
Tractable triangles?

Martin C. Cooper1 and Stanislav Živný2

1 IRIT, University of Toulouse III, 31062 Toulouse, France
2 University College, University of Oxford, UK
cooper@irit.fr standa.zivny@cs.ox.ac.uk

Abstract. We study the computational complexity of binary valued
constraint satisfaction problems (VCSP) given by allowing only certain
types of costs in every triangle of variable-value assignments to three dis-
tinct variables. We show that for several computational problems, includ-
ing CSP, Max-CSP, finite-valued VCSP, and general-valued VCSP, the
only non-trivial tractable classes are the well known maximum matching
problem and the recently discovered joint-winner property [9].

1 Introduction

1.1 Background

An instance of the constraint satisfaction problem (CSP) consists of a collec-
tion of variables which must be assigned values subject to specified constraints.
Each CSP instance has an underlying undirected graph, known as its constraint
network, whose vertices are the variables of the instance, and two vertices are
adjacent if corresponding variables are related by some constraint. Such a graph
is also known as the structure of the instance.

An important line of research on the CSP is to identify all tractable cases
which are recognisable in polynomial time. Most of this work has been focused
on one of the two general approaches: either identifying forms of constraint
which are sufficiently restrictive to ensure tractability no matter how they are
combined [3,16], or else identifying structural properties of constraint networks
which ensure tractability no matter what forms of constraint are imposed [13].

The first approach has led to identifying certain algebraic properties known
as polymorphisms [20] which are necessary for a set of constraint types to ensure
tractability. A set of constraint types with this property is called a tractable con-
straint language. The second approach has been used to characterise all tractable
cases of bounded-arity CSPs (such as binary CSPs): the only class of structures
which ensures tractability (subject to certain complexity theory assumptions)
are structures of bounded tree-width [19].

In practice, constraint satisfaction problems usually do not possess a suffi-
ciently restricted structure or use a sufficiently restricted constraint language to
? Martin Cooper is supported by ANR Projects ANR-10-BLAN-0210 and ANR-10-

BLAN-0214. Stanislav Živný is supported by a Junior Research Fellowship at Uni-
versity College, Oxford.

fall into any of these tractable classes. Nevertheless, they may still have proper-
ties which ensure they can be solved efficiently, but these properties concern both
the structure and the form of the constraints. Such properties have sometimes
been called hybrid reasons for tractability [12,7,6,8].

Since in practice many constraint satisfaction problems are over-constrained,
and hence have no solution, soft constraint satisfaction problems have been stud-
ied [12]. In an instance of the soft CSP, every constraint is associated with a func-
tion (rather than a relation as in the CSP) which represents preferences among
different partial assignments, and the goal is to find the best assignment. Several
very general soft CSP frameworks have been proposed in the literature [29,2]. In
this paper we focus on one of the very general frameworks, the valued constraint
satisfaction problem (VCSP) [29].

Similarly to the CSP, an important line of research on the VCSP is to identify
tractable cases which are recognisable in polynomial time. Is is well known that
structural reasons for tractability generalise to the VCSP [1,12]. In the case of
language restrictions, only a few conditions are known to guarantee tractability
of a given set of valued constraints [5,4,21,22].

1.2 Contributions

In this paper, we study hybrid tractability of binary VCSPs for various valuation
structures that correspond to the CSP, CSP with soft unary constraints, Max-
CSP, finite-valued VCSP and general-valued VCSP.

We focus on classes of instances defined by allowed combinations of binary
costs in every assignment to 3 different variables (called a triangle). Our motiva-
tion for this investigation is that one such restriction, the so-called joint-winner
property has recently been shown to define a tractable class with several practical
applications [9].

The JWP (joint-winner property) states that for any triangle of variable-
value assignments {〈vi, a〉, 〈vj , b〉, 〈vk, c〉}, no one of the binary costs cij(a, b),
cjk(b, c), cik(a, c) is strictly less than the other two. This holds, for example,
if there is a (soft) not-equal constraint between each pair of variables (vi, vj),
(vj , vk), (vi, vk), by transitivity of equality. In [9] we gave several applications
of the JWP in CSPs and VCSPs. For example, the class of CSP instances sat-
isfying the JWP generalises the AllDifferent constraint with arbitrary unary
constraints, since its binary constraints are equivalent to allowing at most one
assignment from each of a set of disjoint sets of (variable,value) assignments. We
also showed how to code a set of non-overlapping SoftAllDifferent constraints
with either graph- or variable-based costs as a VCSP satisfying the JWP. As
another example, a job-shop scheduling problem in which the aim is to min-
imise the sum, over all jobs, of their time until completion can be coded as a
VCSP satisfying the JWP [9]. The JWP has also been generalised to VCSPs in
which the objective function is the sum of hierarchically nested arbitrary con-
vex cost functions [10]: applications include soft hierarchical global cardinality
constraints, useful in rostering problems.

