreuche, C., Savéant, P.: Integration and propagation
of a multi-criteria decision making model in constraint programming. Journal of
Heuristics 12(4-5), 329–346 (2006)

9. Junker, U.: Preference-based search and multi-criteria optimization. Annals of Op-
erations Research 130, 75–115 (2004)

10. Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming (Foun-
dations of Artificial Intelligence). Elsevier Science Inc., New York, NY, USA (2006)

11. Torrens, M., Faltings, B.: Using soft CSP’s for approximating pareto-optimal so-
lution sets. In: AAAI Workshop Proceedings Preferences in AI and CP: Symbolic
Approaches. AAAI Press (2002)

12. Wilson, N.: A logic of soft constraints based on partially ordered preferences. Jour-
nal of Heuristics 12(4-5), 241–262 (2006)

13. Wilson, N., Fargier, H.: Branch-and-bound for soft constraints based on partially
ordered degrees of preference. In: Proc. ECAI-08 Workshop on Inference methods
based on graphical structures of knowledge (WIGSK08) (2008)

96



Efficient Load Balancing in Distributed
Branch and Bound for Weighted CSPs

Student: Lars Otten and Advisor: Rina Dechter

Bren School of Information and Computer Sciences
University of California, Irvine

{lotten,dechter}@ics.uci.edu

Abstract. We have developed a strategy for grid parallelization of a state-of-the-
art Branch and Bound algorithm for weighted CSPs and related tasks: indepen-
dent worker nodes concurrently solve subproblems, managed by a Branch and
Bound master process. Efficient load distribution is key to good parallel perfor-
mance and we propose a scheme that uses the problem cost functions and learns
from past results to predict and balance subproblem complexity. Experimental re-
sults on up to 20 nodes yield very promising results and suggest the effectiveness
of the scheme. The system runs on commodity hardware, simplifying deployment
on a larger scale in the future.

1 Introduction

Our work explores parallelization of combinatorial optimization tasks over graphical
models (e.g., weighted CSPs, Belief Networks). Specifically, we consider one of the
best exact search algorithms for solving these problems, AND/OR Branch and Bound
(AOBB), which exploits independencies and unifiable subproblems and has demon-
strated superior performance [1].

To parallelize AOBB we adapt the established concept of parallel tree search [2]:
the search space of partial instantiations is explored centrally up to a certain depth and
the remaining conditioned subproblems are solved in parallel. Our approach assumes
the most general master-worker scenario with only minimal inter-node communication
and can hence be deployed on a multitude of parallel setups spanning large numbers
of heterogenous computers. This concept has already proven successful for likelihood
computations in the Superlink-Online system [3], which performs distributed genetic
linkage analysis on thousands of computers worldwide.

The novelty in our work is in focusing on optimization and in exploiting problem
decomposition for additional parallelism through the AND/OR paradigm. We use the
power of Branch and Bound in a central search space that manages (and prunes) the set
of conditioned subproblems. The central difference compared to likelihood computa-
tion, however, lies in two key aspects:(1) Avoid redundancies due to compromised
caching of unifiable subproblems across the independently solved subproblems.(2)
Maintainload balancing among the grid resources, dividing the total work equally and
without major idling periods. Redundancies are critical in theory, but in empirical eval-
uations their practical impact has proven to be relatively small [4].

97



Balancing the subproblem loads, on the other hand, is a far greater challenge in the
context of optimization problems, because the cost functions are used in pruning the
search space. Capturing this aspect is thus the current focus of our work; we propose an
estimation scheme that predicts the size of subproblems based on the problem cost func-
tions and learns from previous subproblems to predict the extent of BaB pruning. Initial
experiments yield very good results on several very hard practical problem instances.
And while our current empirical work is limited to 20 machines, we demonstrate some
promising scaling potential.
Related work. Parallel search schemes commonly assume a shared-memory archi-
tecture or extensive inter-process communication [2, 5, 6], in contrast to our minimal
communication assumptions. Early results on estimating search complexity go back to
[7] and more recently [8], which predict the size of general backtrack trees through
random probing. Similar schemes were devised for Branch and Bound algorithms [9],
where BaB is ran for a limited time and the partially explored tree is extrapolated. Our
method on the other hand, is not sampling-based but only uses parameters available a
priori and information learned from past subproblems.

2 Background
We assume the usual definitions of a graphical model as a set of cost functions over dis-
crete variables; in a weighted constraint problem, for instance, we aim to find an assign-
ment of minimal overall cost. The concept ofAND/OR search spaces provides a uni-
fying framework for algorithmic schemes to capture the underlying problem structure.
In particular, AND nodes are introduced into the search space to capture conditional
independencies between variables. Furthermore, caching is applied to unifiable sub-
problems, thereby avoiding redundant computations at the expense of using additional
memory. The complexity of AND/OR graph search has been shown to be time and
space exponential in the problem’s induced width [10]. We can also extend the estab-
lished Branch and Bound algorithm to the AND/OR paradigm; the resultingAND/OR
Branch and Bound (AOBB) enjoys the same improved complexities [1].

2.1 Parallel Setup
In our parallelization approach we assume a very general parallel framework in which
autonomous hosts are loosely connected over some network – in our case we use ten
dual-core desktop computers, with CPU speeds between 2.33 and 3.0 GHz, on a local
Ethernet, thus allowing experiments with up to 20 parallel nodes. We impose amaster-
worker hierarchy on the computers in the network, where a designatedmaster node
runs a central process to coordinate theworkers, which cannot communicate with each
other. This general model is chosen to accommodate a wide range of parallel resources,
where direct node communication is often either prohibitively slow or entirely impos-
sible; it also facilitates flexible deployment on geographically dispersed, heterogenous
resources in the future, similar to Superlink-Online mentioned above [3].

2.2 Outline of Parallel Scheme
The master process implements the basic exploration and propagation of a Bround and
Bound procedure. Before expanding a noden , however, the complexity of the subprob-
lem belown is estimated. If this estimate is below a certain thresholdT , the central

98



(a) (b) (c)

Fig. 1: (a) Example primal graph with 6 variables, (b) a corresponding AND/OR search
graph, (c) the parallel search space with parallelization frontier at constant depth 2.

search is “cut off” and the subproblem is sent to a worker node for solving; otherwise
n is expanded within the master and its children will be considered recursively. Worker
nodes solve subproblems using sequential AOBB and send the solution back to the mas-
ter, where it is processed: upon receipt of a solved subproblem, its solution is assigned
to the respective node in the master search space and recursively propagated upwards
as in sequential AOBB. With a fixed number of workersp, the master initially gener-
ates only the first p subproblems; each time a worker finishes the central exploration is
resumed to generate the next subproblem. For more details and pseudo code see [4].

To illustrate this principle, consider Figure 1: (b) shows an AND/OR search graph
for the primal graph in (a) – note the decomposition below nodesC andE, as well
as the caching forD andF . (c) depicts the parallel search space when the cutoff is at
constant depth 2, with the master search space in grey and 8 independent subproblems
(cf. [4] for an in-depth discussion of the introduced redundancies).

In practice we need an efficient scheme to make the cutoff decisions and set the
parallelization frontier; the master should dynamically decide at which point a given
subproblem is “simple enough” for parallelization (to avoid excessively hard tasks) and
also avoid very simple subproblems, where solution time will be outweighed by the
distributed system overhead. We present our current solution next.

3 Subproblem Estimation

In the following we outline a scheme for estimating the size of the explored search
space of a conditioned subproblem, using parameters associated with the problem’s
cost functions. Namely, given a subproblemPn rooted at noden , we aim to estimate
its complexityN(n) as a function of the lower boundL(n) on the optimal subproblem
solution (obtained from a suitable heuristic function) as well as the upper boundU(n) ,
which can be derived from earlier parts of the search space.

If the search space belown was a balanced tree of heightD with branching factor
b , the total number of nodes is clearlyN = (bD+1−1)/(b−1) ≈ bD . But even in that
case AOBB will only explore parts of this due to pruning. Yet it gives rise to the notion
of the effective branching factor b(n) (similar to [11]) andaverage leaf node depth
D(n) : in post-solution analysis,N(n) is known andD(n) can simply be extracted
from the solved subproblem search space. We can can then defineb(n) as the solution to
N(n) = b(n)D(n). Consequentally, we could estimateN(n) ahead of time if we knew

99



b(n) andD(n). Our prediction scheme will therefore first calculate estimates forb(n)
andD(n), based on subproblem parameters and by learning from past subproblems,
and use those to predictN(n).

Estimating b(n) . Since all subproblems are conditioned within the same graphical
models, we assume an underlying, “true” effective branching factorb. This suggests
modelingb(n) as a random variable; imposing a normal distribution we take its mean as
the constantb. An obvious way to learnb is then to average over the effective branching
factors of previous subproblemsPni

, whereb(ni) can be computed in post-solution
analysis as before.

Estimating D(n) . We will not estimate the average leaf depth directly, but instead
reason about its dependence on the subproblem bounds. Recall that a subproblem rooted
at noden has a (heuristic) lower boundL(n) and an upper boundU(n) derived from
the best solution so far. We knowL(n) < U(n), since otherwisen would be pruned.
We denote withlb(n′) andub(n′) the lower and upper bounds of nodesn′ within the
subproblem at the time of their expansion and similarly assertlb(n′) < ub(n′) .

