
THE COMPLEXITY OF COUNTING SURJECTIVE1

HOMOMORPHISMS AND COMPACTIONS ∗2

JACOB FOCKE† , LESLIE ANN GOLDBERG† , AND STANISLAV ŽIVNÝ†3

Abstract.4
A homomorphism from a graph G to a graph H is a function from the vertices of G to the5

vertices of H that preserves edges. A homomorphism is surjective if it uses all of the vertices6
of H and it is a compaction if it uses all of the vertices of H and all of the non-loop edges of H.7
Hell and Nešetřil gave a complete characterisation of the complexity of deciding whether there is8
a homomorphism from an input graph G to a fixed graph H. A complete characterisation is not9
known for surjective homomorphisms or for compactions, though there are many interesting results.10
Dyer and Greenhill gave a complete characterisation of the complexity of counting homomorphisms11
from an input graph G to a fixed graph H. In this paper, we give a complete characterisation of the12
complexity of counting surjective homomorphisms from an input graph G to a fixed graph H and13
we also give a complete characterisation of the complexity of counting compactions from an input14
graph G to a fixed graph H. In an addendum we use our characterisations to point out a dichotomy15
for the complexity of the respective approximate counting problems (in the connected case).16

1. Introduction. A homomorphism from a graph G to a graph H is a function17

from V (G) to V (H) that preserves edges. That is, the function maps every edge of G18

to an edge of H. Many structures in graphs, such as proper colourings, independent19

sets, and generalisations of these, can be represented as homomorphisms, so the study20

of graph homomorphisms has a long history in combinatorics [3, 4, 20, 21, 24, 26].21

Much of the work on this problem is algorithmic in nature. A very important22

early work is Hell and Nešetřil’s paper [22], which gives a complete characterisation of23

the complexity of the following decision problem, parameterised by a fixed graph H:24

“Given an input graph G, determine whether there is a homomorphism from G to H.”25

Hell and Nešetřil showed that this problem can be solved in polynomial time if H26

has a loop or is loop-free and bipartite. They showed that it is NP-complete oth-27

erwise. An important generalisation of the homomorphism decision problem is the28

list-homomorphism decision problem. Here, in addition to the graph G, the input29

specifies, for each vertex v of G, a list Sv of permissible vertices of H. The problem is30

to determine whether there is a homomorphism from G to H that maps each vertex31

v of G to a vertex in Sv. Feder, Hell and Huang [12] gave a complete characterisation32

of the complexity of this problem. This problem can be solved in polynomial time33

if H is a so-called bi-arc graph, and it is NP-complete otherwise.34

More recent work has restricted attention to homomorphisms with certain prop-35

erties. A function from V (G) to V (H) is surjective if every element of V (H) is the36

image of at least one element of V (G). So a homomorphism from G to H is surjec-37

tive if every vertex of H is “used” by the homomorphism. There is still no complete38
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characterisation of the complexity of determining whether there is a surjective homo-39

morphism from an input graph G to a graph H, despite an impressive collection of40

results [1, 17, 18, 19, 27]. A homomorphism from V (G) to V (H) is a compaction if41

it uses every vertex of H and also every non-loop edge of H (so it is surjective both42

on V (H) and on the non-loop edges in E(H)). Compactions have been studied under43

the name “homomorphic image” [20, 24] and even under the name “surjective homo-44

morphism” [6, 26]. Once again, despite much work [1, 30, 31, 32, 33, 34], there is still45

no characterisation of the complexity of determining whether there is a compaction46

from an input graph G to a graph H.47

Dyer and Greenhill [10] initiated the algorithmic study of counting homomor-48

phisms. They gave a complete characterisation of the graph homomorphism counting49

problem, parameterised by a fixed graph H: “Given an input graph G, determine50

how many homomorphisms there are from G to H.” Dyer and Greenhill showed that51

this problem can be solved in polynomial time if every component of H is a clique52

with all loops present or a biclique (complete bipartite graph) with no loops present.53

Otherwise, the counting problem is #P-complete. Dı́az, Serna and Thilikos [8] and54

Hell and Nešetřil [23] have shown that the same dichotomy characterisation holds for55

the problem of counting list homomorphisms.56

The main contribution of this paper is to give complete dichotomy characterisa-57

tions for the problems of counting compactions and surjective homomorphisms. Our58

main theorem, Theorem 1.2, shows that the characterisation for compactions is dif-59

ferent from the characterisation for counting homomorphisms. If every component of60

H is (i) a star with no loops present, (ii) a single vertex with a loop, or (iii) a single61

edge with two loops then counting compactions to H is solvable in polynomial time.62

Otherwise, it is #P-complete. We also obtain the same dichotomy for the problem63

of counting list compactions. Thus, even though the decision problem is still open64

for compactions, our theorem gives a complete classification of the complexity of the65

corresponding counting problem.66

There is evidence that computational problems involving surjective homomor-67

phisms are more difficult than those involving (unrestricted) homomorphisms. For68

example, suppose that H consists of a 3-vertex clique with no loops together with69

a single looped vertex. As [1] noted, the problem of deciding whether there is a70

homomorphism from a loop-free input graph G to H is trivial (the answer is yes,71

since all vertices of G may be mapped to the loop) but the problem of determining72

whether there is a surjective homomorphism from a loop-free input graph G to H73

is NP-complete. (To see this, recall the NP-hard problem of determining whether74

a connected loop-free graph G′ that is not bipartite is 3-colourable. Given such a75

graph G′, we may determine whether it is 3-colourable by letting G consist of the76

disjoint union of G′ and a loop-free clique of size 4, and then checking whether there77

is a surjective homomorphism from G to H.) There is also evidence that counting78

problems involving surjective homomorphisms are more difficult than those involving79

unrestricted homomorphisms. In Section 4.3 we consider a uniform homomorphism-80

counting problem where all connected components of G are cliques without loops and81

all connected components of H are cliques with loops, but both G and H are part of82

the input. It turns out (Theorem 4.4) that in this uniform case, counting homomor-83

phisms is in FP but counting surjective homomorphisms is #P-complete. Despite this84

evidence, we show (Theorem 1.3) that the problem of counting surjective homomor-85

phisms to a fixed graph H has the same complexity characterisation as the problem86

of counting all homomorphisms to H: The problem is solvable in polynomial time if87

every component of H is a clique with loops or a biclique without loops. Otherwise,88
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it is #P-complete. Once again, our dichotomy characterisation extends to the prob-89

lem of counting surjective list homomorphisms. Even though the decision problem90

is still open for surjective homomorphisms, our theorem gives a complete complexity91

classification of the corresponding counting problem.92

In Section 1.2 we will introduce one more related counting problem — the problem93

of counting retractions. Informally, if G is a graph containing an induced copy of H94

then a retraction from G to H is a homomorphism from G to H that maps the induced95

copy to itself. Retractions are well-studied in combinatorics, often from an algorithmic96

perspective [1, 11, 12, 13, 31, 33]. A complexity classification is not known for the97

decision problem (determining whether there is a retraction from an input to H).98

Nevertheless, it is easy to give a complexity characterisation for the corresponding99

counting problem (Corollary 1.7). This characterisation, together with our main100

results, implies that a long-standing conjecture of Winkler about the complexity of101

the decision problems for compactions and retractions is false in the counting setting.102

See Section 1.2 for details.103

Finally, in an addendum to this work, we address the relaxed versions of the count-104

ing problems where the goal is to approximately count surjective homomorphisms,105

compactions and retractions. We use our theorems to give a complexity dichotomy in106

the connected case for all three of these problems.107

1.1. Notation and Theorem Statements. In this paper graphs are undi-108

rected and may contain loops. A homomorphism from a graph G to a graph H is a109

function h : V (G)→ V (H) such that, for all {u, v} ∈ E(G), the image {h(u), h(v)} is110

in E(H). We use N
(
G→ H

)
to denote the number of homomorphisms from G to H.111

A homomorphism h is said to “use” a vertex v ∈ V (H) if there is a vertex u ∈ V (G)112

such that h(u) = v. It is surjective if it uses every vertex of H. We use N sur
(
G→ H

)
113

to denote the number of surjective homomorphisms from G to H. A homomorphism h114

is said to use an edge {v1, v2} ∈ E(H) if there is an edge {u1, u2} ∈ E(G) such that115

h(u1) = v1 and h(u2) = v2. It is a compaction if it uses every vertex of H and every116

non-loop edge of H. We use N comp
(
G→ H

)
to denote the number of compactions117

from G to H. H is said to be reflexive if every vertex has a loop. It is said to be118

irreflexive if no vertex has a loop. We study the following computational problems1,119

which are parameterised by a graph H.120

Name. #Hom(H).121

Input. Irreflexive graph G.122

Output. N
(
G→ H

)
.123

Name. #Comp(H).124

Input. Irreflexive graph G.125

Output. N comp
(
G→ H

)
.126

Name. #SHom(H).127

Input. Irreflexive graph G.128

Output. N sur
(
G→ H

)
.129

A list homomorphism generalises a homomorphism in the same way that a list130

colouring of a graph generalises a (proper) colouring. Suppose that G is an irreflexive131

1The reason that the input graph G is restricted to be irreflexive in these problems, but that H
is not restricted, is that this is the convention in the literature. Since our results will be complexity
classifications, parameterised by H, we strengthen the results by avoiding restrictions on H. Different
conventions are possible regarding G, but hardness results are typically the most difficult part of the
complexity classifications in this area, so restricting G leads to technically-stronger results.
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graph and that H is a graph. Consider a collection of sets S = {Sv ⊆ V (H) : v ∈132

V (G)} A list homomorphism from (G,S) to H is a homomorphism h from G to H133

such that, for every vertex v of G, h(v) ∈ Sv. The set Sv is referred to as a “list”,134

specifying the allowable targets of vertex v. We use N
(
(G,S)→ H

)
to denote the135

number of list homomorphisms from (G,S) to H, N sur
(
(G,S)→ H

)
to denote the136

number of surjective list homomorphisms from (G,S) to H and N comp
(
(G,S)→ H

)
137

to denote the number of list homomorphisms from (G,S) to H that are compactions.138

We study the following additional computational problems, again parameterised by a139

graph H.140

Name. #LHom(H).141

Input. Irreflexive graph G and a collection of lists S = {Sv ⊆ V (H) : v ∈ V (G)}.142

Output. N
(
(G,S)→ H

)
.143

Name. #LComp(H).144

Input. Irreflexive graph G and a collection of lists S = {Sv ⊆ V (H) : v ∈ V (G)}.145

Output. N comp
(
(G,S)→ H

)
.146

Name. #LSHom(H).147

Input. Irreflexive graph G and a collection of lists S = {Sv ⊆ V (H) : v ∈ V (G)}.148

Output. N sur
(
(G,S)→ H

)
.149

In order to state our theorems, we define some classes of graphs. A graph H is150

a clique if, for every pair (u, v) of distinct vertices, E(H) contains the edge {u, v}.151

(Like other graphs, cliques may contain loops but not all loops need to be present.)152

H is a biclique if it is bipartite (disregarding any loops) and there is a partition of153

V (H) into two disjoint sets U and V such that, for every u ∈ U and v ∈ V , E(H)154

contains the edge {u, v}. A biclique is a star if |U | = 1 or |V | = 1 (or both). Note155

that a star may have only one vertex since, for example, we could have |U | = 1 and156

|V | = 0. We sometimes use the notation Ka,b to denote an irreflexive biclique whose157

vertices can be partitioned into U and V with |U | = a and |V | = b. The size of a158

graph is the number of vertices that it has. We can now state the theorem of Dyer159

and Greenhill [10], as extended to list homomorphisms by Dı́az, Serna and Thilikos160

