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Production Scheduling using Constraint 

Programming 

Burcu Caglar Gencosman*, Cenk Ozmutlu*, Brahim Hnich** 

*Uludag University, Turkey, **Izmir Economy University, Turkey 

Abstract. In recent years, researchers have become increasingly interested 
in constraint programming (CP) applications in scheduling problems. 
However as the number of theoretical studies have increased the concept 
of practical usage of CP has not been investigated sufficiently. In this paper, 
we consider a scheduling problem at a mold company. We defined the 
problem using CP. Computational results show that CP generates success-
ful schedules in minutes; hereby we conclude that CP can be used to obtain 
optimal solutions for real size scheduling problems. 

Keywords: Production scheduling, constraint programming, mold produc-
tion and metal forming. 

1 Introduction 

 
To date, there has been wide interest in scheduling problems of real produc-

tion systems. Determining an approach for real-life scheduling problems has 
always been an interesting research area for many researchers. However, under 
the variability of real system and its dynamic structure, it becomes challenging to 
make efficient scheduling due to time constraints. There is now much evidence 
to support the hypothesis that finding optimal solutions of scheduling problems 
in acceptable times by mixed integer programming (MIP) has been challenging 
because of its complexity and stochastic nature [8], therefore applied research-
ers have become increasingly interested in generating feasible schedules in 
minutes by heuristic methodologies. 

According to the literature, thousands of studies about different kinds of 
scheduling problems such as job shop, flow shop, open shop, and parallel ma-
chine scheduling have been studied by different researchers since 1950s [1]. In 
recent years, applied researchers have been studying about heuristics and me-
taheuristic to generate successful solutions of scheduling problems in reasonable 
times instead of finding optimal solutions. Gutierrez and Garcia-Magarino [2] 
developed a hybrid genetic algorithm for a flexible job-shop scheduling problem. 
Lei [3] built a particle swarm optimization methodology for multi-objective job 
shop scheduling problems with fuzzy processing time and due date. These meth-
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odologies can be extended with tabu search, simulated annealing, and some 
combinations of two heuristic methods [4].   

On the other hand, CP has become an important tool of generating exact solu-
tions of scheduling problems [5], and there has been enhancement in CP applica-
tions of scheduling problems [6, 7]. Khayat et al. [8] developed a mixed integer 
mathematical programming model and a CP model to solve their combined pro-
duction and material handling scheduling problems. The researchers also tested 
the CP limitations using 10x10 Fisher & Thompson scheduling problem which 
have not been able to solve more than 20 years. The optimal solution is found in 
30 minutes with CP, and the optimality is approved in 2 hours.  

The literature shows that optimal schedules could not be obtained by MIP, and 
researchers have been tending to develop heuristic methods in order to find 
feasible schedules [8]. Recently there has been a spate of interest in how to apply 
CP effectively to scheduling problems. The aim of this study is to demonstrate 
that CP can be an efficient way to obtain successful solutions for real size sched-
uling problems in acceptable times (less than an hour). We first define the prob-
lem and generate some examples according to real production environment. 
Then we develop a CP model in order to find optimal solutions of the examples. 
Finally we gather our findings and show that CP can be able to use in real size 
scheduling problems efficiently. 

2 Scheduling Problem 

  In this study a real scheduling problem at a mold production and metal forming 
company is considered. The company produces automotive parts in a press line 
for main automotive companies. In current system, various jobs which have dif-
ferent number of operations are being produced at presses which are settled as a 
production line, and every operation has to be assigned to a different press, since 
each operation requires a specific mold to be attached to the press1. A number of 
Oi operations has to be performed to complete job i. Operation j of job i, can be 
processed by any machine, for a given processing time, however all of the opera-
tions of job i have to be assigned to adjacent machines. It is possible to produce 
multiple jobs simultaneously as long as total number of operations is less than 
the total number of machines. For example, three unique products, which have 5, 
5, and 3 operations in sequence, can be produced in a line consists of 13 ma-
chines such as shown in Figure 1.  

 

Figure 1: Loading 3 different products to the machines 
   

                                                           
1 We will use “machine” instead of “press” in order to compatible with the scheduling litera-

ture. 

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 

A.1 A.2 A.3 A.4 A.5 B.1 B.2 B.3 B.4 B.5 C.1 C.2 C.3 
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Although the problem seems like a flow shop scheduling, before loading the 
molds every machine is identical, so the production line consists of parallel ma-
chines. After loading the molds or in other words, assigning the jobs to the ma-
chines it becomes separate flow shop problems. Therefore we build this unique 
problem according to its own properties. The following assumptions are made 
for the problem: The processing times are known and fixed. Every operation can 
be made in every machine. The decision variable round is related to setup and 
when a setup performs, the number of round increases. Molds can be changed 
when a production is completed or it can be delayed until all the productions in a 
round are completed reflecting a cost to objective function. Preemption of jobs is 
not allowed. 

System constraints can be summarized as: Operations of jobs should be per-
formed in adjacent machines. A machine can process only one operation at a 
time. An operation can be produced by only one machine at a time period. De-
mands have to be met. Enduring a penalty cost, products can be produced more 
than their demands. Sequence of operations has to ensure the precedence rela-
tionships between operations of a job. In order to find optimal schedules, we will 
build its CP model in following section.  

3 Solving the scheduling problem using CP 

CP guarantees the optimality if exist when giving sufficient times. CP reduces 
feasible solution space according to its constraints and domains of variables, and 
it finds optimal solution after trying all possible solutions. Due to different as-
sessment methodology, we developed our CP model in a different perspective. 
For example we define round for changes in a period. A new round is created 
when at least one setup occurs where all machines are available, and production 
of some products can be continued or new products can be assigned to the ma-
chines in the round. Before declaring the constraints we first describe the nota-
tion of the model in following.      

Indices and sets: 
i: is a job from the set of all jobs  ϵ N={1,…n}where n is the number of jobs. 
r: number of rounds which is bounded by number of jobs ϵ N={1,…|N|} 
j: number of operations ϵ J={1,…|Jn|} 
m: is a machine from the set of all machines ϵ M={1,…|M|} 
Parameters: 
We produce a set for defined X decision variables’ indices: Set: {<i,j,r> | i in N, j 
in Oi, r in N }. 
Oi: Number of operations of job i. 
Rij: Processing time of operation j which is belonging to job i. 
Di: Demand of job i. 
  : Completion time of job i that can be calculated as:   ∑      (    )  

        

HK: Cost of setup for each job. 
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HW: Cost of waste. 
HR: Cost of round. 
Decision Variables: 

    {
                                  
                                                       

 

xijr: Sequence of operation j of job i at round r.             

ki: Amount of performed setups for job i. 
wi : Amount of waste for job i. 
tr: Total duration of round r. 
v: Completion time of schedule.  
The CP model is defined as follows: 
Min     ∑        ∑        ∑ ∑               (1) 

   ∑                           (2) 

     
      
→          (    (      )  )                (3) 

∑                          (4) 

                            (5) 

     (      )                     (6) 

       
      
→                             (7) 

       
      
→                              (8) 

       
      
→                                         (9) 

(                  )  
      
→                                      (10) 

(                )
      
→    (                  )                         (11) 

(               ) 
      
→       ∑         (           )                     (12) 

 ∑                        (13) 

∑              (14) 
 

The objective function contains costs of setup, waste and round in addition to 
maximum completion time of the schedule. The cost of idle machines is repre-
sented by wi decision variable, and we want to load all machines at a round in 
order to assure maximum workload. In addition, we want to load rounds as much 
as we can, so with the  ∑ ∑            expression, the round cost will increase 
when the index of round increase. Thus objective function forces the model to 
load jobs to smaller rounds if available. According to constraint (2),    occurs 
when duration of a round is greater than completion time of job i. Constraint (3) 
claims that if a job is performed at round r, the duration of this round should be 
less than or equal to its completion time. In addition, if job i is performed at 
round r, the duration of this round should be greater than or equal to its comple-
tion time which is represented by constraint (4). Constraint (5) ensures maxi-
mum workload for the previous rounds, and also breaks the symmetry to reduce 
the size of the problem. One of the important assumptions in this problem is that 
every machine at a round can process only one operation at the same time which 
is expressed by constraint (6). Constraints (7, 8) guarantee that if a job is not 
produced at round r, its sequence at this round should be zero. It is noticed that 
these two expressions assure the same issue, but in order to accelerate the CP 
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algorithm and reduce the branches number -enduring increased constraint 
number-, we choose to write constraint (8) too. Constraint (9) indicates that 
operations of a job should be assigned to adjacent machines. Constraint (10) 
guarantees that if a job is produced at sequential rounds, its position stays same, 
and constraint (11) prevents production of the same product in non-sequential 
rounds. Constraint (12) calculates total number of setups for each job. Constraint 
(13) represents that total operations assigned to a round should be less than or 
equal to number of machines, and finally constraint (14) calculates completion 
time of all production horizon. 

CP searches the solution space according to its search procedure, and assigns 
values to the variables regarding that procedure. There is a strong relationship 
between success of a CP and its search strategy; however performance of the 
strategies can be different through the problem types. For example a search 
strategy can be performed well for a vehicle routing problem, but it can be failed 
when solving a scheduling problem. OPL language provides various search pro-
cedures for the users, and the default search strategy is called “first fail princi-
ple”. We ran our model with this strategy and summarized the results in Table 1. 

In order to test the CP model, we developed 12 different instances (can be 
shared with interested researchers). P1-P8 instances generated using uniform 
data and G1-G4 is generated using real production data. Tests are performed on 
a PC with 2.13 GHz processor and 6 GB RAM. The CP model is built using ILOG 
CPLEX 12.2. It is important to mention that we used the total completion time of 
production horizon which can be used for comparisons with the literature. In 
order to gather results of all problems, CP model is limited with 1800 seconds for 
big size problems. Experimental results are summarized in Table 1. As shown in 
Table 1, last column gives the values of decision variables in optimal solution or 
in an upper bound that represents the total completion time of production hori-
zon. 

Table 1: Experimental results of MIP and CP models 

Prob. Jobs # of Operations 
# of Ma-

chines 

CPU 

time(sec) 

∑  
 

 

P1 3 5-(2,2,1) 5 0.02 2002 

P2 4 10-(2,3,3,2) 5 0.02 4008 

P3 4 10-(2,3,3,2) 10 0.02 2004 

P4 5 15-(2,3,3,4,3) 10 0.02 4008 

P5 5 15-(2,3,3,4,3) 15 0.03 2006 

P6 6 20-(3,3,5,4,3,2) 15 0.05 4008 

P7 6 20-(3,3,5,4,3,2) 20 0.03 2008 

P8 7 25-(3,3,5,4,3,2,5) 20 0.08 4008 

G1 5 12-(1,1,4,4,2) 13 0.16 43254 

G2 10 24-(1,1,4,4,2,2,1,1,4,4) 13 0.20 86508 

G3 15 29-(1,1,4,4,2,2,1,1,4,4,1,1,1,1,1) 13 1800 1152661 

G4 20 
43-(1,1,4,4,2,2,1,1,4,4,1,1,1,1,1,3, 

3,3,3,2) 
13 1800 1345082 
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1: It is found after 5.11 seconds.2: It is found after 16.8 seconds. 

Considering CPU times, for P1-G2 problems CP reaches optimal solutions within 

seconds. Even though CP could not prove optimal solution for G3 and G4 prob-

lems, it finds feasible solutions within seconds, which might be an optimal solu-

tion.  

4 Conclusion 

In this study, it is demonstrated that we can find feasible solutions with CP. 
The present study has raised a number of interesting findings, but a larger re-
search is needed to establish how successful CP is. Future research could be fo-
cused on comparing CP model with other exact approaches like mixed integer 
programming. Further, the proposed method can be extended to more general 
scheduling problems. 
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Energy optimization of metro timetables: a
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Abstract. In a metro line, metros are capable of generating electricity
by braking. This energy, immediately available in the third rail, is lost
if no metro in the neighbourhood can consume it. Thus it is possible to
decrease total energy consumption by synchronizing accelerations and
braking.

We describe a model for optimizing energy consumption which does not
alter significantly quality of service by subtly modifying dwell times.

A hybrid genetic/linear programming algorithm has been implemented
to tackle this problem and compute the distribution of braking metros.

On a typical example, the savings are more than 6%.

1 Introduction

Sustainable energy has been a major issue over the last years. Transportation is a
major field concerned about energy consumption and companies in this industry
try optimize as much as possible the energy consumption of their solutions, in
particular in mass rapid transit such as metros. Several hardware solutions, like
fly-wheels or super capacities have been developed to save energy. However, these
solutions involve buying and maintaining potentially costly material which can
be difficult to justify economically.

Besides that, software solutions have been implemented, controlling finely
different parameters to minimize energy consumption. However, optimizing a
timetable is known as highly combinatorial and some formulations have been
proven to be NP-complete [2]. Consequently, it is only possible to search for
local optima as soon as instances get large. Albrecht implements in [1] a genetic
algorithm and shows it is possible to reduce energy consumption and more par-
ticularly power peaks using reserve time of metros. However this optimization
is done modifying metro speed patterns, which can be complicated to imple-
ment in real-time. Kim et al. [4] propose a MILP model to optimize metro time
departures. This model is interesting but it is too much simplified - even if it
is necessary due to the complexity of the problem - to correspond to reality.
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Eventually, Nasri et al. [5] show that it may be possible to decrease energy
consumption by modifying dwell times.

We describe in this article a method which modifies dwell times to synchro-
nize accelerations and braking of metros. Dwell times have the advantage to be
easy to update in timetabling software. To do that, we use a genetic algorithm to
minimize an objective function - corresponding to the global energy consumption
over a time horizon - computed with a linear program.

2 Problem description

The energy consumption in a metro line can be decreased by synchronizing brak-
ing and accelerations of metros. Indeed, an electric motor behaves as a generator
when braking by transforming its kinetic energy into electrical energy. This en-
ergy, available in the third rail, has to be absorbed immediately by another metro
in the neighbourhood. If not, it is dissipated as heat and then is lost.

Anyway, the distance between metros which are generating energy and can-
didate metros induces that part of the transferred regenerative energy is lost in
the third rail due to Joule’s effect.

Most timetables don’t take into account energy issues. They usually have
been created to maximize quality of service, complying with security and other
constraints like drivers’ shift or weekend periods for instance. That’s why it is
hard to create a brand new timetable only to take into account energy issues. It
is however possible to slightly modify current timetables to include some energy
optimization.

What we try here is to minimize energy consumption of a metro line during
a given time horizon by modifying the off-line timetable.

3 Data

The model is restricted to a single metro line (no fork or loops) including 31
stations with two terminals A and B. All trips are done from A to B or B to A,
stopping at all stations.

The timetable, based on real data, is a bit more detailed than the one given
to passengers; in addition to departure times at every station, it compiles also:

– running times between every station.
– dwell times at every station.

Dwell times represent the nominal waiting time of a metro in a given station.
We consider here that every metro have the same dwell time for a given station,
not depending on the hour of the day.

For every timeslot (1 second in our model), we know the position of metros
(between which stations they are) and the energy they consume (arbitrary pos-
itive) or produce (negative energy). Contrary to timetables data which are real,
energy data have been created following energy models like the one depicted in
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[4]. Units are arbitrary: a value of 1 in this system corresponds to the energy
consumed by a metro at full throttle during one second.

Losses due to Joule’s effect are compiled in an efficiency matrix. It details
the percentage of energy which can be transferred from a point to another point
in the line.

4 Model

4.1 Timetable

The objective (1) is to minimize the energy consumption over a given time
period, thus to minimize the sum of energy consumptions over every timeslot. If
we consider T the set of timeslots and yt the energy consumption of the line at
timeslot t, then our objective function is:

min
∑
t∈T

yt (1)

The computation of yt can be seen as a formulation of a generalized max-flow
problem in a lossy network [6] which can be formulated as an LP problem.

As we optimize global energy consumption by modifying dwell times, we need
to clarify what are the relevant dwell times for our formulation. We compute
them as follows:

Sets

– T : timeslots.
– I: metros.
– S: stations.
– Dr ⊂ I × S : relevant dwell times.

Parameters

– Depi,s: arrival time t ∈ T of i ∈ I to the station s ∈ S.
– Di,s: dwell time of i, s ∈ Dr.
– δ: minimal quantity for decreasing/increasing a dwell time.

Variables

– di,s: optimized dwell time of metro i ∈ I at station s ∈ S.
– ni,s ∈ Z: number of times δ is applied to a dwell time i, s.

Model
di,s = Di,s + n.δ (2)

with Dr = {Di,s ∈ I × S/ inf(T ) ≤ Depi,s ≤ sup(T )} (3)

Then these are the dwell times di,s ∈ Dr ⊂ I × S that the genetic algorithm
will modify in order to minimize the objective function. Note that n can be
unbounded. In our model, it is however bounded by small integers to stick on
the quality of service issue and to keep having an invisible optimization for the
final user.
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4.2 The instantaneous objective function

Modifying dwell times involves a new synchronization between metros. We thus
have to compute at every iteration of the genetic algorithm, the resulting ob-
jective function. As explicated in (1), every timeslot represents an independent
problem. The issue here is that it is hard to know exactly how regenerated energy
will spread throughout third rail and other metros. [3] takes as an hypothesis
that metros can transfer entirely their regenerative energy to others only if they
belong to the same electric sub-station.

We are making the hypothesis that energy is dissipating proportionally to the
distance between two metros. We are also taking as hypothesis that the energy
is spread in an optimal way, i.e. the model minimizes the loss of energy.

Then, for a given timeslot we have :

Sets

– I+: metros consuming energy.
– I−: metros producing energy.

Parameters

– E+
i : energy consumed by metro i ∈ I+(> 0).

– E−i : energy produced by metro i ∈ I−(< 0).
– Ai,j : proportion of the energy produced by i ∈ I− transferable to j ∈ I+

due to Joule’s effect.

Variables

– xi,j : proportion of the energy produced by i ∈ I− transferred to j ∈ I+.

Model

minimize y (4)

subject to

I+∑
i

E+
i +

I−∑
i

(E−i .
I+∑
j

xi,j .Ai,j) ≤ y (5)

I+∑
j

xi,j ≤ 1 ∀i ∈ I− (6)

−
I−∑
i

xi,j .E
−
i .Ai,j ≤ E+

j ∀j ∈ I+ (7)

xi,j ≥ 0 ∀i ∈ I−,∀j ∈ I+ (8)

y ≥ 0 (9)
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The LP model minimizes the energy consumed by spreading the energy pro-

duced in such a way −
∑I−

i (E−i .
∑I+

j xi,j .Ai,j) is maximized. Note that (9) pre-
vents the energy to be less than 0 at a given timeslot. It is because we consider
that the regenerative energy which is not utilized immediately is lost.

5 Genetic algorithm

By modifying only slightly the dwell times, we consider that the algorithm never
reaches non satisfiability as we stay in tolerable intervals, e.g. for headways.

Every individual in the population is represented by a two-arrays table with
metros in rows and stations in columns. Each cell represents a dwell time.

Starting with initial dwell times, we create a population made of 100 individ-
uals. Then every dwell time is randomized within a predefined domain, e.g. {-3s,
0s, +3s, +6s, +9s}. Finally every iteration, individuals are classified according
to their objective function and selected. We apply crossover and mutation to
them until convergence.

6 Results

6.1 Computation time

Our model has been tested with a one-hour time horizon, corresponding to 3600
timeslots, 29 metros and 495 dwell times to optimize. The objective function has
a value 8504 a.u. (arbitrary unit) at time t0. After 450 iterations, total energy
consumption is only 7939,4 a.u, that to say 6,6% saving.

The computation lasts over 88 hours long on a Intel Core 2 1.86GHz Linux
PC. As this optimization is to minimize an off-line timetable, we can allow it.

6.2 Robustness

A real metro line is subject to minor perturbations that can affect the adherence
to the timetable.

To check the relevance of the optimization, we have added a random noise
on optimized dwell times to quantify the robustness of the objective function.
This noise consists in randomly modifying dwell times by ±δs.

Noise (s) 1 3 6

Average on 7964,9 7995,7 8028,4
100 tries (a.u.)

Saving (%) 6,3 6,0 5,6

Table 1. Alteration of the objective function according to noise
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Table 1 shows the results. We can see that even with 6 second noise, The
optimization is still saving 5,6% energy. This means that the optimized solution
is saving energy, but also all its neighbour solutions.

7 Perspectives

This resolution method to optimize the energy consumption in a metro line
seems promising and deserves more research. In particular, we want to increase
the number of parameters we could modify, such as departure times in terminals
or speed profiles.

We will make effort also to compare these results with other methods such
as MILP or constraint programming.

Eventually, decreasing computation time will allow this method to be used
in a real-time context, in particular when it is about to optimize energy con-
sumption after major incidents.
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Abstract. In [6], a new approach has been introduced for improving
the solving of binary CSPs. This approach is based on the notion of
micro-structure for binary CSPs. This formalism was used to analyze
the theoretical complexity of binary CSPs.
In this paper, we generalize the notion of micro-structure to non-binary
CSPs in order to retain the tractability as in the binary case.

1 Preliminaries

Constraint Satisfaction Problems (CSPs [10]) provide an efficient way of formu-
lating problems in computer science, especially in Artificial Intelligence such as
scheduling, temporal reasoning, planning, graph problems, just to name a few.

Formally, a constraint satisfaction problem is a triple (X,D,C), where X =
{x1, . . . , xn} is a set of variables, D = (Dx1 , . . . , Dxn) is a list of finite domains
of values, one per variable, and C = {C1, . . . , Ce} is a finite set of constraints.
Each constraint Ci is a couple (S(Ci), R(Ci)), where S(Ci) = {xi1 , . . . , xik} ⊆ X
is the scope of ci, and R(Ci) ⊆ Dxi1

×· · ·×Dxik
is its relation. The arity of Ci is

|S(Ci)|. A CSP is called binary if all constraints are of arity 2 (we denote Cij the
binary constraint whose scope is S(Cij) = {xi, xj}). Otherwise, a CSP is said
to be n-ary. A consistent assignment is an assignment that does not violate the
constraints. A solution is a complete assignment that satisfies all constraints.
Testing whether a CSP has a solution is known to be NP-complete.

We can associate to a binary CSP a graph called a micro-structure which is
defined as follows:

Definition 1 (micro-structure [6]) Given a binary CSP P = (X,D,C), the
micro-structure of P is the undirected graph µ(P ) = (V,E) with:

– V = {(xi, vi) : xi ∈ X, vi ∈ Dxi
},

– E = { {(xi, vi), (xj , vj)} | i 6= j, Cij /∈ C or Cij ∈ C, (vi, vj) ∈ R(Cij)}
The micro-structure was introduced by Jégou in order to detect new tractable
classes for CSP based on graph theory. In [2], Cohen showed that the class of
binary CSPs with triangulated complement of micro-structure is tractable and
arc-consistency is a decision procedure.