Consider now a single pathπk = (n′

0, . . . , n
′

k) within the subproblem, fromn′

0 = n
down to leaf noden′

k = lk at depthdn(lk) = k (relative ton). Writing lbi := lb(n′

i)
andubi := ub(n′

i) we can statelbi ≤ lbi−1 (assuming a monotonic heuristic) and
ubi ≤ ubi−1 (because the lower bound can only improve) for alli . A noden′

i is pruned
iff lbi ≥ ubi or equivalentlylbi − ubi ≥ 0. Hence we consider the non-increasing
sequence(ubi − lbi) alongπk , in particular its average change:

inc(πk) :=
1

dn(lk)

dn(lk)∑

i=1

((ubi − lbi)− (ubi−1 − lbi−1)) (1)

Sincelk is a leaf we takeub(lk) − lb(lk) = 0 and the sum reduces toU(n) − L(n) .
Rewriting Equation 1 fordn(lk) and averaging over all subproblem pathsπk, 1 ≤ k ≤

j yields an expression for the average leaf node depth asD(n) = (U(n)− L(n)) ·
1
j

∑j
k=1

1
inc(πk)

. Define inc(n)−1 := 1
j

∑j
k=1

1
inc(πk)

to obtainD(n) = (U(n) −

L(n)) · inc(n)−1 . Now inc(n) , thesubproblem average increment, can be computed
directly in post-solution analysis whenD(n) is known.

As before we assume an underlying, “true” incrementinc coinciding with the mean
of the random variableinc(n). For a new subproblemn we thus average overinc(ni) of
previously solved subproblemsPni

and estimateD(n) as(U(n)−L(n)) divided by this
average. Together with an estimate forbr(n) , equally derived from earlier subproblems
as outlined above, we can then predictN(n) .

Initialization. To find initial estimates forbr andinc we run 15 sec of sequential search
and extract the valuesbr(n0) andinc(n0) from the largest solved subproblemn0 . To
obtain an initial upper bound we perform one iteration of stochastic local search [12].

4 Empirical Evaluation

Table 1 presents results of experiments on pedigree networks and mastermind game
instances,1 using the estimation scheme with a threshold ofT = 12 · 108 nodes (≈20

1 Available as part of the the UAI’08 evaluation, http://graphmod.ics.uci.edu/uai08/

100



Table 1: Results of the automated parallel scheme (ped:p=15, mm:p=10 workers).
instance S S/sls P/fix∗ P/aut instance S S/sls P/fix∗ P/aut

ped7 19,114 19,309 3,352 2,783 ped31 77,580 37,844 15,230 3,910
ped13 2,752 2,796 379 359 ped41 14,643 13,999 2,173 2,251
ped19 time time 27,372 10,611 ped51 time time 65,818 59,915
mm 03 08 05-0011 9,715 2,943 1,443 1,085 mm 10 08 03-0000 26,102 9,876 3,866 7,604
mm 03 08 05-0012 7,568 2,030 1,430 1,584 mm 10 08 03-0011 84,920 39,761 10,044 6,846
mm 04 08 04-0000 10,620 7,807 1,306 3,076 mm 10 08 03-0012 5,630 2,489 1,357 754
mm 06 08 03-0000 12,595 259 1,797 228 mm 10 08 03-0013 10,385 5,337 2,413 2,128

minutes of processing time), a good compromise between subproblem granularity and
parallelization overhead.S is the time of sequential AOBB andS/sls the time of AOBB
with SLS initialization;P/fix∗ is the best parallel result of various fixed-depth cutoff
experiments from [4]. Finally,P/aut is the parallel time using the estimation scheme.

For pedigrees the automated scheme does at least as good, if not better, than the best
fixed cutoff (it is important to realize that the latter is the best result over trying several
fixed depths, whileP/aut requires no such “trial and error”). We also see that the SLS
initialization can have a big impact on the sequential solutions times already, which
the automated scheme will equally benefit from. But even for problems whereS ≈

S/sls (ped7, e.g.), the automated scheme improves upon the best fixed-depth scheme.
In case of mastermind problems, the SLS preprocessing generally has a larger impact.
But again, in many cases the automated scheme performs at least as well as the best
fixed cutoff. When it does worse (mm04 08 04 for instance) our analysis showed that
the initial parameters for the subproblem prediction were too far off – we are confident
an improved initialization would alleviate this.

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 1e+12

 0  10  20  30  40  50  60  70
 0

 2

 4

 6

 8

 10

 12

 14

 16

N
od

es
 g

en
er

at
ed

 w
ith

in
 s

ub
pr

ob
le

m

S
ub

pr
ob

le
m

 c
ut

of
f d

ep
th

Subproblem index

actual number
estimate

cutoff depth
threshold

Fig. 2: Subproblem statistics for ped51.

Load Balancing. Figure 2 gives de-
tailed subproblem statistics for the
first 75 subproblem generated for
ped51 (other instances exhibit sim-
ilar characteristics and had to be
omitted here for space reasons).
Plotted is the predicted and actual
number of nodes as well as the (con-
stant) thresholdT . The cutoff depth
of each subproblem’s root is de-
picted against a separate scale to the
right. We see that the prediction does
not give perfect estimates (which was expected), but it reliably captures the trend. Con-
sequently the actual subproblem complexities are all within roughly one order of mag-
nitude of each other – significantly more balanced than the fixed-depth results [4].
Scaling. At this time we only have limited resources at our disposal and experimen-
tation is limited to at most 20 worker nodes, yet we wanted to get a feeling of how
the scheme scales with the number of workers. Figure 3 plots the relative speedup in
relation top = 5 workers. We can confirm that mostly the results are as expected, of-
ten improving linearly withp. It is evident that relatively complex problem instances
(ped51 in particular) profit more from increasingp ; for simpler instances we think the
thresholdT is too close to the overall problem complexity and inhibits better scaling.

101



5 Conclusion & Future Work

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5  10  15  20

S
pe

ed
up

 v
s.

 5
 w

or
ke

rs

Number of workers p

ped51
ped31
ped7

ped19
ped41
ped13

Fig. 3: Performance relative
to p = 5 workers.

We presented a new scheme for parallelization of
AND/OR Branch and Bound, a state-of-the-art optimiza-
tion algorithms for graphical models. Based on a very
general framework, our approach is viable on many kinds
of parallel resources, in particular a loosely coupled
group of commodity hardware.

Our experiments have shown that effective load bal-
ancing is crucial for good parallel performance. We thus
derived a scheme that learns from previously solved sub-
problems to predict subproblem complexity using an ex-
ponential expression of several parameters, including the
problem cost functions. We demonstrated empirically the
effectiveness of the resulting parallelization strategy, leading to consistent workload
balancing and improved solutions times on very hard problems.

This is clearly work in progress and the initial scheme, while effective, still includes
some ad hoc aspects. We aim to advance it by taking into account additional parameters
and by providing firm theoretical grounds. Future work will also more thoroughly inves-
tigate the issue of scaling, using more resources. Finally, we need to conduct additional
experiments on hard problems from various domains.

References

1. Marinescu, R., Dechter, R.: AND/OR Branch-and-Bound search for combinatorial optimiza-
tion in graphical models. Artif. Intell.173(16-17) (2009) 1457–1491

2. Grama, A., Kumar, V.: State of the art in parallel search techniques for discrete optimization
problems. IEEE Trans. Knowl. Data Eng.11(1) (1999) 28–35

3. Silberstein, M., Tzemach, A., Dovgolevsky, N., Fishelson, M., Schuster, A., Geiger, D.: On-
line system for faster multipoint linkage analysis via parallel execution on thousands of per-
sonal computers. American Journal of Human Genetics78(6) (2006) 922–935

4. Otten, L., Dechter, R.: Towards parallel search for optimization in graphical models. In:
ISAIM. (2010)

5. Anstreicher, K., Brixius, N., Goux, J.P., Linderoth, J.: Solving large quadratic assignment
problems on computational grids. Mathematical Programming91(3) (2002) 563–588

6. Chu, G., Schulte, C., Stuckey, P.J.: Confidence-based work stealing in parallel constraint
programming. In Gent, I., ed.: CP. Volume 5732 of Lecture Notes in Computer Science.,
Lisbon, Portugal, Springer-Verlag (September 2009) 226–241

7. Knuth, D.E.: Estimating the efficiency of backtrack programs. Mathematics of Computation
29(129) (1975) 121–136

8. Kilby, P., Slaney, J., Thiébaux, S., Walsh, T.: Estimating search tree size. In: AAAI, AAAI
Press (2006) 1014–1019

9. Cornúejols, G., Karamanov, M., Li, Y.: Early estimates of the size of branch-and-bound
trees. INFORMS Journal on Computing18(1) (2006) 86–96

10. Dechter, R., Mateescu, R.: AND/OR search spaces for graphical models. Artif. Intell.171(2-
3) (2007) 73–106

11. Nilsson, N.J.: Artificial Intelligence: A New Synthesis. Morgan Kaufmann (1998)
12. Hutter, F., Hoos, H.H., Stützle, T.: Efficient stochastic local search for MPE solving. In:

IJCAI. (2005) 169–174

102



Using Abstract Domains in Constraint
Programming

Marie Pelleau† (student), Frédéric Benhamou†, Pascal Van Hentenryck‡, and
Charlotte Truchet†

† Université de Nantes ‡ Brown University
2 rue de la Houssinère 115 Waterman Street
44322 Nantes cedex 3 Providence, RI 02912

France USA
Firstname.Name@univ-nantes.fr pvh@cs.brown.edu

Abstract. In semantics, Abstract Interpretation is a domain where a
lot of research has been done on abstract domains, which allow the rep-
resentation and manipulation in a common framework of variables of
different nature (floating points, integers in particular). We investigate
the possible use of abstract domains in Constraint Programming (CP),
where we believe it could help and improve constraint techniques on two
points: firstly, abstract domains are naturally able to mix variables of
different nature (discrete, continuous), while in CP the techniques used
on discrete and continuous problems differ significantly. Secondly, ab-
stract domains can be of any shape, while CP domains are restricted
to Cartesian products. We test the abstract domains for constraints by
defining a consistency on octagons for continuous CSPs.