[8] and Hell and Nešetřil [23].161

Theorem 1.1 (Dyer, Greenhill). Let H be a graph. If every connected compo-162

nent of H is a reflexive clique or an irreflexive biclique, then the problems #Hom(H)163

and #LHom(H) are in FP. Otherwise, #Hom(H) and #LHom(H) are #P-complete.164

We can also state the main results of this paper.165

Theorem 1.2. Let H be a graph. If every connected component of H is an ir-166

reflexive star or a reflexive clique of size at most 2 then #Comp(H) and #LComp(H)167

are in FP. Otherwise, #Comp(H) and #LComp(H) are #P-complete.168

Theorem 1.3. Let H be a graph. If every connected component of H is a reflex-169

ive clique or an irreflexive biclique, then #SHom(H) and #LSHom(H) are in FP.170

Otherwise, #SHom(H) and #LSHom(H) are #P-complete.171

The tractability results in Theorem 1.2 follow from the fact that the number of172

compactions from a graph G to a graph H can be expressed as a linear combination173

of the number of homomorphisms from G to certain subgraphs of H, see Section 3.1.174

A proof sketch of the intractability result in Theorem 1.2 is given at the beginning of175

Section 3.2. Theorem 1.3 is simpler, see Section 4.176

This manuscript is for review purposes only.
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1.2. Reductions and Retractions. In the context of two computational prob-177

lems P1 and P2, we write P1 ≤ P2 if there exists a polynomial-time Turing reduction178

from P1 to P2. If there exist such reductions in both directions, we write P1 ≡ P2.179

Theorems 1.1, 1.2 and 1.3 imply the following observation.180

Observation 1.4. Let H be a graph. Then181

#Hom(H) ≡ #LHom(H) ≡ #SHom(H) ≡ #LSHom(H)182

≤ #Comp(H) ≡ #LComp(H).183184

In order to see how Observation 1.4 contrasts with the situation concerning deci-185

sion problems, it is useful to define decision versions of the computational problems186

that we study. Thus, Hom(H) is the problem of determining whether N
(
G→ H

)
= 0,187

given an input G of #Hom(H). The decision problems Comp(H), SHom(H) and188

LHom(H) are defined similarly.189

It is also useful to define the notion of a retraction. Suppose that H is a graph190

with V (H) = {v1, . . . , vc} and that G is an irreflexive graph. We say that a tuple191

(u1, . . . , uc) of c distinct vertices of G induces a copy of H if, for every 1 ≤ a < b ≤ c,192

{ua, ub} ∈ E(G) ⇐⇒ {va, vb} ∈ E(H). A retraction from (G;u1, . . . , uc) to H is193

a homomorphism h from G to H such that, for all i ∈ [c], h(ui) = vi. We use194

N ret
(
(G;u1, . . . , uc)→ H

)
to denote the number of retractions from (G;u1, . . . , uc)195

to H. We briefly consider the retraction counting and decision problems, which are196

parameterised by a graph H with V (H) = {v1, . . . , vc}.2197

Name. #Ret(H).198

Input. Irreflexive graph G and a tuple (u1, . . . , uc) of distinct vertices of G that199

induces a copy of H.200

Output. N ret
(
(G;u1, . . . , uc)→ H

)
.201

Name. Ret(H).202

Input. Irreflexive graph G and a tuple (u1, . . . , uc) of distinct vertices of G that203

induces a copy of H.204

Output. Does N ret
(
(G;u1, . . . , uc)→ H

)
= 0?205

The following observation appears as Proposition 1 of [1]. The proposition is206

stated for more general structures than graphs, but it applies equally to our setting.207

Proposition 1.5 (Bodirsky et al.). Let H be a graph. Then

Hom(H) ≤ SHom(H) ≤ Comp(H) ≤ Ret(H) ≤ LHom(H).

We have already mentioned the fact (pointed out by Bodirsky et al.) that if H208

is an irreflexive 3-vertex clique together with a single looped vertex, then Hom(H)209

is in P, but SHom(H) is NP-complete. There are no known graphs H separating210

SHom(H), Comp(H) and Ret(H). Moreover, Bodirsky et al. mention a conjecture [1,211

Conjecture 2], attributed to Peter Winkler, that, for all graphs H, Comp(H) and212

Ret(H) are polynomially Turing equivalent.213

The following observation, together with our theorems, implies Corollary 1.8 (be-214

low), which shows that the generalisation of Winkler’s conjecture to the counting215

setting is false unless FP = #P, since #Comp(H) and #Ret(H) are not polynomi-216

ally Turing equivalent for all H.217

2Once again, some works would allow G to have loops, and would insist that loops are preserved
in the induced copy of H. We prefer to stick with the convention that G is irreflexive, but this does
not make a difference to the complexity classifications that we describe.
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Observation 1.6. Let H be a graph. Then

#Ret(H) ≤ #LHom(H) and #Hom(H) ≤ #Ret(H).

Proof. Let V (H) = {v1, . . . , vc}. We first reduce #Ret(H) to #LHom(H). Con-218

sider an input to #Ret(H) consisting of G and (u1, . . . , uc). For each a ∈ [c], let219

Sua
be the set containing the single vertex va. For each v ∈ V (G) \ {u1, . . . , uc},220

let Sv = V (H). Let S = {Sv : v ∈ V (G)}. Then N ret
(
(G;u1, . . . , uc)→ H

)
=221

N
(
(G,S)→ H

)
.222

We next reduce #Hom(H) to #Ret(H). Let E0 be the set of all non-loop edges223

of H. Consider an input G to #Hom(H). Suppose without loss of generality that224

V (G) is disjoint from V (H) = {v1, . . . , vc}. Let G′ be the graph with vertex set225

V (G) ∪ V (H) and edge set E(G) ∪ E0. Then (v1, . . . , vc) induces a copy of H in G′226

and N
(
G→ H

)
= N ret

(
(G′; v1, . . . , vc)→ H

)
.227

Observation 1.6 immediately implies the following dichotomy characterisation for228

the problem of counting retractions.229

Corollary 1.7. Let H be a graph. If every connected component of H is a230

reflexive clique or an irreflexive biclique, then #Ret(H) is in FP. Otherwise, #Ret(H)231

is #P-complete.232

Proof. The corollary follows immediately from Observation 1.6 and Theorem 1.1.233

Corollary 1.8. Let H be a graph. Then234

#Hom(H) ≡ #LHom(H) ≡ #SHom(H) ≡ #LSHom(H) ≡ #Ret(H) ≤235

#Comp(H) ≡ #LComp(H).236237

Furthermore, there is a graph H for which #Comp(H) and #LComp(H) are #P-238

complete, but #Hom(H), #LHom(H), #SHom(H), #LSHom(H) and #Ret(H) are239

in FP.240

Proof. Theorems 1.1, 1.2, 1.3 and Corollary 1.7 give complexity classifications for241

all of the problems. The reductions in the corollary follow from three easy observa-242

tions.243

• All problems in FP are trivially inter-reducible.244

• All #P-complete problems are inter-reducible.245

• All problems in FP are reducible to all #P-complete problems.246

The separating graph H can be taken to be any reflexive clique of size at least 3 or247

any irreflexive biclique that is not a star.248

1.3. Related Work. This section was added after the announcement of our249

results (https://arxiv.org/abs/1706.08786v1), in order to draw attention to some in-250

teresting subsequent work [7, 5].251

Both our tractability results and our hardness results rely on the fact (see Theo-252

rem 3.8) that the number of compactions from G to H can be expressed as a linear253

combination of the number of homomorphisms from G to certain subgraphs J of H.254

A similar statement applies to surjective homomorphisms.255

As we note in the paper, these kinds of linear combinations have been noticed256

in related contexts before, for example in [2, Lemma 4.2] and in [26]. We use the257

linear combination of Theorem 3.8, together with interpolation, to prove hardness.258

Although it is standard to restrict the input graph G to be irreflexive (and this259

restriction makes the results stronger) the fact that G is required to be irreflexive260

causes severe difficulties.261
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In fact, Dell’s note about our paper [7] shows that, if you weaken the theorem262

statements by allowing the input G to have loops, then a simpler interpolation based263

on a very recent paper by Curticapean, Dell and Marx [6] can be used to make the264

proofs very elegant! The exact same idea, written more generally, was also discovered265

by Chen [5].266

2. Preliminaries. It will often be technically convenient to restrict the problems267

that we study by requiring the input graph G to be connected. In each case, we do this268

by adding a superscript “C” to the name of the problem. For example, the problem269

#HomC(H) is defined as follows.270

Name. #HomC(H).271

Input. A connected irreflexive graph G.272

Output. N
(
G→ H

)
.273

It is well known and easy to see (See, e.g., [26, (5.28)]) that if G is an irreflexive274

graph with components G1, . . . , Gt then N
(
G→ H

)
=
∏
i∈[t]N

(
Gi → H

)
. Simi-275

larly, given S = {Sv ⊆ V (H) : v ∈ V (G)} let Si = {Sv : v ∈ V (Gi)}. Then276

N
(
(G,S)→ H

)
=
∏
i∈[t]N

(
(Gi,Si)→ H

)
. Thus, Dyer and Greenhill’s theorem277

(Theorem 1.1) can be re-stated in the following convenient form.278

Theorem 2.1 (Dyer, Greenhill). Let H be a graph. If every connected compo-279

nent of H is a reflexive clique or an irreflexive biclique, then #HomC(H), #Hom(H),280

#LHomC(H) and #LHom(H) are all in FP. Otherwise, #HomC(H), #Hom(H),281

#LHomC(H) and #LHom(H) are all #P-complete.282

Finally, we introduce some frequently used notation. For every positive integer n,283

we define [n] = {1, . . . , n}.284

A subgraph H ′ of H is said to be loop-hereditary with respect to H if for every285

v ∈ V (H ′) that is contained in a loop in E(H), v is also contained in a loop in E(H ′).286

We indicate that two graphs G1 and G2 are isomorphic by writing G1
∼= G2.287

Given sets S1 and S2, we write S1⊕S2 for the disjoint union of S1 and S2. Given288

graphs G1 and G2, we write G1⊕G2 for the graph (V (G1)⊕V (G2), E(G1)⊕E(G2)).289

If V is a set of vertices then we write G1 ⊕ V as shorthand for the graph G1 ⊕ (V, ∅).290

Similarly, if M is a matching (a set of disjoint edges) with vertex set V , then we write291

G1 ⊕M as shorthand for the graph G1 ⊕ (V,M).292

3. Counting Compactions. The section is divided into a short subsection on293

tractable cases and the main subsection on hardness results which also contains the294

proof of the final dichotomy result, Theorem 1.2.295

3.1. Tractability Results. The tractability result in Lemma 3.1 follows from296

the fact (see Theorem 3.8) that the number of compactions from G to H can be297

expressed as a linear combination of the number of homomorphisms from G to certain298

subgraphs J of H. While we need the full details of our particular linear expansion299

to derive our hardness results, the following simpler version suffices for tractability.300

Lemma 3.1. Let H be a graph such that every connected component is an irreflex-301

ive star or a reflexive clique of size at most 2. Then #Comp(H) and #LComp(H)302

are in FP.303

Proof. First we deal with the case that H is the empty graph. Suppose that H304

is the empty graph and let (G,S) be an instance of #LComp(H). If G is empty then305

N comp
(
(G,S)→ H

)
= 1. Otherwise, N comp

(
(G,S)→ H

)
= 0. Thus, if H is empty,306

then #LComp(H) is in FP. Obviously, this also implies that #Comp(H) is in FP.307
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Let H be the set of all non-empty graphs in which every connected component is308

an irreflexive star or a reflexive clique of size at most 2. We will show that for every309

H ∈ H, #LComp(H) is in FP. To do this, we need the following notation. Given310

a graph H, let m(H) denote the sum of |V (H)| and the number of non-loop edges311

of H. We will use induction on m(H).312

The base case is m(H) = 1. In this case, H has only one vertex w. If G is313

non-empty and has w ∈ Sv for every vertex v ∈ V (G) then N comp
(
(G,S)→ H

)
= 1.314

Otherwise, N comp
(
(G,S)→ H

)
is 0. So #LComp(H) is in FP.315

For the inductive step, consider some H ∈ H with m(H) > 1. Let (G,S) be316

an instance of #LComp(H). If G is empty then N comp
(
(G,S)→ H

)
= 0, so sup-317

pose that G is non-empty. For every subgraph H ′ of H let SH′ denote the set of318

lists SH′ = {Sv ∩ V (H ′) : v ∈ V (G)}. It is easy to see that N
(
(G,S)→ H

)
=319 ∑

H′ N
comp

(
(G,SH′)→ H ′

)
, where the sum is over all loop-hereditary subgraphs H ′320

of H. This observation is well known and is implicit, e.g, in the proof of a lemma of321

Borgs, Chayes, Kahn and Lovász [2, Lemma 4.2] (in a context without lists or loops).322

A subgraph H ′ of H is said to be a proper subgraph of H if either V (H ′) is323

a strict subset of V (H) or E(H ′) is a strict subset of E(H) (or both). For every324

graph H, let Sub<(H) denote the set of non-empty proper subgraphs of H that are325

loop-hereditary with respect to H. Note that if H ∈ H and H ′ ∈ Sub<(H) then326

H ′ ∈ H and m(H ′) < m(H). We can refine the summation as follows.327

N
(
(G,S)→ H

)
= N comp

(
(G,S)→ H

)
+

∑
H′∈Sub<(H)

N comp
(
(G,SH′)→ H ′

)
.