? This work was supported by the French National Research Agency under grant
TUPLES (ANR-2010-BLAN-0210).
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After that, Jégou and al. in [8] presented new results on the effectiveness
of classical algorithms when the number of maximal cliques in graph of micro-
structure can be bounded by a polynomial.

Therefore, the goal of this report is to generalize the definition of micro-
structure to non-binary CSPs.

2 Generalized Micro-Structures

The first extension of the notion of micro-structure to non-binary CSPs was
proposed by Cohen in [2]: this generalization is based on hypergraphs [3]. In
contrast, our generalisations are inspired by technical methods of conversion
between non-binary and binary CSPs [12, 1]. Then, our micro-structure are a
simple undirected graph obtained by using binary encoding based on graphic
representation of non-binary CSPs: the well known methods are the dual encod-
ing (also called dual representation), hidden transformation (also called hidden
variable representation) and mixed encoding.

2.1 Generalized micro-structure based on dual representation

The dual encoding was introduced by Dechter and Pearl in [4] and is based on
the dual graph representation (also called intergraph in [5, 7] or line graph in
graph theory) which comes from the relational database. In this encoding, the
constraints of the original problem become variables (also called dual variables).
The domain of each new variable is exactly the set of tuples allowed by the
original constraint. We define a constraint between two dual variables if the
original constraints share at least one variable.

Definition 2 (generalized micro-structure based on dual representation)
Given a CSP P = (X,D,C) (not necessarily binary), the generalized micro-
structure of P is the undirected graph µGd

(P ) = (V,E) with:

– V = {(Ci, ti) : Ci ∈ C, ti ∈ R(Ci)},
– E = { {(Ci, ti), (Cj , tj)} | i 6= j, ti[S(Ci) ∩ S(Cj)] = tj [S(Ci) ∩ S(Cj)]}

As for the micro-structure, there is a direct relationship between cliques and
solutions of CSPs:

Theorem 1 A CSP P has a solution iff µGd
(P ) has a clique of size e.

Proof: By construction, µGd
(P ) is e-partite, and any clique contains at most one

vertex (Ci, ti) per constraint Ci ∈ C. Hence the e-cliques of µGd
(P ) correspond

exactly to its cliques with one vertex (Ci, ti) per constraint Ci ∈ C. Now by
construction of µGd

(P ) again, any two vertices (Ci, ti), (Cj , tj) joined by an
edge (in particular, in some clique) satisfy ti[S(Ci)∩S(Cj)] = tj [S(Ci)∩S(Cj)].
Hence all ti’s in a clique join together, and it follows that the e-cliques of µGd

(P )
correspond exactly to tuples t which are joins of one allowed tuple per constraint,
that is, to solutions of P . 2

The example below will be used throughout the paper:

Example 1 The figure 1 presents a CSP P = (X,D,C) with :
X = {x1, x2, x3, x4, x5},
D = (Dx1

, Dx2
, Dx3

, Dx4
, Dx5

) with
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Dx1
= {a, a′}, Dx2

= {b}, Dx3
= {c}, Dx4

= {d, d′} and Dx5
= {e}.

C = {C1, C2, C3, C4} is a set of four constraints with S(C1) = {x1, x2}, S(C2) =
{x2, x3, x5}, S(C3) = {x3, x4, x5} and S(C4) = {x2, x5}.
The relations associated to the previous constraints are given by these tables:

R(C1)
x1 x2
a b
a’ b

R(C2)
x2 x3 x5
b c e

R(C3)
x3 x4 x5
c d e
c d’ e

R(C4)
x2 x5
b e

The generalised micro-structure based on dual encoding of the last example
is shown in figure 1.

Fig. 1. Generalized micro-structure built by using dual representation.

We have four constraints, then e = 4. Thanks to Theorem 1, a solution of P
is a clique of size 4, e.g. (ab, bce, be, cde).

The generalized micro-structure based on minimal intergraph [5, 7] is similar
to generalized micro-structure based on dual encoding because the deleted edges
in the minimal intergraph will be added by the relation ti[S(Ci) ∩ S(Cj)] =
tj [S(Ci) ∩ S(Cj)].

2.2 Generalized micro-structure based on hidden transformation

The hidden variable encoding was inspired by Peirce [9] (cited in [11]). In hidden
transformation, the set of variables contains the original variables plus the set of
dual variables. There is a binary constraint between a dual variable and original
variable if the original variable belongs to the scope of dual variable [12].

Definition 3 (generalized micro-structure based on hidden transformation)
Given a CSP P = (X,D,C), the generalized micro-structure based on hidden
transformation of P is the undirected graph µGh

(P ) = (V,E) with:

– V = S1 ∪ S2

– S1 = {(Ci, ti) : Ci ∈ C, ti ∈ R(Ci)},
– S2 = {(xj , vj) : xj ∈ X, vj ∈ Dxj

},
– E = { {(Ci, ti), (xj , vj)} | either xj ∈ S(Ci) and vj = ti[xj ]

or xj /∈ S(Ci)}

15



We now turn to relationship between bicliques and solutions of CSPs. Before
that, we should recall that a biclique is a complete bipartite graph, i.e. a bipartite
graph in which every vertex of the first set is connected to all vertices of the
second set.

Proposition 1 In a generalized micro-structure, a Kn,e biclique with e tuples,
such that no two tuples belong to the same constraint, cannot contain two dif-
ferent values of the same variable.

Proof: We assume that a Kn,e biclique with e tuples, such that no two tuples
belong to the same constraint, can contain two different values vj and v′j of the
same variable xj . Therefore, there is at least a constraint Ci such that xj ∈ S(Ci).
Thus, ti[xj ] = vj , v

′
j or another v”j and in all three cases, the assumption is false

because ti cannot be connected to two different values of the same variable. 2

Proposition 2 In a generalized micro-structure, a Kn,e biclique with n values,
such that no two values belong to the same domain, cannot contain two different
tuples of the same constraint.

Proof: We assume that a Kn,e biclique with n values, such that no two values
belong to the same variable, can contain two different tuples ti and t′i of the
same constraint Ci. Therefore, there is at least a variable xj such that ti[xj ] 6=
t′i[xj ]. If ti[xj ] = vj and t′i[xj ] = v′j must belong to the same biclique. Thus, the
assumption is false because we cannot have two values of a same variable.2

Using these two properties, we can deduce the following theorem :

Theorem 2 Given a CSP P = (X,D,C) and µGh
(P ) its generalized micro-

structure, P has a solution iff µGh
(P ) has a Kn,e biclique with n values and

e tuples such that no two values belong to the same domain and no two tuples
belong to the same constraint.

Proof: A Kn,e biclique with n values and e tuples such that no two values belong
to the same domain and no two tuples belong to the same constraint correpond
to a consistent assignment which satisfies all constraints. 2

Figure 2 represents the generalized micro-structure based on hidden trans-
formation of the CSP of example 1.

Fig. 2. Generalized micro-structure built by using hidden variable.

Based on the previous example, we can easily see that a biclique does not nec-
essarily correspond to a solution. Although, {a, a′, b, c, e, ab, ab′, bce, be} is K5,4

biclique but it is not a solution. Contrary to {a, b, c, d, e, ab, bce, be, cde} that is
a K5,4 biclique and is a solution of P .

Then, the set of solutions is not equivalent to the set of bicliques. This is
due to the manner which the graph of micro-structure is completed. For the
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next generalization, we will propose another manner to complete the graph of
micro-structure: this new way of representation can also be deduced from hidden
encoding.

2.3 Generalized micro-structure based on mixed encoding

We finally turn to the last interesting method of translation which is called mixed
encoding. It allows us to connect the dual variables to the original variables, two
tuples of two different constraints and two values of two different variables.

In other words, it uses at the same time dual encoding and hidden variable
encoding. More description is given by the following definition.

Definition 4 (generalized micro-structure based on mixed encoding) Given
a CSP P = (X,D,C) , the generalized micro-structure based on mixed encoding
of P is the undirected graph µGm

(P ) = (V,E) with:

– V = S1 ∪ S2

– S1 = {(Ci, ti) : Ci ∈ C, ti ∈ R(Ci)},
– S2 = {(xj , vj) : xj ∈ X, vj ∈ Dxj

},
– E = E1 ∪ E2 ∪ E3

– E1 = { {(Ci, ti), (Cj , tj)} | i 6= j, ti[S(Ci) ∩ S(Cj)] = tj [S(Ci) ∩ S(Cj)]}
– E2 = { {(Ci, ti), (xj , vj)} | either xj ∈ S(Ci) and vj = ti[xj ] or xj /∈ S(Ci)}
– E3 = { {(xi, vi), (xj , vj)} | i 6= j and xi 6= xj}

The generalized micro-structure based on mixed encoding of the CSP of
example 1 is shown in figure 3.

Fig. 3. Generalized micro-structure built by using mixed encoding.

Proposition 3 In a generalized micro-structure, a Kn+e clique cannot contain
more than n values where each pair of values derived from two different variables.

Proof: We assume that proposition 3 is false, then a Kn+e clique must contain
two values vi and v′i of the same variable xj . Thus, the corresponding vertices
to vi and v′i cannot be adjacent and cannot belong to the same clique. 2

Proposition 4 In a generalized micro-structure, a Kn+e clique cannot contain
more than e tuples where each couple of tuples derived from two different con-
straint.
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Proof: (similar to the previous proof)
According to the last properties, there is a strong relationship between cliques

and solutions of CSPs:

Theorem 3 A CSP P has a solution iff µGm
(P ) has a clique of size n+ e.

Proof: In a generalized micro-structure based on mixed encoding, a Kn+e clique
correspond to a consistent assignment of n variables which satisfies e constraints
(based on the two previous propositions). Then, it is a solution to P . 2

The first micro-structure is exactly the micro-structure of the dual CSP, but
the second and the last representations correspond neither to the micro-structure
of hidden CSP nor to the micro-structure of a mixed CSP because of the way to
complete these two graphs.

3 Conclusion
We have investigated the different binary representation of n-ary CSPs in or-
der to define a generalization of micro-structure for non-binary CSPs. The first
perspective is to check whether the results in [8] can be extended to non-binary
CSPs represented by one of this micro-structure. The second aims to provide
formal frameworks for studying properties on the complexity of n-ary CSPs as
with the binary case.
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Abstract. This paper defines a new domain for reasoning with uncer-
tain data. It extends the usual interval arithmetic approach with a second
dimension that captures the cummulative distribution function. Due to
its monotonic property cdf forms by default a lattice that assists in a
smooth domain reasoning. We further extend the cdf-interval approach
to bound the probability distribution in a p-box notation. The idea is
embodied as a new solver in the ECLiPSe system. Experimental results
indicate that the solver brings solution insights compared to convex mod-
els, leading to a full enclosure of the data along with its probability
distribution.

1 Introduction

Convex models are favored for their tractable computation. They are the heart of
robust/reliable optimization [1] in Operation Research, mixed CSP [4], reliable
constraint reasoning [9], and quantified CSP [10] in Constraint Programming.
The majority of the techniques presented rely on interval reasoning to model
problems with uncertain/ill-defined data and seek output solution sets that sat-
isfy all possible realizations of data sought. Drawback of convex structures reveals
in their solution set property which has an equal weight of knowledge. To over-
come this problem, cdf-intervals were introduced in [6] to quantify knowledge.
CDF has a monotonic nature; hence it defines a lattice in the second dimension:
the degree of knowledge. The algebraic structure presented approximates the
probability to the nearest uniform cummulative distribution. To guarantee the
full encapsulation of the degree of knowledge, we further extend cdf-intervals by
bounding the unknown probability. The new convex structure yields cdf-intervals
in a p-box representation. Empirical results show better performance over the
original work on a scale; furthermore, the model outputs an additional proba-
bilitic information over reliable models.

This paper demonstrates the algebraic structures of cdf-intervals and the
calculus behind. It is structured as follows: (1) the representation of uncertain
data that is input to the cdf-intervals, (2) a framework for solving systems of
arithmetic constraints over cdf-intervals, (3) an experimental evaluation and a
show case for a system of linear constraints.
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2 Interpretation of the Confidence Interval

CDF-Intervals [6] describe an unknown value along with its degree of knowledge
in a linear format. Hence data whereabouts in the algebraic structure is approxi-
mated to the nearest uniform probability distribution. Cummulative distribution
function cdf is elected due to its monotonic property that is suitable for interval
computation in addition to its aggregated property that sufficiently propagates
probability information to the bounds. The concept of p-boxes introduced in
[8] when associated with cdf-intervals further bound the unknown probability
distribution to ensure a full encapsulation of the provided knowledge.

The notion of p-box constitutes the heart of our new cdf-interval domain
specification. A p-box is basically a convex structure over a set of probabilities.

Definition 1 (p-box). Let F and F , be two cumulative probability distribu-

tions. [FX , FX ] specifies the probability box of a random variable X whose dis-

tribution FX is contained within the p-box bounds:

FX(x) ≤ FX(x) ≤ FX(x) ∀x ∈ (−∞,+∞) (1)

p-box bounds introduced in this work are choosen to be uniform in order
to simplify the computation. We illustrate in Fig. 1 an observed collected data
from a measuring instrument, its cdf that shapes a staircase function. We dis-
play algebraic representations: the cdf-intervals with linear/uniform probability
approximation [6] and cdf-intervals augmented by a p-box with uniform bounds.
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Fig. 1. cdf -interval: from a linear approximation to a p-box for X

Unlike real interval modeling cdf-intervals add up a quantitative information
and define this information over a 2D space. CDF-Intervals store quantile bounds
and their corresponding cdf-values; a point px is specified as (x, F p

x ) ∈ U ; due to
its monotonic and aggregated properties we can extract the cdf approximated
value that corresponds to any quantile lying within the interval bounds in an
order of O(1). p-boxes define a triplet per bound. For a point px lying within the
interval bounds specified as (x, F p

x , S
p
x) ∈ U , x is the quantile value, F p

x its cdf

value, and Sp
x the slope of the cdf distribution the point lies on. Thus quantitative
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information for a quantile is defined by a probability range of values that lie
within the two slopes bounding the p-box cdf-interval.

Fig. 1 illustrates the same variableX that ranges in the cdf-interval [(1, 0.16), (7.8, 0.98)]
and in the p-box [(1, 0.16, 0.16), (8.0, 0.64, 0.08)]. This indicates that the real in-
terval representation ofX is [1.0, 8.0]. The cdf-interval adds to this representation
the quantitative information by approximating the distribution that ranges be-
tween [0.16,0.98]; p-box bounds the measured distribution by two slope triplets:
quantile 1.0 has a chance of occurence for X that cannot exceed 16%, whilst X
can be at most 8.0 with a probability that is at least 64%.

3 CDF-Intervals Solver

Constraint reasoning using the cdf-intervals behaves like a solver over real inter-
vals, it is based on the relational arithmetic of real intervals where arithmetic
expressions are interpreted as relations [2]. Relations over cdf-intervals and their
p-box augmented version in turn are handled using transformation rules that ex-
tend those over real intervals with additional inferences in the cdf-dimension. We
have implemented the main transformation rules for the basic interval relations
{=U ,4U ,+U ,×U} over the p-box cdf-intervals. The solver is a separate module
in the ECLiPSe [3] environment. A constraint system input to the solver fails if
domain bounds do not preserve the ordering in the 2D space; real ordering is em-
ployed on interval quantiles and stochastic dominance ordering is used to order
probabilities. The handling of the transformation rules is done by a relaxation
algorithm which resembles the arc consistency algorithm AC-3 [5]. The solver
converges to a fixed point or infers failure. We ensure termination of the generic
constraint propagation algorithm because the cdf-domain ordering is reflexive,
antisymmetric and transitive.

Example 1. The result of adding two p-box cdf-intervals I ∈ [(2, 0.1, 7), (5.0, 0.8, 2.5)]
and J ∈ [(3.0, 0.2, 1), (6, 0.3, 0.5)], X =U I +U J is intersected with X ∈ U ; the
domain of X accordingly will be pruned: X ∈ [(5.0, 0.16, 0.75), (11, 0.4, 0.4)].
When X , I and J are specified by one approximated uniform distribution, ad-
dition constraint yields X ∈ [(5.0, 0.048), (11.0, 0.96)]. Note that in the absence
of cdf knowledge distribution, where candidate intervals have equal uncertainty
weights, we obtain a real interval arithmetic addition.

Intuition. The steepness of the slope in both cdf-interval representations is an
indication of how data is likely to be located within the interval. With a steeper
slope data is more likely to occur towards lower quantiles of the interval and vise
versa. p-box cdf-intervals representation adds-up more information to guide the
decision maker. Risk averted is more likely to check the lower bound distribution
of the p-box. This bound has the steepest slope. The upper cdf-bound aims at
guiding the knowledge for a more risky decision making.

Consider in Example 1 the range of cdf-values [0.048, 0.96] resulting from
the addition yields a slope 0.152 hence data is equally probable over the range
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of quantiles [5, 11] with an average probability distribution 15.2%. On the other
hand the p-box cdf-intervals of the addition isX ∈ [(5.0, 0.16, 0.75), (11, 0.4, 0.4)].
The p-box representation ranges the set of cdf-distributions by their stochastic
dominance. This arrangement guides the decision maker such that for high risk
aversion decision the lower bound triplet is taken under consideration because
it provides the maximum possible probability data can occur and it is the most
dominated probability bound. Due to its uniform property the lower bound prob-
ability reaches 100% at lower quantiles (in this example at 6.12) hence it can
further prune the interval quantile range on the lower bound (i.e. when the cdf

value is at 100% which yields a quantile range [5, 6.12] for the running exam-
ple). In addition the slope of the distribution quantifies the probability over the
quantile range (75% on average). Observably the convex model output for this
example is [5, 11]; it shows an equally weighted real interval with no information
about the data chance of occurrence over the whole range of quantiles.

Global Linear Constraint Satisfaction. For linear constraints, we have embodied
a global constraint satisfaction algorithm in the solver. p-box cdf-interval lin-
ear global constraint satisfaction aims at solving a system of linear equations
which has p-box cdf-intervals coefficients and unknown variables. The algorithm
is composed of five main steps:

1. Generate linear inequalities
2. Extract Interval Linear System (ILS) quantiles
3. Solve 2n eplex instances
4. Project the cdf-distributions
5. Extract the final solution p-box cdf-interval bounds

The algorithm prunes variable domains at fixed point using inference rules
on the system of linear equations. The p-box cdf-intervals attached to the data
(here coefficients) are propagated onto the cdf-variables. Inferences on the quan-
tile component yield pruning on the resulting variable real domains and the
additional information coming from the cdf and slope components demonstrate
the information gained on the density of occurrence for the resulting points
within the p-box cdf-domains.

Example 2. Consider the system of linear equations (A,ℜ,b) shown below:

A =





[(1.0, 0.95, 0.41), (2.0, 0.41, 0.095)] [(0.0, 0.83, 0.32), (2.0, 0.32, 0.083)]
[(0.0, 0.31, 0.75), (1.0, 0.75, 0.031)] [(0.0, 0.35, 0.87), (1.0, 0.87, 0.035)]
[(1.5, 0.14, 0.96), (3.0, 0.96, 0.034)] [(5.999, 0.9, 0.86), (6.0, 0.6, 0.028)]



 ,

ℜ =





⊆RU

=
=



 and b =





[(3.0, 0.88, 0.4), (4.0, 0.4, 0.088)]
[(0.0, 0.3, 0.78), (5.0, 0.78, 0.03)]

[(4.0, 0.29, 0.85), (15.0, 0.85, 0.029)]





Fig. 2 illustrates two boxes, each encloses the output solution population
residence for X1 and X2. The shown boxes are the result of applying p-box
cdf-intervals propagation techniques on the linear equations provided in this
example. Note that for the original cdf-intervals with an approximated uniform
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Fig. 2. Example 2: Solution set resulting from the p-box cdf-interval computations

distribution solution to the problem yield one plane per variable that is enclosed
by the shown p-boxes and which specifies an approximated cummulative uniform
distribution of the data whereabouts. The black box is the representation of X1
solution p-box domain [(0.0, 1.0,+∞), (4.0, 0.667, 0.1669)] and the yellow box is
the solution domain X2 ∈ (0.0, 1.0,+∞), (2.5, 0.598, 0.4344)]. Clearly, solutions
intersect in theX1-X2 2D space as illustrated by their projection depicted by the
shaded checkerboard region: the real-interval arithmetic solution. This indicates
that X1 and X2 quantiles range respectively between [0.0, 4.0] and [0.0, 2.5].
The p-box representation shows a minimum possible chance of occurrence for
quantiles respectively for X1 and X2 to be at most 4.0 is 66.7% and 2.5 is
59.8%. Note that quantiles of X1 and X2 cannot lie outside the p-box bounds
defined by the two dimensions: quantiles and cdf. Additionally, for the most risky
choice that elects the dominant probability distribution a more pruned quantile
ranges respectively for X1 and X2 are [0.0035, 4.0] and [1.12, 2.5] with average
probability distributions 16.7% and 43.44%.

4 Discussion and Conclusion

In summary, cdf-intervals introduced in [6] extend convex modeling that is fa-
vored to be computationaly tractable. The framework adds a quantitative infor-
mation while seeking a linear approximation of the data distribution; we have
augmented the framework with p-box bounds to enclose the whole collected data
and its degree of knowledge specified by its unknown probability distribution.

Today we have a CP solver that seeks the realization of possible network
flows in the network traffic analysis problem; fluctuating demands are input as
coefficients to 3 solvers implemented in the ECLiPSe environment: 1) Uncertain
CSP [9] (reliable modeling technique), 2) cdf-intervals [6], 3) p-box cdf-intervals.

23



Our empirical study shows that propagation in p-box cdf-intervals take al-
most the same time as UCSP to exploit variable solution domains; whereas time
taken by cdf-intervals was almost doubled since the framework uses the same
technique to implement the propagation once on each dimension: quantile and
cdf. Indeed our goal is to add expressiveness to the solution sets of reliable models
while preserving tractability. The choice of linear enclosure of the data distri-
bution ensures both. The defined global linear constraint satisfaction algorithm
runs 2 Simplex per variable to compute new interval bounds; this is commonly
used in Interval Linear System and is very cost effective. We show in our case that
bounding a random variable distribution, with two tight linear uniform cdf dis-
tributions, is a safe enclosure that adds quantitative information to the solution
set produced, and does so at minimal overhead: a preprocessing step transforms
our model into an ILS in O(2m) where m is the number of problem constraints,
and we project cdf-distributions once the Simplex runs are completed to output
the new p-box bounds.