1 Introduction

The goal of this PhD is to design techniques in Constraint Programming (CP) to
solve problems with discrete and continuous variables. In CP, methods already
exist to solve problems over discrete or continuous variables. In particular, most
of the techniques proposed to solve problems with real variables are based on
interval arithmetic. The intervals’ lack of precision may generate overestimations
of the solutions (e.g. when there are several occurrences of the same variable,
when the constraints are not linear, . . . ). Several methods have been proposed to
reduce this overestimation using estimators for nonlinear constraints [4], using
safe relaxation of quadratic constraints [9], or more recently using the mono-
tonicity of the constraints [1].

Instead of trying to improve the interval-based methods we decided to in-
vestigate the possible use in CP of abstract domains of Abstract Interpretation
(AI). This short paper presents some ideas to integrate the abstract domains in
CP. The next section shortly introduces AI and useful notions. Section 3 presents
some of the ideas to integrate abstract domains in CP. Section 4 presents the
tests and the results obtained so far.

103



2 Abstract Interpretation

It is a well known fact that the correctness of programs cannot be generically
proven. To automatically analyze a code and prevent the bugs at compiling time,
AI approximates the program’s possible traces. If the intersection between the
approximated semantic and some dangerous zones is empty, we know that the
program has no bugs. Of course, false positives can occur, the process can raise
alarms while there are no bugs. We present here very briefly and intuitively some
basic notions of AI. For a more complete presentation, see [5].

Useful notions for CP. Consider for example a program, in an imperative lan-
guage, checked for division-by-zero and overflow errors. Clearly, these two errors
occur when some variables take their values in particular zones. The goal is thus
to define an over-approximation of the program’s semantics, and check that this
over-approximation is out of the dangerous zones.

The main principle is to focus on the values taken by the variables. These val-
ues change along the program, and form a trace that is called concrete semantic.
They are replaced by an over-approximation of the possible values, called ab-
stract domains. The theoretical tool behind this is the notion of lattice: a relation
v on a non-empty set E is a partial order (po) iff it is reflexive, antisymmetric
and transitive. A po (E,v) is a lattice iff for a, b ∈ E, the pair {a, b} has both
a least upper bound and a greatest lower bound. It is complete iff any set has a
least upper bound.

A complete lattice has a least element and a greatest element. Abstract do-
mains are imposed to be lattices or complete partial orders (cpo), so that the
iterative chains defined by the loop construction converge. Another important
feature of AI is that abstract domains are linked by Galois connections: given
two abstract domains D1 and D2, a Galois connection is defined by two mor-
phisms α : D1 → D2 and γ : D2 → D1 such that α and γ are monotonic,
and composing α and γ does not lose solutions. Formal definitions are given for
instance in Miné’s PhD thesis [10].

The links with CP are obvious: in CP, Cartesian products of the domains
form a complete (even finite) poset and the consistent domains can be seen as the
least fixpoint of this cpo, restricted to the elements containing the solutions. This
fact has already been identified by [2] for instance. Yet, there is an important
difference: CP computes the least fixpoint while AI computes, most of the time,
a fixpoint in the abstract domains, and this is done in one shot by applying ad
hoc operators. Hence, the fixpoint is overestimated. It is worth mentioning that
in particular cases, the loop process can be iterated, performing so-called local
iterations [8]. This is closer to the consistency computation in CP.

Numerical abstract domains. There exist many numerical abstract domains
which differ in expressiveness and computational complexity. They can be clas-
sified in three groups: the non-relational ones (e.g. Intervals), the relational ones
(e.g. Polyhedra, Ellipsoids) and the “in between” called the weakly relational
ones (e.g. Zones). All of them (except Ellipsoids) come with Galois connections.

104



In practice, AI researchers show that non-relational domains (as the Carte-
sian products used in CP) are very fast but can generate overestimation due
to their lack of precision. In contrast, the relational ones are very precise but
are very costly in term of computational time. In between there are the weakly
relational ones which give a compromise in terms of precision and computa-
tional time. For a state of the art on numerical abstract domains, with all the
comparisons, see Antoine Miné’s PhD thesis [10].

3 Abstract domains for CP

We explain here possible ways of integrating abstract domains in the CP frame-
work. As said before, although the applications differ significantly, the theoretical
tools are very similar. In particular, we are interested in two important prop-
erties of the AI tools: they naturally mix different abstract domains, and any
kind of abstract domain can be defined (provided they satisfy the theory). In
particular, abstract domains are not restricted to Cartesian products of intervals
or finite sets, as it is the case in CP.

Abstract domains and consistency. The link between consistency and fix-
points on cpo is not a new idea in CP. For instance, Benhamou [2] gives a generic
definition of consistency as the least fixpoint of a particular set (any set of sub-
sets of the domains including the solutions, provided it is closed by intersection),
and proposes a unified framework for heterogeneous constraint solving.

Consider a CSP on domains D1...Dn (integers or reals). Consider E a set of
subsets ofD1...Dn, closed by intersection (always true for the usual CP domains).
The elements of E that include the solutions form a cpo for inclusion, and
consistency for a constraint C can be defined as the least fixpoint of this cpo.
Existence and unicity are easily checked thanks to the cpo structure of (E,⊂).
It is worth noticing that this definition is not restricted to Cartesian products.

In fact, some of the consistencies defined on continuous and discrete domains
have the same definition when abstracting the underlying cpo. We give the ex-
ample of discrete Bound consistency and continuous Hull consistency.

Let " be the Cartesian product, F be the set of floating point numbers ac-
cording to the norm IEEE 754 [7], BN = "a,b∈NJa, bK be the set of Cartesian
products of integer intervals with integer bounds, and BR = "a,b∈F[a, b] be the
set of Cartesian products of real intervals with floating point bounds. For sim-
plicity, in the following we will call any element of BN or BR a box. Consider a
constraint C that can hold either on discrete or continuous variables, and define
BN|C as the elements of BN that include the solutions of C (resp. BR|C , BR).
BN|C and BR|C being both cpos, they have least elements for inclusion. This

box is the Cartesian product of the consistent domains, with respect to Hull
consistency for BR and Bound consistency for BN. Between Hull and Bound,
only the underlying intervals are changed (on N or F).

We are currently investigating the idea of using this unified framework to
solve problems with discrete and continuous variables. We could for instance de-

105



fine and compute different consistencies depending on the variable type, and mix
them in the same way as in AI with Galois Connections. We saw previously that
AI uses different sort of numerical abstract domains for which they have transfer
functions, an idea will be to change the representation each time a certain condi-
tion is satisfied. For example when a fixpoint is reached during the contraction,
changing for another representation may improve the approximation.

In fact, we can even explore new consistencies, for instance on more relational
domains. We chose to first study a new consistency for continuous CSPs (also
suitable for discrete CSPs, although probably very inefficient), with octagons as
the underlying domains. This is a test-case for a deeper exploration of the links
between AI and CP.

Improving the precision: weakly relational domains. Instead of trying to
improve the interval-based methods we decided to change for a more relational
representation like in AI. To begin with, we opted for a weakly relational one,
the octagon, and adapted it to continuous CSPs solving.

The idea is to use a more precise representation, hoping that there will be a
gain in time as the variable domains are better reduced. In other words, more
contraction and less splitting. Compared to other Cartesian abstract domains,
the intuition is that octagons are more precise than boxes (Hull consistency) and
less precise, but less costly, than unions of boxes (Box consistency).

This idea raises a lot of practical questions: what does it mean to contract
an abstract domain like an octagon? Can consistency techniques be used? How
to define the splitting part? Will it really reduce the computational time?

To try to answer these questions, we are first going to shortly introduce what
an octagon is. Then we will give an idea on how using to use in CP.

The Octagon abstract domain has been introduced by Antoine Miné in his
PhD thesis [10]. It is represented by conjunctions of constraints of the form
±X ± Y ≤ c where X and Y are variables and c is a constant in Z,Q or R.

Let V = {v1, . . . , vn} be the set of variables taking their value in the set
I that can be Z, Q, or R. We call octagonal constraint any constraint of the
form ±vi ± vj ≤ c with c ∈ I. An octagon is the conjunction of octagonal
constraints that can be stored in a matrix for instance. Note that in case there are
redundant octagonal constraints, we only keep the restrictive one by comparing
the c coefficients. Intersecting octagons induces a neglectable computational cost.

Adapting Octagons to continuous CP is quite straightforward at the theoretical
level. We just need to replace octagons defined on R (real elements, real bounds)
by octagons defined on the floating-point intervals (real elements, floating-point
bounds), which does not change the fundamental properties.

In practice, we need to define a consistency on octagons. In two dimensions,
an octagon can be seen as the intersection of two boxes, one in the original
basis and the other one in the basis obtained by rotating the first one by π

4 rad.
Note that the idea of rotating the basis has already be introduced by Alexandre

106



Goldsztejn et al. in [6] for other purposes. This rotation is cheap in terms of time,
we simply have to replace x by cos(π4 )x′− sin(π4 )y′ and y by cos(π4 )y′ +sin(π4 )x′,
where (x′, y′) are the coordinates in the new basis.

Suppose that we want to contract an octagon w.r.t. Hull consistency, say,
by applying HC4 (see [3] for details). We now have two sets of constraints C =
{C1...Cp} in the canonical basis and C′ = {C ′

1...C
′
p} in the new basis. Each

constraint has its own hull-consistent box, that can be computed using HC4,
as shown on figure 1. By the cpo structure, the consistent octagon is unique
and can be computed by applying intersection and HC4 on these boxes until
the fixpoint is reached (no matter the order). This allows us to easily adapt the
HC4 algorithm to octagons. Notice that the intersection can be done in linear
time, here the most expensive part in terms of complexity, is the HC4 part. In
dimension 2, we use it twice as much as for the Hull consistency on boxes.

However, for a problem in dimension n we can either apply the same strategy
and apply n rotations, one for each axis and keep the octagonal structure; or
apply only fewer rotations. In the second case the rotation can be guided by the
gradients to choose on which axis to rotate. The rotations still are of π

4 . The
output will no longer be an octagon but an octahedron.

original CSP

rotated CSP

C1 C2
. . .