328

Since H ∈ H, every component of H is a reflexive clique or an irreflexive biclique,329

so Theorem 1.1 shows that the quantity N
(
(G,S)→ H

)
on the left-hand side can330

be computed in polynomial time. By induction, we see that every term of the form331

N comp
(
(G,SH′)→ H ′

)
can also be computed in polynomial time. Subtracting this332

from the left-hand side, we obtain N comp
(
(G,S)→ H

)
, as desired.333

Thus, we have proved that #LComp(H) is in FP. The problem #Comp(H) is a334

restriction of #LComp(H), so it is also in FP.335

3.2. Hardness Results. This is the key section of this work. In this section,336

we consider a graph H that has a connected component that is not an irreflexive star337

or a reflexive clique of size at most 2. The objective is to show that #Comp(H) and338

#LComp(H) are #P-hard (this is the hardness content of Theorem 1.2).339

We start with a brief proof sketch. The easy case is when H contains a component340

that is not a reflexive clique or an irreflexive biclique. In this case, Dyer and Greenhill’s341

Theorem 1.1 shows that #Hom(H) is #P-hard. We obtain the desired hardness342

by giving (in Theorem 3.4) a polynomial-time Turing reduction from #Hom(H) to343

#Comp(H). The result is finished off with a trivial reduction from #Comp(H) to344

#LComp(H). The proof of Theorem 3.4 is not difficult — given an input G to345

#Hom(H), we add isolated vertices and edges to G and recover the desired quantity346

N
(
G→ H

)
using an oracle for #Comp(H) and polynomial interpolation. There are347

small technical issues related to size-1 components in H, and these are dealt with in348

Lemma 3.2.349

The more interesting case is when every component of H is a reflexive clique or350

an irreflexive biclique, but some component is either a reflexive clique of size at least 3351

or an irreflexive biclique that is not a star. The first milestone is Lemma 3.14, which352

shows #P-hardness in the special case where H is connected. We prove Lemma 3.14353
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in a slightly stronger setting where the input graph G is connected. This allows us,354

in the remainder of the section, to generalise the connected case to the case in which355

H is not connected.356

The main difficulty, then, is Lemma 3.14. The goal is to show that #Comp(H)357

is #P-hard when H is a reflexive clique of size at least 3 or an irreflexive biclique358

that is not a star. Our main method for solving this problem is a technique (Theo-359

rem 3.8) that lets us compute the number of compactions from a connected graph360

G to a connected graph H using a weighted sum of homomorphism counts, say361

N
(
G→ J1

)
, . . . , N

(
G→ Jk

)
. An important feature is that some of the weights might362

be negative.363

Our basic approach will be to find a constituent Ji such that #HomC(Ji) is #P-364

hard and to reduce #HomC(Ji) to the problem of computing the weighted sum. Of365

course, if computing N
(
G→ J1

)
is #P-hard and computing N

(
G→ J2

)
is #P-hard,366

it does not follow that computing a weighted sum of these is #P-hard.367

In order to solve this problem, in Lemmas 3.10 and 3.11 we use an argument368

similar to that of Lovász [25, Theorem 3.6] to prove the existence of input instances369

that help us to distinguish between the problems #HomC(J1), . . . ,#HomC(Jk). The-370

orem 3.12 then provides the desired reduction from a chosen #HomC(Ji) to the prob-371

lem of computing the weighted sum. Theorem 3.12 is proved by a more complicated372

interpolation construction, in which we use the instances from Lemma 3.11 to modify373

the input.374

Having sketched the proof at a high level, we are now ready to begin. We start375

by working towards the proof of Theorem 3.4. The first step is to show that deleting376

size-1 components from H does not add any complexity to #Comp(H).377

Lemma 3.2. Let H be a graph that has exactly q size-1 components. Let H ′ be the378

graph constructed from H by removing all size-1 components. Then #Comp(H ′) ≤379

#Comp(H).380

Proof. Let W = {w1, . . . , wq} be the vertices of H that are contained in size-1381

components. We can assume q ≥ 1, otherwise H ′ = H. Let G′ be an input to382

#Comp(H ′) and note that G′ might contain isolated vertices. For any non-negative383

integer t, let Vt be a set of t isolated vertices, distinct from the vertices of G′, and384

let Gt = G′ ⊕ Vt. For all i ∈ {0, . . . , t}, we define Si(G′) to be the number of385

homomorphisms σ from G′ to H with the following properties:386

1. σ uses all non-loop edges of H ′.387

2. |σ(V (G′)) ∩ {w1, . . . , wq}| = i,388

where σ(V (G′)) is the image of V (G′) under the map σ. We define N i(Vt) as the389

number of homomorphisms τ from Vt to H such that {w1, . . . , wi} ⊆ τ(V (Vt)). Intu-390

itively, N i(Vt) is the number of homomorphisms from Vt to H that use at least a set of391

i arbitrary but fixed vertices of H, as the particular choice of vertices {w1, . . . , wi} is392

not important when counting homomorphisms from a set of isolated vertices. For any393

compaction γ : V (Gt)→ V (H), the restriction γ|V (G) has to use all non-loop edges in394

H ′. As H ′ does not have size-1 components, this implies that all vertices other than395

w1, . . . , wq are used by γ|V (G). Say, additionally, that γ uses q − i vertices from W ,396

for some i ∈ {0, . . . , q}. Then, γ|Vt has to use the remaining i vertices. Thus, for each397

fixed t ≥ 0, we obtain a linear equation:398

N comp
(
Gt → H

)︸ ︷︷ ︸
bt

=

q∑
i=0

Sq−i(G′)︸ ︷︷ ︸
xi

N i(Vt)︸ ︷︷ ︸
at,i

.399
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By choosing q+1 different values for the parameter t we obtain a system of linear400

equations. Here, we choose t = 0, . . . , q. Then the system is of the form b = Ax for401

b =

b0...
bq

 A =

a0,0 . . . a0,q

...
. . .

...
aq,0 . . . aq,q

 and x =

x0

...
xq

.402

Note, that the vector b can be computed using q+1 #Comp(H) oracle calls. Further,403

xq = S0(G′) = N comp
(
G′ → H ′

)
.404

Thus, determining x is sufficient for computing the sought-for N comp
(
G′ → H ′

)
. It405

remains to show that the matrix A is of full rank and is therefore invertible.406

If t < i, we observe that at,i = 0 as we cannot use at least i vertices of H when we407

have fewer than i vertices in the domain. For the diagonal elements with t ∈ {0, . . . , q}408

we have that at,t = N t(Vt) = t! (note that 0! = 1). Hence,409

A =


0! 0 · · · 0

∗ 1!
. . .

...
...

. . .
. . . 0

∗ · · · ∗ q!

410

411

is a triangular matrix with non-zero diagonal entries, which completes the proof.412

Lemma 3.3. Let H be a graph without any size-1 components. Then #Hom(H) ≤413

#Comp(H).414

Proof. The proof is by interpolation and is somewhat similar to the proof of415

Lemma 3.2. Let G be an input to #Hom(H). We design a graph Gt = G⊕ It as an416

input to the problem #Comp(H) by adding a set It of t disjoint new edges to the417

graph G.418

We introduce some notation. Let E0(H) be the set of non-loop edges of H and419

let r =
∣∣E0(H)

∣∣. Let Sk(G) be the number of homomorphisms σ from G to H that420

use exactly k of the non-loop edges of H (additionally, σ might use any number of421

loops). Let {e1, . . . , ek} be a set of k arbitrary but fixed non-loop edges from H. We422

define Nk(It) as the number of homomorphisms τ from It to H such that {e1, . . . , ek}423

are amongst the edges used by τ . Note that the particular choice of edges {e1, . . . , ek}424

is not important when counting homomorphisms from an independent set of edges to425

H—Nk(It) only depends on the numbers k and t.426

We observe that, for each compaction γ : V (Gt) → V (H), the restriction γ|V (G)427

uses some set F ⊆ E0(H) of non-loop edges and does not use any other non-loop428

edges of H. Suppose that F has cardinality |F | = r−k for some k ∈ {0, . . . , r}. Then429

γ|V (It) uses at least the remaining k fixed non-loop edges of H. As H does not have430

any size-1 components, this ensures at the same time that γ is surjective.431

Therefore, we obtain the following linear equation for a fixed t ≥ 0:432

N comp
(
Gt → H

)︸ ︷︷ ︸
bt

=

r∑
k=0

Sr−k(G)︸ ︷︷ ︸
xk

Nk(It)︸ ︷︷ ︸
at,k

.433

As in the proof of Lemma 3.2, we choose t = 0, . . . , r to obtain a system of linear434
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equations with435

b =

b0...
br

 A =

a0,0 . . . a0,r

...
. . .

...
ar,0 . . . ar,r

 and x =

x0

...
xr

.436

We can compute b using a #Comp(H) oracle. Further,437

r∑
k=0

xk =

r∑
k=0

Sr−k(G) =

r∑
k=0

Sk(G) = N
(
G→ H

)
.438

Thus, determining the vector x is sufficient for computing the sought-for number of439

homomorphisms N
(
G→ H

)
.440

Finally, we show that A is invertible. If t < k, we observe that at,k = Nk(It) = 0,441

as clearly it is impossible to use more than t edges of H when there are only t442

edges in It. Further, for the diagonal elements it holds that for t ∈ [r] we have443

at,t = N t(It) = 2tt! as there are t! possibilities for assigning the edges in It to the444

fixed set of t edges of H and there are 2t vertex mappings for each such assignment445

of edges, also N0(I0) = 1. Hence,446

A =


1 0 · · · 0

∗ 211!
. . .

...
...

. . .
. . . 0

∗ · · · ∗ 2rr!