Future work will cater the solver for applications with uncertain data. Mea-
sured data that is already defined in the problem definition thereof needs to be
represented as cdf-interval coefficients and input to the solver. Hence solution sets
will obtain an additional quantitative information which will show an adequate
knowledge of data whereabouts. Applications like management of inventory with
stochastic demand [7] are subject to be studied in the near future.
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Abstract. AND/OR Multi-valued Decision Diagrams (AOMDD) were
shown to provide a more compact representation of discrete-domain real-
valued functions compared to other decision diagram variants [?]. We
show the performance of AOMDDs on inference tasks in graphical mod-
els. We introduce the elimination operator to AOMDDs, which in con-
junction with the combination operator introduced in previous work,
yields a full bucket elimination (BE) scheme using AOMDDs as an al-
ternative function representation to tables. We show that we are able to
solve instances that do not fit in main memory when using tables.

1 Introduction

AND/OR Multi-valued Decision Diagrams (AOMDDs) combine the two frame-
works of AND/OR search spaces and multi-valued decision diagrams (MDDs)
to create a framework that compactly represents discrete-domain functions such
as those in discrete graphical models [?]. The AND/OR search space is a more
compact search space for search-based inference algorithms in graphical models
compared to OR search spaces. For problems with decomposition into subprob-
lems, the AND/OR search space captures this. Decision diagrams are generally
used to represent functions compactly [?].

The key algorithm for combining AOMDDs, apply, first introduced in [?]
was never implemented before. Our work also extends upon previous work by
introducing the elimination operator to AOMDDs. With these two algorithms
in place, this yields the full bucket elimination [?] scheme using AOMDDs as
an alternative function representation to tables. We provide the first empirical
results demonstrating the algorithm and contrasting its performance with the
BE algorithm using tables.

Similar work is presented in [?,?], where an algebraic decision diagram (ADD)
structure is considered. In [?], ADDs are extended with affine transformations
to capture additive and multiplicative structures in graphical models. However,
AND structure is still not exploited in these alternative decision diagram variants
and they are restricted to variables with binary domains.

We start with presenting preliminaries by defining graphical models and
counting queries.
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Definition 1 (graphical model/counting query) A graphical model is a tu-
ple R = 〈X,D,F,⊗〉, where X = {X1, ..., Xn} is a set of variables, D =
{D1, ..., Dn} is the set of the respective finite domains of the variables in X,
F = {f1, ..., fr} is a set of real-valued functions defined over a subset of vari-
ables Si ⊆ X, and ⊗ is a combination operator (i.e.

∏
,
∑

,on). The graphical
model represents a global function computed by ⊗r

i=1fi. For a CSP, the number
of solutions is the number of assignments which do not violate any constraints.
For a weighted CSP, the weighted solution count is the sum of the weights of all
solutions such that no constraint is violated (having a weight of 0). For graphical
models representing probability distributions, this is likelihood/ partition function
computation. Formally the task is to find

∑∏r
i=1 fi

We refer the reader to previous work for background on AND/OR search
spaces and decision diagrams [?,?]. The basic idea of AOMDDs is augmenting
context-minimal AND/OR search graphs to remove redundant nodes (or equiva-
lently, augmenting weighted MDDs with AND nodes.) Overall, AOMDDs exploit
determinism and context-specific independence [?] to achieve compactness. More
details on AOMDDs are in [?].

2 Algorithms

In this work, we include the reduction rule by redundancy and use AOMDDs
as an alternative to a tabular representation of the functions and messages in
bucket elimination. To perform this, we require a method of applying the com-
bination operator to AOMDDs and the elimination operators. For AOMDDs, it
is presented here for the first time.

The main operation to perform the combination of two AOMDDs is the apply
operator. It is stated that the runtime of apply is quadratic in the size of the
input AOMDDs. We omit the full details of the algorithm for space issues and
refer the reader to previous work [?].

There are difference and restrictions of the operation when compared to de-
cision diagrams without AND decomposition. Since AOMDDs further compress
a function representation by taking advantage of decomposition in the pseudo
tree [?], operations on it are bound by the same rules as variable elimination.
Namely, once we consider a fixed variable ordering, eliminating a variable whose
children are not yet eliminated would induce edges in the induced graph between
all of its neighbors. Equivalently, this means we would be changing the order of
sum and product operators.

A basic description of the algorithm is as follows. From the embedded pseudo
tree of the AOMDD, we create a list of relevant variables by tracing a path from
the leaf node representing the elimination variable to the root of the tree. This
creates a direct path from the root of the AOMDD down to the elimination
variable without the need to explore other branches of the AOMDD. We then
create a reverse BFS ordering based on list of relevant variables. If the node is an
elimination variable, we eliminate the node by performing the necessary operator
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and promote the weight to the parent. Otherwise, we normalize the node (making
its AND children weights sum to 1) and pass on the normalization constant to
the parent.

One caveat to note is that the metanode for a variable we are eliminating
may not be present in the decision diagram due to the reduction rules. This
is an issue when the elimination operator is summation. We must compensate
for any missed metanodes, which we can identify if we see an ancestor of the
elimination variable connected to a terminal metanode. Since nodes would be
missing only if it were redundant, we can multiply the weight of that ancestor
metanode by the domain size of the elimination variable. However, in the process
after eliminating a node, the intermediate structure looks identical to that of
when the input diagram does not have the node due to redundancy reduction.
Therefore, we keep track of which nodes already received a weight from a child
node to distinguish between these two.

Fig. 1. Example of elimination on AOMDDs. The state of the AOMDD is shown
through the process.

We demonstrate the algorithm on a small example, shown in Figure ??. The
function tables above (a) the AOMDDs demonstrate the operation performed
in a standard representation. We are interested in summing out variable B. The
embedded pseudo tree (b) is used to determine the set of relevant variables,
which in this case is {A,B}.

We begin with the AOMDD shown at (1), which represents the same function
as the input table. Visiting the relevant nodes in a reverse BFS order, we visit
the metanode B first, eliminate it, and propagate its result up to the parent
AND node in metanode A, shown in (2). At (3), we are left with only metanode
A. Checking the 0 AND node, since it received a weight from something, we are
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done with it. Checking the 1 AND node, since it has not received a weight, we
multiply it by the domain size of B, which is 2 in this case. The result is now
shown at (4). Finally, we normalize the AND node weights of metanode A and
propagate its normalization term up to the root, yielding the resulting AOMDD
in (5), which represents the same function as the output table.

In the cases of maximization and minimization, we do not encounter the same
problem since these operators choose one from the set of values, which has no
effect on functions where all the output values are identical. Conditioning can
also be considered a form of elimination and also does not suffer from the issues
that summation encounters for the same reasons.

With an elimination operator, this yields a full BE algorithm for inference
using AOMDDs as a function representation (AOMDD-BE). The complexity
remains the same as standard BE, as in the worst case, the AOMDD has as
many AND nodes as the number of entries in the table. However, for some
problem structures, the AOMDD size can be far smaller than the table size.

3 Experiments

For all tables in this section, for each problem instance, we report number of
variables (n), induced width (w), height of the pseudo tree (h), maximum domain
size (k), time, and memory usage. The algorithms were implemented in C++
(64-bit) and the experiments were run on 2.6 GHz machines with 24GB of RAM.

The following evaluates the AOMDD-BE algorithm, which is the same as
bucket elimination, but uses AOMDDs to represent all functions. We ran exper-
iments on the UAI 2006 evaluation problems and genetic linkage analysis net-
works, available at http://graphmod.ics.uci.edu. In each table, we compare
the time and memory usages of standard BE vs. AOMDD-BE. Times reported
as “OOM” indicate that the algorithm exceeded our memory bound. Results on
memory usage are based on the usage of the cache storing nodes of the AOMDDs.
For instances where BE runs out of memory, we simulated its execution by only
passing information about scope sizes to compute the memory usage.

UAI 2006 benchmarks. Results are presented in Table ??. In columns 5 and
6, we see the runtimes for BE and AOMDD-BE, while the last two columns show
the the memory usages of BE and AOMDD-BE.

We see that our scheme is able to solve some problems which do not fit in
standard main memory. These problems have structures that AOMDDs exploit
well. Namely, the functions of these problems have many zero values that can be
represented easily by AOMDDs. In addition, AOMDDs are able to take advan-
tage of functions that have many values that are the same, but not necessarily
zero. Such functions are present in a number of the instances on which it outper-
forms BE based on memory usage. However, there must be a significant amount
of compression before we get any memory savings. Namely, as each node contains
information to capture the structure of the problem, it means that much more
memory is used when representing a function which has many different values.
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time (s) time (s) Mem (MB) Mem (MB)
problem n w h k [BE] [AOMDD-BE] [BE] [AOMDD-BE]
BN 22 2425 5 575 91 1 13 26.93 581.27
BN 28 24 5 9 10 1 13 1.79 568.36
BN 30 1156 48 179 2 OOM 38 1.50E+10 245.93
BN 32 1444 56 219 2 OOM 4384 4.45E+12 3006.08
BN 34 1444 55 220 2 OOM 145 2.30E+12 515.45
BN 40 1444 55 235 2 OOM 91 1.82E+12 322.76
BN 42 880 23 54 2 21 2 314.04 21.62
BN 46 499 22 49 2 18 <1 248.97 1.99
BN 49 661 44 59 2 OOM 1188 7.83E+08 2991.78
BN 53 561 48 95 2 OOM 4063 8.43E+09 3303.48
BN 61 667 44 61 2 OOM 17 9.46E+08 235.72
BN 65 440 61 95 2 OOM 1062 Overflow* 2843.65
BN 84 360 20 24 2 4 22 24.76 546.21
BN 92 422 22 33 2 26 23 187.43 433.65

time (s) time (s) Mem (MB) Mem (MB)
name n w h k [BE] [AOMDD-BE] [BE] [AOMDD-BE]
pedigree1 334 15 61 4 2 14 23.61 210.09
pedigree9 1118 25 137 7 550 5301 7499.77 4030.34
pedigree18 1184 19 102 5 7 200 136.13 959.28
pedigree20 437 21 58 5 131 291 1393.90 1030.66
pedigree23 402 20 58 5 19 52 241.57 532.46
pedigree25 1289 23 86 5 146 1284 2037.69 2999.84
pedigree30 1289 20 102 5 13 307 220.63 1044.76
pedigree33 798 24 116 4 347 883 4277.26 1368.42
pedigree37 1032 20 62 5 OOM 3535 251109.68 7992.43
pedigree38 724 16 67 5 OOM 2201 172249.65 6253.16
pedigree39 1272 20 83 5 46 400 772.20 1555.68
pedigree44 811 24 79 4 516 3795 6153.63 4782.29

Table 1. UAI 2006 benchmarks and pedigree networks. For pedigree networks, in-
stances not shown here (7,13,19,31,34,40,41,42,50,51) run out of memory with both
algorithms. (* The size in MB could not be stored within a double precision number
representation.)

We generally see that for lower treewidth networks, standard BE is sufficient and
has better runtime, however, it is unable to solve problems with higher treewidth
due to lack of memory.

Pedigree networks. We also ran experiments on genetic linkage analysis net-
works (known as pedigree), for which the partition function value of many of
them were not known before the work in [?], which makes use of hard disk to
push the memory restrictions of solving a problem.

The results are shown in Table ??. As with the previous set or problem
instances, timing results are shown in columns 5 and 6 while memory usage is
shown in columns 7 and 8.

Our results are less promising on these networks. There are only two instances
which AOMDD-BE manages to perform very well on, which standard BE would
require about 30 times the amount of memory. For the rest that AOMDD-BE
managed to solve, a large number of problems were solvable by standard BE with
a shorter amount of time and less memory. Even with those where AOMDD-BE
uses less memory, the runtime is often much worse, due to overhead in maintain-
ing the properties of a canonical AOMDD. We can attribute these results this
set of problems having overall less determinism and context-specific indepen-
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dence. However, these results also demonstrate the use of decision diagrams on
non-binary networks for inference, when compared to related work using ADDs
[?,?].

4 Conclusion

For many hard problems (such as the pedigree networks), the overhead of using
the minimal AOMDD structure for function representation actually results in
worse performance in terms of both time and space. On other problems, such
as the ISCAS networks in the UAI 2006 evaluation set, our scheme shows good
performance despite having high treewidth. We demonstrated results reinforcing
the potential of using AOMDDs for the classic BE algorithm. Future work would
include comparing with related techniques exploiting determinism and context-
specific independence such as ACE [?].
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Abstract. One fundamental research result in the area of Constraint
Processing (CP) is a condition that guarantees problem tractability by
relating the consistency level of a Constraint Satisfaction Problem (CSP)
to the structure of the problem. In our research, we propose to build
effective problem-solving strategies that exploit the above-mentioned re-
sult in practice. To this end, our investigations target two fundamental
mechanisms in CP: (1) Consistency properties and their algorithms and
(2) Backtrack search in a tree decomposition. In particular, we propose
a new consistency property whose level is controlled by a parameter,
and present algorithms for enforcing it. Then, we investigate strategies
for backtrack search that apply those algorithms in localized contexts
defined by a tree decomposition of the constraint network.

1 Introduction

Research in Constraint Processing (CP) has identified various islands of tractabil-
ity as classes of CSPs that are solvable in polynomial time in the size of the input.
We single out the tractability condition specified by a relationship between the
level of a consistency of a CSP and a structural parameter of the corresponding
constraint network such as the treewidth or the hypertree width. The larger the
width of the network is, the higher the level of consistency may need to be es-
tablished in order to guarantee backtrack-free search. This approach is hindered
in practice by two main difficulties: finding the treewidth or hypertree width
of a constraint network is an NP-hard task [1], and enforcing higher levels of
consistency may require the addition of constraints to the CSP, thus modifying
its structure and width parameters.

The question that we address in our research is: How close can we approach
in practice the tractability guaranteed by the relationship between the level of
consistency in a CSP and the width of its constraint network? We propose to
achieve “practical tractability” by (1) proposing new local consistency properties
whose level is controlled by a parameter and designing algorithms for enforcing
them that do not modify the structure of the constraint network, (2) enforcing
such consistency properties on the clusters of a tree decomposition of the CSP,
and (3) adding redundant constraints in the separators between clusters to boost
propagation and enhance communications between clusters.
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The main algorithms that are used in practice for enforcing consistency con-
sider combinations of at most three variables or two relations. The consistency
properties proposed so far that apply to larger combinations of variables or con-
straints may in general require the addition of new constraints [2, 3]. Moreover,
different problems require different levels of consistency. For this reason, it be-
comes important to explore new properties whose level of consistency can be
controlled (i.e., parameterized consistency), but that do not modify the struc-
ture of the constraint network, and thus, do not increase its width.

The main techniques that exploit the structure of the constraint network for
solving the CSP use a tree-decomposition embedding of the constraint network.
Because finding the optimal decomposition is NP-Hard, heuristics are used to
find a ‘good’ decomposition such as join tree [4], hinge decomposition [5], and
hypertree decomposition [6]. Moreover, synthesizing and storing a global con-
straint on the separators is necessary to guarantee backtrack-free search, but it
is prohibitive in practice.

We propose to exploit the tree decomposition in the following problem-solving
operations: (1) Localize the application of the consistency algorithms to the
subproblems induced by the vertices of the tree decomposition; (2) Order the
constraint-propagation process along the branches of the tree while favoring the
most constrained paths; and (3) Enhance propagation by adding properly chosen
redundant constraints between connected tree-vertices.

This paper is structured as follows. In Section 2, we give some necessary back-
ground information. In Section 3, we present the relational consistency property
and outline two algorithms for enforcing it. In Section 4, we describe how we
exploit the tree decomposition. Finally, in Section 5 we present some preliminary
experimental results and conclude in Section 6. Preliminary results of parts of
our work have already appeared in [7, 8].

2 Background

A constraint satisfaction problem (CSP) is defined by (X ,D, C), where X is
a set of variables, D is a set of domains, and C is a set of constraints. Each
variable Ai∈X has a finite domain Di∈D, and is constrained by a subset of the
constraints in C. Each constraint Ci ∈ C is defined by a relation Ri specified
over the scope of the constraint, scope(Ci), which are the variables to which the
constraint applies, as a subset of the Cartesian product of the domains of those
variables. The arity of a constraint is the cardinality of its scope. A tuple ti∈Ri

is thus a combination of values for the variables in the scope of the constraint
that is either allowed (i.e., support) or forbidden (i.e., conflict). In this paper,
we consider only allowed tuples. A solution to the CSP is an assignment, to
each variable, of a value taken from its domain such that all the constraints are
satisfied. Solving a CSP consists in finding one or all solutions.

A CSP can be represented by several types of graphs: in the hypergraph of a
CSP, as shown in Fig. 1a, the vertices represent the variables of the CSP and the
hyperedges represent the scopes of the constraints. The primal graph of a CSP is
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Fig. 1: (a) Hypergraph, (b) Primal graph, (c) Dual graph, (d) Tree decomposition

a graph whose vertices represent the variables and the edges connect every two
variables that appear in the scope of some constraint as shown in Fig. 1b. The
dual graph of a CSP is a graph whose vertices represent the constraints of the
CSP, and whose edges connect two vertices corresponding to constraints whose
scopes overlap as in Fig. 1c. The dual CSP, PD, is thus a binary CSP where:
(1) variables are the constraints of the original CSP; (2) the variables’ domains
are the tuples of the corresponding relations; and (3) the constraints enforce
equalities over the shared variables. A tree decomposition of a CSP is a tree
embedding of the constraint network of the CSP. The tree nodes are thus clusters
of variables and constraints. A tree decomposition must satisfy two conditions:
(1) each constraint appears in at least one cluster and the variables in its scope
must appear in this cluster, and (2) for every variable, the clusters where the
variable appears induce a connected subtree. Fig. 1d shows a tree decomposition
of the CSP in Fig. 1a. A separator of two adjacent clusters is the set of variables
in both clusters. A given tree decomposition is characterized by its treewidth,
which is the maximum number of variables in a cluster minus one.

3 Relational Consistency Property and Algorithms

We introduce the property R(∗,m)C as a relational consistency property for non-
binary CSPs [7, 8]. This property ensures that, given any set of m constraints,
every tuple in the relation of one of those m constraints can be extended to
all the variables in the union of the scopes of the constraints in an assignment
that simultaneously satisfies all the constraints. We present two algorithms for
enforcing this consistency property on a CSP; both algorithms are based on
solving by backtrack search the dual CSP induced by the m relations:

– PerTupleSearch considers each tuple in each one of the m relations and
ensures, by backtrack search, that it appears in a solution to the induced
dual CSP. Thus, it solves, in the worst case, as many satisfiability problems
as there are tuples in the m relations.

– AllSolSearch finds all the solutions of the induced dual CSP to determine
which tuples must be kept. It executes a single backtrack search but may
have to find, in the worst case, all the solutions of the induced CSP.
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4 Relational Consistency on Tree Decomposition

We investigate the use of R(∗,m)C in the context of a tree decomposition for
the purpose of localizing the application of the consistency algorithms to the
subproblems induced by the vertices of the clusters, ordering the constraint-
propagation process along the branches of the tree, and enhancing propagation
by adding redundant constraints to the separators.

Localizing Relational Consistency: Instead of computing the combinations
of m constraints over the entire CSP, we propose to restrict ourselves to the
combinations computed within each cluster, thus reducing the number of com-
binations to be considered.

Ordering the Propagation: We consider two strategies to order the clusters in
which the consistency algorithm is applied. The first strategy follows the fixed
order of clusters given by the MaxCliques algorithm [9]. The second strat-
egy prioritizes the clusters by favoring those clusters whose children are most
constrained. We evaluate the constraintedness of a cluster by the ratio of the
removed tuples to the original tuples in its relations.

Redundancy at Separators: The application of R(∗,m)C to a set of relations
is always followed by a step where the filtered constraints are projected on the
domain of the variables. When applying R(∗,m)C individually to each cluster of
a tree decomposition, the effects of filtering in one cluster are transferred to the
adjacent cluster through the domains of the variables in the separator between
the two clusters. Enforcing R(∗,m)C does not require adding new constraints to
the CSP. However, synthesizing a global constraint at each separator improves
the ‘communication’ between clusters and guarantees backtrack-free search.

Synthesizing and storing those global constraints is typically prohibitive, es-
pecially in terms of space. For this reason, we propose to approximate the global
constraints by adding redundant constraints. The strategy that we adopt here
consists in adding the clusters’ constraints to the separator after projecting them
on the variables in the separator. In Section 6, we describe two other strategies.

5 Experimental Results

The experiments reported below evaluate some of the techniques described in this
paper. We generate a tree decomposition that is an adaptation of the the tree-
clustering technique of [4], by building the primal graph of the non-binary CSP,
triangulating it, then using the join tree of the maximal cliques of the resulting
triangulation. We add redundant constraints to the separators by projecting
the constraints in the cluster on the variables in the separator. We use the
PerTupleSearch algorithm localized to the clusters of a tree decomposition.
The parameter m of R(∗,m)C is set to the number of relations in a cluster,
and, thus, the consistency level enforced adapts locally to each cluster in the tree
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Table 1: Comparing R(∗,m)C localized to the clusters with propagation orderings
Priority and MaxClique against GAC and maxRPWC. Averages are computed
over instances completed by all methods.
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aim-100 24 20 21 15 16 15 16 1 1 18.66 15.82 509.02 479.67 103.36 103.36 10M 7M
aim-200 24 9 7 8 8 8 7 0 0 - - - - - - - -
aim-50 24 24 24 24 24 21 21 1 3 1.01 0.95 1.51 1.31 53.21 53.21 43K 31K

comp-25 50 45 45 10 10 44 43 0 0 821.32 1,124.00 719.61 866.17 45.29 45.29 1M 1M
comp-75 40 38 37 3 3 38 37 0 0 8.19 4.54 0.13 0.17 0.00 0.00 1.00 1.00
dag-rand 25 25 25 5 0 25 25 0 0 - - - - - - - -

ehi-85 100 91 10 74 55 91 10 0 0 417.65 450.23 369.07 663.08 0.00 0.00 86K 86K
ehi-90 100 98 7 55 44 98 7 0 0 383.21 539.02 0.64 0.91 0.00 0.00 10.00 10.00

modRenault 50 50 50 25 32 50 50 5 18 5.91 6.17 64.89 209.49 81.39 81.39 341K 1,213.30

decomposition. The propagation is ordered by the two strategies proposed in
Section 4. Thus, we use two configurations for R(∗,m)C and we refer to them
as MaxClique and Priority.

We compare the two configurations of R(∗,m)C against GAC2001 [10] and
maxRPWC [11]. The four consistency algorithms are integrated as full lookahead
strategies in a backtrack search using the domain/degree heuristic for dynamic
variable ordering. The nodes in the search tree correspond to instantiations of
the original variables of the CSP, and the count of node visits is the same for the
four compared techniques. The experiments are conducted on benchmarks from
the CSP Solver Competition1 that are difficult to solve using GAC. We imposed
a time limit of one hour per instance.