. . .

. . .

Cp

Fig. 1. Scheme of the possible heuristics for octagonal propagation.

We can do the same to split an octagon, we can see it like two independent
problems and split either one or the other. As we do not want to do twice the
work, the reduction made on one CSP is reflected on the other by adding the
corresponding octagonal constraints.

4 Tests

We have started by implementing an HC4 version for octagons with Ibex1 a
library for interval-based solver/paver. We tested this first implementation on
three simple CSPs in dimension 2.

The figure 2 shows the results obtained. On the first two examples (2(a),
2(b)), we can see that the octagonal version of HC4 improves the result. For
the third example, the two versions found that the problem is unfeasible. The

1 http://www.ibex-lib.org/

107



octagonal version just needs one HC4 on the rotated CSP to prove it, while the
normal version needs a little more iterations. Even if the octagonal version of
HC4 has been tested on few simple examples it seems promising.

(a) (b) (c)

Fig. 2. Simple examples of octagon consistency. In solid line, the box obtained with
HC4, and in dashed line, the box obtained with the octagonal version of HC4.

5 Conclusion

This paper has presented two new ideas to solve problems with continuous vari-
ables using domains from Abstract Interpretation. We made the hypothesis that
different domains can be mixed depending on the variable’s type using a gen-
eral framework described previously by Benhamou. We also introduced a new
propagation technique which is an octagonal version of HC4. This work is still
in progress but the few tests made show encouraging results.

References

1. Ignacio Araya, Bertrand Neveu, and Gilles Trombettoni. An interval constraint
propagation algorithm exploiting monotonicity. In Proceedings of IntCP’09.

2. Frédéric Benhamou. Heterogeneous constraint solvings. In Proceedings of ALP’76.
3. Frédéric Benhamou, Frédéric Goualard, Laurent Granvilliers, and Jean-François

Puget. Revisiting hull and box consistency. In Proceedings of ICLP’99.
4. Glencora Borradaile and Pascal Van Hentenryck. Safe and tight linear estimators

for global optimization. Mathematical Programming, 102:495 – 517, 2005.
5. Patrick Cousot and Radia Cousot. Static determination of dynamic properties of

programs. In Proceedings of ISOP’76, pages 106–130, 1976.
6. Alexandre Goldsztejn and Laurent Granvilliers. A new framework for sharp and

efficient resolution of NCSP with manifolds of solutions. In Proceedings of CP’08.
7. David Goldberg. What every computer scientist should know about floating-point

arithmetic. ACM Comput. Surv., 23(1):5–48, 1991.
8. Philippe Granger. Improving the results of static analyses of programs by local

decreasing iterations. In Proceedings of FSTTCS’92.
9. Yahia Lebbah, Claude Michel, Michel Rueher, David Daney, and Jean pierre Mer-

let. Efficient and safe global constraints for handling numerical constraint systems.
SIAM Journal on Numerical Analysis, 42(5):2076–2097, 2004.

10. Antoine Miné. Weakly Relational Numerical Abstract Domains. PhD thesis, École
Normale Supérieure, December 2004.

108



Overview of thesis: Transformations of
representation in constraint satisfaction

András Z. Salamon1,2

1 Computing Laboratory, University of Oxford
2 Oxford-Man Institute of Quantitative Finance

I am currently completing my DPhil thesis at the University of Oxford. This
is a brief overview of the document.

1 Complexity of constraint satisfaction

Constraint programming shifts the challenge of solving problems away from con-
structing a special-purpose computer program, to clearly expressing the con-
straints that solutions should satisfy.

Constraint satisfaction is the mathematical study of the combinatorial deci-
sion problems that underlie constraint programming. The task in combinatorial
decision problems is to determine whether or not there is a solution that satisfies
all the requirements. This is called deciding the instance.

The complexity of constraint satisfaction is the study of infinite classes of con-
straint satisfaction problem instances. These infinite classes are called constraint
satisfaction problems or CSPs. Studying such infinite classes of CSP instances
provides insight into why individual instances may be easy or difficult to solve.

In general, constraint satisfaction problems are believed to be difficult to
decide. Many of them are NP-complete. An important question in the complexity
of constraint satisfaction is:

for which CSPs is there a method to decide every instance efficiently?

Example 1 (Planar Graph k-Colouring). Any map can be coloured with
four colours so that no two adjacent regions have the same colour. This colouring
can be found efficiently. In contrast, we know of no efficient method to tell
whether three colours are enough for a given map, and which works for every
kind of map.

When the constraints are provided by listing allowed combinations of values,
constraint satisfaction is NP-complete. Exhaustive search is the only general
algorithm known to decide such problems. For more compact representations of
constraints, such as by means of propagators, the decision problem can be even
more difficult.

On the other hand, some CSPs are straightforward to decide. Sometimes
all instances have properties that can be used to construct an efficient decision
procedure. The following two example CSPs are straightforward.

109



Example 2 (Directed Graph Acyclicity). An instance is a system of strict
inequalities with n variables. Each inequality involves two variables, so is of the
form X < Y . Is it possible to assign positive integers 1, 2, . . . , n to the n variables
so that all inequalities are satisfied? This problem has no solution when there is
some cycle of inequalities involving at least two variables, of the form X1 < X2,
X2 < X3, . . . , Xk−1 < Xk, Xk < X1. Every other instance has at least one
solution. If every pair of variables appears in some inequality, the instance has
at most one solution.

Example 3 (Victorian Letters). Given is an alphabet with k letters, in as-
cending order (for English, k = 26). Call a letter Victorian if the way it is usually
depicted contains a straight line, and two straight lines only ever meet at right
angles. (Letters BDEFGHIJLPRTU are Victorian in the English alphabet.) In-
terleave the two alphabetic sequences of Victorian and non-Victorian letters, so
that Victorian letters are never neighbours.

There are two solutions for the English alphabet:
BADCEKFMGNHOIQJSLVPWRXTYUZ and
ABCDKEMFNGOHQISJVLWPXRYTZU.

If the number of Victorian letters in the alphabet exceeds (k + 1)/2 then there
are no solutions; exactly (k +1)/2 Victorian letters guarantees a unique solution
(this can only happen when k is odd); and at most k/2 Victorian letters gives
rise to at least two solutions.

If the instances of the constraint satisfaction problem are restricted in some
way, the problem often becomes easier. Two main kinds of restriction have been
studied. The first is to restrict the structure, the way that the constraint vari-
ables interact. If the interactions can be rearranged so that they are close to
being hierarchical, then solutions can be computed efficiently using a divide-
and-conquer approach. Example 3 has this kind of structure, as there are only
interactions between adjacent pairs of letters. The second kind of restriction is
to limit the language, the types of constraints that can be used to express a
problem instance. When the language allowed for expressing constraints has a
highly regular algebraic structure, it becomes possible to exploit this structure
to compute solutions efficiently. Example 2 has a restricted language, as it can
be expressed using a single kind of constraint, inequality between integers.

Essentially all structural and language restrictions have been found which
give rise to problems that are of practical interest and that can be solved ef-
ficiently. It is believed that the other cases cannot be solved efficiently [4,8].
Attempts to unify the language restrictions that lead to classes that can be
solved efficiently is an area of active investigation in universal algebra. This in-
volves links to open questions about algebras with cyclic terms [2]. The frontier
of structural restrictions that guarantee efficient solutions also involves links to
open questions, this time in computational complexity [12].

Yet many constraint satisfaction problems cannot be expressed using purely
structural or purely language restrictions. One of the most common constraints
requires the solution to consist of values that are all different from each other.

110



Such all-different constraints are the basic building blocks of scheduling prob-
lems, of puzzles such as Futoshiki, and for expressing many kinds of mathemati-
cal objects. The all-different constraint cannot be expressed purely in terms of a
language restriction, as its constraint language can express any other constraint
with the right interaction of constraint variables. The all-different constraint also
cannot be expressed purely in terms of a structural restriction, as it allows po-
tentially every variable in the instance to interact with every other. The special
interaction between structure and language in the all-different constraint is what
makes this constraint amenable to practical algorithms, and therefore requires a
restriction combining both structure and language at the same time.

In my thesis I initiate a systematic study of CSPs which are defined in terms
of some combination of structure and language. I focus on those CSPs where
restricting just the structure cannot describe the class of instances, and nor can
restricting just the language. Such CSPs require hybrid descriptions, combining
restrictions on structure as well as language. I consider CSPs with constraints
that may involve arbitrarily many variables, with no restriction on the number
of constraints allowed in a problem instance, and where the structure is not
necessarily hierarchical.

In this setting, existing results on when a CSP can be decided efficiently do
not apply directly. As the techniques for purely structural and purely language
restrictions have taken over a decade to be resolved, I am proposing some initial
ideas on how to study CSPs with hybrid descriptions. An important thread is
transforming the representation of a CSP, while ensuring that the new represen-
tation falls into a class that is already well understood. In this way, many pre-
viously understood results can be unified, and some new results can be derived,
to obtain useful information about classes of CSPs with hybrid descriptions.

2 Examples of constraint satisfaction problems

A constraint satisfaction problem instance informally consists of a set of vari-
ables for which we wish to assign values, so that a given set of constraints is
satisfied. The constraints specify which combinations of values may be assigned
to specific groups of variables, and which combinations may not be assigned.

Example 4 (All-different). Suppose u1, u2, . . . , un are n variables and that
for each i = 1, 2, . . . , n, the variable ui has a value from set Di. An All-
different constraint on u1, u2, . . . , un is satisfied if it is possible to assign
values ai ∈ Di to ui (for each i = 1, 2, . . . , n), so that the values are pairwise
different.

Example 5 (Futoshiki). Futoshiki is the common name for a type of logic puz-
zle. Given is a grid of n by n squares (typically n = 5 or n = 7). Each square
takes a value from {1, 2, . . . , n}, and there is an All-different constraint on
each row and column. Further, < constraints are imposed between some adjacent
squares in the grid, and some of the squares may be filled in.