For finite valuation structures (corresponding to the CSP and Max-CSP),
there are only finitely many possibilities of multi-sets of binary costs in a triangle.
For example, in Max-CSP there are only four possible multi-sets of costs, namely
{0, 0, 0}, {0, 0, 1}, {0, 1, 1} and {1, 1, 1}. However, for infinite valuation structures
(corresponding to the finite-valued CSP and general-valued VCSP) there are
infinitely many combinations. Obviously, we cannot consider them all, and hence
we consider an equivalence relation based on the total order on the valuation
structure. There are 4 equivalence classes, thus giving 4 types of combinations
of the three binary costs α, β, γ given by α = β = γ, α = β < γ, α = β > γ,
α < β < γ.

For all valuation structures we consider, we prove a dichotomy theorem, thus
identifying all tractable cases with respect to the equivalence relation on the
combinations of costs. It turns out that there are only two non-trivial tractable
cases: the well-known maximum weighted matching problem [15], and the re-
cently discovered joint-winner property [9].

The study of the tractability of classes of instances defined by properties on
triangles of costs can be seen as a first step on the long road towards the char-
acterisation of tractable classes of VCSPs based on so-called hybrid properties
which are not captured by restrictions on the language of cost functions or the
structure of the constraint graph. The intractability results in this paper provide
initial guidelines for such a research program.

Paper organisation The rest of this paper is organised as follows. We start, in
Section 2, with defining valuation structures, binary valued constraint satisfac-
tion problems and cost types. In Section 3, we present our results on the CSP,
followed up with results on the CSP with soft unary constraints. In Section 4, we
present our results on the Max-CSP, followed by the results on the finite-valued
and general-valued VCSP in Section 5. Finally, we conclude in Section 6.

2 Preliminaries

A valuation structure, Ω, is a totally ordered set, with a minimum and a maxi-
mum element (denoted 0 and ∞), together with a commutative, associative bi-
nary aggregation operator (denoted ⊕), such that for all α, β, γ ∈ Ω, α⊕ 0 = α,
and α⊕ γ ≥ β ⊕ γ whenever α ≥ β. Members of Ω are called costs.

An instance of the binary Valued Constraint Satisfaction Problem (VCSP) is
given by n variables v1, . . . , vn over finite domains D1, . . . , Dn of values, unary
cost functions ci : Di → Ω, and binary cost functions cij : Di×Dj → Ω [29]. (If
the domains of all the variables are the same, we denote it by D.) The goal is to
find an assignment of values from the domains to the variables which minimises
the total cost given by

n⊕
i=1

ci(vi) ⊕
⊕

1≤i<j≤n

cij(vi, vj) .

Note that we assume that all binary cost functions cij exist. The absence of any
constraint between variables vi, vj is modelled by a cost function cij which is
uniformly zero.

We shall denote by Q+ the set of all non-negative rational numbers. We define
Q+ = Q+ ∪ {∞}. In this paper, we consider the following valuation structures:
{0,∞}, {0, 1}, Q+ and Q+, where in all cases the aggregation operation is the
standard addition operation on rationals, +, extended so that a+∞ =∞ for all
a ∈ Q+. These valuation structures correspond to CSP, Max-CSP, finite-valued
VCSP and general-valued VCSP, respectively.

Given an infinite valuation structure, such as Q+ or Q+, there is an infinite
number of possible sets of triples of costs. Obviously, we cannot consider all such
sets. Therefore, we only consider the cases defined by the total order on Ω. We
use curly brackets {} for multi-sets. The following table defines possible cost
types of 3 costs.

Symbol Costs Remark
4 {α, β, γ} α, β, γ ∈ Ω, α 6= β 6= γ 6= α
< {α, α, β} α, β ∈ Ω, α < β
> {α, α, β} α, β ∈ Ω, α > β
= {α, α, α} α ∈ Ω

We use the word triangle for any set of assignments {〈vi, a〉, 〈vj , b〉, 〈vk, c〉},
where vi, vj , vk are distinct variables and a ∈ Di, b ∈ Dj , c ∈ Dk are domain
values. The multi-set of costs in such a triangle is {cij(a, b), cik(a, c), cjk(b, c)}.

We denote by D = {4, <,>,=} the set of all possible cost types. Let Ω
be a fixed valuation structure. For any set S ⊆ D, we denote by AΩ(S) (A for
allowed) the set of binary VCSP instances with the valuation structure Ω where
for every triangle the multi-set of costs in the triangle is of a type from S.

For instance, if Ω = Q+ and S = {4}, then AΩ(S) is the set of binary
finite-valued VCSP instances where for every triangle {〈vi, a〉, 〈vj , b〉, 〈vk, c〉} the
multi-set of costs in the triangle {cij(a, b), cik(a, c), cjk(b, c)} contains exactly
three distinct costs.

Our goal is to classify the complexity of AΩ(S) for every S ⊆ D.

Proposition 1. Let Ω be an arbitrary valuation structure and S ⊆ D.

1. If AΩ(S) is tractable and S′ ⊆ S, then AΩ(S′) is tractable.
2. If AΩ(S) is intractable and S′ ⊇ S, then AΩ(S′) is intractable.

