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Abstract. Recently a strong connection has been shown between the
tractability of integer programming (IP) with bounded coefficients on the
one side and the structure of its constraint matrix on the other side. To
that end, integer linear programming is fixed-parameter tractable with
respect to the primal (or dual) treedepth of the Gaifman graph of its
constraint matrix and the largest coefficient (in absolute value). Moti-
vated by this, Koutecký, Levin, and Onn [ICALP 2018] asked whether it
is possible to extend these result to a more broader class of integer linear
programs. More formally, is integer linear programming fixed-parameter
tractable with respect to the incidence treedepth of its constraint matrix
and the largest coefficient (in absolute value)?

We answer this question in negative. We prove that deciding the fea-
sibility of a system in the standard form, Ax = b, l ≤ x ≤ u, is NP-hard
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even when the absolute value of any coefficient in A is 1 and the incidence
treedepth of A is 5. Consequently, it is not possible to decide feasibility
in polynomial time even if both the assumed parameters are constant,
unless P = NP.

Keywords: Integer programming · Incidence treedepth ·
Gaifman graph · Computational complexity

1 Introduction

In this paper we consider the decision version of Integer Linear Program (ILP)
in standard form. Here, given a matrix A ∈ Z

m×n with m rows (constraints)
and n columns and vectors b ∈ Z

m and l,u ∈ Z
n the task is to decide whether

the set

{x ∈ Z
n | Ax = b, l ≤ x ≤ u} (SSol)

is non-empty. We are going to study structural properties of the incidence graph
of the matrix A. An integer program (IP) is a standard IP (SIP) if its set of
solutions is described by (SSol), that is, if it is of the form

min {f(x) | Ax = b, l ≤ x ≤ u ,x ∈ Z
n} , (SIP)

where f : Nn → N is the objective function; in case f is a linear function the
above SIP is said to be a linear SIP. Before we go into more details we first
review some recent development concerning algorithms for solving (linear) SIPs
in variable dimension with the matrix A admitting a certain decomposition.

Let E be a 2 × 2 block matrix, that is, E =
(

A1 A2
A3 A4

)
, where A1, . . . , A4 are

integral matrices. We define an n-fold 4-block product of E for a positive integer
n as the following block matrix

E(n) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

A1 A2 A2 · · · A2

A3 A4 0 · · · 0
A3 0 A4 · · · 0
...

. . .
A3 0 0 · · · A4

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

where 0 is a matrix containing only zeros (of appropriate size). One can ask
whether replacing A in the definition of the set of feasible solutions (SSol) can
give us an algorithmic advantage leading to an efficient algorithm for solving
such SIPs. We call such an SIP an n-fold 4-block IP. We derive two special
cases of the n-fold 4-block IP with respect to special cases for the matrix E
(see monographs [4,17] for more information). If both A1 and A3 are void (not
present at all), then the result of replacing A with E(n) in (SIP) yields the n-fold
IP. Similarly, if A1 and A2 are void, we obtain the 2-stage stochastic IP.
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The first, up to our knowledge, pioneering algorithmic work on n-fold
4-block IPs is due to Hemmecke et al. [9]. They gave an algorithm that given n,
the 2 × 2 block matrix E, and vectors w,b, l,u finds an integral vector x with
E(n)x = b, l ≤ x ≤ u minimizing wx. The algorithm of Hemmecke et al. [9]
runs in time ng(r,s,‖E‖∞)L, where r is the number of rows of E, s is the number
of columns of E, L is the size of the input, and g : N → N is a computable
function. Thus, from the parameterized complexity viewpoint this is an XP algo-
rithm for parameters r, s, ‖E‖∞. This algorithm has been recently improved by
Chen et al. [3] who give better bounds on the function g; it is worth noting that
Chen et al. [3] study also the special case where A1 is a zero matrix and even
in that case present an XP algorithm. Since the work of Hemmecke et al. [9]
the question of whether it is possible to improve the algorithm to run in time
g′(r, s, ‖E‖∞) · nO(1)L or not has become a major open question in the area of
mathematical programming.