111



An instance of Futoshiki is illustrated in Figure 1. (This one is reasonably
difficult to solve for many humans.)

>

>

>

>

<

<

>

< < >

<

3 2

Fig. 1. An instance of Futoshiki.

Although I have illustrated a particular instance of Futoshiki, note that the
decision problem Futoshiki allows arbitrarily large grids. This provides an in-
finite class of instances.

3 Contributions

Having explained some of the background, I now briefly describe the main con-
tributions of my thesis. The descriptions assume familiarity with the theory of
constraint satisfaction, and some technical terms are left undefined here.

The thesis makes extensive use of the microstructure of a CSP instance [7,11].
The microstructure contains in a single structure all allowed combinations of
assignments of values to variables as specified in the instance. The microstruc-
ture complement contains all partial assignments explicitly disallowed by the
constraints specified in the instance. Because the microstructure representation
considers the structure and the language of an instance in a unified structure, it
turns out to be helpful in the analysis of problems that have efficient algorithms
for hybrid reasons.

Perfect microstructure unifies results I show that several classes of CSPs for
which efficient algorithms were known, can be unified as having microstructures
that are perfect graphs. This provides a surprising way to unify several quite dis-
parate classes: constraint networks that form a tree, CSPs which have chordal

112



microstructures or microstructure complements, and the All-different con-
straint together with domain pruning. Each such CSP instance can be solved by
applying the polynomial-time algorithm to find maximum independent sets in
their perfect microstructure complements [9]. The All-different constraint is
truly hybrid: the existence of efficient algorithms cannot be explained by either
purely structural or purely language results [13]. I published this work with my
supervisor Peter Jeavons at CP 2008 [14].

Broken-triangle new hybrid class With collaborators, I introduced a new class
that generalizes tree structured CSPs. This class is defined by means of an
excluded configuration, a broken-triangle, relative to the existence of a suitable
variable ordering. For this class, each instance can be preprocessed to efficiently
find a variable ordering which guarantees backtrack-free search. This yields the
first known class that is not tractable for either structural or language reasons
but for which such an ordering exists. This work led to a paper at ECAI 2008,
where the paper won the best paper award [5]. This has been developed further
into a paper in the journal Artificial Intelligence [6].

Complete representation, for analysis of width measures The edge relation in
graphs is often represented as a 2-dimensional matrix. It is also possible to
represent the hyperedges in a hypergraph using a k-dimensional structure, if
every hyperedge contains precisely k vertices. The complete representation can
then be seen as a higher-dimensional adjacency matrix, specifying for every set
of k variables which values they may take. When the complete representation is
at most polynomially larger than the usual representations, then it provides a
useful and regular representation for tractability results. In particular, it provides
worst-case examples for structural width measures.

Microstructure as product The microstructure and the microstructure comple-
ment can be seen as two kinds of products of relational structures. A product
form of the microstructure was previosly mentioned in passing, for the special
case of graph homomorphism [10]. I extend this product representation to gen-
eral relational structures, and show how to characterize the microstructure and
microstructure complement of CSPs as products. As an application, the prod-
uct form yields an analysis of the few cases when the microstructure or the
microstructure complement are close to tree-like, and why these cases are so
uncommon.

Direct encoding as SAT By interpreting the vertices of the microstructure com-
plement as literals, each edge in the microstructure complement can be seen as a
clause in the direct encoding of a CSP instance to SAT. There is therefore a close
correspondence between results about the microstructure complement and the
behaviour of the direct encoding of a CSP instance as SAT. Structural results
about the microstructure complement are therefore of relevance in understanding
the structure of many SAT instances.

113



Hereditary microstructure vs. propagation Propagation is the central mechanism
of constraint programming [1,3]. I discuss how domain pruning during propaga-
tion motivates the notion of hereditary CSPs. These are CSPs where any in-
duced substructure of the microstructure of an instance is the microstructure of
some other instance in the class. These CSPs correspond naturally to the partial
progress of a constraint solver during search. Moreover, hereditary CSPs can be
defined by a set of excluded substructures in the microstructure.

References

1. K. R. Apt. Principles of Constraint Programming. Cambridge University Press,
2003.

2. L. Barto and M. Kozik. New conditions for Taylor varieties and CSP. In LICS
2010: 25th Annual IEEE Symposium on Logic in Computer Science, 2010.

3. C. Bessiere. Constraint propagation. In F. Rossi, P. van Beek, and T. Walsh,
editors, Handbook of Constraint Programming, chapter 3, pp. 29–83. Elsevier, 2006.

4. A. Bulatov, P. Jeavons, and A. Krokhin. Classifying the complexity of constraints
using finite algebras. SIAM Journal on Computing, 34(3), pp. 720–742, 2005.
doi:10.1137/S0097539700376676.

5. M. C. Cooper, P. G. Jeavons, and A. Z. Salamon. Hybrid tractable CSPs
which generalize tree structure. In M. Ghallab, C. D. Spyropoulos, N. Fako-
takis, and N. Avouris, editors, ECAI 2008, Proceedings of the 18th European
Conference on Artificial Intelligence, July 21–25, Patras, Greece, Frontiers in Ar-
tificial Intelligence and Applications 178, pp. 530–534. IOS Press, 2008. doi:

10.3233/978-1-58603-891-5-530.
6. M. C. Cooper, P. G. Jeavons, and A. Z. Salamon. Generalizing constraint satisfac-

tion on trees: Hybrid tractability and variable elimination. Artificial Intelligence,
174(9–10), pp. 570–584, June 2010. doi:10.1016/j.artint.2010.03.002.

7. E. C. Freuder. Eliminating interchangeable values in constraint satisfaction prob-
lems. In Proc. AAAI-91, Anaheim, CA, pp. 227–233, 1991.

8. M. Grohe. The complexity of homomorphism and constraint satisfaction problems
seen from the other side. Journal of the ACM, 54(1), pp. 1–24, 2007. doi:10.

1145/1206035.1206036.
9. M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its conse-

quences in combinatorial optimization. Combinatorica, 1(2), pp. 169–197, 1981.
doi:10.1007/BF02579273.

10. P. Hell and J. Nešetřil. Graphs and Homomorphisms, volume 28 of Oxford Lecture
Series in Mathematics and its Applications. Oxford University Press, 2004.

11. P. Jégou. Decomposition of domains based on the micro-structure of finite
constraint-satisfaction problems. In Proceedings AAAI’93, pp. 731–736, 1993.

12. D. Marx. Tractable hypergraph properties for constraint satisfaction and conjunc-
tive queries. In STOC ’10: Proceedings of the 42nd ACM symposium on Theory of
computing, pp. 735–744. ACM, 2010. doi:10.1145/1806689.1806790.

13. J.-C. Régin. A filtering algorithm for constraints of difference in CSPs. In Pro-
ceedings AAAI’94, pp. 362–367, 1994.

14. A. Z. Salamon and P. G. Jeavons. Perfect constraints are tractable. In CP 2008,
volume 5202 of Lecture Notes in Computer Science, pp. 524–528. Springer-Verlag,
2008. doi:10.1007/978-3-540-85958-1_35.

114

http://dx.doi.org/10.1137/S0097539700376676
http://dx.doi.org/10.3233/978-1-58603-891-5-530
http://dx.doi.org/10.3233/978-1-58603-891-5-530
http://dx.doi.org/10.1016/j.artint.2010.03.002
http://www.aaai.org/Library/AAAI/1991/aaai91-036.php
http://www.aaai.org/Library/AAAI/1991/aaai91-036.php
http://dx.doi.org/10.1145/1206035.1206036
http://dx.doi.org/10.1145/1206035.1206036
http://dx.doi.org/10.1007/BF02579273
http://www.aaai.org/Library/AAAI/1993/aaai93-109.php
http://www.aaai.org/Library/AAAI/1993/aaai93-109.php
http://dx.doi.org/10.1145/1806689.1806790
http://www.aaai.org/Library/AAAI/1994/aaai94-055.php
http://dx.doi.org/10.1007/978-3-540-85958-1_35


Capturing Configuration Complexity

Evgenij Thorstensen

Oxford University Computing Laboratory, Oxford, UK
evgenij.thorstensen@comlab.ox.ac.uk

Abstract. In this paper we describe three formalisms for configura-
tion: A constraint formalism called conditional CSPs, another such for-
malism known as composite CSPs, and a fragment of first-order logic
called ∃FO→,∧,+. We show that composite CSPs are polynomial-time
equivalent to conditional CSPs, and that since ∃FO→,∧,+ is known to
be polynomial-time equivalent to conditional CSPs, all three formalisms
are so equivalent. Furthermore, we show that all three formalisms are
polynomial-time equivalent to classic CSPs by reducing conditional CSPs
to classic CSPs.

1 Introduction

The problem of configuration [1] is to find, given a set of available components
and a specification, a configuration that satisfies the specification — the config-
uration being a subset of components and a description of how they are to be
connected. As the problem is dynamic, the CSP framework (see [2] for an intro-
duction), while powerful, is generally seen as suboptimal for this task. Therefore,
several formal systems [3,4,5] that extend the CSP framework have been pro-
posed. These formalisms highlight several interesting aspects of the configuration
task and serve to clarify the structure of practical configuration problems. In this
paper, we prove them all polynomial-time equivalent.

To illustrate the formalisms we define and discuss, the following somewhat
simplified and informal example will be used throughout the paper:

Example 1 (Car part configuration). A car needs, among other things, an engine,
an electrical system, and an exhaust system. The engine can either be a petrol
or diesel engine. Both engines need pumps and cylinders, while the petrol engine
also needs spark plugs. The spark plugs, if present, must be compatible with the
electrical system, while the pumps must match the cylinders.