A triangle {〈vi, a〉, 〈vj , b〉, 〈vk, c〉}, where a ∈ Di, b ∈ Dj , c ∈ Dk, satisfies
the joint-winner property (JWP) if either all three cij(a, b), cik(a, c), cjk(b, c)
are the same, or two of them are equal and the third one is bigger. A VCSP
instance satisfies the joint-winner property if every triangle satisfies the joint-
winner property.

Theorem 1 ([9]). The class of VCSP instances satisfying JWP is tractable.

In [9], we also showed that the class defined by the joint-winner property is
maximal – allowing a single extra triple of costs that violates the joint-winner
property renders the class NP-hard.

Theorem 2 ([9]). Let α < β ≤ γ, where α ∈ Q+ and β, γ ∈ Q+, be a multi-set
of (not necessarily distinct) costs that do not satisfy the joint-winner property.
The class of instances where the costs in each triangle either satisfy the joint-
winner property or are {α, β, γ} is NP-hard

In this paper we consider a much broader question, whether allowing any
arbitrary set S of triples of costs in triangles, where S does not necessarily include
all triples allowed by the JWP, defines a tractable class of VCSP instances.

Remark 1. We implicitly allow all unary cost functions. In fact, all our tractabil-
ity results work with unary cost functions, and our NP-hardness results do no
require any unary cost functions.

Remark 2. We consider problems with unbounded domains; that is, the domain
sizes are part of the input. However, all our NP-hardness results are obtained for
problems with a fixed domain size.3 In the case of CSPs, we need domains of size
3 to prove NP-hardness, and in all other cases domains of size 2 are sufficient
to prove NP-hardness. Since binary CSPs are known to be tractable on Boolean
domains, and any VCSP is trivially tractable over domains of size 1, all our
NP-hardness results are tight.

Remark 3. Binary finite-valued/general-valued VCSPs have also been studied
under the name of pair-wise MinSum or pair-wise Markov Random Field (MRF).
Consequently, our results readily apply to these frameworks, and other graphical
models equivalent to the VCSP.

3 CSP

In this section, we will focus on the valuation structure Ω = {0,∞}; that is, the
Constraint Satisfaction Problem (CSP). It is clear that the 4 cost type cannot
occur. Since there are only 2 possible costs, we split the cost type = into two:

Symbol Costs
0 {0, 0, 0}
∞ {∞,∞,∞}

The set of possible cost types is then D = {<,>, 0,∞}. Indeed, these four
cost types correspond precisely to the four possible multi-sets of costs: {0, 0, 0},
{0, 0,∞}, {0,∞,∞} and {∞,∞,∞}. The dichotomy presented in this section
therefore represents a complete characterisation of the complexity of CSPs de-
fined by placing restrictions on triples of costs in triangles.
3 In other words, the considered problems are not fixed-parameter tractable [14] in

the domain size.

∅

< > 0 ∞

<,> <, 0 <,∞ >, 0 >,∞ 0,∞

<,>, 0 <,>,∞ <, 0,∞ >, 0,∞

<,>, 0,∞

Fig. 1. Complexity of CSPs A{0,∞}(S), S ⊆ {<, >, 0,∞}.

As A{0,∞}(D) allows all binary CSPs, A{0,∞}(D) is intractable [26] unless
the domain is of size at most 2, which is equivalent to 2-SAT, and a well-known
tractable class [28].

Proposition 2. A{0,∞}(D) is intractable unless |D| ≤ 2.

The joint-winner property for CSPs gives

Corollary 1 (of Theorem 1). A{0,∞}({<, 0,∞}) is tractable.

Proposition 3. A{0,∞}({>, 0,∞}) is tractable.

Proof. Since < is forbidden, if two binary costs in a triangle are zero then the
third binary cost must also be zero. In other words, if the assignment 〈v1, a1〉 is
consistent with 〈vi, ai〉 for each i ∈ {2, . . . , n}, then for all i, j ∈ {1, . . . , n} such
that i 6= j, 〈vi, ai〉 is consistent with 〈vj , aj〉. Thus Singleton Arc Consistency,
which is a procedure enforcing Arc Consistency for every variable-value pair [27],
solves A{0,∞}({>, 0,∞}). ut

Proposition 4. A{0,∞}({<,>,∞}) is tractable.

Proof. This class is trivial: instances with at least three variables have no solu-
tion, since the triple of costs {0, 0, 0} is not allowed. ut

Proposition 5. A{0,∞}({<,>, 0}) is intractable unless |D| ≤ 2.

Proof. It is straightforward to encode the 3-colouring problem as a binary CSP.
The result then follows from the fact that 3-colouring is NP-hard for triangle-free

graphs, which can be derived from two results from [24]. (Indeed, 3-colouring is
NP-hard even for triangle-free graphs of degree at most 4 [25].) The triple of costs
{∞,∞,∞} cannot occur in the CSP encoding of the colouring of a triangle-free
graph. ut

Results from this section, together with Proposition 1, complete the complexity
classification, as depicted in Figure 1: white nodes represent tractable cases and
shaded nodes represent intractable cases.

Theorem 3. For |D| ≥ 3 a class of binary CSP instances defined as A{0,∞}(S),
where S ⊆ {<,>, 0,∞}, is intractable if and only if {<,>, 0} ⊆ S.