Of course, the complexity of the two aforementioned special cases of n-fold
4-block IP are extensively studied as well. The first FPT algorithm1 for the n-fold
IPs (for parameters r, s, ‖E‖∞) is due to Hemmecke et al. [10]. Their algorithm
has been subsequently improved [7,14]. Altmanová et al. [1] implemented the
algorithm of Hemmecke et al. [10] and improved the polynomial factor (achieving
the same running time as Eisenbrand et al. [7]) the above algorithms (from cubic
dependence to n2 log n). The best running time of an algorithm solving n-fold
IP is due to Jansen et al. [12] and runs in nearly linear time in terms of n.

Last but not least, there is an FPT algorithm for solving the 2-stage stochastic
IP due to Hemmecke and Schultz [11]. This algorithm is, however, based on a
well quasi ordering argument yielding a bound on the size of the Graver basis
for these IPs. Very recently Klein [13] presented a constructive approach using
Steinitz lemma and give the first explicit (and seemingly optimal) bound on
the size of the Graver basis for 2-stage (and multistage) IPs. It is worth noting
that possible applications of 2-stage stochastic IP are much less understood than
those of its counterpart n-fold IP.

In the past few years, algorithmic research in this area has been mainly
application-driven. Substantial effort has been taken in order to find the right
formalism that is easier to understand and yields algorithms having the best
possible ratio between their generality and the achieved running time. It turned
out that the right formalism is connected with variants of the Gaifman graph
(see e.g. [5]) of the matrix A (for the definitions see the Preliminaries section).

Our Contribution. In this paper we focus on the incidence (Gaifman) graph. We
investigate the (negative) effect of the treedepth of the incidence Gaifman graph
on tractability of ILP feasibility.

Theorem 1. Given a matrix A ∈ {−1, 0, 1}m×n and vectors l,u ∈ Z
n
∞. Decid-

ing whether the set defined by (SSol) is non-empty is NP-hard even if b = 0 and
tdI(A) ≤ 5.

1 That is, an algorithm running in time f(r, s, ‖E‖∞) · nO(1)L.
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Preliminaries

For integers m < n by [m : n] we denote the set {m,m + 1, . . . , n} and [n] is
a shorthand for [1 : n]. We use bold face letters for vectors and normal font
when referring to their components, that is, x is a vector and x3 is its third
component. For vectors of vectors we first use superscripts to access the “inner
vectors”, that is, x = (x1, . . . ,xn) is a vector of vectors and x3 is the third vector
in this collection.

From Matrices to Graphs. Let A be an m×n integer matrix. The incidence Gaif-
man graph of A is the bipartite graph GI = (R ∪ C,E), where R = {r1, . . . , rm}
contains one vertex for each row of A and C = {c1, . . . , cn} contains one vertex
for each column of A. There is an edge {r, c} between the vertex r ∈ R and
c ∈ C if A(r, c) �= 0, that is, if row r contains a nonzero coefficient in column c.
The primal Gaifman graph of A is the graph GP = (C,E), where C is the set of
columns of A and {c, c′} ∈ E whenever there exists a row of A with a nonzero
coefficient in both columns c and c′. The dual Gaifman graph of A is the graph
GD = (R,E), where R is the set of rows of A and {r, r′} ∈ E whenever there
exists a column of A with a nonzero coefficient in both rows r and r′.

Treedepth. Undoubtedly, the most celebrated structural parameter for graphs is
treewidth, however, in the case of ILPs bounding treewidth of any of the graphs
defined above does not lead to tractability (even if the largest coefficient in A is
bounded as well see e.g. [14, Lemma 18]). Treedepth is a structural parameter
which is useful in the theory of so-called sparse graph classes, see e.g. [16]. Let
G = (V,E) be a graph. The treedepth of G, denoted td(G), is defined by the
following recursive formula:

td(G) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if |V (G)| = 1,

1 + minv∈V (G) td(G − v) if G is connected with |V (G)| > 1,

maxi∈[k] td(Gi) if G1, . . . , Gk are connected components of G.