To make this slightly more formal, assume we have a variable En with domain
{p, d}, as well as variables El,Ex, Pu,Cy, Sp with constraints C(El, Sp) and
D(Pu,Cy). However, note that a solution need not assign all the variables or
satisfy both constraints.

In the following, we assume the standard definition of classic CSPs and con-
straint databases. Whenever it is clear from context, we denote the variables of
an object α by V(α). In particular, we will talk about the variables of a con-
straint (CSP, formula) and an assignment. In all the formalisms discussed, when

115

mailto:evgenij.thorstensen@comlab.ox.ac.uk


an assignment θ satisfies a constraint (formula) C with respect to a constraint
database (usually implicit), we will write θ |= C. The value of a variable v under
θ is written as θ(v).

2 Three Proposed Formalisms for Configuration

2.1 Conditional CSPs

This framework was developed by Mittal and Falkenhainer [4].

Definition 1 (Conditional CSP syntax). A conditional CSP 〈V, VI , CC , CA〉
is a tuple where V is a set of variables with associated domains (not shown), VI ⊆
V a set of initial variables, CC a set of constraints over V , called compatibility
constraints, and CA a set of activation constraints. Activation constraints have
two forms, A RV

=⇒ v and A
RN
=⇒ v, with A a compatibility constraint and v a

variable.

Definition 2 (Conditional CSP semantics). Let ∆ = 〈V, VI , CC , CA〉 be
a conditional CSP, and θ an assignment to a subset of V . The assignment θ
satisfies ∆ iff

– VI ⊆ V(θ),
– for every constraint C ∈ CC with V(C) ⊆ V(θ), we have that θ |= C,
– for every constraint (A RV

=⇒ v) ∈ CA with V(A) ⊆ V(θ) and θ |= A, we have
that v ∈ V(θ), and

– for every constraint (A RN
=⇒ v) ∈ CA with V(A) ⊆ V(θ) and θ |= A, we have

that v 6∈ V(θ).

In [4], this formalism is called dynamic CSP, but it has since been renamed
due to name collisions.

Example 2. We can represent the problem in Example 1 as a conditional CSP
〈V, VI , CC , CA〉 by letting V = {En,El, Ex, Pu,Cy, Sp}, VI = {En,El, Ex},
CC = {C(El, Sp), D(Pu,Cy)}, and

CA =

{
(En = p)

RV
=⇒ Sp, (En = p)

RV
=⇒ Pu, (En = p)

RV
=⇒ Cy,

(En = d)
RV
=⇒ Pu, (En = d)

RV
=⇒ Cy

}
.

2.2 Composite CSPs

This formalism was introduced informally by Sabin and Freuder [5]. A composite
CSP is a CSP where variables can have subproblems (other CSPs) as values.
If such a variable v is assigned a subproblem T as the value, any constraint
containing v is removed and the constraints and variables in T are added to the
CSP. An attempt at formalizing this is below.

116



Definition 3 (Composite CSP syntax). A composite CSP is a pair 〈S,<〉
with S = {T1, . . . , Tn} a set of classic CSPs, and < a strict partial order on S
with a single minimal element Tr. If Ti < Tj, then any variable v ∈ V(Ti) may
contain Tj as a domain element.

We will abuse notation and identify a composite CSP 〈S,<〉 with the set S
whenever convenient.

Definition 4 (Variables and constraints). Let S be a composite CSP. The
set of variables in S is the set V(S) =

⋃
{V(T ) | T ∈ S}. Likewise, the set of

constraints in S is the set C(S) =
⋃
{C | 〈V,C〉 ∈ S}.

Definition 5 (Subproblem variables). Let S be a composite CSP and θ an
assignment to a subset of V(S). The set of subproblem variables in θ, denoted
SV (θ), is the set of variables v ∈ V(θ) such that θ(v) = T for some T ∈ S.

In other words, SV (θ) is the set of variables assigned subproblems as values,
and we have to treat them in a special way.

Definition 6 (Composite CSP semantics). Let S be a composite CSP with
minimal element Tr, and θ an assignment to a subset of V(S). The assignment θ
satisfies S iff θ |= Tr, and we define θ |= T for any T ∈ S recursively as follows:

– V(T ) ⊆ V(θ),
– for every constraint C in T with V(C) ∩ V S(θ) = ∅, we have that θ |= C,

and
– for every v ∈ V(T ) ∩ V S(θ), we have that θ |= θ(v).

In other words, we have to deal with any subproblem that we have assigned
to a variable in our initial problem (recursively), but we do not need to check
constraints containing such variables, as they are replaced by constraints from
the subproblem.

Example 3. We can represent the problem in Example 1 as a composite CSP
S = {S1 = 〈V1, C1〉, S2 = 〈V2, C2〉, S3 = 〈V3, C3〉}, where

– V1 = {En,El, Ex}, C1 = ∅, and the domain of En is {S2, S3},
– V2 = {El, Cy, Pu, Sp} and C2 = {C(El, Sp), D(Pu,Cy)}, and
– V3 = {Cy, Pu} and C3 = {D(Pu,Cy)}.

The minimal element is S1, with S1 < S2 and S1 < S3.

2.3 ∃FO→,∧,+

This fragment of first-order logic defined by Gottlob, Greco, and Mancini [3] gives
a fully logical, as opposed to constraint-based characterization of configuration
problems.

117



Definition 7 (∃FO→,∧,+ syntax). An ∃FO→,∧,+ sentence is a formula of the
form

∃~x.
∧

1≤i≤n

(φi(~x)→ ∃~y.ψi(~x, ~y))

where ~x, ~y are lists of variables, n ≥ 0, and φi, ψi are conjunctions of atoms,
possibly empty.

Definition 8 (∃FO→,∧,+ semantics). Let φ be an ∃FO→,∧,+ sentence, and θ
an assignment to a subset of V(φ). Denote by φ′ the formula obtained from φ by
replacing any atom R such that V(R) 6⊆ V(θ) by ⊥ (meaning false). The formula
φ is satisfied by θ iff θ |= φ′.

Example 4. We can represent the problem in Example 1 as an ∃FO→,∧,+ sen-
tence (outermost conjunction omitted)

∃En,El, Ex.

 T (El) ∧ T (Ex) ∧ T (En)
(En = d)→ ∃Pu,Cy.D(Pu,Cy)

(En = p)→ ∃Pu,Cy, Sp. (C(El, Sp) ∧D(Pu,Cy))


where the predicate T is a new predicate that allows all values in the domain of
a variable. Since there are no constraints on some of the required variables, we
need it to make sure that they are present in any satisfying assignment.

3 Reductions

In this section we show that there exist polynomial-time many-one reductions
between composite CSPs and conditional CSPs, and also between conditional
CSPs and classic CSPs. Since the existence of such reductions between con-
ditional CSPs and ∃FO→,∧,+ was shown in [3], all four are polynomial-time
equivalent.

Theorem 1. Conditional CSPs and composite CSPs reduce to each other in
polynomial time.

The proof is split into two independent parts.

Proof (Composite CSPs to conditional CSPs). Let S be a composite CSP with
minimal element Tr ∈ S. First, create for every variable v ∈ V(S) a new variable
v′ with the same domain. Denote these new variables by V ′(S), and let this
extend to the subproblems: Given T ∈ S, we write V ′(T ) for the new variables
of T .

We construct a conditional CSP 〈V, VI , CC , CA〉 by letting V = V(S)∪V ′(S)
and VI = V ′(Tr). For every T ∈ S, let every constraint C in T be in CC . To han-
dle the activation and deactivation of variables that are assigned subproblems,
we will for every variable v ∈ V(S) with corresponding new variable v′ ∈ V ′(S)
create an activation constraint(∧

T∈S
v′ 6= T

)
RV
=⇒ v

118



and a compatibility constraint v = v′. The former states that the variable v
and the constraints that include it need only be considered if the corresponding
new variable v′ is not assigned to a subproblem, while the latter makes the
proof easier. Furthermore, we will for every T ∈ S and every w′ ∈ V ′(T ) create
activation constraints (v′ = T ) ⇒ w′. These constraints state that whenever a
new variable is assigned to a subproblem, the new variables of that subproblem
become active.

Let S be a composite CSP. The conditional CSP 〈V, VI , CC , CA〉 we create is
bounded by |V | = 2|V(S)|, |CC | = |C(S)|+ |V(S)|, and |CA| = |V(S)|+ |V(S)|2×
|S|. If we have a satisfying assignment θ to the conditional CSP, we can obtain
a solution to the composite CSP by deleting all the new variables. In the other
direction, given a satisfying assignment for the composite CSP, we can obtain
a satisfying assignment to the conditional CSP if we let θ(v′) = θ(v) for every
v ∈ θ. ut

Proof (Conditional CSPs to composite CSPs). Let 〈V, VI , CC , CA〉 be a condi-
tional CSP. We can encode it as a composite CSP by creating for every v ∈ V
a CSP Tv = 〈{v}, ∅〉 and an intermediate variable wv with domain {⊥, Tv} that
we add to the minimal element Tr.

Furthermore, for every compatibility constraint C ∈ CC we will create a CSP
TV(C) = 〈V(C), C〉 and a variable wV(C) with domain {⊥, TV(C)}. We also add

a new constraint

 ∧
v∈V(C)

wv = Tv

 → wV(C) = TV(C) to Tr saying that the

constraint C needs to be satisfied only if the variables in it are present.
Likewise, for every activation constraint (A

RV
=⇒ v) ∈ CA we create a CSP

TV(A) (if it doesn’t already exist) and a variable wV(A) with domain {⊥, TV(A)}.
We add V(A) to the variables of TV(A) and also create a new constraintA→ wv =
Tv that we add to the constraints of TV(A). To connect this new problem to the

other problems, we add wV(A) to Tr and post a constraint

 ∧
v∈V(A)

wv = Tv

→
wV(A) = TV(A) on this variable. For each activation constraint A RN

=⇒ v ∈ CA

we do the same as above, but instead of A→ wv = Tv we create the constraint
A → wv = ⊥. Finally, for every v ∈ VI we add a constraint wv = Tv to Tr,
expressing the fact that the initial variables must be present in any satisfying
assignment.