447

448

is a triangular matrix with non-zero diagonal entries and is therefore invertible.449

Theorem 3.4. Let H be a graph. Then #Hom(H) ≤ #Comp(H).450

Proof. Let H ′ be the graph constructed from H by removing all size-1 compo-451

nents. By Lemma 3.2 we obtain #Comp(H ′) ≤ #Comp(H). Then Lemma 3.3 can be452

applied to the graph H ′ and thus we obtain #Hom(H ′) ≤ #Comp(H ′) ≤ #Comp(H).453

Finally, it follows from Theorem 1.1 that #Hom(H ′) ≡ #Hom(H), which gives454

#Hom(H) ≡ #Hom(H ′) ≤ #Comp(H ′) ≤ #Comp(H).455

Theorem 3.4 shows that hardness results from Theorem 1.1 will carry over from456

#Hom(H) to #Comp(H). We also know some cases where #Comp(H) is tractable457

from Lemma 3.1. The complexity of #Comp(H) is still unresolved if every com-458

ponent of H is a reflexive clique or an irreflexive biclique, but some reflexive clique459

has size greater than 2, or some irreflexive biclique is not a star. This is the case460

described at length at the beginning of the section. Recall that the first step is to461

specify a technique (Theorem 3.8) that lets us compute the number of compactions462

from a connected graph G to a connected graph H using a weighted sum of homo-463

morphism counts, say N
(
G→ J1

)
, . . . , N

(
G→ Jk

)
. Towards this end, we introduce464

some definitions which we will use repeatedly in the remainder of this section.465

Definition 3.5. A weighted graph set is a tuple (H, λ), where H is a set of non-466

empty, pairwise non-isomorphic, connected graphs and λ is a function λ : H → Z.467

Definition 3.6. Let H be a connected graph. By Sub(H) we denote the set of468

non-empty, loop-hereditary, connected subgraphs of H. Let SH be a set which contains469

exactly one representative of each isomorphism class of the graphs in Sub(H). Finally,470

for H ′ ∈ SH , we define µH(H ′) to be the number of graphs in Sub(H) that are471

isomorphic to H ′.472
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Note that for a connected graph H, we have µH(H) = 1.473

Definition 3.7. For each non-empty connected graph H, we define a weight func-474

tion λH which assigns an integer weight to each non-empty connected graph J .475

• If J is not isomorphic to any graph in SH , then λH(J) = 0.476

• If J ∼= H, then λH(J) = 1.477

• Finally, if J is isomorphic to some graph in SH but J � H, we define λH(J)478

inductively as follows.479

λH(J) = −
∑

H′∈SH
s.t. H′�H

µH(H ′)λH′(J).480

Note that λH is well-defined as all graphs H ′ ∈ SH with H ′ � H are smaller than H481

either in the sense of having fewer vertices or in the sense of having the same number482

of vertices but fewer edges.483

The following theorem is the key to our approach for computing the number of484

compactions from a connected graph G to a connected graph H using a weighted sum485

of homomorphism counts. In the Appendix, we give an illustrative example where486

we verify the theorem for the case H = K2,3 and we give the intuition behind the487

definitions. Here we go on to give the formal statement and proof.488

Theorem 3.8. Let H be a non-empty connected graph. Then for every non-
empty, irreflexive and connected graph G we have

Ncomp
(
G→ H

)
=
∑
J∈SH

λH(J)N
(
G→ J

)
.

Proof. Let H1, H2, . . . be the set of non-empty connected graphs sorted by some489

fixed ordering that ensures that if Hi is isomorphic to a subgraph of Hj , then i ≤ j.490

We verify the statement of the theorem by induction over the graph index with respect491

to this ordering. Let G be non-empty, irreflexive and connected.492

For the base case, H1 is K1, which is the graph with one vertex and no edges. In493

this case, SH1
= {K1} and λK1

(K1) = 1. Also494

N comp
(
G→ K1

)
= N

(
G→ K1

)
.495

So the theorem holds in this case.496

Now assume that the statement holds for all graphs up to index i and consider497

the graph Hi+1. For ease of notation we set H = Hi+1. We use the fact that every498

homomorphism from a connected graph G to Hi+1 is a compaction onto some non-499

empty, loop-hereditary and connected subgraph of Hi+1 and vice versa. Thus, it holds500

that501

N
(
G→ H

)
=

∑
H′∈SH

µH(H ′) ·N comp
(
G→ H ′

)
502

= N comp
(
G→ H

)
+

∑
H′∈SH

s.t. H′�H

µH(H ′) ·N comp
(
G→ H ′

)
.503

504
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Thus, we can rearrange and use the induction hypothesis to obtain505

N comp
(
G→ H

)
= N

(
G→ H

)
−

∑
H′∈SH

s.t. H′�H

µH(H ′) ·N comp
(
G→ H ′

)
506

= N
(
G→ H

)
−

∑
H′∈SH

s.t. H′�H

µH(H ′) ·
∑
J∈SH′

λH′(J)N
(
G→ J

)
.507

508

Then we change the order of summation and use that λH′(J) = 0 if J is not isomor-
phic to any graph in SH′ to collect all coefficients that belong to a particular term
N
(
G→ J

)
. We obtain509

N comp
(
G→ H

)
= N

(
G→ H

)
−

∑
J∈SH

s.t. J�H

( ∑
H′∈SH

s.t. H′�H

µH(H ′)λH′(J)
)
N
(
G→ J

)
510

=
∑
J∈SH

λH(J)N
(
G→ J

)
.511

512

We remark that Theorem 3.8 can be generalised to graphs H and G with multiple513

connected components by looking at all subgraphs of H, rather than just at the514

connected ones. However, within this work, the version for connected graphs suffices.515

Let (H, λ) be a weighted graph set. The following parameterised problem is not516

natural in its own right, but it helps us to analyse the complexity of #CompC(H):517

Name. #GraphSetHomC((H, λ)).518

Input. An irreflexive, connected graph G.519

Output. ZH,λ(G) =

{
0 if G is empty∑
J∈H λ(J)N

(
G→ J

)
otherwise.

520

Corollary 3.9. Let H be a non-empty connected graph. Then

#CompC(H) ≡ #GraphSetHomC((SH , λH)).

Proof. The corollary follows directly from Theorem 3.8.521

Corollary 3.9 gives us the desired connection between weighted graph sets and522

compactions. We will use this later in the proof of Lemma 3.14 to establish the #P-523

hardness of #CompC(H) when H is either a reflexive clique of size at least 3 or an524

irreflexive biclique that is not a star.525

Our next goal is to prove Theorem 3.12, which states that, for certain weighted526

graph sets (H, λ), determining ZH,λ(G) is at least as hard as computing N
(
G→ J

)
527

for some graph J from the set H with λ(J) 6= 0. To this end, we first introduce two528

lemmas that help us to distinguish between different graphs J in the interpolation529

that we will later use to prove Theorem 3.12.530

For the following lemmas, we introduce some new notation. For a graph G with531

distinguished vertex v ∈ V (G) and a graph H with distinguished vertex w ∈ V (H),532

the quantity N
(
(G, v)→ (H,w)

)
denotes the number of homomorphisms h from G to533

H with h(v) = w. Analogously, N inj
(
(G, v)→ (H,w)

)
denotes the number of injective534

homomorphisms h from G to H with h(v) = w. If there exists an isomorphism535

from G to H that maps v onto w, we write (G, v) ∼= (H,w), otherwise we write536
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(G, v) � (H,w). In the following lemma, we show that for two such target entities537

(H1, w1) and (H2, w2) that are non-isomorphic, there exists an input which separates538

them. To this end, we use an argument very similar to that presented in [16, Lemma539

3.6] and in the textbook by Hell and Nešetřil [24, Theorem 2.11], which goes back to540

the works of Lovász [25, Theorem 3.6].541

Lemma 3.10. Let H1 and H2 be connected graphs with distinguished vertices w1 ∈542

V (H1) and w2 ∈ V (H2) such that (H1, w1) � (H2, w2). Suppose that one of the543

following cases holds:544

Case 1. H1 and H2 are reflexive graphs.545

Case 2. H1 and H2 are irreflexive bipartite graphs, each of which contains at546

least one edge.547

Then548

i) There exists a connected irreflexive graph G with distinguished vertex v ∈549

V (G) for which N
(
(G, v)→ (H1, w1)

)
6= N

(
(G, v)→ (H2, w2)

)
.550

ii) In Case 2 we can assume that G contains at least one edge and is bipartite.551

Proof. In order to shorten the proof, we define some notation that depends on552

which case holds. In Case 1, we say that a tuple (G, v) consisting of a graph G with553

distinguished vertex v is relevant if G is connected and reflexive. In Case 2, we say554

that it is relevant if G is connected, irreflexive and bipartite and contains at least one555

edge. We start with a claim that applies in either case.556

Claim: There exists a relevant (G, v) such that

N
(
(G, v)→ (H1, w1)

)
6= N

(
(G, v)→ (H2, w2)

)
.

557

Proof of the claim: To prove the claim, assume for a contradiction that for all558

relevant (G, v) we have559

(3.1) N
(
(G, v)→ (H1, w1)

)
= N

(
(G, v)→ (H2, w2)

)
.560

The contradiction will follow from the following subclaim:561

Subclaim: For every relevant (G, v),

N inj
(
(G, v)→ (H1, w1)

)
= N inj

(
(G, v)→ (H2, w2)

)
.

Proof of the subclaim: The proof of the subclaim is by induction on the number562

of vertices of G. For the base case of the induction we treat the two cases separately.563

In Case 1, the base case of the induction is |V (G)| = 1. The relevant (G, v)564

is the graph consisting of the single (looped) vertex v. For every reflexive graph H565

and vertex w ∈ V (H) we have that N
(
(G, v)→ (H,w)

)
= N inj

(
(G, v)→ (H,w)

)
.566

Therefore, (3.1) implies that the subclaim is true for this (G, v).567

In Case 2, the base case of the induction is |V (G)| = 2. (There are no relevant568

(G, v) with |V (G)| < 2 since G has to contain an edge.) Consider a relevant (H,w).569

Since H is irreflexive and the two vertices of G are connected by an edge (so cannot be570

mapped by a homomorphism to the same vertex of H) we have N
(
(G, v)→ (H,w)

)
=571

N inj
(
(G, v)→ (H,w)

)
. Once again, (3.1) implies that the subclaim is true for this572

(G, v).573

For the inductive step, suppose that the subclaim holds for all relevant (G, v) in574

which G has up to k − 1 vertices. Consider a relevant (G, v) with |V (G)| = k. Let Θ575
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Fig. 1. Graph G and the corresponding quotient graph G|θ for θ = {{v2}, {v1, v3}, {v4, v5}}.

be the set of partitions of V (G) — that is, each θ ∈ Θ is a set {U1, . . . , Uj} for some576

integer j such that the elements of θ are non-empty and pairwise disjoint subsets of577

V (G) with
⋃j
i=1 Ui = V (G). For θ ∈ Θ with θ = {U1, . . . , Uj}, by G|θ we denote the578

corresponding quotient graph, i.e. let G|θ be the graph with vertices {U1, . . . , Uj} that579

has an edge {Ui, Ui′} if and only if there exist v ∈ Ui and u ∈ Ui′ with {v, u} ∈ E(G).580

Therefore, G|θ might have loops but no multi-edges, see Figure 1. Let vθ denote581

the vertex of G|θ which corresponds to the equivalence class of θ that contains the582

distinguished vertex v. Finally, let τ denote the partition of V (G) into singletons.583

Then for every relevant (H,w) it holds that584

N
(
(G, v)→ (H,w)

)
=
∑
θ∈Θ

N inj
(
(G|θ, vθ)→ (H,w)

)
585

= N inj
(
(G|τ , vτ )→ (H,w)

)
+

∑
θ∈Θ\{τ}

N inj
(
(G|θ, vθ)→ (H,w)

)
586

= N inj
(
(G, v)→ (H,w)

)
+

∑
θ∈Θ\{τ}

N inj
(
(G|θ, vθ)→ (H,w)

)
,(3.2)587

588

where the third equality follows as G|τ = G.589

Now we show that only relevant tuples (G|θ, vθ) actually contribute to the sum590

in (3.2). First, note that since G is connected, so is G|θ.591

In Case 1, every quotient graph G|θ is reflexive. Therefore, for every θ ∈ Θ \ {τ},592

the tuple (G|θ, vθ) is relevant.593

In Case 2, H is an irreflexive bipartite graph with at least one edge. Therefore,594

we have N inj
(
(G|θ, vθ)→ (H,w)

)
> 0 only if G|θ is an irreflexive bipartite graph and595

also, θ is a proper vertex-colouring of G, i.e. every part of θ is an independent set.596

For such a partition θ, G|θ has at least one edge if G does. We have now shown that597

only relevant tuples (G|θ, vθ) contribute to the sum in (3.2).598

Therefore, let Γ be the set of all partitions θ of V (G) such that (G|θ, vθ) is relevant.599

Then, we can rephrase (3.2) as follows.600

(3.3)

N
(
(G, v)→ (H,w)

)
= N inj

(
(G, v)→ (H,w)

)
+

∑
θ∈Γ\{τ}

N inj
(
(G|θ, vθ)→ (H,w)