A simple way to convert classical CSP into an optimisation problem is to
allow soft unary constraints. It turns out that the dichotomy given in Theorem 3
remains valid even if soft unary constraints are allowed. We use the notation

AQ+

{0,∞}(S) to represent the set of VCSP instances with binary costs from {0,∞},
unary costs from Q+ and whose triples of costs in triangles belong to S. In other
words, we now consider VCSPs with crisp binary constraints and soft unary
constraints.

Theorem 4. For |D| ≥ 3 a class of binary CSP instances defined as AQ+

{0,∞}(S),
where S ⊆ {<,>, 0,∞}, is intractable if and only if {<,>, 0} ⊆ S.

Proof. It suffices to show tractability when S is {<,>,∞}, {<, 0,∞} or {>
, 0,∞}, the three maximal tractable sets in the case of CSP shown in Figure 1,
since sets S which are intractable for CSPs clearly remain intractable when soft
unary constraints are allowed.

The tractability of AQ+

{0,∞}({<, 0,∞}) is again a corollary of Theorem 1 since
the joint-winner property allows any unary soft constraints.

To solve AQ+

{0,∞}({>, 0,∞}) in polynomial time, we establish Singleton Arc
Consistency in the CSP corresponding to the binary constraints and then loop
over all assignments to the first variable. For each assignment a1 to variable v1,
we can determine the optimal global assignment which is an extension of 〈v1, a1〉
by simply choosing the assignment ai for each variable vi with the least unary
cost ci(ai) among those assignments 〈vi, ai〉 that are consistent with 〈v1, a1〉.

As in the proof of Proposition 4, any instance ofAQ+

{0,∞}({<,>,∞}) is tractable,
since instances with at least three variables have no solution. ut

4 Max-CSP

In this section, we will focus on the valuation structure Ω = {0, 1}. It is well
known that the VCSP with the valuation structure {0, 1} is polynomial-time
equivalent to unweighted Max-CSP (no repetition of constraints allowed) [27]. It
is clear that the 4 cost type cannot occur. Since there are only 2 possible costs,
we split the cost type = into two:

Symbol Costs
0 {0, 0, 0}
1 {1, 1, 1}

The set of possible cost types is then D = {<,>, 0, 1}. Again, these four
costs types correspond precisely to the four possible multi-sets of costs: {0, 0, 0},
{0, 0, 1}, {0, 1, 1}, and {1, 1, 1}. As for CSP, our dichotomy result for Max-CSP
represents a complete characterisation of the complexity of classes of instances
defined by placing restrictions on allowed costs in triangles.

∅

< > 0 1

<,> <, 0 <, 1 >, 0 >, 1 0, 1

<,>, 0 <,>, 1 <, 0, 1 >, 0, 1

<,>, 0, 1

Fig. 2. Complexity of Max-CSPs A{0,1}(S), S ⊆ {<, >, 0, 1}.

As A{0,1}(D) allows all binary Max-CSPs, A{0,1}(D) is intractable [17,26]
unless the domain is of size 1.

Proposition 6. A{0,1}(D) is intractable unless |D| ≤ 1.

The joint-winner property [9] for Max-CSPs gives

Corollary 2 (of Theorem 1). A{0,1}({<, 0, 1}) is tractable.

Proposition 7. A{0,1}({<,>}) is tractable.

Proof. We show that A{0,1}({<,>}) contains instances on at most 5 variables,
thus showing that A{0,1}({<,>}) is trivially tractable. Consider an instance of
A{0,1}({<,>}) on 6 or more variables. Choose 6 arbitrary variables v1, . . . , v6
and 6 domain values di ∈ Dvi

, 1 ≤ i ≤ 6. Every cost is either 0 or 1. It is

well known [18] and not difficult to show4 that for every 2-colouring of edges
of K6 (the complete graph on 6 vertices) there is a monochromatic triangle.
Therefore, there is a triangle with costs either {0, 0, 0} or {1, 1, 1}. But this is
a contradiction with the fact that only cost types < (i.e. {0, 0, 1}) and > (i.e.
{1, 1, 0}) are allowed. ut

Remark 4. Both AΩ({>}) and AΩ({<,>}) are tractable over any finite val-
uation structure Ω due to a similar Ramsey type of argument: given Ω =
{0, 1, . . . ,K − 1}, there is n0 ∈ N such that for every graph G on n vertices,
where n ≥ n0, and every colouring of the edges of G with K colours, there is
a monochromatic triangle or an independent set of size 3. Hence there are only
finitely many instances, which can be stored in a look-up table. However, once
the valuation structure is infinite (e.g. Q+), both classes become intractable, as
shown in the next section.

Proposition 8. A{0,1}({>, 0, 1}) is intractable unless |D| ≤ 1.

Proof. Given an instance of the Max-2SAT problem, we show how to reduce it
to a {0, 1}-valued VCSP instance from A{0,1}({>, 0, 1}). The result then follows
from the well-known fact that Max-2SAT is NP-hard [17,26]. Recall that an
instance of Max-2SAT is given by a set of m clauses of length 2 over n variables
x1, . . . , xn and the goal is to find an assignment that maximises the number of
clauses that have at least one true literal.