The composite CSP S that we create is bounded by |V(S)| = 2|V |+ |CC |+
|CA| and |C(S)| = 2|CC | + 2|CA| + |VI |. Let ∆ = 〈V, VI , CC , CA〉 be a condi-
tional CSP and S be the composite CSP constructed from it. Assume we have
a satisfying assignment θ for S. First, VI ⊆ V(θ) as Tr contains for every v ∈ VI
a constraint wv = Tv, and since θ |= wv = Tv, we must have that θ |= Tv, and
thus that v ∈ V(θ).

Secondly, we need to consider any compatibility constraint C ∈ CC with
V(C) ⊆ V(θ) and θ 6|= C. Such a constraint is contained in a subproblem TV(C),

119



and θ 6|= C implies that for some v ∈ V(C) we have θ(wv) = ⊥, due to the
constraint on wV(C). However, this means that we can remove v from V(θ) to
obtain a smaller satisfying assignment for S that does not need to satisfy C.

Finally, we need to consider any activation constraint (A RV
=⇒ v) ∈ CA with

V(A) ⊆ V(θ) such that θ |= A and v 6∈ V(θ). This turns out to be impossible,
since we have in Tr a constraint A → wv = Tv. This gives us that θ(wv) = Tv

and therefore v ∈ V(θ). For a constraint (A
RN
=⇒ v) ∈ CA we can do a proof

similar to the above, except that θ(wv) = ⊥, which means that we can remove
v from V(θ) to obtain a smaller satisfying assignment for S that does satisfy
A

RN
=⇒ v. ut

Theorem 2. Conditional CSPs and classic CSPs reduce to each other in poly-
nomial time.

Proof. As any CSP 〈V,C〉 is a conditional CSP 〈V, V,C, ∅〉, we need only prove
the other direction. Therefore, let 〈V, VI , CC , CA〉 be a conditional CSP. Create
a boolean activation variable av for every v ∈ V to keep track of variable activa-
tion. Then, create for every C ∈ CC a constraint (

∧
v∈V(C) av)→ C saying that

C needs be considered only if the variables in it are active.
For any activation constraint A RV

=⇒ v, create the constraint A→ av, and for
A

RN
=⇒ v create the constraint A → ¬av. Finally, create a constraint

∧
v∈VI

av
stating that the initial variables are active. The CSP 〈C ′, V ′〉 that we have
constructed is bounded by |V ′| = 2|V | and |C ′| = |CC |+ |CA|+ |VI |.

Let θ be a satisfying assignment for this CSP. We can obtain a satisfying
assignment for the conditional CSP by removing from V(θ) any v such that
θ(av) = ⊥ and all the activation variables.

In the other direction, if θ is a satisfying assignment to the conditional CSP,
we can obtain a satisfying assignment θ′ to the CSP constructed as follows: For
every v ∈ V(θ) we set θ′(v) = θ(v) and θ′(av) = >. For every other variable w in
the CSP, we set θ′(w) to a random element in the domain of w and θ′(aw) = ⊥.
As all constraints are conditional on the activation variables, the assignment to
these variables does not affect satisfiability. ut
Acknowledgements. We would like to thank Markus Aschinger, Peter Jeav-
ons, and András Z. Salamon for helpful comments on drafts of this paper.

References

1. Mittal, S., Frayman, F.: Towards a generic model of configuraton tasks. In: Proc. IJ-
CAI. (1989) 1395–1401

2. Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers (2003)
3. Gottlob, G., Greco, G., Mancini, T.: Conditional constraint satisfaction: Logical

foundations and complexity. In: Proc. IJCAI. (2007) 88–93
4. Mittal, S., Falkenhainer, B.: Dynamic constraint satisfaction problems. In:

Proc. AAAI. (1990) 25–32
5. Sabin, D., Freuder, E.C.: Configuration as composite constraint satisfaction. In:

Proc. AI and Manufacturing Research Planning Workshop. (1996) 153–161

120



Two Preferences Based Conversational Recommender
Systems

Walid Trabelsi1, Nic Wilson1 (supervisor) and Derek Bridge2 (supervisor)

1Cork Constraint Computation Centre, 2Department of Computer Science
University College Cork, Ireland

w.trabelsi@4c.ucc.ie, n.wilson@4c.ucc.ie, d.bridge@cs.ucc.ie

1 Introduction

In an era of overwhelming choice, recommender systems are a new source of assistance,
helping their users to decide which goods, services or information to purchase or con-
sume [1]. These systems infer user preferences from data gathered either explicitly, e.g.,
product ratings, or implicitly by observing user behaviour.

Conversational recommender systems typically involve iteratively showing the user
a small set of options (e.g., products) for them to choose between. In order to choose
an appropriate set to display at each stage, from a much larger collection of options,
it is useful to have information regarding which options are likely to be preferred to
others by the user, based on previous responses they have given in the dialogue; if one
assumes that the user has some kind of preference relation over products, this amounts
to determining if certain products are dominated according to this preference relation.

In 2007, Bridge & Ricci introduced a new kind of conversational recommendation,
which they call Information Recommendation [2]. We describe Information Recom-
mendation in Section 5. We use it as the setting in which we explore different models
of user preferences.

Two instances of such framework are developed. The first (see Section 3) is based
on a simple quantitative preferences formalism, involving a sum of weights, with a
language of linear inequalities. The second (see Section 4) is a qualitative preference
formalism, where models are a kind of generalised lexicographic order, and the inputs
are comparative preference statements. Experimentations are described in Section 6.

2 A Framework for Dominance of Preferences
We assume a set Ω of configurations, representing possible user’s choices.

We would like to generate some kind of (partially ordered) preference relation on
Ω, based on previous information we have received during the interaction with the
user. Using this preference relation we can say that the set of products satisfying a
configuration are preferred to other products that are satisfying another configuration.

Configurations generated from features. We assume a collection of features V = {F1, . . . ,Fn}.
Define a configuration α to be a mapping from {1, . . . ,n} to {1,0} (α can be repre-
sented by a bit set, in case of very big number of features other efficient representation
are described in [3]). Configuration α can also be thought of a set of features, i.e., all
features Fi such that α(i) = 1. Products are judged on the features they possess, and so

121



can be mapped to configurations. We assume that having a feature is always at least as
good as failing to have it. The set of outcomes is then the set of products that satisfy
the configuration and are available to the user (e.g.,in a database). For convenience the
configuration is denoted by (1,0,1) as f1 f̄2 f3.

3 Sum of Weights Model of the User
This model assumes that a user assigns a weight to each feature, and configurations are
compared on the sum of weights of the associated set of features.

The set of models is the set of all vectors of weights w = (w1, . . . ,wn), where wi
is a non-negative real number. wi can be considered as a weighting assigned to feature
Fi. Given a weights vector w, the overall value w(α) of a configuration α is the sum
of weights of the features included, i.e., w(α) = ∑i:α(i)=1 wi. This is used to define the
ordering on configurations. We define the preference relation <w for model w by α<w β

if and only if w(α)≥ w(β), i.e., iff ∑i wi(α(i)−β(i))≥ 0.

Constraint language: this consists of statements of the form α≥ β, where α and β are
configurations. Weight vector w is defined to satisfy α≥ β if α <w β. Let Φ be a set of
input constraint statements. The induced preference relation given Φ is such that : for
outcomes α and β, α <Φ β if and only if α <w β for all weight vectors w satisfying Φ.
Dominance relation �Φ is then the strict part of <Φ. When comparing with the second
semantics, we also use the notation <sw

Φ
for <Φ.

Example 1. Let Φ be two constraints: f1 f̄2 f3 ≥ f̄1 f2 f3, and f1 f2 f̄3 ≥ f̄1 f2 f3. Let α

be the configuration f1 f̄2 f̄3, and let β be the configuration f̄1 f2 f3. Weights vector w
satisfies the constraint f1 f̄2 f3 ≥ f̄1 f2 f3 if and only if w( f1 f̄2 f3)≥ w( f̄1 f2 f3), i.e., w1 +
w3 ≥ w2 +w3, which holds if and only w1 ≥ w2. By similar reasoning, w satisfies Φ if
and only if w1 ≥ w2 and w1 ≥ w3. Also, w satisfies α≥ β if and only if w1 ≥ w2 +w3.
Thus Φ does not entail α≥ β, so we do not have α <sw

Φ
β, since, for example, weights

vector w with w1 = 4, w2 = 2 and w3 = 3 satisfies Φ but does not satisfy α≥ β.

Computational aspects: We wish to determine if α <Φ β, for given configurations α

and β. Let Pos be the set of constraints wi ≥ 0, for i = 1, . . . ,n, representing the non-
negativity of the weights (and corresponding to the assumption that including a feature
is always at least as good as not including it). The definition implies that α <Φ β if and
only if the linear constraints Φ∪Pos (over real-valued variables wi) entail the constraint
∑i(α(i)−β(i))wi ≥ 0.

For implementation of this using a Linear Programming solver, it can be convenient
to express it as a linear optimization problem. Define Amin to be the minimum value of
∑(α(i)−β(i))wi subject to constraints Φ∪Pos. It can be easily shown that α <Φ β if
and only Φ∪Pos entails ∑i(α(i)−β(i))wi ≥ 0 if and only if Amin ≥ 0.

4 Comparative Preferences Model of the User
In this scenario, user models are a kind of generalised lexicographic order, called cp-
trees [4] (see Figure 1), which are similar to search trees used for solving constraint
satisfaction problems. Two configurations α and β are compared first on the most im-
portant variable. If they do not agree on that variable then the comparison is settled: If
α contains the feature and β does not, then α is better than β.