Table 1 gives the total number of instances in each benchmark, and the num-
ber of instances: solved within the time limit, and solved without backtracking.
On the right side of the table, the average CPU time and number of nodes visited
are given computed on the instances solved using the four algorithms.

We observe that R(∗,m)C is able to solve most instances in those bench-
marks without backtracking, thus achieving the practical tractability that we
are aiming at. The average numbers of node visits show that R(∗,m)C visits or-
ders of magnitude fewer nodes than GAC and maxRPWC. The impact of fewer
backtracking achieved by R(∗,m)C is reflected in the number of instances com-
pleted in each benchmark. Also, we notice that by using the Priority ordering
we are able to solve more instances than using the maxClique ordering.

6 Conclusion and Future Work

We propose a new local consistency property R(∗,m)C with algorithms for en-
forcing it by localizing the application of the algorithms to the clusters of a tree

1 http://www.cril.univ-artois.fr/CPAI08/
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decomposition of a CSP. We also propose to modify the structure of the CSP
to enhance propagation without increasing the width of the constraint network.
We presented the results of our preliminary experiments comparing R(∗,m)C to
GAC and maxRPWC. The results indicate that we can achieve tractability in
practice on many instances by solving them almost without backtracking.

In the future, we will evaluate two other strategies for approximating the
global constraints on the separators: (1) adding binary constraints to the sepa-
rator by generating a constraint for every fill-in edge obtained by a triangulation
of the primal graph of the separator and (2) adding non-binary constraints to
the separator that cover the maximal cliques of a triangulation of the separa-
tor’s primal graph. Finally, we will evaluate our approach to count the number
of solutions of the CSP and compare it to the BTD [12].
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Abstract. This work introduces Constraint Programming (CP) as a
powerful tool for the verification of performance metrics of Multipro-
cessor System-on-Chip (MPSoCs). Our methodology was evaluated us-
ing streaming applications mapped onto a target MPSoC. The resulting
constraint-based scheduling problem allowed us to identify performance
constraint violations in a fraction of the time required by simulation-
based verification.

1 Introduction

Multiprocessor System-on-Chip (MPSoC) designs have become a very popular
choice for modern embedded systems [1]. These designs use complex on-chip
networks to integrate different programmable processor cores, specialized mem-
ories, and other components on a single chip. The parallel nature of MPSoCs
makes verification a challenging task, in particular for communication and mul-
timedia applications. This is due to the non-functional constraints of hardware
and software modules, such as processor speed, buffer size, energy budget, and
scheduling policy [2], and the combination of multiple applications.

System-level design and verification methodologies such as Constraint Pro-
gramming (CP) have been introduced as a solution to handle the design complex-
ity of embedded systems [2]. The power of CP comes from the fact that validity,
quality, and test specification requirements for any system are naturally modelled
through constraints, which are naturally represented as a Constraint Satisfaction
Problem (CSP). In this paper, we introduce a constraint-based scheduling model
for concurrent streaming applications on MPSoCs. Our aim is to identify which
critical system parameters (e.g. buffer size) can lead to unsatisfied application
constraints.

This paper is structured as follows: the related work is introduced in Section
2; our MPSoC architecture platform is described in Section 3; Section 4 outlines
our constraint based scheduling model and the associated constraint program-
ming techniques; Section 5 shows our experimental results; finally, Section 6
draws some concluding remarks.

2 Related Work

Simulation-based verification is a well known method to determine the response
time of embedded systems. Virtual platforms [3] can simulate both the software
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and the hardware of a computer system in detail, at the expense of long execu-
tion times. At a higher level of abstraction, one can find scheduling simulators
that only analyse the scheduling of the system’s tasks based on key attributes
and execution times. In general, scheduling problems are computationally chal-
lenging, and have been subject of active research in Constraint Programming
(CP) and in Operations Research (OR) for many years [4]. Recently, hybrid ap-
proaches have been applied to this class of problems [5]: most of them split the
overall problem into an assignment and a scheduling sub-part. Those are solved
in an iterative and interactive fashion with a mix of CP and OR techniques.

Streaming applications like MPEG4 or VOIP define a pipeline work flow
with strict ordering of data transfers between processing elements. Verification
of these systems requires creating a system-level scenario [6]. Verification of em-
bedded streaming applications on MPSoCs has been widely explored by using
the Synchronous Data Flow (SDF) model [7], which presents general techniques
to construct periodic admissible parallel schedules (PAPS) on limited number of
processors. [2] further investigates buffer minimization and task scheduling is-
sues for streaming applications. Some CP approaches for data-stream (or cyclic)
scheduling and MPSoCs have been introduced [8].

Our work extends these previous by considering multi-stream models on MP-
SoCs using CP. To the best of our knowledge, no previous attempt exists to
address these problems using constraint programming.

3 Architecture Platform

Fig. 1: MPEG-4 and VOIP packet flow in MPSoC architecture. SH = SharedMem, PE1 =

Processor1, PE2 = Processor2, AuP = AudOP, GraphCrd = GCR

In this paper, we consider a regular 2-D mesh Network On Chip (NoC),
usually scalable up to 64 tiles, as our Design Under Test (DUT). As a case study
we used MPEG4 and VOIP applications, (see Figure 1). The system architecture
consists of: one shared memory (SharedMem) acting as a receiver for different
application streams, two processing elements each with its own private memory
to generate the output stream, one graphics card for video display (GraphCrd),
and an output port for audio display (AudOP), connected via 2x2 ST-NoC
routers. The inputs to the system are packetized trace files for both applications.
This makes the application more realistic and allows using different streams with
different rates.
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Table 1: Symbols used in the model
Symbol Description Equation

η Packet Size in bytes input
σ, ρ number of Frames for Application M,V respectively input
%i, υj original frame size for Application M,V respectively input

where 0 ≤ i ≤ σ − 1 and 1 ≤ j ≤ ρ− 1
Γ, ϑ Decompressed frame size for Application M,V respectively input, Max(υi) ∗ 15

α, β number of m, v packets respectively
σ∑
i=1

(%i/η),
ρ∑
i=1

(υi/η)

γ, δ number of m
′
, v

′
packets respectively (Γ/η) ∗ σ, (ϑ/eta) ∗ ρ

χ number of Processors on the system input

t̂ number of tasks for m, v packets input

t̂m
′
, t̂v

′
number of tasks for m

′
, v

′
packets respectively input

â, â
′

a, a
′

chain length input

f̂ , f̂m
′
, f̂v

′
f, fm

′
, fv

′
chain length t̂− â, t̂m

′
− â

′
, t̂v

′
− â

′

4 Constraint-Based Scheduling

We mapped streaming applications onto the target MPSoC architecture by mod-
elling them as Constraint-based scheduling problems. Packets from these appli-
cations are translated to sets of tasks. The output either gives a suitable schedule
for the input stream or it indicates that no solution exists.

Stream models Among standard types of scheduling problems, our problem is
closest to flow shop scheduling, known to be NP-hard. The flow shop scheduling
problem consists of a finite set of jobs to be processed on each of a finite set
of machines. Jobs have the same processing order through the machines but
the order in which uninterruptible jobs are processed on a given machine can
vary between machines. Machines generally have a processing capacity and each
job-machine pair has its own capacity demand and processing time.

Following the DUT in Figure 1 we have two streaming applications M and V
(for MPEG4 and VOIP respectively), each with two sets of packet type (Original,
Decompressed) processed through one of two different chains of operations de-
pending on the output components and the chosen alternative resources. Original

packets Pm = {mi}αi=1 and P v = {vr}βr=1 correspond to the streams received by
the DUT into the shared memory and traveling through the system until being
processed on one of the two processors. Decompressed packets Pm

′
= {m′j}

γ
j=1

and P v
′

= {v′i}δs=1 correspond to the streams generated in the processor as
the decompressed packets are the output of the original packets. They travel
through the system until they reach the output resource element. We denote by
P = Pm∪Pm′∪P v∪P v′ the set of all packets. Each packet in each stream will be
treated as a sequence of tasks, and each task is processed using a single resource.
Additional constraints come from the system architecture and applications.

We will simplify our model based on two facts. First the scheduling test uses
a trade-off between video quality (measured in terms of frame size) and buffer
size. Second the most critical system resources are buffer capacity and processor
frequency. Therefore the network interfaces (NI) and shared memory delays will
be expressed by a minimum temporal separation between tasks processed on two
consecutive components. Also shared memory size can be reasonably big for all
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packets to stay there as long as they need without violating other constraints.
The main symbols in the model are described in Table 1.

The DUT set of resources is {SharedMem = 1, RouterS = 2, Router11 =
3, P rocessor1 = 4, Router12 = 5, Router21 = 6, P rocessor2 = 7, Router22 =
8, Router3 = 9, GraphCrd = 10, AudOP = 11, NI = 12} — two properties are
associated to each resource, speed and capacity.

A packet travelling through the system uses different resource chains from the
receiver (shared memory then processed by one of the two processors then passed
to its output device). The existence of more than one processor makes some
of the resources alternatives. For example 〈SharedMem,RouterS,Router11,
P rocessor1〉 and 〈SharedMem,RouterS,Router21, P rocessor2〉 are alternative
resource chains for original packets before compression.

Here we identified the five possible different resource chain orders: f = {2}
for non alternative resources chain of applications original packets type, a =
{{3, 4}, {6, 7}} and a′ = {{4, 5}, {7, 8}} for alternative resources chain of ap-

plications original and decompressed packets type respectively, fm
′

= {9, 10}
and fv

′
= {11} for non alternative resources chain of applications M,V decom-

pressed packets type respectively.

Decision Variables Packets are represented by the union of four main sets of
tasks T processed on different resource chains (See Figure 1 and Table 1 for
details):

T =
⋃

0≤i≤α−1

Tmi
⋃

0≤j≤γ−1

Tm
′
j

⋃
0≤r≤β−1

T vr
⋃

0≤s≤δ−1

T v
′
s (1)

where Tmi = {tmik : 0 ≤ k ≤ t̂− 1}, Tm
′
j = {tm

′
j

k : 0 ≤ k ≤ t̂m′ − 1}, T vr = {tvrk :

0 ≤ k ≤ t̂ − 1}, and T v
′
s = {tv

′
s

k : 0 ≤ k ≤ t̂v
′ − 1}. We further refine tasks by

associating one to each alternative resource in set aT :

aT =
⋃

0≤i≤α−1

aTmi
⋃

0≤j≤γ−1

aTm
′
j

⋃
0≤r≤β−1

aT vr
⋃

0≤s≤δ−1

aT v
′
s (2)

where aTmi = {atmikp : f̂ ≤ k ≤ t̂ − 1, 0 ≤ p ≤ χ − 1}, aTm
′
j = {atm

′
j

kp : 0 ≤
k ≤ â′ − 1, 0 ≤ p ≤ χ − 1}, aT vr = {atvrkp : f̂ ≤ k ≤ t̂ − 1, 0 ≤ p ≤ χ − 1}, and

aT v
′
s = {atv

′
s

kp : 0 ≤ k ≤ â′ − 1, 0 ≤ p ≤ χ− 1}.
As usual to each task we associate start, end which are the time the packet

starts and ends being processed on the corresponding component respectively,
demand which is the space it occupies on the component while being processed
by it, and presence which indicates whether the packet used a certain resource;
for set T this value is equal to 1 whereas for aT this value is either 1 or 0.

Constraints The binding of streaming applications onto the target MPSoC archi-
tecture is a process with resource limitations and RT requirements. Here we use a
constraint-based formulation to model the application-to-architecture mapping,
communication routing, flow control, and computation scheduling. Basically we
have four main sets of constraints controlling demand, duration, scheduling start
and end time, and capacity (see Table 2). The constraints are chosen to ensure
both system and application rules are respected.
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Table 2: Model Constraints
To Rule
all 1. resource capacity must be respected at all time.
all 2. packets must end processing before simulation deadline.
all 3. packet duration must be as large as the minimum duration a certain resource needs to process it.
m, v 4. packets must not start processing on the system before their arrival time.
all 5. decompressed packets of one frame cannot start before receiving all packets from its original frame.
all 6. original packets of one frame cannot end before starting all packets of its decompressed frames

m, v, v
′

7. all packets are processed in sequential order.

m
′

8. application M uses a periodic pattern known as a Group of Pictures (GOP) causes a difference

in the sequence of data transmitted and data displayed: m
′

packets must follow order its frame
order 1, 4, 2, 3, 7, 5, 6, 10, 8, 9, 1, 11, 12.

all 9. tasks for a given packet are processed in order.
all 10. alternative tasks must be processed on only one of the alternative resources
all 11. packets of the same frame must be processed on the same processor, and frames depending on

other frames must be processed on the same processor

m
′

12. m
′

packets of the same frame must be displayed at the same time.

v
′

13. v
′

packets of the same frame must respect a display rate of 50 frames per second

5 Experimental Results

Our aim is to experimentally identify non-trivial cases of system failure which
are unlikely to be detected manually by a Test Engineer. Particular interest is
given to cases that show the impact of independent applications sharing the
same computational resources. Our model was implemented using IBM ILOG
OPL IDE v6.3 and used the default search. All experiments were run on an
Intel Core i7 computer with 4GB RAM. The target parameters are shown in
Table 3. The design space is explored by manually and sequentially applying
these parameters.

Table 3: Design space for the experimental platform
Parameter From To Parameter Value

PE BW 1Mb/s 512Mb/s Max Allowed VOIP Delay 1s

PE Size 1.5KB 15KB Num. of PEs 2

Bus Latency 10ns 100ns Memory BW 2 Gb

Bus Latency 10ns 100ns Packet Size = Buffer Size 1.5 KB

Max Allowed VOIP Delay 2ms 1s MPEG frames Size QCIF, SDTV

Simulation dead line 2 seconds (Double the time needed to display frames)

We take our results for application M (with two different frame sizes) and
Application V (with either a delay restriction like a phone call, or some allowed
buffering flexibility like voice message) separately and when combined.

Some tests gave straightforward results: both applications will always fail
if the private memory of the PEs is less than 3 KB and 6 KB for M and V ,
respectively. This is due to inter- and intra-frame packet dependencies. Other
tests show how one application failure might affect the other, when running
simultaneously. For example, when M is dealing with an SDTV stream with
a PE BW of 64Mb/s, the non-restricted delay version of V will always fail.
Similarly, the delay-restricted version of V will always fail when M is processing
a QCIF stream with a PE BW of 64Mb/s.

Our methodology has allowed us to identify some interesting cases. For ex-
ample the combination of M and V will fail with a PE BW 11 Mb/s even
if both applications can be successfully scheduled independently, meaning that
our methodology can identify issues due to the non-obvious interaction of multi-
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ple applications. Given that PEs need to be fast enough to produce the required

frame rate, one can devise the following empirical rule: Fsfps/PsOutmax
> 1 with Fs, Ps

the frame and packet size, respectively, and Outmax the maximum processor
output. Hence the DUT should fail when running only M using QCIF with a
PE BW < 14.5 Mb/s. Nevertheless our methodology shows that a PE BW = 11
Mb/s is sufficient for the application. This shows that non-trivial optimizations
can be discovered with our methodology. Conversely, for V , a PE BW = 6.8
Kb/s should be sufficient, but we can observe that in delay-restricted conditions
the system could not be scheduled if PE BW < 64 Mb/s. This shows we can
detect issues related to buffering and link delays.

To test the performance of our methodology, we compared it with the use of
the ReSP MPSoC Simulation Platform [3]. When using FFMPEG, our system
can detect system failure in less then 15 seconds and verify system success in 10
minutes, while ReSP takes around 30 minutes to run one simulation.

6 Future Work

Our next steps will be: improving performance by designing a dedicated search
strategy, experimenting with different applications, and handling tasks differ-
ently depending on their nature (i.e. heavy tasks to be tested with CP and light
tasks tested by simulation).
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Abstract. Recent works on cost based relaxations have improved Con-
straint Programming (CP) models for the Traveling Salesman Problem
(TSP). In this paper, we suggest to refine existing tree based relaxations
of the TSP by considering properties of the reduced graph.

1 Introduction

Given a n node, m arc complete directed weighted graph G = (V,A, f : A→ R),
the Asymmetric Traveling Salesman Problem [1] (ATSP) consists in finding a
partial subgraph G′ = (V,A′, f) of G which forms a Hamiltonian circuit of min-
imum cost. This NP-hard problem is one of the most studied by the Operation
Research community. It has various practical applications such as vehicle routing
problems, microchips production optimization or even scheduling.

The symmetric TSP is well handled by linear programming techniques [1].
However, such methods suffer from the addition of side constraints and asymmet-
ric cost matrix, whereas constraint programming models do not. Since the real
world is not symmetric and industrial applications often involve constraints such
as time windows, precedences, loading capacities and several other constraints,
improving the CP general model for solving the ATSP leads to make CP more
competitive on real world routing problems. Recent improvements on cost based
relaxations [2] had a very strong impact on the ability of CP technologies to
solve the TSP. In this paper, we present how both the Minimum Spanning Tree
(MST) and the Minimum Spanning Arborescence (MSA) relaxations can be im-
proved by considering the reduced graph. This work is part of a more general
study [6] where we investigate how the graph structure can contribute to the
resolution process, in order to tackle larger instances.

2 Background

Let us consider a directed graph G = (V,A). A Strongly Connected Component
(SCC) is a maximal subgraph of G such that for each pair of nodes {a, b} ∈ V 2,
a path exists from a to b and from b to a. A reduced graph GR = (VR, AR) of a
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directed graph G represents the SCCs of G. This graph is obtained by merging
the nodes of G which are in the same SCC and removing any loop. Such a
graph is unique and contains no circuit. We link G and GR with two functions:
sccOf : V → VR and nodesOf : VR → V V .

In a CP context a Graph Variable [5, 10] can be used to model a graph. We
define a graph variable GV by two graphs: the graph of potential elements, GP =
(VP , AP ), contains all the nodes and arcs that potentially occur in at least one
solution whereas the graph of mandatory elements, GM = (VM , AM ), contains
all the nodes and arcs that occur in every solution. Thus, GV = (GP , GM ). It
has to be noticed that GM ⊆ GP ⊆ G, where G is the (complete) input graph. It
should also be noticed that, regarding the TSP, VP = VM = V , so the resolution
will focus on AM and AP : branching strategies and propagators will remove
infeasible arcs from AP and add mandatory arcs of AP into AM .

3 A basic model

Given, a directed weighted graph G = (V,A, f), and a function f : A → R, the
ATSP consists in finding a partial subgraph G′ = (V,A′, f) of G which forms a
Hamiltonian circuit of minimum cost. A simple ATSP model in CP, involving
a graph variable GV , can basically be stated as minimizing the sum of costs
of arcs in the domain of GV and maintaining GV to be a Hamiltonian circuit.
However, it is often more interesting to convert such a model in order to find a
path instead of a circuit [7, 8]. Our motivation for this transformation is that it
brings graph structure that is more likely to be exploited.

In this paper, we consider the ATSP as the problem of finding a minimum cost
Hamiltonian path with fixed start and end nodes in a directed weighted graph. In
the following, s, e ∈ V respectively denote the start and the end of the expected
path. s and e are supposed to be known. They can be obtained by duplicating
any arbitrary node, but it makes more sense to duplicate the node represent-
ing the salesman’s home. Then, an efficient filtering can be obtained with the
AllDifferent constraint which maintains a node-successor perfect matching [9]
and the NoCycle constraint [4]. This would however not be sufficient to solve
big instances. Instead, the model should embed relaxation based constraints, to
provide inference from costs. We will focus on the widely exploited MST relax-
ation [11], where both the degree constraint and arc direction are relaxed, and
the MSA relaxation [4] where only the degree constraint is relaxed. While the
MSA is clearly more accurate, the MST is usually preferred because it offers a
better Lagrangian convergence [2]. Indeed, the best results are obtained when
using the above relaxations in a Lagrangian way [2, 4, 6].

4 Considering the reduced graph

In this section, we consider a subproblem which is not a subset of constraints, as
usual, but consists in the whole ATSP itself applied to a more restrictive scope:
the reduced graph of GP . In this section, we first study structural properties
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that arise from considering the reduced graph. Second, we show how to adapt
such information to the Minimum Spanning Tree relaxation.

4.1 Structural properties

We introduce a propagator, the Reduced Path propagator, which makes the
reduced graph a (Hamiltonian) simple path and ensures by the way that each
node is reachable from s and can reach e.

Definition 1. Reduced path guarantees that any arc in GP that connects two
SCCs, is part of a simple path which go through every SCC of GP .

Such a propagator has already been highlighted in [3] and comes from the
two following general observations:

– Given any directed graph G, its reduced graph GR contains at most one
Hamiltonian path.

– If there exists a Hamiltonian path in G then there exists a Hamiltonian path
in GR.

It follows that any transitive arc of GR must be pruned and that remaining
arcs of GR are mandatory (otherwise the graph becomes disconnected). We note
eR = sccOf(e). Then, any SCC, but eR, must have exactly one outgoing arc.
An example is given in figure 1: the graph GP contains four SCCs. Its reduced
graph, GR, has a unique Hamiltonian path PR = ({A}, {B,C}, {E,D,F}, {G}).
Arcs of GR\PR are infeasible so (A,E) and (C,G) must be pruned from GP .

(a) GP (b) GR

Fig. 1. Reduced Path filtering, transitive arcs (dotted) are infeasible.

We introduce a new data structure in GR that we call outArcs : for each
node x ∈ VR, outArcs(x ) is the list of arcs {(u, v) ∈ AP | sccOf(u)= x and
sccOf(v)6= x}. We can now easily draw a complete filtering algorithm for the
Reduced Path propagator which ensures the GAC over the property that GR

must be a path in O(n + m) time:
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1. Data structures: Compute the SCCs of GP (with Tarjan’s algorithm [12])
and build the reduced graph GR = (VR, AR).

2. Taking mandatory arcs into account: ∀(u, v) ∈ AM such that x =sccOf(u)
and x 6=sccOf(v), ∀(p, q) ∈ outArcs(x ) \{(u, v)} remove arc (p, q).

3. Consistency checking: Make GR a path if possible, fail otherwise.
4. for each arc (u, v) ∈ AP such that x =sccOf(u) and y =sccOf(v), x 6= y,

(a) Pruning: if (x, y) /∈ AR, remove arc (u, v).
(b) Enforcing: if (x, y) ∈ AR and (u, v) is the only arc of AP that links x

and y, enforce arc (u, v).

An incremental algorithm is provided in [6].

In general, the reduced graph provides three kinds of information: Prece-
dences between nodes of distinct SCCs; Reachability between nodes of the graph;
Cardinality sets ∀x ∈ VR\{eR}, |outArcs(x )| = 1. Such information can be used
to improve the model. For instance, one can filter on time windows (if any)
through a simple graph exploration that process SCCs one after the other, in
linear time. However, our main interest is to show how both the MST and the
MSA relaxations of the TSP can be improved by considering the reduced graph.