In order to simplify notation, rather than constructing a VCSP instance
from A{0,1}({>, 0, 1}) with the goal to minimise the total cost, we construct an
instance from A{0,1}({<, 0, 1}) with the goal to maximise the total cost. This
implies that the allowed multi-sets of costs in triangles are {0, 0, 1}, {0, 0, 0},
and {1, 1, 1}. Clearly, these two problems are polynomial-time equivalent.

For each variable xi, we create a large number M of copies xji of xi with
domain {0, 1}, 1 ≤ i ≤ n and 1 ≤ j ≤ M . For each variable xi, the new
copies of xi are pairwise joined by an equality-encouraging cost function h, where
h(x, y) = 1 if x = y and h(x, y) = 0 otherwise. By choosing M very large, we
can assume from now on that all copies of xi will be assigned the same value
in all optimal solutions. We can effectively ignore the contribution of these cost
functions, which is K = n

(
M
2

)
, to the total cost. It is straightforward to check

that all triangles involving the new copies of the variables have the allowed costs.
For each clause (l1 ∨ l2), where l1 and l2 are literals, we create a variable

zi with domain {l1, l2}, 1 ≤ i ≤ m. For each literal l in the domain of zk: if l
is a positive literal l = xi, we introduce cost function g between zk and each
copy xji of xi, where g(l, 1) = 1 and g(., .) = 0 otherwise; if l is a negative literal

4 Take an arbitrary vertex v in K6 where every edge is coloured either blue or red.
By the pigeonhole principle, v is incident to at least 3 blue or at lest 3 red edges.
Without loss of generality, we consider the former case. Let v1, v2 and v3 be the three
vertices incident to three blue edges incident to v. If an any of the edges {v1, v2},
{v1, v3}, {v2, v3} is blue, we have a blue triangle. If all three edges are red, we have
a red triangle.

l = ¬xi, we introduce cost function g′ between zk and each copy xji of xi, where
g′(l, 0) = 1 and g′(., .) = 0 otherwise.

To make sure that the only multi-sets of costs in all triangles are {0, 0, 1},
{0, 0, 0}, and {1, 1, 1}, we also add cost functions f between the different clause
variables zk and zk′ involving the same literal l, where f(l, l) = 1 and f(., .) = 0
otherwise. The contribution of all the cost functions between zk and zk′ , 1 ≤
k 6= k′ ≤ m, is less than M and hence of no importance for M very large.

Answering the question of whether the resulting VCSP instance has a solution
with a cost ≥ K + pM is equivalent to determining whether the original Max-
2SAT instance has a solution satisfying at least p clauses. This is because each
clause variable zk can only add a score ≥M if we assign value l to zk for some
literal l which is assigned true. ut

Proposition 9. Both A{0,1}({<,>, 0}) and A{0,1}({<,>, 1}) are intractable
unless |D| ≤ 1.

Proof. We present a reduction from Max-Cut, a well-known NP-hard prob-
lem [17], which is NP-hard even on triangle-free graphs [23]. An instance of
Max-Cut can easily be modelled as a Boolean {0, 1}-valued VCSP instance: ev-
ery vertex of the graph is represented by a variable with the Boolean domain
{0, 1}, and every edge yields cost function f , where f(x, y) = 1 if x = y and
f(x, y) = 0 if x 6= y. Observe that since the original graph is triangle-free, there
cannot be a triangle with costs {1, 1, 1}. Therefore, the constructed instance
belongs to A{0,1}({<,>, 0}).

For the A{0,1}({<,>, 1}) case, instead of minimising the total cost, we max-
imise the total cost for instances from A{0,1}({<,>, 0}). Again, we model an
instance of the Max-Cut problem using Boolean variables, and every edge yields
a cost function g, where g(x, y) = 0 if x = y and g(x, y) = 1 if x 6= y (where in
this case the aim is to maximise the total cost). The constructed instance belongs
to A{0,1}({<,>, 0}) when the original graph is triangle-free. The result then fol-
lows from the fact that Max-Cut is NP-complete on triangle-free graphs [23]. ut

Proposition 10. A{0,1}({>, 0}) is tractable.

Proof. Let I be an instance from A{0,1}({>, 0}). The algorithm loops through all
possible assignments {〈v1, a1〉, 〈v2, a2〉} to the first two variables. Suppose that
c12(a1, a2) = 1 (the case c12(a1, a2) = 0 is similar). Observe that the possible
variable-value assignments to other variables {〈vi, b〉 | 3 ≤ i ≤ n, b ∈ Di} can
be uniquely split in two sets L and R such that: (1) for every 〈vi, b〉 ∈ L,
c1i(a1, b) = 1 and c2i(a2, b) = 0; for every 〈vi, b〉, 〈vj , c〉 ∈ L, cij(b, c) = 0; (2) for
every 〈vi, b〉 ∈ R, c1i(a1, b) = 0 and c2i(a2, b) = 1; for every 〈vi, b〉, 〈vj , c〉 ∈ R,
cij(b, c) = 0; (3) for every 〈vi, b〉 ∈ L and 〈vj , c〉 ∈ R, cij(b, c) = 1. Ignoring unary
cost functions for a moment, to find an optimal assignment to the remaining n−2
variables, one has to decide how many variables vi, 3 ≤ i ≤ n, will be assigned
a value b ∈ Di such that 〈vi, b〉 ∈ L. The cost of a global assignment involving
k variable-value assignments from L is 1 + k + (n − 2 − k) + k(n − 2 − k) =
n− 1 + k(n− 2− k). For some variables vi it could happen that 〈vi, b〉 ∈ L for