122



F2

F1 F3

F3 F1F3

2f

1f

2f

1f 3f
11 ff ≥

22 ff ≥

33 ff ≥

33 ff ≥

11 ff ≥

321321321321321321321321 ffffffffffffffffffffffff ≡≥≥≥≥≥≥

33 ff ≥

Fig. 1. A cp-tree σ, along with its associated ordering on outcomes <σ.

The constraint Language: The preference constraint language will include statements
that compactly express comparative (and sometimes conditional) preferences among
configurations. Each statement ϕ in the language has an interpretation ϕ∗, which is a
relation between configurations, giving the direct implications of ϕ regarding prefer-
ences between configurations. We say that total pre-order < satisfies ϕ if and only if <
extends ϕ∗, i.e., (α,β) ∈ ϕ∗ implies α≥ β. The language will include only comparative
preference statements ϕ of the form p ≥ q ‖ T , where P, Q and T are sets of features,
and p is an assignment to P (i.e., a function from P to {0,1}), and q is an assignment to
Q. Informally, the statement p≥ q ‖ T represents the following: p is preferred to q if T
is held constant.

Computation of Preference: Given set of input constraint statements Φ, and configura-
tions α and β we can determine in polynomial time whether or not α <Φ β holds, using
the algorithm given in [4], as shown by Theorem 1 in [4].

5 Application to Conversational Recommender Systems

We compare the Sum of Weights Model and the Comparative Preferences Model in
Information Recommendation described in [2]. In this setting, a user repeatedly edits
and resubmits a query (i.e., configuration) until she finds a product (outcome) that she
wants. The recommender system: observes the user’s actions; infers user-related con-
straints on the preferred configurations; uses these inferences to deduce which queries
a user is likely to try next. In [2], users are represented by the Sum Of Weights Model.

The interaction between the user and the recommender system proceeds as follows:

1. The recommender system analyzes q, with particular regard to differences between
current query q and the previous query the user submitted. (In the case where q is
the very first query, the previous query is the empty set.) The system induces some
additional preference constraint statements to add to inputs Φ.

2. The recommender system generates a set of candidate next possible queries and
prunes this set to those that are satisfiable and undominated (see below).

3. The user chooses and submits her next query. This becomes the new current query
q. In the experiments reported in the next section, we arrange that the user always
chooses one of the queries that the system advises.

123



Steps 1–3 are repeated until the user is satisfied with q or the set of undominated,
satisfiable candidates is empty, in which case q cannot be bettered. At this point, the
user can request to see the products that satisfy q.

The goal of the recommender system is to give the advice that has the greatest value.
We consider this to be that which minimizes the total quantity of advice given and the
dialogue length, while guiding the user to the best product.

During step 2 above, the system computes the following three sets of queries:

– Candidates: Candidate queries are ones which are close, in a particular sense, to
the current query q. For example, if fi 6∈ q, the set of candidates will include the
query that results from adding just feature fi to q.

– Satisfiables: The system eliminates from Candidates those queries which are un-
satisfiable. A query is satisfiable if and only if there exists a product which has all
the features in the query.

– Undominated: The system eliminates from Satisfiables each query which is domi-
nated by (i.e., worse than) some other Satisfiable query; the remaining set of queries
is called Undominated. The dominance relation is based on what is induced in step
1 above. The rationale is to exclude from the system’s advice queries that, on the
basis of the user’s preferences, it thinks the user would regard as inferior.

Generating induced preference statements for sum of weights model If the user has
added feature fi to query q, then statements qi≥ q j are induced for all f j 6∈ q, i 6= j unless
Add(q, f j) = q j is unsatisfiable. This implies that the weight vector satisfies wi ≥ w j.

Generating induced preference statements for comparative preferences model Con-
sider the situation where the user has chosen to add feature fi instead of feature f j.
There is more than one way one might induce a comparative preference statement from
this decision by the user. We consider two, each being a kind of counterpart for the
constraint wi ≥ w j induced for the sum of weights approach.

– Basic: Let q be the current query, let qi be the current query q with the feature fi
added, and let q j be q with the feature f j added. A basic, somewhat conservative,
approach is to just model the preference of feature i over feature j by the preference
statement: qi ≥ q j|| /0, i.e., qi ≥ q j, which just expresses a preference for qi over q j.

– Importance: Less conservatively, we can induce fi ≥ fi||V \ {Fi,Fj}, which says
that the presence or not of the feature Fi is more important than the choice of Fj.
Thus, whatever the state of the feature Fj in the query the user will prefer Fi to be
present in the query so that this feature is included in the best product.

6 Experiments
In this section, we report experiments with simulated users that demonstrate the feasi-
bility of using both the Sum of Weights Model and the Comparative Preferences Model
within the conversational recommender system that we described above. We use one
product database describing hotels by their amenities expressed as Boolean features
such as airport shuttle, pets type, etc. The Trentino-10 database records 10 features
about 4056 hotels, of which 133 are distinct.

124



The simulated users behave in the following somewhat idealized way: within a dia-
logue, they do not try queries that they have tried earlier in the dialogue; they are aware
of their own preferences and never choose a next query that would be inferior to the
current one. The user’s true preferences are represented either in the Sum of Weights
Model by randomly generating weight vectors over features or in the Comparative Pref-
erences Model by randomly generating cp-trees over features.

In the experiments, we pair the users, which select the next query to execute ei-
ther using a Sum of Weights Model or a Comparative Preferences Model, with each
of several recommender systems. One recommender system uses the Sum of Weights
Model. Six use the Comparative Preferences Model, differing first on which of the two
alternative preference statements they infer (Basic or Importance), and on their value
for γ (1, 2 or 3). γ is one parameter of the procedure in [4] and represents the maximum
number of variables one node of the cp-tree can contain. For each pairing of a user with
a recommender system, we ran 500 simulated dialogues.

In the experiments we compare the pruning rate achieved,it is defined as follows:

pruning rate =
|Satisfiables\Undominated|

|Satisfiables|
×100

It shows the extent to which an approach eliminates what it takes to be inferior satisfi-
able candidate queries from its advice. Other things being equal, the shorter the advice
the better, as this reduces the choice the user has to make. The results in the case where
the users’ true preferences are represented in the Sum of Weights Model are shown in
the table below.

Table 1. The pruning rates (users represented in Sum of Weights Model)

γ =1 γ =2 γ =3
Trentino-10

Comp. Prefs. Basic 87.49 16.51 13.98
Comp. Prefs. Importance 87.42 87.57 86.72
Sum of Weights 85.72

It shows that, in nearly all settings, the Comparative Preferences approach is pruning
non-optimal queries a little more than the Sum of Weights approach.

What is also of concern from a practical point of view is the average length of
the advice that the system gives; this is inversely related to the pruning rate. Except
in the cases where pruning is very low (Basic with γ = 2 or 3), advice from the Sum
of Weights recommenders is very slightly longer than it is in the case of the Compar-
ative Preferences recommenders. Dialogue lengths are very similar in the case of all
recommenders: around 6 steps on average.

Where the user’s true preferences are represented in the Sum of Weights Model, we
have also measured the amount by which the utility of the product that the user ulti-
mately chooses falls short of the utility of the best product that she could have reached,
normalized by the difference between the products of highest and lowest utility. Un-
surprisingly, these follow a similar pattern to the percentage agreements reported in the
previous paragraph. The values are very close to zero, ranging from 0 to 0.008.

125



7 Preference-based constrained optimization
For the case of configurable products, the set Ω of possible products could be expressed
implicitly as the (potentially extremely large) set of solutions of a Constraint Satisfac-
tion Problem (CSP). We suppose that the user preferences are expressed as a set Γ of
comparative preferences statements. We are interested in the problem of generating op-
timal elements of Ω, i.e., solutions of the CSP which are undominated with respect to
the comparative preferences. For this task a Branch and Bound algorithm can be used.

Using the methods of [5], we can restrict the variable and value orderings to ensure
that a generated search tree is compatible with the preferences Γ. The first solution
generated by such a search will be optimal. For generating further optimal solutions it
is important—especially for the situation when Ω is extremely large—to be able to find
prune subtrees consisting of dominated solutions. We are currently developing sufficient
conditions for such pruning, based on the dominance procedure described in [4].

8 Discussion
There has been a lot of excellent theoretical work produced on comparative preference
formalisms in recent years, for example, the award winning papers [6, 7]; however,
development towards applications has been lagging somewhat.We have shown how a
comparative preferences approach can be adapted for a conversational recommender
system. We are developing sufficient conditions for selecting optimal solutions when
they are expressed implicitly as the solutions of a XSP. In future work, we will extend
these approaches for other kinds of recommender systems, including for non boolean
features. We will integrate the preference-based constrained optimization framework
into a configurator in order to select the most preferred products.

References

1. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: A survey
of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data
Engineering 17(6) (2005) 734–749

2. Bridge, D., Ricci, F.: Supporting product selection with query editing recommendations. In:
RecSys ’07: Proceedings of the 2007 ACM conference on Recommender systems, New York,
NY, USA, ACM (2007) 65–72

3. Haenni, R., Lehmann, N.: Implementing belief function computations. Technical Report
01-28, Department of Informatics, University of Fribourg (2001)

4. Wilson, N.: An efficient deduction mechanism for expressive comparative preference lan-
guages. In: Proceedings of the Nineteenth International Joint Conference on Artificial Intelli-
gence (IJCAI-09). (2009) 961–966

5. Wilson, N.: Consistency and constrained optimisation for conditional preferences. In: Pro-
ceedings of ECAI-04. (2004) 888–892

6. Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H., Poole, D.: CP-nets: A tool for reason-
ing with conditional ceteris paribus preference statements. Journal of Artificial Intelligence
Research 21 (2004) 135–191

7. Koriche, F., Zanuttini, B.: Learning conditional preference networks with queries. In: Proc.
IJCAI 2009. (2009) 1930–1935

126