Let A be an m×n integer matrix. The incidence treedepth of A, denoted tdI(A),
is the treedepth of its incidence Gaifman graph GI . The dual treedepth of A,
denoted tdD(A), is the treedepth of its dual Gaifman graph GD. The primal
treedepth is defined similarly.

The following two well-known theorems will be used in the proof of
Theorem 1.

Theorem 2 (Chinese Remainder Theorem). Let p1, . . . , pn be pairwise co-
prime integers greater than 1 and let a1, . . . , an be integers such that for all
i ∈ [n] it holds 0 ≤ ai < pi. Then there exists exactly one integer x such that

1. 0 ≤ x <
∏n

i=1 pi and
2. ∀i ∈ [n] : x ≡ ai mod pi.

Theorem 3 (Prime Number Theorem). Let π(n) denote the number of
primes in [n], then π(n) ∈ Θ( n

log n ).
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It is worth pointing out that, given a positive integer n encoded in unary, it
is possible to the n-th prime in polynomial time.

2 Proof of Theorem 1

Before we proceed to the proof of Theorem 1 we include a brief sketch of its
idea. To prove NP-hardness, we will give a polynomial time reduction from 3-
SAT which is well known to be NP-complete [8]. The proof is inspired by the
NP-hardness proof for ILPs given by a set of inequalities, where the primal graph
is a star, of Eiben et al. [6].

Proof Idea. Let ϕ be a 3-CNF formula. We encode an assignment into a variable y.
With every variable vi of the formula ϕ we associate a prime number pi. We make
y mod pi be the boolean value of the variable vi; i.e., using auxiliary gadgets we
force y mod pi to always be in {0, 1}. Further, if for a clause C ∈ ϕ by ‖C‖ we
denote the product of all of the primes associated with the variables occurring
in C, then, by Chinese Remainder Theorem, there is a single value in [‖C‖],
associated with the assignment that falsifies C, which we have to forbid for
y mod ‖C‖. We use the box constraints, i.e., the vectors l,u, for an auxiliary
variable taking the value y mod ‖C‖ to achieve this. For example let ϕ = (v1 ∨
¬v2 ∨ v3) and let the primes associated with the three variables be 2, 3, and 5,
respectively. Then we have ‖(v1∨¬v2∨v3)‖ = 30 and, since v1 = v3 = false and
v2 = true is the only assignment falsifying this clause, we have that 21 is the
forbidden value for y mod 30. Finally, the (SIP) constructed from ϕ is feasible if
and only if there is a satisfying assignment for ϕ.

Proof (of Theorem 1). Let ϕ be a 3-CNF formula with n′ variables v1, . . . , vn′ and
m′ clauses C1, . . . , Cm′ (an instance of 3-SAT). Note that we can assume that none
of the clauses in ϕ contains a variable along with its negation. We will define an
SIP, that is, vectors b, l,u, and a matrix A with O((n′ + m′)5) rows and columns,
whose solution set is non-empty if and only if a satisfying assignment exists for ϕ.
Furthermore, we present a decomposition of the incidence graph of the constructed
SIP proving that its treedepth is at most 5. We naturally split the vector x of the
SIP into subvectors associated with the sought satisfying assignment, variables,
and clauses of ϕ, that is, we have x =

(
y,x1, . . . ,xn′

, z1, . . . , zm′
)
. Throughout

the proof pi denotes the i-th prime number.

Variable Gadget. We associate the xi =
(
xi
0, . . . , x

i
pi

)
part of x with the variable

vi and bind the assignment of vi to y. We add the following constraints

xi
1 = xi

� ∀� ∈ [2 : pi] (1)

xi
0 = y +

pi∑

�=1

xi
� (2)

and box constraints
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−∞ ≤ xi
� ≤ ∞ ∀� ∈ [pi] (3)

0 ≤ xi
0 ≤ 1 (4)

to the SIP constructed so far.

Claim. For given values of xi
0 and y, one may choose the values of xi

� for � ∈ [pi]
so that (1) and (2) are satisfied if and only if xi

0 ≡ y mod pi.