)
.601

To prove the subclaim, we can set (H,w) in (3.3) to be (H1, w1). Similarly, we can602
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set it to be (H2, w2). Then, we can use the induction hypothesis, the subclaim, on all603

tuples (G|θ, vθ) in the sum as all these tuples are relevant and the partitions θ ∈ Γ\{τ}604

have strictly fewer than k parts. Applying (3.1), we obtain605

N inj
(
(G, v)→ (H1, w1)

)
= N inj

(
(G, v)→ (H2, w2)

)
,606

which completes the induction and the proof of the subclaim. (End of the proof of607

the subclaim.)608

We show next how to use the subclaim to derive a contradiction. In particular,609

in the subclaim we can set (G, v) to be either (H1, w1) or (H2, w2). This implies610

(H1, w1) ∼= (H2, w2), which gives the desired contradiction. Thus, we have shown611

contrary to (3.1) that there exists a relevant (G, v) with612

N
(
(G, v)→ (H1, w1)

)
6= N

(
(G, v)→ (H2, w2)

)
613

and therefore we have proved the claim. (End of the proof of the claim.)614

In Case 2, the claim is identical to the statement of the lemma. However, in Case615

1 a relevant tuple (G, v) contains a reflexive graph G, whereas for the statement of616

the lemma, G has to be irreflexive. This is easily fixed as we can set G0 to be the617

graph constructed from G by removing all loops. Using the fact that H1 and H2 are618

reflexive, we obtain for i = 1 and i = 2 that619

N
(
(G0, v)→ (Hi, wi)

)
= N

(
(G, v)→ (Hi, wi)

)
.620

Hence, the choice (G0, v) has all the desired properties.621

In the following lemma, we generalise the pairwise property from Lemma 3.10.622

The result and the proof are adapted versions of [15, Lemma 6]. For ease of notation623

let
(

[k]
2

)
denote the set of all pairs {i, j} with i, j ∈ [k] and i 6= j.624

Lemma 3.11. Let H1, . . . ,Hk be connected graphs with distinguished vertices625

w1, . . . , wk where wi ∈ V (Hi) for all i ∈ [k] and, for every pair {i, j} ∈
(

[k]
2

)
, we626

have (Hi, wi) � (Hj , wj). Suppose that one of the following cases holds:627

Case 1. ∀i ∈ [k], Hi is a reflexive graph.628

Case 2. ∀i ∈ [k], Hi is an irreflexive bipartite graph that contains at least one629

edge.630

Then631

i) There exists a connected irreflexive graph G with a distinguished vertex v ∈632

V (G) such that, for every {i, j} ∈
(

[k]
2

)
, it holds that N

(
(G, v)→ (Hi, wi)

)
6=633

N
(
(G, v)→ (Hj , wj)

)
.634

ii) In Case 2 we can assume that G contains at least one edge and is bipartite.635

Proof. Again, we use the notion of relevant tuples but slightly modify the defini-636

tion from the one given in the proof of Lemma 3.10. A tuple (G, v) is called relevant637

if G is a connected irreflexive graph and, in Case 2, if additionally G contains at least638

one edge and is bipartite. We show that there exists a relevant (G, v) such that for639

every {i, j} ∈
(

[k]
2

)
we have640

N
(
(G, v)→ (Hi, wi)

)
6= N

(
(G, v)→ (Hj , wj)

)
.641

We use induction on k, which is the number of graphs H1, . . . ,Hk. The base case642

for k = 2 is covered by Lemma 3.10. Now let us assume that the statement holds643

This manuscript is for review purposes only.



COUNTING SURJECTIVE HOMOMORPHISMS AND COMPACTIONS 17

for k − 1 and the inductive step is for k. By the inductive hypothesis there exists a644

relevant (G, v) such that without loss of generality (possibly by renaming the graphs645

H1, . . . ,Hk)646

N
(
(G, v)→ (H2, w2)

)
> · · · > N

(
(G, v)→ (Hk, wk)

)
.647

Let i∗ ∈ [k] \ {1} be an index with648

N
(
(G, v)→ (H1, w1)

)
= N

(
(G, v)→ (Hi∗ , wi∗)

)
.649

If no such index exists, we can simply choose the graph G which then fulfils the650

statement of the lemma. Using the base case, there exists a relevant (G′, v′) such that651

N
(
(G′, v′)→ (H1, w1)

)
> N

(
(G′, v′)→ (Hi∗ , wi∗)

)
,652

possibly renaming (H1, w1) and (Hi∗ , wi∗). Let i ∈ [k].653

First, we show that for all i ∈ [k] we have N
(
(G′, v′)→ (Hi, wi)

)
≥ 1. This is654

clearly true for Case 1, where wi has a loop. In this case, we can always map all655

vertices of G′ to the single vertex wi.656

In Case 2, as Hi is connected and contains at least one edge, there is some657

w ∈ V (Hi) such that {w,wi} ∈ E(Hi). Since (G′, v′) is relevant, G′ is connected and658

bipartite and has at least one edge. Let {A,B} be a partition of V (G′) such that659

v′ ∈ A and A and B are independent sets of G. There is a homomorphism h from G′660

to Hi with h(v′) = wi which maps all vertices in A to wi and all vertices in B to w.661

Therefore, in both cases we have shown that for all i ∈ [k] we have

N
(
(G′, v′)→ (Hi, wi)

)
≥ 1.

G′ v∗ = v′ = v

1

2

t

G

G

G

Fig. 2. (G∗, v∗).

For a yet to be determined number t we construct a graph G∗ from (G, v) and662

(G′, v′) by taking the graph G′ and t copies of G and identifying the vertex v′ with663

the t copies of v and call the resulting vertex v∗, cf. Figure 2. Note that from the664

fact that (G, v) and (G′, v′) are relevant, it is straightforward to show that (G∗, v∗) is665

relevant as well. Then, for any graph H and w ∈ V (H) it holds that666

N
(
(G∗, v∗)→ (H,w)

)
= N

(
(G′, v′)→ (H,w)

)
·N
(
(G, v)→ (H,w)

)t
.667
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The goal is to choose t sufficiently large to achieve668

N
(
(G∗, v∗)→ (H2, w2)

)
> . . . > N

(
(G∗, v∗)→ (Hi∗−1, wi∗−1)

)
669

> N
(
(G∗, v∗)→ (H1, w1)

)
670

> N
(
(G∗, v∗)→ (Hi∗ , wi∗)

)
671

> . . .672

> N
(
(G∗, v∗)→ (Hk, wk)

)
.673674

Accordingly, we define a permutation σ of the indices {1, . . . , k} that inserts index 1675

between position i∗ − 1 and i∗. The domain of σ corresponds to the new indices to676

which we assign the former indices. To avoid confusion, we give the function table in677

Table 1

Table 1
Function table of σ.

i 1 · · · i∗ − 2 i∗ − 1 i∗ · · · k

σ(i) 2 · · · i∗ − 1 1 i∗ · · · k

678

Formally,679

σ(i) =


i+ 1 if i ≤ i∗ − 2

1 if i = i∗ − 1

i otherwise.

680

Let M = N
(
(G, v)→ (H2, w2)

)
. As N

(
(G′, v′)→ (Hj , wj)

)
≥ 1 for all j ∈ [k], it is681

well-defined to set682

C = max
j∈[k]\{i∗−1}

N
(
(G′, v′)→ (Hσ(j+1), wσ(j+1))

)
N
(
(G′, v′)→ (Hσ(j), wσ(j))

)683

and t = dCMe. Let G∗ be as defined above. For ease of notation, for j ∈ [k − 1], we684

set685

ξ(j) =
N
(
(G∗, v∗)→ (Hσ(j), wσ(j)

)
N
(
(G∗, v∗)→ (Hσ(j+1), wσ(j+1)

) .686

We want to show ξ(j) > 1 for all j ∈ [k − 1] to complete the proof.687

For j = i∗ − 1 we obtain688

ξ(j) =
N
(
(G∗, v∗)→ (Hσ(i∗−1), wσ(i∗−1))

)
N
(
(G∗, v∗)→ (Hσ(i∗), wσ(i∗))

)689

=
N
(
(G∗, v∗)→ (H1, w1)

)
N
(
(G∗, v∗)→ (Hi∗ , wi∗)

)690

=
N
(
(G′, v′)→ (H1, w1)

)
N
(
(G′, v′)→ (Hi∗ , wi∗)

) > 1.691

692
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For j ∈ [k − 1] \ {i∗ − 1} we have693

ξ(j) =
N
(
(G∗, v∗)→ (Hσ(j), wσ(j))

)
N
(
(G∗, v∗)→ (Hσ(j+1), wσ(j+1))

)694

=
N
(
(G′, v′)→ (Hσ(j), wσ(j))

)
·N
(
(G, v)→ (Hσ(j), wσ(j))

)t
N
(
(G′, v′)→ (Hσ(j+1), wσ(j+1))

)
·N
(
(G, v)→ (Hσ(j+1), wσ(j+1))

)t695

≥ 1

C

(
N
(
(G, v)→ (Hσ(j), wσ(j))

)
N
(
(G, v)→ (Hσ(j+1), wσ(j+1))

))t.696

697

Since N
(
(G, v)→ (Hσ(j), wσ(j))

)
≥ 1 +N

(
(G, v)→ (Hσ(j+1), wσ(j+1))

)
for

j ∈ [k − 1] \ {i∗ − 1}

we have698

ξ(j) ≥ 1

C

(
1 +

1

N
(
(G, v)→ (Hσ(j+1), wσ(j+1))

))t.699

Using (1 + x)t ≥ 1 + tx > tx for t ≥ 1, x ≥ 0 we obtain700

ξ(j) >
t

C ·N
(
(G, v)→ (Hσ(j+1), wσ(j+1))

) .701

Finally, we use that for all j ∈ [k − 1] \ {i∗ − 1} we have702

N
(
(G, v)→ (H2, w2)

)
> N

(
(G, v)→ (Hσ(j+1), wσ(j+1))

)
703

and conclude704

ξ(j) >
t

C ·N
(
(G, v)→ (H2, w2)

) ≥ t

CM
≥ 1.705

Thus, we have shown ξ(j) > 1 as required, which completes the proof.706

In the following theorem, we use the separating instances that we obtain from707

Lemma 3.11 for interpolation-based reductions to #GraphSetHomC((H, λ)).708

Theorem 3.12. Let (H, λ) be a weighted graph set for which one of two cases709

holds:710

Case 1. All graphs in H are reflexive.711

Case 2. All graphs in H are irreflexive and bipartite.712

Then, for all H ∈ H with λ(H) 6= 0, #HomC(H) ≤ #GraphSetHomC((H, λ)).713

Proof. If, in Case 2, H contains a graph without edges, i.e. a single-vertex graph714

K1, let (H′, λ′) be a weighted graph set constructed from (H, λ) by removing the K1715

and its corresponding weight λ(K1). As #Hom(K1) is in FP we have716

#GraphSetHomC((H′, λ′)) ≤ #GraphSetHomC((H, λ))717

and718

#HomC(K1) ≤ #GraphSetHomC((H, λ)).719

Therefore, for the remainder of this proof, we assume that every graph inH contains at720

least one edge. Let H 6=0 = {H1, . . . ,Hk} be the set of graphs in H that are assigned721

non-zero weights by λ. Note that all graphs in H 6=0 are pairwise non-isomorphic,722
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connected and non-empty by definition of a weighted graph set. Thus, for every pair723

{i, j} ∈
(

[k]
2

)
and every wi ∈ V (Hi), wj ∈ V (Hj) we have (Hi, wi) � (Hj , wj).724

Now, for each graph Hi we collect the vertices which are in the same orbit of725

the automorphism group of Hi. Formally, for each i ∈ [k] and w ∈ V (Hi), let [w]726

be the orbit of w, i.e. the set of vertices w′ such that (Hi, w
′) ∼= (Hi, w). Let W be727

a set which contains exactly one representative from each such orbit. Further, for728

each i ∈ [k] set Wi = W ∩ V (Hi). Then, for each w,w′ ∈ Wi with w′ 6= w, we have729