4.2 The Bounding Spanning Tree relaxation

We call a Bounding Spanning Tree (BST) of GP a minimum cost spanning tree
of GP such that, for each pair of SCCs (a, b) ∈ GR, it has at most one edge with
one extremity in a and the other in b. A BST provides a tighter bound than
a MST. Indeed, since BST and MST both are spanning trees, f(BST (GP )) ≥
f(MST (GP )), otherwise MST is not minimal. Such a BST can be obtained by
finding a minimum spanning tree in every SCC of GP independently and then
linking them together using the cheapest arcs:

BST (GP ) =
⋃

x∈GR
MST (GP

⋂
nodesOf(x ))⋃

a∈VR
minf{(u, v) |(u, v) ∈ outArcs(a)}

A simpler way to compute a BST consists in computing a MST on a trans-
formed input cost matrix, where arcs between distinct SCCs are penalized:

f ′(a, b) =

{
f(a, b) If sccOf(a)=sccOf(b)
f(a, b) + K Otherwise, K ≥ 0

,∀(a, b) ∈ AP

Where K is a positive offset that must then be deduced from the cost of the
resulting MST: f(BST ) = f ′(MST (G′

P ))−K ∗(|VR|−1) with G′
P = (V,AP , f

′).
The idea is that, if arcs between SCCs are expensive enough (which is the case if
K is an upper bound of the problem), then any MST will, naturally, use no more
than one of them to link two SCCs. So f(BST (GP )) = f(MST (G′

P )) because
MST (G′

P ) contains exactly (|VR| − 1) arcs whose cost has been increased by K.
We will now see how to improve the Weighted Spanning Tree (WST) [11]

constraint, leading to the Bounding Spanning Tree (BST) propagator. We as-
sume that the reader is already familiar with this constraint. The BST can re-
place the MST of the WST constraint: the pruning rules of WST constraint
will provide more inference since the bound is tighter. Actually, we can do
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even better by slightly modifying the pruning rule of the WST constraint for
arcs that are between two SCCs: an arc linking two SCCs can only replace (or
be replaced by) another arc linking those two same SCCs. Consider any SCC
x ∈ VR\{eR}, there is one single tree arc (u, v) ∈ outArcs(x ) and then we
can rephrase the pruning rule by: Any arc (u2, v2) ∈ outArcs(x ) is infeasible
if f(BST ) − f(u, v) + f(u2, v2) > UB, where UB is the upper bound of the
objective variable.

Figure 2 illustrates this relaxation : the input directed graph, on figure 2(a), is
composed of four SCCs {A}, {B,C}, {E,D,F} and {G}. For simplicity purpose,
costs are symmetric. Its minimum hamiltonian path, figure 2(b), costs 28 and
we will suppose that such a value is the current upper bound of the objective
variable. The MST of the graph, figure 2(c), only costs 19, which is unfortunately
too low to filter any arc. Instead, the BST, figure 2(d), is much more accurate. It
actually consists of the MST of each SCC, {∅, {(BC)}, {(D,F ), (E,F )}, ∅} with
respective costs {0, 10, 10, 0}, and the cheapest arcs that connect SCCs each
others: {(A,B), (C,D), (F,G)} with respective costs {2, 3, 2}. Thus, the entire
BST costs 27. It is worth noticing that it enables to filter arcs (B,E) and (E,G).
Indeed, (B,E) can only replace (C,D) in the relaxation, so its marginal cost is
f(BST ) + f(B,E) − f(C,D) = 27 + 5 − 3 = 29 which is strictly greater than
the upper bound of the objective. The same reasoning enables to prune (E,G).

(a) Input graph (b) Optimum= 28 (c) MST bound= 19 (d) BST bound= 27

Fig. 2. A new tree relaxation, more accurate than the MST.

4.3 The Bounding Spanning Arborescence relaxation

In the same way, we can define a Bounding Spanning Arborescence (BSA). The
BSA of GP is obtained by using the above mentioned cost transformation and
then computing a MSA in G′

P . It costs f(BSA) = f ′(MSA(G′
P ))−K∗(|VR|−1).

Again, a BSA is a spanning arborescence, so we have f(BSA) ≥ f(MSA). This
can provide a better bound and thus, more filtering. However, the new filtering
rule introduced for the BST is not valid anymore for the BSA. This is because
changing the arc that link two distinct SCCs may change the whole MSA.
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5 Conclusion and Perspectives

We have seen how to strengthen some existing relaxations by considering struc-
tural information of the reduced graph. In [6] we experimentally compared the
Lagrangian relaxation of Held and Karp with a BST-based Lagrangian relax-
ation. It appeared that the BST enabled to improve some pathological cases.
However, on the overall, results did not meet our expectations because of some
instability during the convergence of the Lagrangian process. As future work,
we think it would worth working on making such a Lagrangian relaxation more
stable. We also plan to study the impact of such relaxations on more constrained
problems, such as the TSPTW.
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9. Jean-Charles Régin. A Filtering Algorithm for Constraints of Difference in CSPs.
In National Conference on Artificial Intelligence, AAAI, pages 362–367, 1994.
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Abstract. Virtual Arc Consistency is a recent local consistency for pro-
cessing cost function networks that exploits a simple but powerful con-
nection between classical constraint networks and cost function networks.
The algorithm enforcing virtual arc consistency iteratively solves a se-
quence of classical constraint networks. In this work, we show that dy-
namic arc consistency algorithms can be suitably injected in the virtual
arc consistency iterative algorithm, providing noticeable speedups.

1 Introduction

Graphical model processing is a central problem in AI. The optimization of the
combined cost of local cost functions, central in the valued CSP framework [4],
captures problems such as weighted MaxSAT/CSP or Maximum Probability
Explanation in probabilistic networks. Depth First Branch and Bound search has
been largely used to tackle such problems. It has a reasonable space complexity
but requires good lower bounds on the minimum cost to be efficient.

In the last years, increasingly better lower bounds have been designed by
enforcing local consistencies on CFN. Enforcing is done using so-called Equiv-
alence Preserving Transformations (EPTs, [2]) which extend usual CSP local
consistency operations. EPTs move costs between cost functions while keeping
the problem equivalent. They may eventually increase the cost function of empty
scope (a constant) to a non naive value. This value provides a lower bound on
the optimum cost which can be maintained during branch and bound search.

Virtual arc consistency (VAC), introduced in [1], relies on pre-planned appli-
cations of EPTs built from the result of enforcing classical arc consistency (AC)
on a constraint network called Bool(P ) which forbids combinations of values
with non zero costs in the original CFN P . VAC dominates all previously de-
fined chaotic local consistencies, and it can be approximately enforced with a low
order polynomial time iterative algorithm. Maintaining VAC during tree search
has effectively allowed to close two difficult instances of Radio Link Frequency
Assignment instances. Each iteration of VAC incrementally modifies the network
P . The next iteration therefore proceeds by enforcing classical AC on a slightly
relaxed version of Bool(P ). This situation, where AC is iteratively enforced on
incrementally modified versions of a constraint network, has been previously
considered in dynamic arc consistency algorithms for dynamic CSPs [3]. In this
paper we adapt ideas from dynamic AC in the last phase of VAC. We observe
that this new version frequently provides significant speedups. This may be, as
far as we know, one of the first successful application of dynamic AC algorithms.
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2 Background

A Cost Function Network (CFN), or weighted CSP (WCSP) is a tuple (X,D,W,m)
where X is a set of n variables. Each variable i ∈ X has a domain Di ∈ D. For
a set of variables S, we denote by `(S) the set of tuples over S. W is a set of
e cost functions. Each cost function wS ∈ W assigns costs to assignments of
variables in S i.e. wS : `(S)→ [0..m] where m ∈ {1, ...,+∞}. The addition and
subtraction of costs are bounded operations, defined as a ⊕ b = min(a + b,m),
a	b = a−b if a < m and m otherwise. The cost of a complete tuple t is the sum
of costs ValP (t) =

⊕
wS∈W wS(t[S]) where t[S] is the projection of t on S. We

assume the existence of a unary cost function wi for every variable, and a nullary
cost function, noted w∅. This constant positive cost defines a lower bound on
the cost of every solution. In this paper, we restrict ourselves to binary CFNs.

Enforcing a given local consistency on a CFN P transforms it in an equiv-
alent problem P ′ (ValP (t) = ValP ′(t) ∀t) with a possible increase in the lower
bound w∅ on the optimal cost. Enforcing is done by using equivalence-preserving
transformations (EPTs) which shift costs between cost functions. There are three
basic EPTs. Project(wij , i, a, α) moves an amount of cost α from a binary cost
function to a unary one. Conversely, Extend(i, a, wij , α) sends an amount of cost
α from a unary cost function to a binary one. Finally, UnaryProject(i, α) projects
an amount of cost α from a unary cost function to the nullary cost function w∅.

In a classical binary CSP, represented as a CFN with m = 1 (cost 1 being
associated to forbidden tuples), a value (i, a) is AC w.r.t. a constraint wij iff
there is a pair (a, b) that satisfies wij (is a support) and such that b ∈ Dj (is
valid). A CSP is AC if all its values are AC w.r.t. to all constraints. Enforcing
AC on a CSP produces its AC closure, which is equivalent to P and is AC.

Definition 1. Given a CFN P = (X,D,W,m), the CSP Bool(P ) = (X,D,W, 1)
is such that ∃wS ∈W iff ∃wS ∈W , S 6= ∅ and wS(t) = 1⇔ wS(t) 6= 0. A CFN
P is virtual arc consistent (VAC) iff the AC closure of Bool(P ) is non-empty.

If P is not VAC, there exists a sequence of EPTs which leads to an increase of w∅
when applied on P . VAC enforcing uses an iterative three-phases process. The
first phase is an instrumented AC enforcing on the CSP Bool(P ) that records
every deletion in a dedicated data-structure denoted as killer. When a value (i, a)
lacks a valid support on wij , we set killer((i,a)) = j and we delete the value. If
no domain wipe-out occurs, P is VAC and we stop. Otherwise, phase 2 identifies
the subset of value deletions that are necessary to produce the wipe-out and
stores them in a queue R by tracing back the propagation history defined by
killer. Phase 2 also computes the maximum possible increase achievable in w∅,
denoted λ, and the set of EPTs to apply to P in order to achieve this increase.
All the amounts of cost that the EPTs will move are stored in two arrays of
integers, k(j, b) and kij(j, b), that store the number of quantum λ that needs to
be respectively projected on (j, b) and extended from (j, b) to wij . These cost
moves follow a simple law of conservation. For any value (j, b) which is not a
source of cost (wj(b) = 0), the amount of cost that arrives in (j, b) by Project is
exactly the amount of cost that leaves (j, b) by Extend (See [1], page 465).
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Phase 3 of VAC modifies the original CFN by applying the EPTs defined by
k() and kij() on all the deleted values that have been stored in R. A value (j, b)
deleted by wij will receive a cost of k(j, b)×λ by Project from wij . This requires
to first extend a cost kij(i, a) × λ from the invalid supports (i, a) to wij . The
result of this phase is a new problem P ′, equivalent to P but with an increased
lower-bound w∅. Ultimately, VAC iterations enforce AC on a sequence of slightly
modified CSPs: Bool(P ), Bool(P ′), . . . This motivates the use of dedicated dy-
namic AC algorithms (DnAC) to enforce VAC. The aim of DnAC algorithms is
to maintain AC in CSP problems after each constraint addition or retraction.

Several algorithms have been proposed for DnAC. In this paper, we will use
AC/DC2 [5]. AC/DC2 uses the data structure justification(i, a) to remember
the cause of deletion for (i, a). In the initialization stage, only values which have
been deleted because of the removed constraint cij are considered as candidates
for restoration. In the propagating stage, a variable i having restored values can
check neighboring values (j, b) for restorability only if they have been removed
due to the lack of support on the constraint cji (known through justification).
In a last stage, all restored values need to be checked again for arc consistency.

3 Dynamic VAC algorithm

We propose an improved version of VAC, called dynamic VAC (DynVAC), which
uses dynamic AC to maintain AC on the successive Bool(P ) instead of refiltering
from scratch at each iteration as done in the standard VAC algorithm. We use an
AC/DC2 version based on AC2001 instead of AC3. This also has the advantage
that the justification data-structure of AC/DC-2 is provided for free by the killer
array in VAC. DnAC algorithms are usually applied after each constraint removal
or addition. In the case of VAC, at each iteration, a series of modifications of
Bool(P ) can occur during Phase 3. Let us denote by P t the CFN at the beginning
of iteration t. The problem P t has cost functions wt

i and wt
ij . We observe that

the global effect of all EPTs on Bool(P ) in Phase 3 can be captured as a list of
relaxations only, at the unary and binary levels.

Proposition 1. Following Phase 2 of iteration t, we know that: 1) ∀(i, a) :
wt+1

i (a) ≤ wt
i(a). 2) ∀(i, a) and (j, b) : if wt+1

ij (a, b) 6= wt
ij(a, b) then (i, a) or

(j, b) is deleted in the partial AC closure of Bool(P t).

Corollary 1. The EPTs applied in the phase 3 of VAC, transforming Bool(P t)
into Bool(P t+1), generate only the following types of relaxations 1) values (i, a)
that become authorized (wt

i(a) > wt+1
i (a) = 0). 2) pairs ((i, a), (j, b) that become

authorized (wt
ij(a, b) > wt+1

ij (a, b) = 0).

Therefore, the DnAC algorithm can be specialized. The restoration protocol will
consist of 3 stages , as in AC/DC2 (Algorithm 1). We denote by Di the domain
of variable i in the final justified partial AC closure obtained after Phase 1.

The initialization stage scans all the values in the queue R to identify
which values should be restored. The wipe-out variable i0 is processed separately

51



Algorithm 1: Update Bool(P ) at iteration t

Procedure Initialization1

foreach (j, b) ∈ R do2

i ←− killer [j, b];3

foreach a ∈ Di −Di do4

if (wt
i(a) > 0) ∧ (wt+1

i (a) = 0) then Restore(i, a);5

if b /∈ Dj ∧ wt+1
i (a) = 0 ∧ wt+1

ij (a, b) = 0 then Restore(j, b);6

foreach a ∈ Di0 s.t. wt
i0(a) > 0 ∧ wt+1

i0
(a) = 0 do Restore(i0, a);7

Procedure Restore(i, a)8

add a into Di, restored[i] and add i into RL;9

killer [i, a] ← nil;10

Procedure Propagation11

while RL 6= ∅ do12

i← RL.pop();13

foreach wij ∈W do14

foreach b ∈ Dj −Dj s.t. killer [j, b]= i do15

if ∃a ∈ restored[i] s.t. wt+1
ij (a, b) = 0 then Restore(j, b);16

restored[i] ← ∅; QAC ← QAC ∪ {j | wij ∈W}17

(line 7). When a value (i, a) is restored, it is stored in an array restored [i] and
variable i is kept in a list RL for future propagation. The propagation stage
propagates value restorations to direct neighbors of the variables whose domain
has been extended. Each such variable i can restore a value (j, b) if it was deleted
due to wij (line 15) and is now supported by a restored value in i (line 16).
The filtering stage must eliminate the restored values (i, a) which are not arc
consistent on some constraint wij and must properly set the associated killer
(i, a) to j. This is precisely what is achieved by Phase 1 of VAC. Hence, we
integrated this stage into phase 1 by adding the neighbor variables of variables
having restored values into the revision propagation queue QAC (line 17).

Consider the binary CFN in Fig.a. Only non-zero costs and edges associated
with non-zero binary costs are displayed. In Bool(P ) (Fig.b), forbidden values
are shown as crossed-out and edges represent forbidden pairs. The revision order
in Phase 1 is (w13, w34, w12, w24). Phase 1 stops when x2 is wiped-out after
revising w13, w34, w12 (Fig.c). The gray arrows point to the variable offering
no valid support and the associated italic numbers represent k(i, a). In Phase
2 (Fig.d), the deletion of (x2, b) alone is sufficient for the wipe-out. It uses the
non-zero costs w12(b, b) and w1(a) to provide w∅ with a maximal amount of
cost λ = 1. Applying identified EPTs, Phase 3 transforms P into an equivalent
problem P 2 with w∅ = 1 (Fig.e - Fig.g). Extended costs are shown in bold.
To update Bool(P ) in Fig.c, we consider ((x1, a), (x2, a), (x2, b)) since only w12

has been modified by EPTs in phase 3. Only (x2, b) is restored because it has a
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zero cost and a support (b, b) on w12. This restoration does not lead to further
restorations. The constraints of the updated Bool(P 2) are directly defined by
P 2. The updated result (Fig.h) has 2 extra deleted values with associated killer.
The next phase 1 starts from this updated Bool(P 2). The final problem with
w∅ = 2 is VAC.

4 Experiments

In this section, we compare the efficiency of DynVAC and VAC used as pre-
processing algorithms on a large set of benchmarks from the Cost Function
Library3. For each problem, as in [1], we enforce a limited version of VAC that
stops iterating as soon as the increase in w∅ becomes less than ε = 0.05.

The following table shows the mean value of the run-time (in seconds), the
lower bound (lb) and the number of iterations (iter) for enforcing VAC using
either the usual static VAC algorithm or the new DynVAC variant. Each line
corresponds to a different problem class covering Size instances. These exper-
iments show that DynVAC is respectively 1.6, 3 and 5 times faster than VAC
for the classes celar, tagsnp, warehouse while providing similar lower bounds on
average. However, DynVAC is significantly slower than VAC (respectively 7 and
4 times) for all the maximum clique problems categories we tested: protein mc
and dimacs mc. On these problems, we noticed that each iteration leads to the

3 https://mulcyber.toulouse.inra.fr/scm/viewvc.php/trunk/?root=costfunctionlib
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class Size
VACε DynVACε DynVACε with heuristic

lb time iter lb time iter lb time iter

celar 32 6,180 3.14 382 6,204 1.92 418 5,892 1.12 319
protein mc 10 1,016 51 1,022 1,016 364 1,022 1,016 56.95 1,022
tagsnp r0.5 25 1.43×106 364.31 8,798 1.43×106 116.57 4,653 1.43×106 81.46 5,810
tagsnp r0.8 82 1.11×106 4.64 155 1.11×106 1.53 120 1.11×106 2.54 150

dimacs mc 65 266 0.78 284 266 3.65 284 266 0.96 284
planning 68 1,074 0.25 46 1,074 0.19 50 1,072 0.23 76

warehouse 57 7.23×106 341 946 7.24×106 66 719 7.25×106 114.17 790

useless restoration of many values in cascade which will again be uselessly deleted
in the next iteration. In order to improve the efficiency of DynVAC we have used
the variable-based revision heuristics proposed in [6]. The corresponding results
are presented in the last column of the above table. They show that the heuristics
allows to drastically improve the performance of DynVAC on maximum clique
problems, leading to performances which are comparable to the static VAC in
this highly unfavorable case.

5 Conclusion

We have proposed an incremental approach for enforcing VAC in CFNs. It com-
bines the idea of DnAC algorithms with the iterative VAC algorithm in order to
efficiently maintain arc consistency in the CSP Bool(P ) during VAC enforcing.
The new algorithm, DynVAC, provides a lower bound of the same quality level
as the static VAC algorithm but is faster than static VAC on many problems.
However, DynVAC may become slow on some specific problems like the maxi-
mum clique problems. Using a revision heuristic on domain sizes inside the AC
instrumented algorithm allows to avoid this pathological behavior.
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1: PhD Student; 2: Supervisor
Department of Computer and Software Engineering
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Abstract. Automated test data generation can significantly reduce soft-
ware cost, development time, and time to market. In this paper, we pro-
pose a novel combination of constraint-based testing and search-based
testing, two dominant approaches to software testing: search-based test-
ing is used to generate test data while constraints are used to guide the
generation of test data candidates, to rank them, and to evolve them.
Empirical results on three open-source programs show improvements in
terms of branch coverage while reducing computation time.

Keywords: Search Based Testing, Constraint Based Testing, Initial Population
Generator, Fitness Function, Evolution Operator.

1 Introduction

Test case generation is one of the most expensive parts of the software testing
phase. Automating testing could significantly reduce software cost, development
time, and time to market [2]. During the last decade, the automatic generation of
structural software test data has received much attention in the literature [3, 4,
6]. Constraint-based testing (CBT) and search-based testing (SBT) approaches
have become the dominant approaches in this research area because they achieve
high code coverage. Yet, these approaches suffer some problems.

The advantages of CBT are the precision of its generated test data and
its ability to prove that some paths are unreachable. Its main disadvantage is
its inability to handle dynamic aspects of unit under tests (UUTs): dynamic
structures and native function calls. Thus, CBT cannot always generate test
data due to source code complexity and unavailability. In contrast, SBT can
handle any type of UUTs but is sensitive to the search-space size, the diversity
of the initial population, the effectiveness of its evolution operators, and the
quality of its fitness function. SBT cannot handle certain aspects of UUTs: nested
structures, flags [5] while these can be handled by CBT.

In this paper , we propose a hybrid approach, CSBT, that generates test data
by combining CBT and SBT. CSBT models a relaxed version of a UUT as a
constraint satisfaction problem (CSP). Based on this model and the test target, a
constrained population generator (CPG) generates an initial population. Then,
an evolutionary algorithm uses this population, a constrained fitness function
(CFF), and a constrained evolution operator (CEO) to generate test data leading
to cover the test target.
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1 intStr(int X,int Y,
2 String S1,String S2) {
3 int y= X<<Y;
4 int x=y+X/Y;
5 String s=S1+S2;
6 if((s.equals(”OK”)
7 && (x>0)
8 && s.length()>x)
9 return 1; // Target

10 return 0;
11 }

Fig. 1: intStr function —
———–

1 intStr(int X,int Y)
2 {
3 int R1,R2; int y= R1;
4 int x=y+X/Y;
5

6 if(
7 (x>0)
8 && R2>x)
9 return 1; // Target

10 return 0;
11 }

Fig. 2: Relaxed version for
an integer solver

1 intStr(
2 String S1,String S2) {
3

4

5 String s=S1+S2;
6 if(s.equals(”OK”))
7

8

9 return 1; // Target
10 return 0;
11 }

Fig. 3: Relaxed version for
a string solver

We report on the comparison of a CBT, a SBT, and our CSBT approach
and show that the latter outperforms the others on our benchmark UUTs. The
empirical results show that CSBT reduces the effort needed to reach a given test
target and that it achieves higher branch coverage than the test data generated
by each approach alone.

The remainder of the paper is organized as follows: Section 2 briefly describes
our testing approach. Section 3 presents an empirical study. Section 4 summarises
related work. Section 5 concludes with some future work.

2 CSBT: Constrained Search-based Testing

The proposed approach can be used with any combination between a static CBT
and any SBT that is based on either population-based or multi-start trajectory-
based metaheuristic.