all b ∈ Di or 〈vi, c〉 ∈ R for all c ∈ Di. If this is the case, then we choose an
arbitrary value b for xi with minimum unary cost ci(b). This is an optimal choice
whatever the assignments to the variables xj (j ∈ {3, . . . , i− 1, i+ 1, . . . , n}).

Assuming that all such variables have been eliminated and now taking into
account unary cost functions, the function to minimise is given by the objective
function (in which we drop the constant term n− 1):

(
∑

xi)(n− 2−
∑

xi) +
∑

wLi xi +
∑

wRi (1− xi)

(each sum being over i ∈ {3, . . . , n}), where xi ∈ {0, 1} indicates whether vi
is assigned a value from R or L, wLi = min{ci(b) : b ∈ Di ∧ 〈vi, b〉 ∈ L}, and
similarly wRi = min{ci(c) : c ∈ Di ∧ 〈vi, c〉 ∈ R}. The objective function is thus
equal to k(n−2−k)+

∑
wLi xi+

∑
wRi (1−xi), where, as above, k =

∑
xi is the

number of assignments from L. This objective function is minimised either when
k = 0 or when k = n − 2. This follows from the fact that the contribution of
unary cost functions to the objective function is

∑
wLi xi +

∑
wRi (1− xi) which

is at most n− 2 (since in Max-CSP all unary costs belong to {0, 1}). This is no
greater than the value of the quadratic term k(n − 2 − k) for all values of k in
{1, . . . , n− 3}, i.e. not equal to 0 or n− 2.

The optimal assignment which involves k = 0 (respectively k = n − 2) as-
signments from L is obtained by simply choosing each value ai (for i > 2) with
minimum unary cost among all assignments 〈vi, ai〉 ∈ R (respectively L).

In the case that c12(a1, a2) = 0, a similar argument shows that the quadratic
term in the objective function is now 2(n−2−k)+k(n−2−k) = (k+2)(n−2−k).
This is always minimised by setting k = n − 2 and again the sum of the unary
costs is no greater than the value of the quadratic term for other values of
k 6= n − 2. The optimal assignment which involves all k = n − 2 assignments
from L is obtained by simply choosing each value ai (for i > 2) with minimum
unary cost among all assignments 〈vi, ai〉 ∈ L. ut

Proposition 11. A{0,1}({>, 1}) is tractable.

Proof. Let I be an instance from A{0,1}({>, 1}) without any unary constraints;
i.e. all constraints are binary. Observe that every variable-value assignment
〈vi, a〉, where a ∈ Di, is included in zero-cost assignment-pairs involving at most
one other variable; i.e. there is at most one variable vj , such that cij(a, b) = 0
for some b ∈ Dj . In order to minimise the total cost, we have to maximise the
number of zero-cost assignment-pairs. In a global assignment, no two zero-cost
assignment-pairs can involve the same variable, which means that this can be
achieved by a reduction to the maximum matching problem, a problem solvable
in polynomial time [15]. We build a graph with vertices given by the variables
of I, and there is an edge {vi, vj} if and only if there is a ∈ Di and b ∈ Dj such
that cij(a, b) = 0.

To complete the proof, we show that unary constraints do not make the
problem more difficult to solve; it suffices to perform a preprocessing step before
the reduction to maximum matching. Let vi be an arbitrary variable of I. If

ci(a) = 1 for all a ∈ Di, then we can effectively ignore the unary cost function
ci since it simply adds a cost of 1 to any solution. Otherwise, we show that
all a ∈ Di such that ci(a) = 1 can be ignored. Take an arbitrary assignment
s to all variables such that s(vi) = a, where ci(a) = 1. Now take any b ∈ Di

such that ci(b) = 0. We claim that assignment s′ defined by s′(vi) = b and
s′(vj) = s(vj) for every j 6= i does not increase the total cost compared with s.
Since the assignment 〈vi, a〉 can occur in at most one zero-cost assignment-pair,
there are two cases to consider: (1) if there is no 〈vj , c〉 with s(vj) = c such that
cij(a, c) = 0, then the claim holds since ci(a) = 1 and ci(b) = 0, so the overall
cost can only decrease if we replace a by b; (2) if there is exactly one j 6= i
such that cij(a, c) = 0 and s(vj) = c, then again the cost of s′ cannot increase
because the possible increase of cost by 1 in assigning b to vi is compensated
by the unary cost function ci. Therefore, before using the reduction to maximal
matching, we can remove all a ∈ Di such that ci(a) = 1 and keep only those
a ∈ Di such that ci(a) = 0. ut

Results from this section, together with Proposition 1, complete the com-
plexity classification, as depicted in Figure 2: white nodes represent tractable
cases and shaded nodes represent intractable cases.