Proof. By (1) we know xi
1 = · · · = xi

pi
and thus by substitution we get the

following equivalent form of (2)

xi
0 = y + pi · xi

1 . (5)

But this form is equivalent to xi
0 ≡ y mod pi. �

Note that by (the proof of) the above claim the conditions (1) and (2) essentially
replace the large coefficient (pi) used in the condition (5). This is an efficient
trade-off between large coefficients and incidence treedepth which we are going
to exploit once more when designing the clause gadget.

By the above claim we get an immediate correspondence between y and
truth assignments for v1, . . . , vn′ . For an integer w and a variable vi we define
the following mapping

assignment(w, vi) =

⎧
⎪⎨

⎪⎩

true if w ≡ 1 mod pi

false if w ≡ 0 mod pi

undefined otherwise.

Notice that (4) implies that the the mapping assignment(y, vi) ∈ {true, false}
for i ∈ [n′]. We straightforwardly extend the mapping assignment(·, ·) for tuples
of variables as follows. For a tuple a of length �, the value of assignment(w,a) is
(assignment(w, a1), . . . , assignment(w, a�)) and we say that assignment(w,a) is
defined if all of its components are defined.

Clause Gadget. Let Cj be a clause with variables ve, vf , vg. We define ‖Cj‖ as
the product of the primes associated with the variables occurring in Cj , that is,

‖Cj‖ = pe ·pf ·pg. We associate the zj =
(
zj
0, . . . , z

j
‖Cj‖

)
part of x with the clause

Cj . Let dj be the unique integer in [‖Cj‖] for which assignment(dj , (ve, vf , vg)) is
defined and gives the falsifying assignment for Cj . The existence and uniqueness
of dj follows directly from the Chinese Remainder Theorem. We add the following
constraints

zj
1 = zj

� ∀� ∈ [2 : ‖Cj‖] (6)

zj
0 = y +

∑

1≤�≤‖Cj‖
zj
� (7)
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and box constraints

−∞ ≤ zj
� ≤ ∞ ∀� ∈ [‖Cj‖] (8)

dj + 1 ≤ zj
0 ≤ ‖Cj‖ + dj − 1 (9)

to the SIP constructed so far.

Claim. Let Cj be a clause in ϕ with variables ve, vf , vg. For given values of
y and zj

0 such that assignment(y, (ve, vf , vg)) is defined, one may choose the
values of zj

� for � ∈ [‖Cj‖] so that (6), (7), (8) and (9) are satisfied if and only if
assignment(y, (ve, vf , vg)) satisfies Cj .

Proof. Similarly to the proof of the first claim, (6) and (7) together are equivalent
to zj

0 ≡ y mod ‖Cj‖. Finally, by (9) we obtain that zj
0 �= dj which holds if and

only if assignment(y, (ve, vf , vg)) satisfies Cj . �

Let Ax = 0 be the SIP with constraints (1), (2), (6), and (7) and box
constraints l ≤ x ≤ u given by (3), (4), (8), (9), and −∞ ≤ y ≤ ∞. By the
first claim, constraints (1), (2), (3), (4), are equivalent to the assertion that
assignment(y, (v1, . . . , vn′)) is defined. Then by the second claim, constraints
(6), (7), (8), (9) are equivalent to checking that every clause in ϕ is satisfied
by assignment(y, (v1, . . . , vn′)). This finishes the reduction and the proof of its
correctness.

In order to finish the proof we have to bound the number of variables and
constraints in the presented SIP and to bound the incidence treedepth of A. It
follows from the Prime Number Theorem that pi = O(i log i). Hence, the number
of rows and columns of A is at most (n′ + m′)p3n′ = O((n′ + m′)5).

Claim. It holds that tdI(A) ≤ 5.

Proof. Let G be the incidence graph of the matrix A. It is easy to verify that y is
a cut-vertex in G. Observe that each component of G−y is now either a variable
gadget for vi with i ∈ [n′] (we call such a component a variable component) or a
clause gadget for Cj with j ∈ [m′] (we call such a component a clause component).
Let Gi

v be the variable component (of G − y) containing variables xi and Gj
c be

the clause component containing variables zj . Let tv = max�∈[n′] td(G�
v) and

tc = max�∈[m′] td(G�
c). It follows that td(G) ≤ 1 + max(tv, tc).