We assume that: (1) using a diversified initial population that partly satisfies
a UUT’s predicates leading to the test target can reduce significantly the effort
required to reach this test target; (2) test candidates that meet complex branches
are more promising than those that meet less complex branches and, therefore,
a fitness function based on branch complexity can provide efficient guidance; (3)
test candidates that satisfy some test target constraints are “closer” to the test
target than those that are randomly selected. Therefore an evolution operator
that evolves population according to a UUT’s CSP model can be more effective
than an ordinary one.

2.1 Unit Under Test Relaxation
To avoid the CBT limitations, we introduce a preliminary phase called UUT
relaxation. We propose to apply CBT on a relaxed version of the UUT, which
contains only expressions supported by the constraint solver used. We obtain
this version by applying the following rules:

– We relax any unsupported expression (function call, operator) by replacing
it with a new variable. Figure 2 shows a relaxed version of intStr, which is
shown in Figure 1, for an integer solver. We suppose that the solver cannot
handle the shift operator, so we replace the expression with this operator by
a new, uninitialised variable R1, which can take any integer value.
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– We ignore any statement over unsupported data types. In Figure 2, the
relaxed version of intStr ignores the statement at line 5 (String s=S1+S2;)
and the a part of the conditional statement at line 6 (s.equals("OK"))
because these two expressions are over strings.

– We create a new relaxed version for each data type that needs a differ-
ent solver. The function intStr takes integer and string types as inputs. If
we have a solver for strings, then we generate another relaxed version over
strings. Figure 3 shows a relaxed version of intStr for a string solver.

– For loops, CBT models a limited number of iterations: kpath (equals to 1,
2, or 3). If the number of iterations is greater than kpath, then the value
of an assigned variable inside a loop is unknown after this loop. We relax
any variable assigned inside a loop just after the loop, i.e., an assignment
statement is inserted after the loop for every variable defined inside the loop:
a variable is assigned a new uninitialized variable.

We use an adapted version of our CBT approach [8] that we call relaxed CBT
(RCBT). RCBT takes as input a relaxed version of the UUT and a test target
to meet. Then, it produces, if feasible, a set of pseudo test inputs that covers a
test target in the relaxed version.

2.2 Collaboration between RCBT and SBT

Fig. 4: Inputs search
space.

The collaboration between RCBT and SBT is as fol-
lows. RCBT generates a pseudo test data and then
SBT uses this pseudo test data to generate an ac-
tual test data. One of our contributions is to define
the data exchanged and connection points between
RCBT and SBT. SBT needs new test input candi-
dates at three different points: (1) during the gener-
ation of its initial population; (2) when it restarts,
i.e., when it reaches the attempt limit of evolving;
(3) during its evolving procedure. For the first and
the second points, RCBT can generate the whole or parts of the population.
If RCBT is unable to generate the required number of candidates, we call the
random generation procedure to complete the population. For the third point,
RCBT can offer a branch complexity measure for a fitness function and help in
the population evolution process by discarding candidates that break any relaxed
models and by allowing only candidates that satisfy all relaxed models.

Constrained Population Generator. For each relaxed version, CPG gener-
ates a set of pseudo test data. Then, the SBT initial population is generated
from all possible combinations of these pseudo test inputs, i.e., we combine
(Cartesian product) every solution of one relaxed version with every solution of
other relaxed versions.

CPG can be seen as a domain reduction phase. Figure 4 illustrates the inputs
search space of a program P, the parts A, B, C, D, and E are the RCBT solutions
space of all relaxed versions of P, which we call pseudo test data, while starts
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are true, desired test inputs. This example shows that a random test candidate,
from the white space, is likely to be too far from a true, desired test data when
compared to some pseudo test data. The parts C and E do not contain any test
data, so a pseudo test data from these two parts may also be far from a true,
desired test data. A population that takes its candidates from different parts is
likely to be near one of the true, desired test data; we call it a diversified popu-
lation. We can offer an acceptable level of diversity by generating a pseudo test
data for every branch consistent with a test target and a high-level of diversity
by generating a pseudo test data for every path that leads to the test target.

Constrained Fitness Function (CFF). To generate test data, SBT uses a
meta-heuristic guided by a fitness function. The measures branch-distance and
approach-level are largely used for computing the fitness function value [5]. These
measures are respectively the number of branches leading to the test target that
were not executed by the test candidate and the minimum required distance to
satisfy the branch condition where the execution of the test candidate has left
the path’s target, e.g., if the branch x = y must be true, then the branch-distance
can be |x − y|. A fitness function based on these two measures does not take
into account neither condition complexity nor branch-distance of non-executed
branches. A CFF that uses these two information could lead to a more effective
and efficient search. We hypothesise that the complexity level of a branch condi-
tion is a key information to measure the relevance of a test candidate. Therefore,
we propose to analyse, statically, the non-executed branches and to replace the
approach-level measure with complexity measure.

To represent the level of complexity to satisfy a branch constraint, we intro-
duce a new measure called complexity level, which depends on two parameters:
the solution count of the constraint and the size of the search space. The complex-
ity level of a constraint is defined by its tightness (solution count/search space size)
[10]. Using the approach proposed in [7], we can approximate the solution count
for program statements (constraint).

Constrained Evolution Operator. CEO can be a selection, crossover, or
mutation operator or a neighbourhood generator. In this work, we consider that
CEO is a mutation operator. With a predefined likelihood, the genetic algorithm
(CSBT) calls CEO by sending the methods under test, the current test target,
current input values, and the input value to change. CEO uses this information
to choose the adequate CSP model (over integers, over string) and to fix the test
target and CSP variables except those required to change. The model is then
solved and a new input values are generated. If the CSP is infeasible, then all
new input values are generated arbitrary.

3 Empirical Study

The goal of our study is to compare CSBT against CBT and SBT and identify
the best technique among CPG, CEO, and a combination thereof, CPEO. The
quality focus is the performance, in term of code coverage and runtime, of the
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CPG technique, the CEO technique, CPEO, RCBT alone, and an open source
SBT tool eToc [9] to generate test inputs that cover all branches. The context
includes three UUTs: Integer, BitSet, and ArithmeticUtils; Java classes from the
standard library and Apache Commons project1. The number of all branches is
285: 38 from Integer, 145 from BitSet, and 102 from ArithmeticUtils.

3.1 Analysis
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Fig. 5: Comparing all techniques

Figure 5 shows the percentage of
branch coverage achieved for the
UUTs Integer, BitSet, and Arith-
meticUtils: the CPG technique is
the most effective and eToc is bet-
ter than the proposed techniques
during the first twenty seconds .
After this lapse of time, CPG out-
performs all techniques in terms of
runtime and branch coverage. Also,
CEO and CPEO perform better
than eToc though not as well as
CPG because of the frequency of
solver calls: CEO calls the solver for
every mutation, whereas CPG calls
the solver only to generate the ini-
tial population. Therefore, CSBT
boosts SBT implemented in eToc.

CPG enhances eToc by an av-
erage of 6.88% on all classes: 3.60% on Integer, 5.65% on BitSet, and 11.37%
on ArithmeticUtils. These values do not take into account the branches proved
unreachable: just on ArithmeticUtils, CPG has proved 4 infeasible branches. Ac-
cording to [3], the branches not covered by eToc are difficult to cover. Therefore,
an additional percentage of branch coverage ranging between 3.6% and 11.37%
is a good performance for CSBT.

4 Related Work

The literature describes several approaches to use CBT or combine it with SBT
to generate test data, but they apply CBT to a complete version of the UUTs
[1, 3, 4] and are limited by the size and the complexity of the UUTs and by the
undecidability of the test generation problem (reachability problem).

Our approach differs from previous work because it uses CBT at different
points of the execution of the SBT to improve this latter and provides a general
framework for combining SBT and CBT: using a relaxed version of UUTs makes
CSBT flexible and enlarges its applicability to different kinds of UUTs.

1 http://commons.apache.org
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5 Conclusion

We presented CSBT, a novel combination of SBT and CBT to generate test
data. CSBT uses a relaxed version of a UUT and of CBT solutions (pseudo test
data) as test candidates passed on to SBT.

We identified three main points where CBT can be useful for SBT. For each
point, we proposed a new combination technique: a CPG that uses CBT to
generate test candidates; a CFF that uses CBT to guide SBT search; and a
CEO that uses CBT to evolve test candidates. Preliminary empirical results
showed that CPG outperforms the other techniques in terms of runtime and
branch coverage. It is able to reach 89.5% branch coverage in less than 40s.
Also, CEO and CPEO perform better than SBT in terms of branch coverage.
These results are promising but we will perform more experiments using different
kinds of solvers (string, floating point) to confirm that the proposed techniques
are advantageous.

Future work includes extending CSBT by exploring new combination tech-
niques and by implementing and comparing CFF to previous work, enhancing
CEO, and using several solvers.
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Abstract. Many real-world constraint satisfaction problems are structured, i.e.,
constraints are not uniformly distributed among the set of variables. This struc-
ture may be used to improve the solution process of these problems. In particular,
backtracking with tree decomposition (BTD) exploits the structure to define vari-
able ordering heuristics and to learn structural goods and nogoods which are used
to avoid redundant explorations. BTD is based on a chronological backtracking
search. Our goal in this paper is to investigate the interest of exploiting struc-
ture when using other approaches for exploring the search space: other complete
search approaches, such as conflict directed backjumping (CBJ), but also incom-
plete approaches, such as decision repair (DR). To this aim, we describe a generic
framework for solving CSPs, which is an extension of the framework proposed
by Pralet and Verfaillie in [PV04]. Using our new generic framework, we refor-
mulate some existing search procedures, including BTD. We also describe new
search procedures which combine structural (no)goods with CBJ and DR. This
generic framework allows us to experimentally evaluate the interest of exploiting
the structure for different kinds of search procedures.

Keywords: Constraint satisfaction, Constraint graph, Tree-decomposition, Com-
plete search, Local search

1 Introduction

Many real-world constraint satisfaction problems (CSPs) are structured, i.e., constraints
are not uniformly distributed among variables. This structure may be used to improve
the solution process of these problems. In particular, BTD [JT03] exploits the structure
to define variable ordering heuristics and to collect structural (no)goods which are used
to avoid redundant explorations. Experimental results have brought to the fore that these
(no)goods can significantly speed up the solution process of structured instances.

BTD is based on a chronological backtracking (CB) search: it exhaustively explores
the search tree by performing a depth first search until either a solution is found or in-
consistency is proven. Our goal in this paper is to investigate the interest of exploiting
structure when using other approaches for exploring the search space: other complete
search approaches, such as conflict directed backjumping (CBJ) [Pro95], but also in-
complete approaches, such as decision repair (DR) [JL02]. To this aim, we describe a
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generic framework for solving CSPs, which is an extension of the framework proposed
by Pralet and Verfaillie in [PV04]: the framework of Pralet and Verfaillie may be in-
stantiated in different search procedures (such as, CB, CBJ, or DR); we extend it by
adding structural (no)goods to it. Using our new generic framework, we reformulate
some existing search procedures, including BTD. We also describe new search proce-
dures which combine structural (no) goods with CBJ and DR. This generic framework
allows us to experimentally evaluate the interest of exploiting the structure for different
kinds of search procedures.

Section 2 introduces tree decompositions and structural (no)goods, as well as the
idea of the algorithm BTD. Section 3 describes our generic framework. Section 4
presents our first experimental results. Section 5 discusses further work.

2 Backtracking with Tree Decomposition

A tree decomposition [RS86] of a graph G = (X,E) is a tree T = (V, F ) so that:

– each vertex of vi ∈ V is called a cluster and is a set of vertices of G, i.e. vi ⊆ X;
– each vertex of G belongs to at least one cluster of T , i.e. ∀xi ∈ X , ∃vj ∈ V ,

xi ∈ vj ;
– for each edge of G, there exists one cluster of T which contains both endpoints of
e, i.e. ∀(xi, xj) ∈ E, ∃vk ∈ V , {xi, xj} ⊆ vk;

– for each vertex xi of G, the set of clusters of T which contains xi (i.e. {vj ∈ V ,
xi ∈ vj}) induces a connected subgraph of T .

Given a tree decomposition T and a cluster ci, we note rootT the root cluster of
T , fatherT (ci) the cluster which is the father of ci in T (with ci 6= rootT ), and
ancestorsT (ci) the set of clusters which are ancestors of ci in T . Figure 1 displays
a CSP, its constraint graph and a tree decomposition for this graph.

The width of a decomposition T is the size of its largest cluster minus one. For
example, the width of the tree in Fig. 1(c) is 2. A tree decomposition is optimal if its
width is the smallest among all possible decompositions of G.

In BTD [JT03], the tree decomposition T of the constraint graph is used to define a
variable ordering heuristic: all variables in a same cluster are assigned before assigning
variables of its children. (No)goods are used to deduce that a subproblem rooted in
a given cluster ci is already solved (or already proven inconsistent) with respect to
a current assignment A and a set of (no)goods (N)G. The subproblem rooted in a
cluster ci is the CSP restricted to variables of ci and of all clusters cj such that ci ∈
ancestorsT (cj). This subproblem is already solved (resp. proven inconsistent) with
respect to a current assignment A and a set of goods G (resp. nogoods NG) if there
exists a good g ∈ G such that g = A↓ci∩fatherT (ci) (resp. a nogood ng ∈ NG such
that ng = A↓ci∩fatherT (ci)).

For example, in Fig. 1, the subproblem rooted in {B,C, F} is the CSP restricted
to {B,C, F,G,H, I}. This subproblem is solved with respect to the assignment {B =
1, C = 2, F = 3} and the set of goods {{B = 1}{B,G,H}, {F = 3}{F,I}}, whereas it
is inconsistent with respect to the assignment {B = 2, C = 3, F = 1} and the set of
nogood {F = 1}{F,I}.
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– X = {A, . . . , I}
– ∀x ∈ X , D(x) = {1, 2, 3}
– C = {A > D,D 6= E,

A ≥ E,A < B,A > C,
G 6= B,G ≤ H, . . .}
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Fig. 1. (a) A CSP P = (X,D,C). (b) Its constraint graph GP . (c) A tree decomposition of GP .

The initial problem, which is rooted in rootT , is solved with respect to a current
assignment A and a set of goods G if rootT ⊆ var(A) and every subproblem rooted in
a child of rootT is solved with respect to A and G.

3 A Generic Search Framework

Pralet and Verfaillie [PV04] have proposed a generic framework for defining a search.
This search is parametrised by (i) filtering procedures which specify how domains are
filtered after each step of the search, (ii) an assignment extension procedure, which
specifies how to extend the current assignment, and (iii) a repair procedure which de-
fines how to unassign some variables in the current assignment. This generic framework
may be instantiated in various existing search procedures such as CB, CBJ or DR.

In this section, we extend the generic framework of [PV04] in order to allow its
instantiation to structural approaches. To this aim, we introduce three sets:

– a set E of explanations which are recorded when filtering domains and used to re-
store domains when unassigning variables, to identify conflicts when backjumping,
or to prove inconsistency ;

– a set G of structural goods which may be recorded and used when extending as-
signments to avoid redundant explorations;

– a set NG of nogoods which may be recorded and used when unassigning variables
to avoid redundant explorations.

Note that explanations may be removed from E (once they are no longer relevant)
whereas (no)goods are always relevant during the whole search, so that they are never
removed from (N)G1.

This generic framework is described in Algo.1 and is parametrised by 4 functions:

– filter(P,A,E,NG) ensures some local consistency (such as FC or AC) with respect to
the current assignment A and returns false if some inconsistency has been detected;
true otherwise.

1 We may limit the size of G and NG. In this case we may have to remove (no)goods from
(N)G when the size limit is reached.
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Algorithm 1: Generic Framework
Input: a CSP P and an initial assignment A
Output: Returns true if a solution is found; false if inconsistency is proven; ? otherwise
Let E, G and NG respectively be empty sets of explanations, goods and nogoods1
repeat2

if filter(P,A,E,NG) then3
solved← extend(P,A,G)4
if solved then return true5

else6
inconsistent← unassign(P,A,E,NG)7
if inconsistent then return false8

until Stop() ;9
return ?10

– unassign(P,A,E,NG) returns true if no more variable can be unassigned (and thus
inconsistency has been proven); and false otherwise. In this latter case, it unassigns
some assigned variables.

– extend(P,A,G) returns true if A is a solution and false otherwise. In this latter case,
it extends A by adding a new variable/value couple to it.

– stop() returns true if a stopping criterion has been met. We consider only one in-
stantiation, which returns true when some given CPU time limit has been reached.

3.1 algorithms

We can now combine instantiations of extend, unassign and filter to obtain different
search strategies. Note that when using the tree decomposition you have to do a depth
first search in the tree of clusters, as in BTD.

Some instantiation captures well-known search strategies such as:

– the classical Chronological Backtracking;
– Conflict-directed BackJumping [Pro95];
– Decision-Repair as described in [PV04];
– Backtracking with Tree Decomposition [JT03].

Some of these instantiations correspond to new search strategies. In particular, we define
two new search strategies which exploit tree decompositions:

– CBJ-TD performs Conflict-directed BackJumping with Tree Decomposition;
– DR-TD performs Decision-Repair with Tree Decomposition.

Complexity: CB, CBJ, BTD and CBJ-TD are complete approaches. The time com-
plexities of CB and CBJ are exponential in the number of variables, whereas the time
complexities of BTD and CBJ-TD are exponential in the width of the tree decomposi-
tion (i.e. the size of the biggest cluster in the decomposition).

DR and DR-TD are incomplete approaches. Even if they may prove some incon-
sistencies, there is no guarantee for the execution to end. Thus their complexities are
bounded by the function stop().
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4 First Results

We considered all the binary instances of the benchmark available at www.cril. univ-
artois.fr/ lecoutre/benchmarks.html, which contains instances of the 2008 CSP compe-
tition as well as other new instances. By lack of space, we decide to not report here
the tables of results but to discuss those. We compute a tree-decomposition for each
instance by using the graph triangulation algorithm Minimum Fill-in which is known
to be among the best methods for this purpose. The quality of this decomposition is
considered good enough if its width is at most equal to half of the number of variables
in the CSP (beyond, using tree-decomposition method does not derive enough benefit).

First, we observe that most instances of the benchmark are not structured. Only
5% of the binary instances fulfilled the condition: unsurprisingly, they are real-world
instances (the REAL class in the benchmark) and graph coloring ones. We run the
methods defined in the previous section on the instances using forward checking as
filtering technique. Using tree-decomposition improves significantly the results on col-
oring graph instances. It allows to solve within 1 second 4 instances otherwise un-
solved within 1 hour by CB and DR. CBJ-TD succeeds to solve within 3 minutes 1
instance unsolved by CBJ within 1 hour. But, tree-decomposition based method does
not behave as well on instances in the REAL class. Except a quarter of instances, us-
ing tree-decomposition surprisingly degrades the performances. We try to analyze more
precisely the features of the different problems and we observe that graph coloring in-
stances are often very hard meaning that it is necessary to explore large parts of the
search space to solve them leading to many redundancies. Whereas, the instances in
the REAL class, despite their great size, are often easily solved with a good variable
ordering (within 1 second by CB). Since, the major effect of exploiting the structure
of a problem lies in reducing the number of redundancies in the resolution, it seems
obvious that it performs better on hard instances. Actually, the solving is based on a
variable ordering designed to learn a maximum number of (no)goods. But, the time
elapsed during this learning phase, is balanced by avoiding a lot of redundancies there-
after on hard instances. This is not the case on easy ones where a more straightforward
variable ordering is sufficient to solve the problem with a limited number of redundan-
cies. Thereby, a crucial trade-off between the exploiting of the structure and the freedom
given to variable heuristic must be accomplished.

Moreover, it is clear that the exploitation of the structure has more impact on CB
than on CBJ. Indeed, CBJ, with its mechanism of backjumping, already integrates a
clever tool to reduce redundancies. Therefore, even though CBJ-TD improves results,
the gap is not so important. Finally, we notice that DR does not fare well when com-
pared to basic algorithms such as CB and CBJ. It seems to us that this is due to the
persevere heuristic [PV04] which drastically reduces possible choices when unassign-
ing variables. Chances are there will be few variables causing the failure in the current
cluster and among those it is unlikely that there will be two or more variables with the
least occurrences in the explanations. This might even lead to some simple infinite loops
between two or three variables.

We also ran experiments on randomly generated structured instances, with the method
described in [JNT06]. We draw the same conclusions than with the CSP competition
benchmark, but we also noted two interesting facts. First, DR fares as well as the best
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algorithms (BTD, CBJ, CBJ-TD) on consistent instances with very dense clusters. We
attribute this to the freedom given to DR, as it will be able to make interesting choices
when backtracking, as there should be many variables to choose from, thus leading
quickly to a solution. Second, CBJ performs worse on inconsistent instances with very
dense clusters than on any other type of tested instances. This is most likely due to the
fact that it will mimic the behaviour of CB, as every variable in the cluster is likely to
cause a failure. Interestingly, CBJ-TD does not have this drawback.

5 Conclusion and Further work

We have described a generic framework for solving CSPs, which is an extension of the
framework proposed by Pralet and Verfaillie in [PV04] in order to allow us to exploit
the problem structure during the search and evaluate its interest when using different ap-
proaches for exploring the search space: chronological backtracking, Conflict directed
BackJumping and Decision Repair. We have experimentally compared these different
methods on structured binary instances, and we have found that exploiting the structure
helps a lot for reducing redundancies when solving of an instance if this instance is
"hard" enough. However, it can degrade the results for CSP instances "easily" solved
by a clever traversal of the search space thanks to a good variable ordering heuristic.

The DR instantiation follows the persevere heuristic proposed in [PV04]. Experi-
mental results have shown that this heuristic may lead to an over-intensification of the
search process. It could be improved by adding some diversification mechanisms such
as, for example, weighting the choice of the variable to unassign with the number of
their occurrences in the explanations. This would prevent simple infinite loops.

There is still room for improvements in the way algorithms exploit the tree decom-
position. In particular, we could let the variable heuristic decide which cluster to go first
and give it more freedom during the search. It could go to the most difficult part first,
thus recording less (no)goods in the solving process. It would also be more likely to
find a solution or to prove inconsistency faster.

We plan to define an instantiation of the filter function which maintains Arc Con-
sistency, and to extend our framework to non binary CSPs.
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Abstract Constraint solvers are complex pieces of software with many
interconnecting components. These solvers generally have to make tradeoffs
in their architecture due to their monolithic design. The Dominion con-
straint solver synthesizer, however, generates a bespoke solver tailored
to the features of a given problem. This paper briefly covers the initial
approach to identifying the effective configuration for these solvers.

1 Introduction

Current state-of-the-art constraint solvers, such as Choco [1], Eclipse [2], Gecode
[3], or Minion [4] are monolithic: large, complex pieces of software designed to
perform well on a broad range of input models. While these solvers allow some
tuning to optimize them for specific problem models, for example by selecting
the search strategy or adjusting the level of consistency, these optimizations are
limited and generally can only be done by experts.