(Hi, w) � (Hi, w
′).730

Let k′ =
∑k
i=1|Wi| and let (H ′1, w

′
1), . . . , (H ′k′ , w

′
k′) be an enumeration of the731

tuples {(Hi, wi) : i ∈ [k], wi ∈ Wi}. Then we can apply Lemma 3.11 to the input732

(H ′1, w
′
1), . . . , (H ′k′ , w

′
k′) to obtain a connected irreflexive graph J with distinguished733

u ∈ V (J) such that for every i, j ∈ [k] and for all wi ∈ Wi, wj ∈ Wj we have734

N
(
(J, u)→ (Hi, wi)

)
6= N

(
(J, u)→ (Hj , wj)

)
.735

Let i ∈ [k] and suppose that Hi ∈ H and λ(Hi) 6= 0. Let G be a non-empty736

graph which is an input to the problem #HomC(Hi). Let v be an arbitrary vertex of737

G. We use the same construction as in Figure 2 to design a graph Gt as input to the738

problem #GraphSetHomC((H, λ)) by taking t copies of J as well as the graph G and739

identifying the t copies of vertex u with the vertex v ∈ V (G). As both G and J are740

connected, Gt is as well. Then, using an oracle for #GraphSetHomC((H, λ)), we can741

compute ZH,λ(Gt) with742

ZH,λ(Gt) =
∑
H∈H

λ(H)N
(
Gt → H

)
743

=
∑
i∈[k]

λ(Hi)N
(
Gt → Hi

)
744

=
∑
i∈[k]

λ(Hi)
∑

w∈V (Hi)

N
(
(G, v)→ (Hi, w)

)
·N
(
(J, u)→ (Hi, w)

)t
(3.4)745

746

Now we collect the terms which belong to vertices in the same orbit. To this end,747

for w ∈ W and i ∈ [k] such that w ∈ V (Hi), we define λw = |[w]| · λ(Hi), Nw(G) =748

N
(
(G, v)→ (Hi, w)

)
and Nw(J) = N

(
(J, u)→ (Hi, w)

)
. Let W = {w0, . . . , wr}.749

Then, continuing from Equation (3.4):750

ZH,λ(Gt) =
∑
i∈[k]

λ(Hi)
∑

w∈V (Hi)

N
(
(G, v)→ (Hi, w)

)
·N
(
(J, u)→ (Hi, w)

)t
751

=
∑
w∈W

λwNw(G)Nw(J)t.752

753

By choosing r + 1 different values for the parameter t — here it is sufficient to754

choose t = 0, . . . , r — we obtain a system of linear equations b = Ax as follows:755

b =

ZH,λ(G0)
...

ZH,λ(Gr)

 A =

λw0Nw0(J)0 . . . λwrNwr (J)0

...
. . .

...
λw0

Nw0
(J)r . . . λwr

Nwr
(J)r

 x =

Nw0
(G)
...

Nwr
(G)

756

The vector b can be computed using r+1 #GraphSetHomC((H, λ)) oracle calls. Then757

N
(
G→ Hi

)
=
∑
w∈Wi

|[w]|Nw(G).758
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Thus, determining x is sufficient for computing the sought-for N
(
G→ Hi

)
. It remains759

to show that the matrix A ∈ Z(r+1)×(r+1) is of full rank and therefore invertible. This760

can be easily seen by dividing each column by its first entry. The division is well-761

defined as for t ∈ {0 . . . , r} we have λwt
6= 0 by definition of H 6=0. The columns of the762

resulting matrix are pairwise different by the choice of (J, u) and as a consequence763

the resulting matrix is a Vandermonde matrix and therefore invertible.764

Next, we give a short technical lemma which follows from Definition 3.7 and is used765

in Lemma 3.14 to show that Theorem 3.12 gives hardness results for #CompC(H).766

Lemma 3.13. Let H be a connected graph with at least one non-loop edge. Let767

H− be the graph obtained from H by deleting exactly one non-loop edge (but keeping768

all vertices). If H− is connected, then λH(H−) 6= 0.769

Proof. As H− is non-empty and connected, it is a valid input to λH and from the770

definition of λH (Definition 3.7) we obtain771

λH(H−) = −
∑

H′∈SH
s.t. H′�H

µH(H ′)λH′(H
−).772

773

Consider a graph H ′ ∈ SH with H ′ � H and H ′ � H−. H ′ is a non-empty loop-
hereditary connected subgraph of H and not isomorphic to H or H−. Note that
H− is not isomorphic to any graph in SH′ which gives λH′(H

−) = 0. Furthermore,
µH(H−) ≥ 1. Thus, we proceed774

λH(H−) = −µH(H−)λH−(H−)775

≤ −1.776777

We now have most of the tools at hand to classify the complexity of #Comp(H).778

Tractability results come from Lemma 3.1. IfH has a component that is not a reflexive779

clique or an irreflexive biclique then hardness will be lifted from Dyer and Greenhill’s780

Theorem 1.1 via Theorem 3.4. The most difficult case is when all components of H781

are reflexive cliques or irreflexive bicliques, but some component is not an irreflexive782

star or a reflexive clique of size at most 2.783

If H is connected then hardness will come from the following lemma, whose proof784

builds on the weighted graph set technology (Corollary 3.9) using Theorem 3.12 and785

Lemma 3.13 (using the stronger hardness result of Dyer and Greenhill, Theorem 2.1).786

The remainder of the section generalises the connected case to the case in which787

H is not connected.788

Lemma 3.14. If H is a reflexive clique of size at least 3 then #CompC(H) is #P-789

hard. If H is an irreflexive biclique that is not a star then #CompC(H) is #P-hard.790

Proof. Suppose that H is a reflexive clique of size at least 3 or an irreflexive791

biclique that is not a star. Recall the definitions of SH , λH and weighted graph sets792

(Definitions 3.5, 3.6 and 3.7). Note that (SH , λH) is a weighted graph set. Let H−793

be a graph obtained from H by deleting a non-loop edge. Note that H− is connected794

and it is not a reflexive clique or an irreflexive biclique. Thus Theorem 2.1 states that795

#HomC(H−) is #P-complete. We will complete the proof of the Lemma by showing796

#HomC(H−) ≤ #CompC(H).797

If H is a reflexive graph then the definition of SH ensures that all graphs in SH798

are reflexive. If H is an irreflexive bipartite graph, then the definition ensures that799
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all graphs in SH are irreflexive and bipartite. Since H− is connected and therefore800

λH(H−) 6= 0 by Lemma 3.13, we can apply Theorem 3.12 to the weighted graph set801

(SH , λH) with H− ∈ SH to obtain #HomC(H−) ≤ #GraphSetHomC((SH , λH)). By802

Corollary 3.9, #GraphSetHomC((SH , λH)) ≡ #CompC(H). The lemma follows.803

We use the following two definitions in Lemmas 3.17 and 3.18 and in the proof of804

Theorem 1.2.805

Definition 3.15. Let H be a graph. Suppose that every connected component806

that has more than j vertices is an irreflexive star. Suppose further that some con-807

nected component has j vertices and is not an irreflexive star. Let A(H) be the set808

of reflexive components of H with j vertices and let B(H) be the set of irreflexive809

non-star components of H with j vertices.810

Definition 3.16. Let L(H) denote the set of loops of a graph H. We define the811

graph H0 = (V (H), E(H) \ L(H)).812

Lemma 3.17. Let H be a graph in which every component is a reflexive clique or813

an irreflexive biclique. If J ∈ A(H) then #CompC(J) ≤ #Comp(H).814

Proof. Let H be a graph in which every component is a reflexive clique or an815

irreflexive biclique. Let A(H) = {A1, . . . , Ak}. It follows from the definition of A(H)816

that all elements of A(H) are reflexive cliques of some size j (the same j for all graphs817

in A(H)).818

If j ≤ 2, the statement of the lemma is trivially true, since Lemma 3.1 shows that819

#Comp(Ai) is in FP, so the restricted problem #CompC(Ai) is also in FP.820

Now assume j ≥ 3. Suppose without loss of generality that J = A1. Let G be a821

(connected) input to #CompC(J). For all i ∈ [k], let H \Ai be the graph constructed822

from H by deleting the connected component Ai. Using Definition 3.16 we define the823

(irreflexive) graph G′ = (H \ J ⊕G)0 as an input to #Comp(H). Intuitively, to form824

G′ from H we replace the connected component J with the graph G, then we delete825

all loops. We will prove the following claim.826

Claim: Let h : V (G′) → V (H) be a compaction from G′ to H. Then the827

restriction h|V (G) is a compaction from G onto an element of A(H).828

Proof of the claim: As h is a homomorphism, it maps each connected component of829

G′ to a connected component of H. As, furthermore, h is a compaction and G′ and H830

have the same number of connected components, it follows that there exist connected831

components C1, . . . , Ck of G′ such that for i ∈ [k], h|V (Ci) is a compaction from Ci832

onto Ai. To prove the claim, we show that G is an element of C = {C1, . . . , Ck}. In833

order to use all vertices of a graph in A(H), i.e. a reflexive size-j clique, a graph in834

C has to have at least j vertices itself. Therefore and by the construction of G′, an835

element of C can only be one of the following:836

• a clique with j vertices,837

• a biclique with j vertices,838

• a star with at least j vertices839

• or the copy of G.840

Since j ≥ 3, it is easy to see that there is no compaction from a star onto a clique841

with j vertices. In order to compact onto a reflexive clique of size j, an element of842

C also has to have at least j(j − 1)/2 edges. Thus, C does not contain any bicliques.843

Finally, there are only k − 1 connected components in G′ that are j-vertex cliques844

other than (possibly) G. Therefore, G has to be an element of C, which proves the845

claim. (End of the proof of the claim.)846
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Using the notation from Definition 3.16, the claim implies847

(3.5) N comp
(
G′ → H

)
=

k∑
i=1

N comp
(
G→ Ai

)
·N comp

(
(H \Ai)0 → H \Ai

)
.848

We can simplify the expression (3.5) using the fact that all elements of A(H) are849

reflexive size-j cliques:850

N comp
(
G′ → H

)
= k ·N comp

(
G→ J

)
·N comp

(
(H \ J)0 → H \ J

)
.851

As N comp
(
(H \ J)0 → H \ J

)
does not depend on G, it can be computed in constant852

time. Thus, using a single #Comp(H) oracle call we can compute N comp
(
G→ J

)
in853

polynomial time as required.854

Lemma 3.18. Let H be a graph in which every component is a reflexive clique or855

an irreflexive biclique. If A(H) is empty but B(H) is non-empty, then there exists a856

component J ∈ B(H) such that #CompC(J) ≤ #Comp(H).857

Proof. The proof is similar to that of Lemma 3.17. For completeness, we give the858

details. By Definition 3.15 the elements of B(H) are of the form Ka,b with a+ b = j859

for some fixed j. As stars are excluded from B(H), we have a, b ≥ 2. Let Bmax(H)860

denote the set of graphs with the maximum number of edges in B(H). The elements of861

Bmax(H) are pairwise isomorphic since the number of edges of a Ka,b is a ·b = a(j−a)862

and this function is strictly increasing for a ≤ j/2. For concreteness, fix a and b so863

that each J ∈ Bmax(H) is isomorphic to Ka,b. Let Bmax(H) = {B1, . . . , Bk}. Take864

J = B1.865

For all i ∈ [k], let H \ Bi be the graph constructed from H by deleting the866

connected component Bi. Let G′ = (H \J ⊕G)0 be an input to #Comp(H). We will867

prove the following claim.868

Claim: Let h : V (G′) → V (H) be a compaction from G′ to H. Then the869

restriction h|V (G) is a compaction from G onto an element of Bmax(H).870

Proof of the claim: As h is a homomorphism, it maps each connected component of871

G′ to a connected component of H. As, furthermore, h is a compaction and G′ and H872

have the same number of connected components, it follows that there exist connected873

components C1, . . . , Ck of G′ such that for i ∈ [k], h|V (Ci) is a compaction from Ci874

onto Bi. To prove the claim, we show that G is an element of C = {C1, . . . , Ck}. In875

order to compact onto a graph in Bmax(H), a graph in C has to have at least j vertices876

and a · b edges itself. By the construction of G′ and the fact that A(H) is empty, a877

connected component in G′ with at least j vertices and a · b edges can only be one of878

the following:879

• a biclique Ka,b,880

• a star with at least j vertices and at least a · b edges881

• or the copy of G.882

Since a, b ≥ 2, it is easy to see that there is no compaction from a star onto a Ka,b.883

Finally, there are only k − 1 connected components in G′ that are bicliques of the884

form Ka,b other than (possibly) G. Therefore, G has to be an element of C, which885

proves the claim. (End of the proof of the claim.)886

Using the notation from Definition 3.16, the claim implies887

(3.6) N comp
(
G′ → H

)
=

k∑
i=1

N comp
(
G→ Bi

)
·N comp

(
(H \Bi)0 → H \Bi

)
.888

This manuscript is for review purposes only.