Theorem 5. For |D| ≥ 2 a class of binary unweighted Max-CSP instances de-
fined as A{0,1}(S), where S ⊆ {<,>, 0, 1}, is intractable if and only if either
{<,>, 0} ⊆ S, {<,>, 1} ⊆ S, or {>, 0, 1} ⊆ S.

5 VCSP

In this section, we will focus on finite-valued and general-valued VCSP. First,
we focus on the valuation structure Ω = Q+; that is, the finite-valued VCSP.

The set of possible cost types is D = {4, <,>,=}. As AQ+(D) allows all
finite-valued VCSPs, AQ+(D) is intractable [5] as it includes the Max-SAT prob-
lem for the exclusive or predicate [11].

Proposition 12. AQ+(D) is intractable unless |D| ≤ 1.

The joint-winner property [9] for finite-valued VCSPs gives

Corollary 3 (of Theorem 1). AQ+({<,=}) is tractable.

Proposition 13. AQ+({4}) is intractable unless |D| ≤ 1.

Proof. We show a reduction from Max-Cut, a well-known NP-hard problem [17].
An instance of Max-Cut can be easily modelled as a Boolean finite-valued VCSP
instance: every vertex of the graph is represented by a variable with the Boolean
domain {0, 1}, and every edge yields cost function f , where f(x, y) = 1 if x = y
and f(x, y) = 0 if x 6= y. However, the constructed instance does not belong
to AQ+({4}). Nevertheless, we can amend the VCSP instance by infinitesimal
perturbations: all occurrences of the cost 0 are replaced by different numbers that

∅

4 < > =

4, < 4, > 4,= <,> <,= >,=

4, <,> 4, <,= 4, >,= <,>,=

4, <,>,=

Fig. 3. Complexity of finite-valued VCSPs AQ+(S), S ⊆ {4, <, >, =}.

are very close to 0, and all occurrences of the cost 1 are replaced by different
numbers very close to 1. Now since all the cost are different, clearly the instance
belongs to AQ+({4}). ut

Proposition 14. AQ+({>}) is intractable unless |D| ≤ 1.

Proof. We prove this by a perturbation of the construction in the proof of Propo-
sition 8, which shows intractability of AQ+({>,=}). In order to simplify the
proof, similarly to the proof of Proposition 8, we prove that maximising the
total cost in the class AQ+({<}) is NP-hard.

In the construction in the proof of Proposition 8 we add iε to each binary
cost cij(a, b), where i < j, if cij(a, b) was equal to 1. We assume that ε is very
small (nε < 1). This simply ensures that each triple of costs {1, 1, 1} in a triangle
of assignments is now perturbed to become {1 + iε, 1 + iε, 1 + jε}.

In the reduction from Max-2SAT, for each literal l, let Cl be the set of
all variable-value assignments corresponding to l (in both the xji and the zk
variables). Recall that all binary costs for pairs of the assignments within Cl
were 1 and all binary costs for pairs of the assignments from distinct Cl, Cl′ were
all 0 in the VCSP encoding of the Max-2SAT instance. We place an arbitrary
ordering on the literals l1 < l2 < · · · < lr. We then add iε to each binary cost
between two variable-value assignments whenever these assignments correspond
to literals li, lj with i < j. This simply ensures that each triple of costs {0, 0, 0}
in a triangle of assignments is now perturbed to become {0 + iε, 0 + iε, 0 + jε}.

The resulting VCSP instance is in AQ+({>}) and correctly codes the original
Max-2SAT instance for sufficiently small ε. ut

Results from this section, together with Proposition 1, complete the com-
plexity classification, as depicted in Figure 3: white nodes represent tractable
cases and shaded nodes represent intractable cases.

Theorem 6. For |D| ≥ 2 a class of binary finite-valued VCSP instances defined
as AQ+(S), where S ⊆ {4, <,>,=}, is tractable if and only if S ⊆ {<,=}.

We now consider the case of general-valued VCSPs. In other words, we con-
sider the valuation structure Ω = Q+. Theorem 6 applies to this valuation
structure as well. Indeed, the hard cases remain intractable when we allow more
triangles (involving infinite costs), and the only tractable case, AQ+({<,=}),
remains tractable: AQ+

({<,=}) is tractable by Theorem 1.

Theorem 7. For |D| ≥ 2 a class of binary general-valued VCSP instances de-
fined as AQ+

(S), where S ⊆ {4, <,>,=}, is tractable if and only if S ⊆ {<,=}.

6 Conclusions

In the CSP and Max-CSP case, we have obtained a complete dichotomy concern-
ing the tractability of problems defined by placing restrictions on the possible
combinations of binary costs in triangles of variable-value assignments. In the
case of finite-valued and general-valued VCSP, we have obtained a complete di-
chotomy with respect to the equivalence classes which naturally follow from the
total order on the valuation structure. In particular, we have shown that the
joint-winner property is the only tractable class for finite-valued and general-
valued VCSPs.