Refer to Fig. 1. Observe that if we delete the variable xi
1 together with the

constraint (2) from Gi
v, then each component in the resulting graph contains at

most two vertices. Each of these components contains either

– a variable xi
� and an appropriate constraint (1) (the one containing xi

� and xi
0)

for some � ∈ [2 : pi] or
– the variable xi

0.

Since treedepth of an edge is 2 and treedepth of the one vertex graph is 1, we
have that tv ≤ 4.
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The bound on tc follows the same lines as for tv, since indeed the two gadgets
have the same structure. Now, after deleting zj

1 and (7) in Gj
c we arrive to a graph

with treedepth of all of its components again bounded by two (in fact, none of
its components contain more than two vertices). Thus, tv ≤ 4 and the claim
follows. �

The theorem follows by combining the three above claims. �


3 Incidence Treedepth of Restricted ILPs

It is worth noting that the proof of Theorem 1 crucially relies on having variables
as well as constraints which have high degree in the incidence graph. Thus, it is
natural to ask whether this is necessary or, equivalently, whether bounding the
degree of variables, constraints, or both leads to tractability. It is well known
that if a graph G has bounded degree and treedepth, then it is of bounded
size, since indeed the underlying decomposition tree has bounded height and
degree and thus bounded number of vertices. Let (SIP) with n variables be
given. Let maxdegC(A) denote the maximum arity of a constraint in its con-
straint matrix A and let maxdegV (A) denote the maximum occurrence of a
variable in constraints of A. In other words, maxdegC(A) denotes the maximum
number of nonzeros in a row of A and maxdegV (A) denotes the maximum num-
ber of nonzeros in a column of A. Now, we get that ILP can be solved in time
f(maxdegC(A),maxdegV (A), tdI(A))LO(1), where f is some computable func-
tion and L is the length of the encoding of the given ILP thanks to Lenstra’s
algorithm [15].

y

xi
0 = y +

∑pi
�=1 x

i
�

xi
0 xi

1

xi
1 = xi

2 xi
1 = xi

2· · ·

xi
2 xi

pi
· · ·

Fig. 1. The variable gadget for ui of 3-SAT instance together with the global variable
y. Variables (of the IP) are in circular nodes while equations are in rectangular ones.
The nodes deleted in the proof of the third claim in the proof of Theorem 1 have light
gray background.
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The above observation can in fact be strengthened—namely, if the arity of
all the constraints or the number of occurrences of all the variables in the given
SIP is bounded, then we obtain a bound on either primal or dual treedepth. This
is formalized by the following lemma.

Lemma 4. For every (SIP) we have

tdP (A) ≤ maxdegC(A) · tdI(A) and tdD(A) ≤ maxdegV (A) · tdI(A).

The proof idea is to investigate the definition of the incidence treedepth of A,
which essentially boils down to recursively eliminating either a row, or a column,
or decomposing a block-decomposable matrix into its blocks. Then, say for the
second inequality above, eliminating a column can be replaced by eliminating
all the at most maxdegV (A) rows that contain non-zero entries in this column.

It follows that if we bound either maxdegV (A) or maxdegC(A), that is, for-
mally set maxdeg(A) = min {maxdegV (A),maxdegC(A)}, then the linear IP
with such a solution set is solvable in time f(maxdeg(A), ‖A‖∞) ·nO(1) ·L thanks
to results of Koutecký et al. [14]. Consequently, the use of high-degree constraints
and variables in the proof of Theorem 1 is unavoidable.

4 Conclusions

We have shown that, unlike the primal and the dual treedepth, the incidence
treedepth of a constraint matrix of (SIP) does not (together with the largest
coefficient) provide a way to tractability. This shows our current understanding
of the structure of the incidence Gaifman graph is not sufficient. Thus, the effect
on tractability of some other “classical” graph parameters shall be investigated.
For example we have some preliminary evidences that

– the vertex cover number of the incidence Gaifman graph together with the
largest coefficient yields a tractable case and

– the graph in our reduction (Theorem 1) may admit a treecut decomposition
of constant width.