24 JACOB FOCKE, LESLIE ANN GOLDBERG AND STANISLAV ŽIVNÝ

We can simplify the expression (3.6) using the fact that all elements of Bmax(H) are889

of the form Ka,b:890

N comp
(
G′ → H

)
= k ·N comp

(
G→ J

)
·N comp

(
(H \ J)0 → H \ J

)
.891

As N comp
(
(H \ J)0 → H \ J

)
does not depend on G, it can be computed in constant892

time. Thus, using a single #Comp(H) oracle call we can compute N comp
(
G→ J

)
in893

polynomial time as required.894

Finally, we prove the main theorem of this section, which we restate at this point.895

896

Theorem 1.2. Let H be a graph. If every connected component of H is an ir-897

reflexive star or a reflexive clique of size at most 2 then #Comp(H) and #LComp(H)898

are in FP. Otherwise, #Comp(H) and #LComp(H) are #P-complete.899

Proof. The membership of #Comp(H) in #P is straightforward. We distinguish900

between a number of cases depending on the graph H.901

Case 1: Suppose that every connected component of H is an irreflexive star or a902

reflexive clique of size at most 2. Then #LComp(H) is in FP by Lemma 3.1.903

Case 2: Suppose that H contains a component that is not a reflexive clique or an904

irreflexive biclique. Then the hardness of #Hom(H) (from Theorem 1.1) together with905

the reduction #Hom(H) ≤ #Comp(H) (from Theorem 3.4) implies that #Comp(H)906

is #P-hard. The hardness of #LComp(H) follows from the trivial reduction from907

#Comp(H) to #LComp(H).908

Case 3: Suppose that the components of H are reflexive cliques or irreflexive909

bicliques and that H contains at least one component that is not an irreflexive star910

or a reflexive clique of size at most 2. Every graph J ∈ A(H) ∪ B(H) is a reflexive911

clique of size at least 3 or an irreflexive biclique that is not a star. By Lemma 3.14,912

#CompC(J) is #P-complete. Finally, as A(H) ∪ B(H) is non-empty, we can use913

either Lemma 3.17 or Lemma 3.18 to obtain the existence of J ∈ A(H) ∪ B(H) with914

#CompC(J) ≤ #Comp(H). This implies that #Comp(H) is #P-hard. As in Case 2,915

the hardness of #LComp(H) follows from the trivial reduction from #Comp(H) to916

#LComp(H).917

4. Counting Surjective Homomorphisms. The proof of Theorem 1.3 is di-918

vided into two sections. The first of these deals with tractable cases and the second919

deals with hardness results and also contains the proof of the final theorem. Taken920

together, Theorem 1.3 and Dyer and Greenhill’s Theorem 1.1 show that the problem921

of counting surjective homomorphisms to a fixed graph H has the same complexity922

characterisation as the problem of counting all homomorphisms to H.923

Section 4.3 shows that this equivalence disappears in the uniform case, where H924

is part of the input, rather than being a fixed parameter of the problem. Specifically,925

Theorem 4.4 demonstrates a setting in which counting surjective homomorphisms is926

more difficult than counting all homomorphisms (assuming FP 6= #P).927

4.1. Tractability Results.928

Theorem 4.1. Let H be a graph. Then #LSHom(H) ≤ #LHom(H).929

Proof. Let H be fixed and |V (H)| = q. Let (G,S) be an input instance of930

#LSHom(H). Let (v1, . . . , vn) be the vertices of G in an arbitrary but fixed order.931

With respect to this ordering and with respect to a homomorphism from G to H, let us932

denote by vi1 the first vertex ofG which is assigned the first new vertex ofH (vi1 = v1),933
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vi2 the first vertex of G which is assigned the second new vertex of H and so on.934

Every surjective homomorphism from G to H contains exactly one subsequence v =935

(vi1 , . . . , viq ) and every homomorphism containing such a subsequence is surjective.936

The number of subsequences is bounded from above by
(
n
q

)
. Let σ : v→ V (H) be an937

assignment of the vertices of H to the vertices in v. There are q! such assignments.938

We call ψ = (v, σ) a configuration of G and Ψ(G) the set of all configurations for the939

given G. For every such configuration ψ we create a #LHom(H) instance (G,Sψ)940

with Sψ = {Sψvi ⊆ V (H) : i ∈ [n]} and941

Sψvi =

{
Svi ∩ {σ(vij )}, if i = ij for j ∈ [q]

Svi ∩ {σ(vi1), . . . , σ(vij )}, for ij < i < ij+1.
942

Intuitively, we use lists to “pin” the vertices in v to the vertices assigned by σ and to943

prohibit the remainder of the vertices of G from being mapped to new vertices of H.944

Then945

N sur
(
(G,S)→ H

)
=

∑
ψ∈Ψ(G)

N
(
(G,Sψ)→ H

)
946

We can compute N sur
(
(G,S)→ H

)
by making a #LHom(H) oracle call for every947

instance (G,Sψ) and adding the results. The number of oracle calls |Ψ(G)| is bounded948

from above by the polynomial q!
(
n
q

)
≤ nq.949

Corollary 4.2. Let H be a graph. If every connected component of H is a950

reflexive clique or an irreflexive biclique then #LSHom(H) is in FP.951

Proof. The statement follows directly from Theorem 4.1 using Dyer and Green-952

hill’s dichotomy from Theorem 1.1.953

4.2. Hardness Results. The following result and proof are very similar to that954

of Theorem 3.4 and Lemma 3.3, respectively. For completeness, we repeat the proof955

in detail.956

Theorem 4.3. Let H be a graph. Then #Hom(H) ≤ #SHom(H).957

Proof. Let |V (H)| = q and G be an input to #Hom(H). We design a graph958

Gt = G ⊕Wt as an input to the problem #SHom(H) by adding a set Wt of t new959

isolated vertices to the graph G.960

We introduce some additional notation. Let Sk(G) be the number of homomor-961

phisms σ from G to H that use exactly k of the vertices of H. Let {w1, . . . , wk} be a962

set of k arbitrary but fixed vertices from H. We define Nk(Wt) as the number of ho-963

momorphisms τ from Wt to H such that {w1, . . . , wk} are amongst the vertices used964

by τ . The particular choice of vertices {w1, . . . , wk} is not important when counting965

homomorphisms from a set of isolated vertices—Nk(Wt) only depends on the numbers966

k and t.967

We observe that, for each surjective homomorphism γ : V (Gt) → V (H), the re-968

striction γ|V (G) uses a subset V ′ ⊆ V (H) of vertices and does not use any vertices969

outside of V ′. Suppose that V ′ has cardinality |V ′| = q − k for some k ∈ {0, . . . , q}.970

Then γ|Wt
uses at least the remaining k fixed vertices of H.971

Therefore, we obtain the following linear equation for a fixed t ≥ 0:972

N sur
(
Gt → H

)︸ ︷︷ ︸
bt

=

q∑
k=0

Sq−k(G)︸ ︷︷ ︸
xk

Nk(Wt)︸ ︷︷ ︸
at,k

.973
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By choosing q+1 different values for the parameter t we obtain a system of linear974

equations. Here, we choose t = 0, . . . , q. Then the system is of the form b = Ax for975

b =

b0...
bq

 A =

a0,0 . . . a0,q

...
. . .

...
aq,0 . . . aq,q

 and x =

x0

...
xq

.976

Note, that the vector b can be computed using q+1 #SHom(H) oracle calls. Further,977

q∑
k=0

xk =

q∑
k=0

Sq−k(G) =

q∑
k=0

Sk(G) = N
(
G→ H

)
.978

Thus, determining x is sufficient for computing the sought-for N
(
G→ H

)
. It remains979

to show that the matrix A is of full rank and is therefore invertible.980

For t < k, clearly at,k = Nk(Wt) = 0. Further, for the diagonal elements we have981

at,t = N t(Wt) = t! for t ∈ {0, . . . , q}. Hence,982

A =


1 0 · · · 0

∗ 1!
. . .

...
...

. . .
. . . 0

∗ · · · ∗ q!

983

984

is a triangular matrix with non-zero diagonal entries, which completes the proof.985

Theorem 4.4. Let H be a graph. If every connected component of H is a reflex-986

ive clique or an irreflexive biclique, then #SHom(H) and #LSHom(H) are in FP.987

Otherwise, #SHom(H) and #LSHom(H) are #P-complete.988

Proof. The easiness result follows from Corollary 4.2 using the trivial reduction989

#SHom(H) ≤ #LSHom(H). The hardness result follows from the same trivial reduc-990

tion, along with Theorem 4.3 and the dichotomy for #Hom(H) from Theorem 1.1.991

4.3. The Uniform Case. We have seen from Theorems 1.1 and 1.3 that the992

problem of counting homomorphisms to a fixed graph H has the same complexity as993

the problem of counting surjective homomorphisms to H.994

Nevertheless, there are scenarios in which counting problems involving surjective995

homomorphisms are more difficult than those involving unrestricted homomorphisms.996

To illustrate this point, we consider the following uniform homomorphism-counting997

problems. Motivated by terminology from constraint satisfaction, we use “uniform”998

to indicate that the target graph H is part of the input, rather than being a fixed999

parameter.1000

Name. Uniform#HomToCliques.1001

Input. Irreflexive graphG whose components are cliques and reflexive graphH whose1002

components are cliques.1003

Output. N
(
G→ H

)
.1004

Name. Uniform#SHomToCliques.1005

Input. Irreflexive graphG whose components are cliques and reflexive graphH whose1006

components are cliques.1007

Output. N sur
(
G→ H

)
.1008
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The main result of this section is the following theorem.1009

Theorem 4.4. Uniform#HomToCliques is in FP but Uniform#SHomToCliques1010

is #P-complete.1011

In order to prove Theorem 4.4, we define a counting variant of the subset sum1012

problem. Given a set of integers A = {a1, . . . , an} and an integer b let S(A, b), be the1013

number of subsets A′ ⊆ A such that the sum of the elements in A′ is equal to b. The1014

counting problem is stated as follows.1015

Name. #SubsetSum.1016

Input. A set of positive integers A = {a1, . . . , an} and a positive integer b.1017

Output. S(A, b).1018

It is well known that #SubsetSum is #P-complete (see for instance the textbook1019

by Papadimitriou [29, Theorems 9.9, 9.10 and 18.1]). Thus, Theorem 4.4 follows1020

immediately from Lemmas 4.5 and 4.6.1021

Lemma 4.5. Uniform#HomToCliques is in FP.1022

Proof. Let G and H be an input instance of Uniform#HomToCliques. Let k be1023

the number of connected components of G and let a1, . . . , ak be the number of vertices1024

of these components, respectively. Let H have q connected components with b1, . . . , bq1025

vertices, respectively. Then, as all components are cliques and H is reflexive,1026

N
(
G→ H

)
=

k∏
i=1

q∑
j=1

baij .1027

Thus, it is easy to compute N
(
G→ H

)
.1028

Lemma 4.6. #SubsetSum ≤ Uniform#SHomToCliques.1029

Proof. Let A = {a1, . . . , ak}, b be an input instance of #SubsetSum. We define1030

N =
∑k
i=1 ai. Now, we design a polynomial time algorithm to determine S(A, b)1031

using an oracle for Uniform#SHomToCliques. If N < b, we have S(A, b) = 0. Now1032

assume N ≥ b. We create an input of Uniform#SHomToCliques as follows. We set1033

G to be an irreflexive graph with a connected component Gi for each i ∈ [k], where1034

Gi is a clique with ai vertices. Furthermore, we set H to be a reflexive graph with1035

two connected components H1 and H2. Let H1 be a clique with b vertices and let H21036

be a clique with N − b vertices. By
{
n
k

}
we denote the Stirling number of the second1037

kind, i.e. the number of partitions of a set of n elements into k non-empty subsets.1038

By definition, we have
{
n
k

}
= 0 if n < k.1039

Let h : V (G)→ V (H) be a homomorphism from G to H and let b′ be the number1040

of vertices of G that are mapped to the connected component H1. Note that h has1041

to map each connected component of G to a connected component of H. By the1042

construction of G, this implies that there exists a subset A′ ⊆ A such that the sum1043

of elements in A′ is equal to b′. Furthermore, as all connected components of G and1044

H are cliques and H is reflexive, the number of surjective homomorphisms from G1045

to H that assign exactly b′ fixed vertices to H1 is equal to the number of surjective1046

mappings from [b′] to [b], which is b!
{
b′

b

}
. Therefore, we can express N sur

(
G→ H

)
as1047

follows.1048

N sur
(
G→ H

)
=

N∑
b′=0

S(A, b′) · b!
{
b′

b

}
· (N − b)!