Due to the monolithic architecture of the solvers and complexity of con-
straint problems, there is no guarantee that any given solver will perform well
when encountering new problems. Additionally, some components that perform
extremely well in individual cases, but incurs overhead in other problems, such
as constraint learning [5–7], are generally avoided to protect the average-case
performance.

The Dominion [8] system attempts to address these issues by using a differ-
ent approach. First, it analyses the problem model and produces a constraint
solver specification, which contains the information about all the functionality
the solver must have to solve the given problem model. This information is then
used to synthesize a specified solver from the library of available components.

Since any of the synthesized solvers can only contain a fraction of the available
components, this approach allows the library to contain the components that
are only beneficial in specific cases without losing performance in solvers that
do not require them. Furthermore, the synthesized solvers can be fine tuned
to individual problems without making compromises along the way, which can
result in very significant performance improvements in some cases.

67



2 Dominion Structure

To generate the specialized solvers, the Dominion synthesizer initially analyses
the input problem model and converts it into an internal component. Like all
other Dominion components, this new component can be divided into two in-
dependent parts: architectural level representation (Grasp [9]) and actual code
(C++). The architectural representation describes what functions can be per-
formed by the component (i.e. interfaces that it provides) and what function-
ality it needs from other components (i.e. sub-component lists and additional
constraints).

At this point, the generator builds a component tree at architecture level, in
such a way that all requirements of every component are satisfied. As mentioned
before, these components can impose some constraints on each other (with some
exceptions non-binary variable factories cannot work with binary propagators
etc.), turning the whole component selection process into a constraint problem
of its own. Furthermore, the component tree does not have a static shape, be-
cause even two components that perform the same function may have a different
number of sub-components and additional constraints. This prevents the use of
heuristics that can generally be applied to similar configurations problems.

3 Component Testing

The most straightforward approach to testing all of the components is generat-
ing all of the possible solvers and running them. While this can only be done
with simple problems (N Queens is used as an example), this can still provide
valuable insights about the various solver components. These solvers are gener-
ated by using a depth first search based algorithms that constructs the solvers by
evaluating the components in the appropriate component pools and attempting
to attach those components to the solver.

All of the following data is from initial testing performed on a single 3.3Ghz
core on using the same version of a solver synthesizer. The results shows the
time it took the synthesized solver to solve a supplied problem, not including
the generation time (it takes approximately 1/10,000th of a second to generate
a solver using the depth first search algorithm) and solver compile time, which
takes 10 seconds on average (depending on the constraint problem) and is not
affected by the choice of components.

Figure 1 demonstrates the run times of all possible solvers for N queen prob-
lem class, by generating all solutions for 3 different n queens problem instances
(8, 9 and 10 queens). Since the solvers are generating systematically by changing
a minimal amount of components between the solvers, in addition to showing
how each of the synthesized solvers perform individually, the shape of the graph
reveals additional information about the solver components.

The clear divisions implies that some of the choices are clearly more im-
portant (for example the big slow down in performance at solver 634 can be
attributed to choosing the worse alldifferent propagator), while the reoccurring
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patterns demonstrate that some components are independent and do not influ-
ence the performance of each other.
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Figure 2: Choice importance

This data can then be used to rank the importance of the individual decision
points during solver synthesis. To achieve this, at each decision point the solvers
are divided into subsets based on the choice that is made at that decision point
and mean performance of those subsets is calculated. These means can then be
used to determine how well these components perform.

For example in the N queens problem one of the decision points is choosing
the alldifferent propagator out of 4 different components. If we split the solvers
into subsets, based on which of those propagators are chosen, we can see that the
means for them are 1.1, 0.5, 167.9 and 96.8 seconds (for 11 queens, all solutions),
putting two of the propagators well ahead of the others.

Furthermore, the differences and ratios between the best and the worst per-
forming components can be used to rank the decision points themselves. It should
be noted that they have to be used together, because differences, when used
alone, tend to undervaluate the very important independent decisions, while ra-
tios overinflates the value of very small components. In the case of N queens,
when we compare all of the decision points in this way (figure 2), we can clearly
see that two components stand out. These components are the propagator for
the alldifferent constraint and variable factory that determines internal variable
representation. If we only examine only the performance difference, the value
seems very similar, but after we evaluate ratios as well, we can tell that the
propagator is much more important.

While this approach provides a large amount of information, as mentioned
before, it can only be used on simple problems that do not have many compon-
ents. As the number of possible solvers grows exponentially with the number
of components (for BIBD constraint problem, the number of possible solvers
exceeds 4.3 million etc.) and testing all solvers is impossible.
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4 Expanding to Larger Problems

During the initial testing, another observation was made: the components that
appear near the top of the component tree, frequently have a significantly bigger
impact on the performance of the solver. This was not unexpected as the bottom
components generally contain support functions, needed by higher level compon-
ents. If no additional heuristics are used, this makes the depth first search based
algorithm undesirable.

To address this issue, another algorithm, based on iterative deepening was
implemented. This algorithm works similarly to the depth first search based
algorithm, however it maintains a depth threshold, and only tries out all com-
ponent combinations above that threshold (the first available component for all
the choices below the threshold is chosen to complete the solver). When all vari-
ations are tested at the current depth, the depth threshold is incremented and
the algorithm restarts.

This approach can be up to 100 times slower, since it repeats a large portion
of work and need to check every solver against previously generated ones. Despite
this fact it still puts the generation time in the 1/100th of a second range, which
is insignificant when compared to the time of compiling and testing the solver.
This approach also completely disregards the bottom components, but as figure 3
demonstrates, at the same time it produces much better representation of solver
variety if all solvers at the initial depth can be tested. This makes the iterative
deepening based algorithm much more desirable when only small number of tests
can be performed.
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While this approach can produce better variety than the depth first search
even after testing a small fraction of solver as demonstrated in figure 4 (300/828
solvers at the initial depth), the improvement is not very significant, unless all
solvers up to a desired depth must be tested, which may be unreasonable for
larger problems. In fact, even the initial depth contains up to 10% of the total
solvers, which can be equal to hundreds of solvers even for simple problems (for
BIBDs it is approximately 5%, which is still equal to over 200,000 solvers etc).
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5 Selective Sampling

Compiling and testing all of the possible solvers is generally impossible. On the
other hand, generation of individual solvers in most cases is relatively simple.
Because of this, it is possible to generate and count all of the possible solvers
for most of the problem classes. As the solvers are generated systematically,
this information can then be used to sample the solvers at regular intervals (as
opposed to testing first solvers that are generated) to get a much more accurate
representation of the solver variations.

Figure 5 demonstrates how this approach can be used to retrieve the low
resolution shape of the performance graph by testing only a small fraction of
solvers (in this case 1.5%). More interestingly, while the decision ratios are in-
accurate, in this case this information is enough to correctly identify that the
most important decision for the N queens problem is the alldifferent propagator
and to point out which component is optimal for that decision.

As figure 6 demonstrates, sampling can also be used to improve the effect-
iveness of iterative deepening based search as well. To achieve this, instead of
using the number of total solvers to decide the step sizes, the number of different
solvers up to the desired depth has to be used instead.
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To take this approach one step further, if the total possible solver count is

known, by dividing this total by the golden ratio (ϕ = 1+
√
5

2 ) [10] we get a con-
stant number, which can be used to skip the solvers when testing (looping from
the start after the last solver is reached). The significance of the golden ratio is
that it allows to pick solvers in such way that no solver is picked twice (naturally
you have to account for the rounding errors) and at the same time the next solver
that is picked this way is always almost at the furthest possible distance from
all the previous solvers. Therefore this approach maximizes the variety without
knowing how many tests will be done in advance and in turn facilitates using
time limits instead of imposing a limit on the number of iterations.
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6 Conclusion and Future Work

This paper has presented the current approach for evaluating the performance
of individual component configurations. While this approach provides a reason-
able starting point for selecting the components for future solvers, it is not yet
scalable enough to be applied to more complex constraint problem models. To
address this issue, two areas of future study are being investigated: identifying
the relationships between the solver components and learning how component
performance correspond to the properties of the constraint problem models.

The former approach offers the significant reduction in search space. If it can
be determined how component choices affect the performance of other linked
components, the isolated components can be tested separately, drastically redu-
cing the number of solvers that need to be tested.

Machine learning, on the other hand, can be used to compare the constraint
problem models with previously tested cases and use that information to elim-
inate a large number of sub-optimal components even before any testing is per-
formed or to modify the search strategy once similar performance patterns are
encountered.
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Abstract. Probabilistic message-passing algorithms have had some re-
cent success as the basis for search heuristics to solve satisfaction prob-
lems. In particular, Expectation Maximization Survey Propagation (EMSP)
has been used in the context of SAT and Expectation Maximization Be-
lief Propagation (EMBP) with both SAT and CSP. In this paper, we
propose a new technique inspired from EMSP that both improves search
guidance compared to EMBP and generalizes the applicability of EMSP.
The contribution is two-fold: first, we derive a generic update rule for
EMSP that exploits the structure of the solution space of CSPs; second,
we design two original variable and value selection heuristics. Finally
we present an empirical comparison of this approach to state-of-the-art
search heuristics on several benchmark problems.

Key words. Constraint Satisfaction; Heuristic Search; Expectation Max-
imization; Survey Propagation

1 Introduction

Constraint Satisfaction Problems often exhibit high complexity, requiring a com-
bination of inference and combinatorial search methods to be solved in a rea-
sonable time. Hsu et al. confirm in [3] that being able to estimate accurately
the proportion of solutions featuring a given variable assignment can lead to
efficient heuristic search for SAT. Finding such proportion of solutions is the
same as computing the marginal (bias) distribution of variables, which is gen-
erally intractable. Therefore research efforts have concentrated on approximate
methods to estimate such bias distributions.

In this context, probabilistic message-passing algorithms were proven to be
very effective as inference methods. For instance, Kask et al. [4] demonstrated
the efficiency of BP when applied to CSPs and used it as a value-ordering heuris-
tic. Mezard et al. [2] proposed Survey Propagation (SP) to solve large random
Boolean satisfiability problems and emphasized the success of SP in comput-
ing marginals proposed later on by Maneva et al. [6]. Hsu et al. [3] suggested
Expectation Maximization (EM) variants of these two major message-passing al-
gorithms and, more recently, Le Bras et al. [5] improved EMBP and broadened its
applicability. However, EMBP has a main drawback that affects its performance
when solving hard CSPs: its underlying BP formulation ignores the probability
that a variable might not be the sole support of its constraints, which limits
EMBP’s ability to exploit the structure of the solution space. In contrast EMSP
can capture such information. In this paper, building on [5] and [3], we propose
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a novel EMSP-based heuristic that exploit the structure of the solution space
using the joker bias in SP to improve heuristic guidance compared to EMBP and
adapt it to any CSP.

Basic definitions & Notations

Constraint Satisfaction Problem (CSP). A Constraint Satisfaction Prob-
lem (X,D,C) consists of a finite set of variables X = {x1, x2, . . . , xn}
with respective finite domains D = {D1, D2, . . . , Dn}, together with a finite
set of constraints C = {c1, c2, . . . , cm}. A tuple s ∈ D1 × D2 × · · · × Dn rep-
resenting a complete assignment is a solution to CSP iff it satisfies all cj ∈ C.
We will use πxi

(s) to denote the value of variable xi in a solution s and #S to
denote the cardinality of set S.

Close Solutions. Let δ(s1, s2) = |{1 ≤ i ≤ n : πxi(s1) ̸= πxi(s2)}| denote the
distance between solutions s1 and s2. Identical solutions therefore have distance
0 and we will call two solutions close if their distance is at most ⌈m

n ⌉, this ratio
usually being indicative of the hardness of an instance.

Solution Cluster ”κ”. A solution cluster is a subset of the solutions such that
its elements are pairwise close.

Joker State, Joker Solution. Given a solution cluster κ, we will call ”xi = ∗”
a joker state of variable xi ∈ X to indicate that xi is unconstrained in κ. Thus
xi can be thought of being in three possible states: either it is constrained to be
equal to only one of its values v ∈ Di (this means that xi = v in all solutions of
cluster κ), or it is constrained to more than one but not all of its values, or it
is unconstrained (this means that in any solution belonging to κ we can replace
the value for xi by any other in Di and still yield a solution belonging to that
cluster). s∗κ,i is a joker solution in solution cluster κ if it has a variable xi in a
joker state. Such a solution actually stands for all solutions in κ

Bias Distribution. Let S be the set of solutions to (X,D,C). The exact bias
distribution of variable x assigned value v, denoted Φx(v), represents the exact
proportion of solutions to (X,D,C) where x = v:

Φx(v) =
#({s ∈ S : πx(s) = v})

#S

An approximation to that bias distribution will be denoted θx(v).

Joker-Bias Distribution. Let S∗ be the set of joker solutions to (X,D,C).
The exact joker bias distribution of variable x, denoted Φx(∗), represents the
exact proportion of joker solutions to (X,D,C) where x = ∗:

Φx(∗) =
#({s ∈ S∗ : πx(s) = ∗})

#S∗

An approximation to that bias distribution will be denoted θx(∗).
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Intuition The main idea is that we do not work any more with individual
solutions s ∈ S, but with solution clusters. Some variables may be constrained,
i.e. frozen, to take a single value inside a solution cluster. It corresponds to
the concept of backbone variables, but only within the given solution cluster.
Other variables may be unconstrained and to handle these one can use the joker
state to describe them in the solution cluster and associate it to exactly one
generalized value ”*”. However when we speak about general CSPs, the issue
is very difficult as the phase transition, i.e. the structure of the solution space
as clusters, of most CSPs is still unknown. Working with joker solutions instead
of individual solutions leads us to exploit the structure of the solution space of
CSPs even if we don’t know it.

2 Expectation Maximization Survey Propagation

EMSP takes advantage of the structure of the solution space and iteratively
adjusts the probability for a variable x to be assigned a particular value v for
a randomly chosen solution, in addition to a joker bias probability θx(∗) for a
randomly chosen (joker) solution.

EMSP Update Rule: Let Θ be the vector of variable biases θxi(v), with an
additional index for the joker bias θxi(∗). Let S correspond to the set of satisfying
assignments s (i.e. unobserved solutions) and assume that y is a binary-vector
variable which indicates the satisfaction of each constraint (observed). Then the
goal is to find the variable biases Θ that maximize logP (y, s|Θ). The E-Step
hypothesizes the distribution Q(s) = P (s|y,Θ). This Q(s) represents the proba-
bility of a randomly chosen solution given the biases θxi(v) and the observation
y that the constraints are satisfied. The M-step plugs in the estimated Q(s) and
uses it to update the bias distribution of the variables. These two steps can be
formulated in one general update rule for estimating bias distribution θxi(v),
and Joker bias distribution θxi(∗) as:

θxi(v) =
1

τ

∑
c∈C:xi∈X(c)

( ∑
s∈S:xi=v

Q(s)

)
, θxi(∗) =

1

τ́

∑
c∈C:xi∈X(c)

( ∑
s∗∈S∗:xi=∗

Q(s∗)

)

where S∗ is the set of joker solutions and τ, τ́ are normalizing constants which
equal the summation of the numerator over all values of v and summation over
all jokers respectively. Note that within this framework so far, the definition of
Q(s) and Q(s∗) have remained unspecified. In the following we derive a method
that specifies both of them globally.

EMSP enforcing X-Consistency (EMSP-G): Here, the dependencies between
constraints will be considered when computing Q(s), and Q(s∗). In other words
the approximation of Q(s) and Q(s∗) will consider every variable in the whole
problem. This method enforces ”X-Consistency” (domain, bound, or other) on all
constraints by considering support tuples that are X-consistent with a variable
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assigned a particular value (constrained case) and a variable assigned a joker
value (unconstrained case). Thereby the EMSP-G update rules will be:

θxi(v) =
1

τ

∏
xj∈X\{xi}

∑
v′∈D̃j [xi=v]

θxj (v
′), θxi(∗) =

1

τ́

∏
xj∈X\{xi}

∑
v′∈D̃j

θxj (v
′)

where D̃j [xi = v], and D̃j are the reduced domains of variable xj after assigning
xi = v and xi = ∗ respectively while enforcing X-consistency on the whole
problem.

3 Deriving a Variable and Value Selection Heuristic

Approximate variable biases are computed at each node of the search tree ac-
cording to EMSP-G. From that information a two-step search heuristic is derived
as variable-value selection. Two variants of the search heuristic are considered:

EMSP with maximum joker variable selection (”EMSP-Max”). Select the
variable which has maximum joker bias and assign this variable the value which
has the maximum bias probability:

xi′ = argmax
i

θxi(∗), vj′ = argmax
j

θx
i
′ (vj).

We then branch on that variable-value pair xi′ = vj′ . The basic idea of EMSP-
Max is to guide the search toward the region which has maximum joker solution
density or in a solution cluster which has high solution density. Hence for a hard
CSP when the solution space consists of several solution clusters, EMSP-Max
detects the rich solution cluster in the solution space and guides the search to
branch with the variable-value pairs which possess a high solution density in this
cluster.

EMSP with minimum joker variable selection (”EMSP-Min”). Select the
variable which has minimum joker bias (the most likely to fail) and assign this
variable the value which has the maximum bias probability (the most likely to
succeed):

xi′′ = argmin
i

θxi(∗), vj′′ = argmax
j

θx
i
′′ (vj).

We then branch on that variable-value pair xi′′ = vj′′ . The joker bias density
of the variable measures how the variable is unconstrained in the solution space
of the problem. This explicitly shows that the minimum joker bias density in an
elegant way adheres to the Fail-First Principle. In other words the less the joker
bias of the variable is the more likely search is to fail. Thereby the basic idea of
EMSP-Min is to push the search toward the difficult parts of the search tree by
selecting the variable which is more likely to fail and then assigning it the value
which is more likely to succeed.
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4 Experimental Analysis

In order to assess the performance of the two proposed heuristics (EMSP-max,
EMSP-min), we performed an experimental analysis on different problems (see [7]
& [1] for a description). We compare the proposed heuristics to five generic search
heuristics: DomWDeg, IBS,MaxSD, RndVarVal, and closely-related EMBP[5]. Fig-
ure 1 plots the number of solved instances vs backtracks and time for the four
benchmark problems. A first general observation is that our heuristics perform
at least as well and often much better than the related EMBP. Another general
remark is that our heuristics do not behave very differently, which may suggest
that their value-selection component is the most important here. On the Nono-
gram and Multi-Knapsack problems, which feature binary variables, EMSP-max
and EMSP-min are comparable to state-of-the-art generic search heuristics. On
random CSPs with non-binary variables our two heuristics achieve the highest
percentage of solved instances (MaxSD is not represented here since there are no
structured constraints to use). The usual dominance of our heuristics compared
to EMBP confirms the random satisfiability community belief in the success of
SP over BP. However on the Rostering problem our heuristics behave poorly,
being similar to our baseline random heuristic RndVarVal. This problem features
alldifferent constraints, which effectively eliminates the possibility of joker states,
a distinctive ingredient in our heuristics.

5 Conclusion

In this paper we proposed generic and efficient CSP search heuristics based
on EMSP. Following the approach of [5] our proposal generalized the EMSP
framework of [3], enabling it to tackle constraint satisfaction problems. The
introduction of joker bias and joker solutions led to exploit the structure of the
solution space to the benefit of improving heuristic performance. Preliminary
experiments confirm that search heuristics based on EMSP perform better than
those based on EMBP and that they are competitive with the state-of-the-art.
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Abstract. We introduce a new search strategy for enumerating all solutions of a
constraint satisfaction problem. This strategy enumerates generic solutions from
which all solutions can be efficiently computed. Generic solutions contain sub-
stitutable values, that can be replaced by other values in order to generate the
set of all solutions. Our strategy favours the appearance of these substitutable
values. Consequently, it may save time by generating less generic solutions than
solutions. We give some experimental results showing the advantage of this new
search for binary CSPs with extensional constraints.

1 Introduction

Constraint Satisfaction problem (CSP) is a formal framework to represent and solve
problems in artificial intelligence and operations research. In this paper, we investigate
a method for enumerating of all solutions of binary CSP with extensional constraints.
According to the binary CSP definition given by Tsangs in [5], a binary CSP of n vari-
ables [x1, , xn] has a domain Di of possible values associated with each variable xi.
Each Di is finite, and it may not necessarily be the case that all the domains are equal.
A binary extensional constraint, Cij , between variables xi and xj is a subset of the
cartesian product of their domains. Each Cij is finite. We also require that (a, b) ∈ Cij

if and only if (b, a) ∈ Cij . The arity of a constraint Cij corresponds to the number of
involved variables. So, binary CSPs contain only constraints with arity as equal as 2.
We propose a new search strategy based upon the concept of substitutability called
Substitutability Based Search (SBS). We consider in this paper only binary CSP.
Let Π a binary CSP and Sol Pi a solution of Π . Let (x, a) denote a pair (variable,
value) and ListNoSupports(x, a) = {(y1, b1), ..., (yk, bk)}, all pairs incompatible
with (x, a) (conflicts). Let a and b denote two values of the domain of a variable x,
noted D(x). According to [3], a is substitutable for b if and only if any solution con-
taining b remains a solution of Π if we replace b by a.
The idea is to detect and favour the appearance of substitutable values to ob-
tain generic solutions, from which we generate all solutions. By enumerating less
generic solutions than solutions, we expect to improve efficiency.
Π is a problem involving a variable x, and a and b, two values of D(x), the domain of
x. (x, a) is compatible with (y, b) if and only if they can belong to a solution of Π . The
value a is substitutable for b if and only if any solution with x = b remains a solution if
we replace b by a. More formally, a is substitutable for any value of D(x) if and only if

79



for any variable y such that a constraint C(x, y) exists and for any variable b ∈ D(y),
(x, a) is compatible with (y, b). Let suppose that a solution with x = a, then it is sim-
ple to test if a solution with x = b is right. Indeed, it is enough to test the validity of
constraints. Let assume that a is substitutable for all other values in D(x). So, with a
solution with x = a, we can compute the solutions involving other values in D(x). In
addition, we can induce the appearance of such substitutable value for any other values
of the domain by using a method similar to the algorithm of Bron & Kerbosh [1].
Thus, if we want to induce the substitutability, we need to have compatible values. Let
assume that (z, c) is not compatible with (x, a). If we instantiate z = c before x = a,
then (x, a) becomes substitutable. When (x, a) is substitutable for all remaining values
in D(x) then this particular set of values is denoted by Substitutable Set of V alues
(SSV ) otherwise SSV is empty. Our approach allows to induce the apperance of sub-
stitutable values during the search. When each substitutable value is found, we save the
associated SSV in the Tuple Sequence of Substitutable Elements (TSSE). TSSE
are generic solution but they have some tuples, that they are not solutions. We transform
these TSSE toGlobal Cut Seed (GCS), introduced by [2], that have only solutions. Fi-
nally, we enumerate solutions given by the cartesian product from GCS.
The paper is organized as follows. First of all, let us recall some notions like the sub-
stitutability and the common approach of the enumeration of all solutions. Then, we
expose the SBS algorithm and an algorithm which computes these GCS. Finally, we
present the experimental results giving the pros and cons of SBS.