References

1. Bertelé, U., Brioshi, F.: Nonserial dynamic programming. Academic Press (1972)
2. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based Constraint Satisfaction and

Optimisation. Journal of the ACM 44(2), 201–236 (1997)
3. Bulatov, A., Krokhin, A., Jeavons, P.: Classifying the Complexity of Constraints

using Finite Algebras. SIAM Journal on Computing 34(3), 720–742 (2005)
4. Cohen, D.A., Cooper, M.C., Jeavons, P.G.: Generalising submodularity and Horn

clauses: Tractable optimization problems defined by tournament pair multimor-
phisms. Theoretical Computer Science 401(1-3), 36–51 (2008)

5. Cohen, D.A., Cooper, M.C., Jeavons, P.G., Krokhin, A.A.: The Complexity of Soft
Constraint Satisfaction. Artificial Intelligence 170(11), 983–1016 (2006)

6. Cohen, D., Jeavons, P.: The complexity of constraint languages. In: Rossi, F., van
Beek, P., Walsh, T. (eds.) The Handbook of Constraint Programming. Elsevier
(2006)

7. Cohen, D.A.: A New Class of Binary CSPs for which Arc-Constistency Is a Decision
Procedure. In: Proceedings of the 9th International Conference on Principles and
Practice of Constraint Programming (CP’03). Lecture Notes in Computer Science,
vol. 2833, pp. 807–811. Springer (2003)

8. Cooper, M.C., Jeavons, P.G., Salamon, A.Z.: Generalizing constraint satisfaction
on trees: hybrid tractability and variable elimination. Artificial Intelligence 174(9–
10), 570–584 (2010)

9. Cooper, M.C., Živný, S.: Hybrid tractability of valued constraint problems. Arti-
ficial Intelligence 175(9-10), 1555–1569 (2011)

10. Cooper, M.C., Živný, S.: Hierarchically nested convex VCSP. In: Proceedings of
the 17th International Conference on Principles and Practice of Constraint Pro-
gramming (CP’11). Lecture Notes in Computer Science, Springer (2011)

11. Creignou, N., Khanna, S., Sudan, M.: Complexity Classification of Boolean Con-
straint Satisfaction Problems, SIAM Monographs on Discrete Mathematics and
Applications, vol. 7. SIAM (2001)

12. Dechter, R.: Constraint Processing. Morgan Kaufmann (2003)
13. Dechter, R., Pearl, J.: Network-based Heuristics for Constraint Satisfaction Prob-

lems. Artificial Intelligence 34(1), 1–38 (1988)
14. Downey, R., Fellows, M.: Parametrized Complexity. Springer (1999)
15. Edmonds, J.: Paths, trees, and flowers. Canadian Journal of Mathematics 17, 449–

467 (1965)
16. Feder, T., Vardi, M.: The Computational Structure of Monotone Monadic SNP

and Constraint Satisfaction: A Study through Datalog and Group Theory. SIAM
Journal on Computing 28(1), 57–104 (1998)

17. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman (1979)

18. Goodman, A.W.: On Sets of Acquaintances and Strangers at any Party. The Amer-
ican Mathematical Monthly 66(9), 778–783 (1959)

19. Grohe, M.: The complexity of homomorphism and constraint satisfaction problems
seen from the other side. Journal of the ACM 54(1), 1–24 (2007)

20. Jeavons, P.: On the Algebraic Structure of Combinatorial Problems. Theoretical
Computer Science 200(1-2), 185–204 (1998)

21. Kolmogorov, V., Živný, S.: Generalising tractable VCSPs defined by symmetric
tournament pair multimorphisms. Tech. rep. (August 2010)

22. Kolmogorov, V., Živný, S.: The complexity of conservative VCSPs, submitted for
publication (2011).

23. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties
is NP-complete. Journal of Computer System Sciences 20(2), 219–230 (1980)

24. Lovász, L.: Coverings and colorings of hypergraphs. In: Proceedings of the 4th
Southeastern Conference on Combinatorics, Graph Theory and Computing. pp.
3–12 (1973)

25. Maffray, F., Preissmann, M.: On the NP-completeness of the k-colorability problem
for triangle-free graphs. Discrete Mathematics 162(1-3), 313–317 (1996)

26. Papadimitriou, C.: Computational Complexity. Addison-Wesley (1994)
27. Rossi, F., van Beek, P., Walsh, T. (eds.): The Handbook of Constraint Program-

ming. Elsevier (2006)
28. Schaefer, T.: The Complexity of Satisfiability Problems. In: Proceedings of the

10th Annual ACM Symposium on Theory of Computing (STOC’78). pp. 216–226
(1978)

29. Schiex, T., Fargier, H., Verfaillie, G.: Valued Constraint Satisfaction Problems:
Hard and Easy Problems. In: Proceedings of the 14th International Joint Confer-
ence on Artificial Intelligence (IJCAI’95) (1995)