We are going to investigate the two above claims in detail in the full version
of this paper. Last but not least, all of the above suggest some open questions.
Namely, whether ILP parameterized by the largest coefficient and treewidth
and the maximum degree of the incidence Gaifman graph is in FPT or not.
Furthermore, one may also ask about parameterization by the largest coefficient
and the feedback vertex number of the incidence Gaifman graph.

Appendix

Proof of Lemma 4. We prove only the second inequality, as the first one is sym-
metric. The proof is by induction with respect to the total number of rows and
columns of the matrix A. The base of the induction, when A has one row and
one column, is trivial, so we proceed to the induction step.
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Observe that GI(A) is disconnected if and only if GD(A) is disconnected if
and only if A is a block-decomposable matrix. Moreover, the incidence treedepth
of A is the maximum incidence treedepth among the blocks of A, and the same
also holds for the dual treedepth. Hence, in this case we may apply the induction
hypothesis to every block of A and combine the results in a straightforward
manner.

Assume then that GI(A) is connected. Then

td(GI(A)) = 1 + min
v∈V (GI(A))

td(GI(A) − v).

Let v be the vertex for which the minimum on the right hand side is attained.
We consider two cases: either v is a row of A or a column of A.

Suppose first that v is a row of A. Then we have

td(GD(A)) ≤ 1 + td(GD(A) − v)
≤ 1 + maxdegV (A) · td(GI(A) − v)
= 1 + maxdegV (A) · (td(GI(A)) − 1)
≤ maxdegV (A) · td(GI(A))

as required, where the second inequality follows from applying the induction
assumption to A with the row v removed.

Finally, suppose that v is a column of A. Let X be the set of rows of A that
contain non-zero entries in column v; then |X| ≤ maxdegV (A) and X is non-
empty, because GI(A) is connected. If we denote by A − v the matrix obtained
from A by removing column v, then we have

td(GD(A)) ≤ |X| + td(GD(A) − X)
≤ maxdegV (A) + td(GD(A − v))
≤ maxdegV (A) + maxdegV (A) · td(GI(A − v))
≤ maxdegV (A) · td(GI(A)),

as required. Here, in the second inequality we used the fact that GD(A) − X is
a subgraph of GD(A − v), while in the third inequality we used the induction
assumption for the matrix A − v. �
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16. Nešetřil, J., Ossona de Mendez, P.: Sparsity - Graphs, Structures, and Algo-
rithms. AC, vol. 28. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-27875-4

17. Onn, S.: Nonlinear Discrete Optimization: An Algorithmic Theory (Zurich Lectures
in Advanced Mathematics). European Mathematical Society Publishing House
(2010)

http://arxiv.org/abs/1805.03741
https://doi.org/10.1137/1.9781611972443
https://doi.org/10.1016/S1574-6526(06)80011-8
https://doi.org/10.1016/S1574-6526(06)80011-8
https://doi.org/10.24963/ijcai.2018/179
https://doi.org/10.24963/ijcai.2018/179
https://doi.org/10.4230/LIPIcs.ICALP.2018.49
https://doi.org/10.4230/LIPIcs.ICALP.2018.49
https://doi.org/10.1007/978-3-642-13036-6_17
https://doi.org/10.1007/978-3-642-13036-6_17
https://doi.org/10.1007/978-3-642-13036-6_17
https://doi.org/10.1007/s10107-002-0322-1
https://doi.org/10.1007/s10107-002-0322-1
http://arxiv.org/abs/1901.01135
https://doi.org/10.4230/LIPIcs.ICALP.2018.85
https://doi.org/10.1287/moor.8.4.538
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1007/978-3-642-27875-4

	Integer Programming and Incidence Treedepth
	1 Introduction
	2 Proof of Theorem 1
	3 Incidence Treedepth of Restricted ILPs
	4 Conclusions
	References