2 Classical enumeration of solutions

The search algorithm for enumerating all solutions on a binary tree is defined as follows.
First, a variable x and a value a are chosen. x = a is instantiated and then, we propagate
the consequences of this instantiation. In the presence of failure (any variable of the
CSP Π with an empty domain), the search backtracks and branches with x 6= a. When
taking a decision (x = a or x 6= a), it creates a choice point and a node of the search
tree is created. The search uses strategies to select the pair (variable, value) at each
choice point. After each choice point, the process is repeated. When all variables are
instantiated, the search has found a solution and then a backtrack occurs.

3 SBS : Search Based Substitutability

3.1 SBS algorithm

Definition 1 A Tuple Sequence of Substitutable Elements (TSSE) is an n-tuple of
substitutable elements ({a1, SSV (a1)}, ..., {an, SSV (an)}), where each substitable
element is a nonempty set of values containing a value a, which is substitutable for all
values containing in the associated Substitutable Set of Values (SSV).

SBS algorithm (1) induces the apperance substitutable values to obtain generic
solutions. It computes generic solutions from which all solutions will be calculated.
Whereas the classical algorithm selects a variable and then successively tries each value
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Algorithm 1: Search Based Substitutability
1 SBS(X)
2 (x, a)← getV ariableV alueMinConflicts()
3 for each (y, b) ∈ ListNoSupports(x, a) do
4 TSSE[y]← TSSE[y] ∪ {b}
5 saveStateAndAssign(y, b)
6 if propagate(y = b) then
7 SBS(X)

8 restoreStateAndUnassign(y, b)
9 TSSE[y]← TSSE[y]− {b}

10 if not propagate(y 6= b) then
11 return

12 TSSE[x]← TSSE[x] ∪D(x)
13 saveStateAndAssign(x, a)
14 if propagate(x = a) then
15 SBS(X)

16 restoreStateAndUnassign(x, a)
17 TSSE[x]← TSSE[x]−D(x)

of this variable for each level of the search tree, SBS proceeds differently. First of all, in
line 2 (1), SBS identifies the pair (x, a), which has the least conflicts. Note that we use
the minconflicts heuristic described by Minton & Steven in [4] for variable and value
selection to get the pair (x, a). Afterwards, SBS first instantiates conflicts of (x, a),
from Line 3 to 11 (1). When no conflicting value remains, a is a substitutable value for
x, and we can instantiate x to a. At that time, other values of D(x) do not need to be
instantiated with x because (x, a) is substitutable for them. When we instantiate (x, a),
the algorithm saves the remaining values of D(x) in SSV (a), then it saves in a TSSE,
in Line 4 and 12 (1) . Finally, we instantiate (x, a). Once all variables are instantiated,
TSSE becomes a generic solution. Then, we are going to compute GCS from TSSE.
We detailed in the next section.

3.2 Enumeration of Global Cut Seed

Definition 2 [2] A Global Cut Seed (GCS), is an n-tuple∆ = (δ1, ..., δn), where each
δ is a nonempty set of values, such that each n-tuple (v1, ..., vn), vn ∈ δ1, ..., δn and
vi ∈ Dn is a solution of the problem Π . The value n corresponds to the length of the
GCS.1

We can enumerate the solutions in GCS, which are given by the cartesian product
of the domain. Thus, we propose to transform each TSSE into a set of GCS. Let assume
that TSSEi that contains a value Sub that is compatible with all other values TSSEj

1 We considered a part of the definition described by [2], because we want to reduce the notion
of GCS only a list of tuples, that have compatible values.
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with j > i.
A TSSE can have incompatible values. So, we generate GCS, that have only compati-
ble values.
We detail this transformation in the following example. For instance, let a CSP with
five variables and TSSE = [{a1, b1}, {a2, b2, c2}, {c3}, {d4}, {e5, f5, g5}]. Under-
lined values correspond to the substitutable values. Constraints of Π define the fol-
lowing incompatibilities: e5 incompatible with b2 and c2, g5 incompatible with b1
and c3 incompatible with b1. Let GCS[i] denote all values of the variable x of the
GCS. We use a backward algorithm, that maintains the following property: at each
end of the step i, it creates a tuple Si contains all compatible values sets from x
to xn. Si corresponds to a Global Cut Seed of length n − i. Indeed, at i = 0,
the algorithm creates a Global Cut Seed with compatible values of the last instan-
tiated variable. Afterwards, at each step i, it creates Si of Global Cut Seed from
Global Cut Seed created in step i − 1. For that, it adds a compatible value if and
only if there are nonempty sets after elimination of non-compatible values. To com-
pute all solutions contained in TSSE, we generate from the last substitable element
the first GCS [{e5, f5, g5}], then at each step i − 1, it checks the compatibility of each
value of all TSSEi with values examing with previous sets. Thus, at step 4, it adds the
set {d4}, which gives S4 containing [{d4}, {e5, f5, g5}]. It continues the same way for
the list S3, so we have [{c3}, {d4}, {e5, f5, g5}]. In step 2, e5 is incompatible with b2
and c2. So S2 has 3 GCS: [{a2}, {c3}, {d4}, {e5, f5, g5}], [{b2}, {c3}, {d4}, {f5, g5}],
[{c2}, {c3}, {d4}, {f5, g5}]. Finally, in step 1, g5 is incompatible with b1 and c3 is in-
compatible with b1. So S1 contains:
[{a1}, {a2}, {c3}, {d4}, {e5, f5, g5}],
[{a1}, {b2}, {c3}, {d4}, {f5, g5}],
[{a1}, {c2}, {c3}, {d4}, {f5, g5}],
[{b1}, {b2}, {c3}, {d4}, {f5, g5}],
[{b1}, {c2}, {c3}, {d4}, {f5}].
The GCS [{b1}, {a2}, {}, {d4}, {e5, f5, g5}] is not valid because it contains an empty
set. After generating five GCS in step 1, we use the cartesian product in order to enu-
merate all solutions from this generic solution. Finally, there are ten solutions:
[{a1}, {a2}, {c3}, {d4}, {e5}], [{a1}, {a2}, {c3}, {d4}, {f5}],
[{a1}, {a2}, {c3}, {d4}, {g5}], [{a1}, {b2}, {c3}, {d4}, {f5}],
[{a1}, {b2}, {c3}, {d4}, {g5}], [{a1}, {c2}, {c3}, {d4}, {f5}],
[{a1}, {c2}, {c3}, {d4}, {g5}], [{b1}, {b2}, {c3}, {d4}, {f5}],
[{b1}, {b2}, {c3}, {d4}, {g5}], [{b1}, {c2}, {c3}, {d4}, {f5}].
So, the compression factor is 2, because from 5GCS, we obtain 10 solutions. Note that
a new GCS can have identical suffix than a previous one. For instance, we have two
GCS for S2, [{b2}, {c3}, {d4}, {f5, g5}] and [{c2}, {c3}, {d4}, {f5, g5}] which share
[{c3}, {d4}, {f5, g5}]. In this case, the algorithm calls the function MERGEEQUIVA-
LENTGCS, that merges identical GCS. For that, it transforms the GCS in a sequence
of values. Then, it sorts this sequence by lexicographic order to determine if there are
equalities between GCS and then it concatenates identical GCS. The complexity of our
algorithm is as follows. The cost of lexicographic order is O(n log(n)) comparisons.
Each comparison costs the sum over the values of the GCS. In our case, we have d con-
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sidered elements and the size of the maximal string is nd. So, the cost is O(nd2 log(d)).
In our example, we have after concatenation of the two GCS [{b2}, {c3}, {d4}, {f5, g5}]
and [{c2}, {c3}, {d4}, {f5, g5}], an only one GCS [{b2, c2}, {c3}, {d4}, {f5, g5}]. We
can try to concatenate GCS in several different ways, but the enumeration of unique
solutions (which is mandatory) may become difficult.

4 Results

Fig. 1. Comparison of solving times Fig. 2. Comparison of compression solutions

We compare the SBS approach to the classical enumeration scheme. Then, we eval-
uate the impact of the GCS concatenation. All experiments were performed on an ad-
hoc solver with an Intel Core i7 quad core (2.2 GHz). Each experiment is run on a single
core. Instances are generated randomly by setting a number of variables V , a number
of values per domain D, a number of extensional constraints C, and a tightness T ,
which defines the number of unauthorized tuples for each constraint C. Note that prob-
lems with a low tightness have many solutions, whereas problems with a high tightness
have less solutions. Let MinDom denote a variable selection heuristic, that selects
the variable x with the smallest domain size. Let MinConflict and MaxConflict
denote two value selection heuristics, that select the value of a of D(x) having re-
spectively the minimum and maximum conflict. We test SBS with the different selec-
tion heuristics MinDom/MinConflict and MinDom/MaxConflict. Experiments
show no significant differences in solving time between MinDom/MinConflict and
MinDom/MaxConflict over all solved instances. Thus, we consider only the com-
parison between SBS andMinDom/MaxConflict. In the following figures, each in-
stance solved is represented by a point. We checked that the number of solutions found
for each instance is exactly the same between SBS and MinDom/MaxConflict.
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Figure 1 compares the solving times of each instance. The scatter plot associated the
strategyMinDom/MaxConflict forms a curve. Solving times of instances solved by
SBS are scattered between the bottom and top of the curve forMinDom/MaxConflict.
It appears that below 700,000 solutions, SBS is sometimes faster and sometimes slower
than MinDom/MaxConflict. However, SBS clearly outperforms the other method
above 700,000 solutions.
Figure 2 compares the number of generic solutions for SBS and the number of solu-
tions as function as the tightness. The number of generic solutions generated by SBS
varies from 10 to 37 000. The compression factor of solutions with SBS is significant
when the tightness is low (less than 25 %). Indeed, the compression factor varies be-
tween 2 and 50 (number of solutions under the number of compressed solutions). As
far as the tightness increases, the compression factor decreases. There is no compres-
sion from 50 % of tightness. Thus, determining the tightness of the problem is very
important in order to choose in advance an appropriate search strategy to enumerate all
solutions.

5 Conclusion

We proposed a new search strategy based on the substitutability (SBS) to compute all
solutions of a binary CSP with extensional constraints. According to the experimental
results, SBS enhances the problems with a factor 2-5 for solving time and a factor 2-50
in terms of memory. However, this approach becomes less effective when the tightness
increases. In further work, we will test on real world problems and try to generalize this
idea to non-binary CSP.
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Abstract. Milk runs – a logistics concept of lean manufacturing – can
be modelled as a Period Vehicle Routing Problem (PVRP) with ad-
ditional requirements on regularity and robustness. We propose a CP
formulation for PVRPs based on an existing VRP model, which can be
easily extended. Furthermore, we suggest a CP based Parallel Insertion
Heuristic to construct feasible starting solutions and a Large Neighbor-
hood Search as a local search improvement technique. For the latter we
present different adaptions to the PVRP case, amongst them a new relat-
edness measure improved with regard to (client specific) side constraints.

Keywords: constraint programming, period vehicle routing problem,
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1 Introduction

Lean manufacturing has had, and still has today, a massive impact on the way
of producing discrete goods all over the world since the early nineties, when
Steven Womack’s book “The machine that changed the world” appeared. The
key idea is to reduce variability in all processes, since variability means “waste”.
To preserve this reduced variability up stream in a supply chain, regularly sched-
uled and levelled transports should be established. These regular transports are
called milk runs, and are a widely accepted and natural logistical concept within
the lean manufacturing theory (cmp e.g. [1]). Outside of the “lean world”, there
are even more vehicle routing problems (VRP), where similar aspects as trans-
parency, regularity, ease of control, etc. play a more and more important role
(see amongst others [10]). Furthermore, a practical planning system has to be
tailored to every customer, since – as in every VRP – customers have different
requirements on the objective function and the constraints considered.

2 A CP model for Periodic Vehicle Routing Problems

A milk run planning problem belongs to the class of Period Vehicle Routing
Problems (PVRP). For the basic formulation a complete network graph with
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corresponding arc costs, a planning period in days, a depot node, a set of cus-
tomer nodes and a set of vehicles with fixed capacity is given. The objective is, to
serve the demand of all customers considering their allowed schedules (for exam-
ple mon - wed, tue - thu, wed - fri) and the capacity restrictions of the vehicles,
while minimizing the cost of the travelled distance (see [2]). So, the PVRP in-
volves three simultaneous decisions: Selecting a feasible schedule for every client
node, assigning visits to vehicles for every day, and route the vehicles on every
day.

The introduced constraint model for PVRP is an extension of the Vehicle
Routing Problem with Time Windows of [5]. It mainly relies on the concept
of path constraints. A path is built by the variable Pi representing the direct
predecessor of a visit i. In order to get a stronger propagation, all path constraints
are formulated redundantly once for Pi and once for Si, representing the direct
successor of the visit i.

For PVRPs we have to adapt the vector of visits: If a client order has a
frequency request of three it is represented by three visits. Each vehicle is repre-
sented by a first and a last visit for every day of the planning horizon, on which
it is available. The resulting vector V for an instance with three customer orders
C, with frequency requests of three, two and one, and a planning period of three
days with two vehicles available looks as follows:

V = [

C0︷ ︸︸ ︷
1, 2, 3,

C1︷︸︸︷
4, 5 ,

C2︷︸︸︷
6︸ ︷︷ ︸

customer visits C

,

M0︷︸︸︷
7, 8 ,

M1︷︸︸︷
9, 10,

M2︷ ︸︸ ︷
11, 12︸ ︷︷ ︸

first (vehicle) visits F

, 13, 14, 15, 16, 17, 18︸ ︷︷ ︸
last (vehicle) visits L

]

The newly introduced variableHi represents the day when a visit i is serviced.

HPi = Hi i ∈ C ∪ L (1)

HSi = Hi i ∈ C ∪ F (2)

Hi < Hi+1 h ∈ O; i ∈ Ch; i+ 1 ∈ Ch (3)

Hi 5 t ⇔ Vi 5 max(Mt) i ∈ C; t ∈ T (4)

Hi = t ⇔ Vi = min(Mt) i ∈ C; t ∈ T (5)

This information is maintained along the route by path constraints (1) and
(2), line (3) breaks symmetries. The last two groups of constraints (4) and (5)
link vehicles and days (Mt represents the available vehicles on day t).

In a milk run use case, the days of service should be evenly distributed over
the planning horizon. For a frequency request of two and a horizon of four the
allowed schedules would be Ah = [[0, 2], [1, 3]].

∧
0≤j<fh

(HCjh
= sja) = pata

sja ∈ Ah; a ∈ {0 . . . |Ah|};
h ∈ O

(6)

∃!a ∈ {0 . . .Ah} : pata = true h ∈ O (7)
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For the example above, the boolean variable pat0 in constraint (6) indicates
if schedule 0 is assigned for order h. Line (7) ensures that there is exactly one
pattern, which is assigned.

In accordance with lean principles it is preferable, that clients are serviced
at roughly the same time, i.e. that the difference between the start of service T
of two visits of the same order is smaller than a parameter L. Within the VRP
literature this is called time consistency (see [3]) and it can be expressed by the
following constraints:

Ti − Tj 5 L ∧ Tj − Ti 5 L i, j ∈ Ch ∧ i < j (8)

Apart from that, other requirements might come up in milk run use cases: It
could be requested that a customer is always serviced by the same driver or that
the tour duration is limited due to legal regulations on working hours. Another
important aspect within lean production is a levelled use of resources, that is,
a levelled use of vehicles per day. Due to the modelling power and flexibility of
CP, most of the additional constraints or changes in the objective function can
be modelled in a rather natural way. However, for the solution approaches it is a
special challenge to be robust against these additional constraints or even better
to exploit them actively.

3 Heuristics and first computational results

Almost all successful approaches for larger VRP instances are heuristics made
up of a construction and an improvement phase. As former studies could show,
an insertion based construction heuristic (IH) and a Large Neighborhood Search
(LNS) for the improvement phase, both based on Constraint-based techniques,
are promising approaches for VRPs with additional side constraints (see e.g. [4]
or [6]).

Parallel Insertion Heuristic for PVRP. In this type of construction heuristics,
visits are inserted step by step into an emerging plan. It can be characterized
first by the order, in which the visits are inserted and second if the insertions
are sequential or parallel. In the parallel case there is more than one route at
a time, into which visits can be inserted (see e.g. [8]). We implemented two
simple sorting strategies for the PVRP: (1) FrequDom: We sort the orders by
frequency (decreasing) and the domain size of P (increasing) of the first visit
of the order. That is, we start the insertion process with the visits of an order
with daily service request, whose domain of P of the first visit is most restricted.
(2) FrequTheta: We sort the orders by frequency (decreasing) and by the angle
θ of the polar coordinates of every customer (like in a Sweep Algorithm). For
the insertion we either search for the best position of all visits of an order by
a CP based tree search or by an InsertBrancher, which tries to insert the visits
of the current order at the insertion position where the least detour is caused.
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Since, the visits of the same order have to be served on different days, we auto-
matically “open” different tours on different days and have a parallel version of
the heuristic. Furthermore, we post an additional constraint, making sure that
– if there is still a free vehicle for the insertion candidate – the distance to the
direct predecessor of the insertion position has to be smaller or equal than the
distance to the depot, if not, a new route is “opened” and the routes tend to be
more compact.

Large Neighborhood Search. LNS is a local search improvement technique based
on the idea, to take out repeatedly visits of a feasible tour plan and reinsert
them at (hopefully) better positions. The way how visits are selected and the
way how they are re-inserted defines the neighborhood. In order to avoid a
situation, where the re-insertion decisions of the selected visits are completely
independent and degenerate to many little reinsertions, it is useful to remove
visits which are somehow related. A very simple strategy is to select visits,
which are geographically close (radial select). But in a periodic VRP it is not
necessarily helpful, since the visits might be geographically close to each other
but have to be visited on different days. Also, Shaw’s relatedness measure, often
re-used in literature, does not seem to be suitable, since it merely favours intra
route improvements (for details see [9]).

Therefore, we introduced a new relatedness measure with a simple idea: The
more feasible neighbors two visits have in common, the more related they are,
that is the more interrelated are the reinsertion decisions. For calculating this
measure, we build a set of the k nearest, feasible predecessors of every visit i (from
the domain of Pi in the root node) and we count the number of joint neighbors
for every pair of visits. This number is our relatedness measure. The advantage
of this domain based measure is, that additional constraints, like special vehicle
requirements, service on certain days, etc., are captured automatically.

We use the relatedness measure within two different selection schemes: For
the RandomRelatedSelect scheme, we randomly choose a seed node and select
the n most related visits with regard to the seed node. The RandomRelatedSame-
DaySelect considers only the most related visits, which are assigned to the same
day in the current solution, in order to get an intra day improvement. Apart
from the latter, we implemented a second PVRP specific selection scheme, the
RandomOrderSelect, where we select all visits of one or more random orders.
Thereby, we are able to select another allowed schedule for the order during the
reinsertion step. The reinsertion step for all seven implemented selection schemes
(the others are common schemes from literature) is performed by a CP based
tree search with a first improvement stopping criterion.

First Computational Results. In our first computational experiments1 we tested
the heuristics on PVRP benchmark instances from [2]. These instances incorpo-

1 The application is implemented with Gecode 3.7.3 (built with VS 2010), a free
C++ software library for developing constraint-based systems. All experiments were
executed on the following machine: Intel Core 2 DUO E8400, 3.00 GHz, 4.0 GB
RAM, 64 bit windows operating system.
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rate time windows and a maximum tour duration and the size ranges from 100
up to 1000 visits. In order to be able to measure the solution quality, we did not
consider any additional milk run specific constraints at this stage of the work.

With all versions of the parallel IH we achieved the goal to produce feasible
starting solutions for at least 17 or rather 18 out of the 20 instances with a quality
between 15% and 100% above the best known solutions (see also table 1). In case
of the infeasible solutions there are left over 1-8 visits (or 1-3 orders), but the
resulting tour plan is feasible with regard to all constraints and we expect that
this small number of unplanned stops can be easily inserted during the insertion
based improvement phase. Without loosing a lot of solution quality compared
to the search for the best insertion positions, we showed that it is possible to
use the InsertBrancher, which saves up to a factor of 7 on the runtime. For the
smallest instance the solution time is around a second, whereas, for the largest
it takes up to 600 seconds. A comparison with initial solutions of the literature
on specialized algorithms for the PVRP-TW is difficult, since there is no run
time or quality indication. It is only reported that starting solutions violate
time windows, capacity and tour length restrictions. Considering the expected
problem sizes in a milk run environment and the level of sophistication of the
implementation, the performance of the IH is satisfying for us.

Table 1. Overview on solution quality of the parallel insertion heuristic by sorting
strategy in the first column and insertion strategy in the first row (avg. dev. BKS:
average deviation from best known solution, infeasible: number of infeasible instances
with the total number of missing visits of these instances in brackets)

Best insertion InsertBrancher

avg. dev. BKS infeasible avg. dev. BKS infesaible

FrequDom 56% 2 (5) 59% 2 (10)
FrequTheta 50% 3 (9) 51% 3 (10)

For the LNS phase we tested the performance of the neighborhoods by con-
ducting randomly chosen neighborhoods, accepting only improving solutions and
stopping this process after a certain time limit is reached. We could show, that all
neighborhoods contribute to the improvement of the solution, but that there is
none dominating the others across different instances and across different phases
of the search. The only neighborhood performing very well on all instance dur-
ing all phases is the described RandomRelatedSameDaySelect. This shows the
need of a meta-heuristic steering the selection of neighborhoods depending on
the instance and the progress of the improvement phase.

4 Conclusions and Outlook

To sum up, it can be stated that the choice of CP based heuristics proved success-
ful, since the solution quality and the run times for PVRP-TW are satisfying and
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the flexibility of the model with respect to milk run and client specific extensions
looks promising. The experiments for the LNS show that our new relatedness
measure works well, but that there is the need of a meta-heuristic to direct the
selection of neighborhoods. Therefore, the next step will be the implementation
of an Adapted Large Neighborhood Search (see [7]), since this is a natural and
very successful extension of the LNS concept, especially, in the area of VRP.
Furthermore, we will implement more milk run specific extensions and test the
robustness of the algorithms with respect to these extensions. Thereby, the most
challenging tasks will be to deal with uncertain and correlated demand and with
the requirement that – in case of a necessary re-planning process of the milk
plan – the established regularities should not be destroyed.
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