{
N − b′

N − b

}
,(4.1)1049

1050
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where the factor (N − b)!
{
N−b′
N−b

}
corresponds to the number surjective mappings from1051

the remaining N − b′ fixed vertices of G to the component H2. Finally, we use the1052

fact that the summands in (4.1) are non-zero only if b′ ≥ b and N − b′ ≥ N − b, which1053

implies b′ = b. Thus,1054

N sur
(
G→ H

)
= S(A, b) · b!

{
b

b

}
· (N − b)!

{
N − b
N − b

}
1055

= b!(N − b)! · S(A, b).10561057

5. Addendum: A Dichotomy for Approximately Counting Homomor-1058

phisms with Surjectivity Constraints. The following standard definitions are1059

taken from [28, Definitions 11.1, 11.2, Exercise 11.3]. A randomised algorithm gives1060

an (ε, δ)-approximation for the value V if the output X of the algorithm satisfies1061

Pr(|X − V | ≤ εV ) ≥ 1 − δ. A fully polynomial randomised approximation scheme1062

(FPRAS) for a problem V is a randomised algorithm which, given an input x and a1063

parameter ε ∈ (0, 1), outputs an (ε, 1/4)-approximation to V (x) in time that is poly-1064

nomial in 1/ε and the size of the input x. The concept of an approximation-preserving1065

reduction (AP-reduction) between counting problems was introduced by Dyer, Gold-1066

berg, Greenhill and Jerrum [9]. We will not need the detailed definition here, but1067

the definition has the property that if there is an AP-reduction from problem A to1068

problem B (written as A ≤AP B) then this reduction, together with an FPRAS for B,1069

yields an FPRAS for A. The problem #BIS, which is the problem of counting the1070

independent sets of a bipartite graph, comes up frequently in approximate counting1071

because it is complete with respect to AP-reductions in an intermediate complex-1072

ity class. It is not believed to have an FPRAS. Galanis, Goldberg and Jerrum [15]1073

gave a dichotomy for the problem of approximately counting homomorphisms in the1074

connected case, in terms of #BIS.1075

Theorem 5.1 ([15]). Let H be a connected graph. If H is a reflexive clique or1076

an irreflexive biclique, then there is an FPRAS for #Hom(H). Otherwise, #BIS ≤AP1077

#Hom(H).1078

In this addendum we give a similar dichotomy for approximately counting ho-1079

momorphisms with surjectivity constraints3. The tractability part of the following1080

theorem follows from Theorem 1.3, Corollary 1.7 and from Lemma 5.3 below. The1081

#BIS-hardness follows from Theorem 5.1 and from the reductions in Lemmas 5.4, 5.51082

and 5.6.1083

Theorem 5.2. Let H be a connected graph. If H is a reflexive clique or an ir-1084

reflexive biclique, then there is an FPRAS for #SHom(H), #Ret(H) and #Comp(H).1085

Otherwise, each of these problems is #BIS-hard under approximation-preserving re-1086

ductions.1087

Lemma 5.3. Let H be a reflexive clique or an irreflexive biclique. Then there is1088

an FPRAS for #Comp(H).1089

Proof. Let H be a reflexive clique or an irreflexive biclique with q vertices and p1090

edges. Our goal is give an FPRAS for #Comp(H).1091

First, we show that we can assume without loss of generality that every input G1092

to #Comp(H) has no isolated vertices. To see this, suppose instead that G is of1093

3When H is not connected, the complexity of approximate counting is open even for counting
homomorphisms. Hence we do not address this case here.
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the form G′ ⊕ I where I is the set of isolated vertices in G. As H is connected,1094

we have N comp
(
G→ H

)
= q|I|N comp

(
G′ → H

)
. Thus, an estimate of the number1095

of compactions from G′ to H will immediately enable us to approximately count1096

compactions from G to H.1097

From now on we restrict attention to inputs G which have no isolated vertices.1098

We use H(G,H) to denote the set of homomorphisms from G to H.1099

Case 1. H is a reflexive clique.1100

Let G be a size-n input to #Comp(H). Then N
(
G→ H

)
= qn. If there is1101

a compaction from G to H then there is a set U ⊆ V (G) with |U | ≤ 2p and a1102

compaction σ from G[U ] to H. Each assignment of the (at most n − 2p) vertices in1103

V (G) \U extends σ to a compaction from G to H. Thus, we have N comp
(
G→ H

)
≥1104

qn−2p = N
(
G→ H

)
/q2p. Using this lower bound, it is straightforward to apply the1105

naive Monte Carlo method (cf. [28, Theorem 11.1]). Hence Algorithm 5.1 with c = q2p1106

and H = H(G,H) gives an (ε, δ)-approximation for the number of compactions in H.1107

Algorithm 5.1 If the number of compactions in H is at least |H|/c then by [28, The-
orem 11.1] this algorithm gives an (ε, δ)-approximation for the number of compactions
in H.
Input: Irreflexive graph G, ε ∈ (0, 1) and δ ∈ (0, 1).
m =

⌈
c3 ln(2/δ)/ε2

⌉
.

Choose m samples independently and uniformly at random from H.
Let X1, . . . , Xm be the corresponding indicator random variables, where Xi takes
value 1
if the ith sample is a compaction and 0 otherwise.

Y =
|H|
m

m∑
i=1

Xi.

Output: Y

If there are no compactions in H then the algorithm answers 0. Otherwise,1108

the number of compactions in H is at least |H|/c, so the algorithm gives an (ε, δ)-1109

approximation.1110

When the algorithm is run with δ = 1/4, the running time is at most a polynomial1111

in n and 1/ε because m is at most a polynomial in 1/ε and the basic tasks (choosing1112

a sample from H, determining whether a sample is a compaction, and computing1113

|H| = qn) can all be done in poly(n) time. Thus, the algorithm gives an FPRAS for1114

#Comp(H).1115

Case 2. H is an irreflexive biclique.1116

Let the bipartition of V (H) be (LH , RH) where `H = |LH | ≤ |RH | = rH . We can1117

assume that `H ≥ 1, otherwise counting compactions to H is trivial.1118

Without loss generality, we can assume that inputs G to #Comp(H) are bipartite1119

(as well as having no isolated vertices). (If G is not bipartite, then N comp
(
G→ H

)
=1120

0.)1121

Suppose that G is an input to #Comp(H). Let C1, . . . , Cκ be the connected1122

components of G. For each i ∈ [κ], let (Li, Ri) be a fixed bipartition of Ci such1123

that 1 ≤ `i = |Li| ≤ |Ri| = ri. Then N
(
G→ H

)
=
∏κ
i=1

(
``iHrH

ri + `H
rirH

`i
)
≤1124

2
∏κ
i=1 `H

`irH
ri .1125

Let Ω be the set of functions ω : [κ] → {LH , RH}. Given ω ∈ Ω, we say that1126

a homomorphism from G to H obeys ω if, for each i ∈ [κ], the vertices of Li are1127
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assigned to vertices in ω(i).1128

Case 2a. κ ≥ p.1129

Let ω be the function in Ω that maps every i ∈ [κ] to LH . Since G has no isolated1130

vertices, each of C1, . . . , Cκ has at least 2 vertices, so there is a compaction from G1131

to H which obeys ω.1132

As in Case 1, there is a set U ⊆ V (G) of size at most 2p such that there is a1133

compaction σ from G[U ] to H that obeys the restriction of σ to U . Every assignment1134

of the vertices in V (G)\U that obeys ω yields an ω-obeying compaction from G to H.1135

Since rH ≥ `H , we obtain the lower bound1136

N comp
(
G→ H

)
≥ 1

(rH)
2p

κ∏
i=1

`H
`irH

ri ≥
N
(
G→ H

)
2(rH)

2p .1137

By the same arguments as in Case 1, Algorithm 5.1 with c = 2(rH)
2p

and H =1138

H(G,H) gives an (ε, δ)-approximation for the number of compactions in H. When1139

the algorithm is run with δ = 1/4, the running time is at most a polynomial in |V (G)|1140

and 1/ε, so it can be used in an FPRAS for inputs G with κ ≥ p.1141

Case 2b. κ < p.1142

For each ω ∈ Ω, let Hω(G,H) be the set of homomorphisms obeying ω, and let1143

Nω(G→ H) and N comp
ω (G→ H) be the number of homomorphisms and compactions1144

obeying ω, respectively. Given a compaction that obeys ω we obtain a lower bound1145

as before:1146

N comp
ω (G→ H) ≥ 1

(rH)
2p

κ∏
i=1

|ω(i)|`i(|V (H)| − |ω(i)|)ri =
Nω(G→ H)

(rH)
2p .

1147

Now Algorithm 5.1 with c = (rH)
2p

and H = Hω(G,H) gives an (ε, δ)-approximation1148

for the number of compactions in Hω(G,H). Taking δ = 1/(4 · 2κ) and summing over1149

the 2κ < 2p functions ω ∈ Ω, we obtain an (ε, 1/4)-approximation for the number of1150

compactions in H(G,H). The running time of each call to Algorithm 5.1 is at most1151

a polynomial in |V (G)| and 1/ε. Thus, putting the cases together, we get an FPRAS1152

for #Comp(H).1153

Lemma 5.4. Let H be a graph. Then #Hom(H) ≤AP #SHom(H).1154

Proof. Let q = |V (H)|. Given any positive integer t, let st,q denote the number1155

of surjective functions from [t] to [q]. Clearly, st,q ≥ qt − 2q(q − 1)
t
, since the range1156

of every non-surjective function from [t] to [q] is a proper subset of [q], and there are1157

most 2q of these. Also, the number of functions from [t] onto this subset is at most1158

(q − 1)
t
.1159

Given any n-vertex input G to the problem #Hom(H), let

t = dlog(5qn2q)/ log(q/(q − 1)e.

Clearly, t = O(n), and t can be computed in time poly(n). Note that1160

(5.1)

(
q

q − 1

)t
≥ 5qn2q ≥ 4qn2q + 2q.1161

Let Gt be the graph constructed from G by adding a set It of t isolated vertices that
are distinct from the vertices in V (G). We claim that

st,qN
(
G→ H

)
≤ N sur

(
Gt → H

)
≤ st,qN

(
G→ H

)
+ (qt − st,q)qn.
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To see this, note that any homomorphism from G to H, together with a surjective1162

homomorphism from the It to V (H), constitutes a surjective homomorphism from Gt1163

to H. Any other surjective homomorphism from Gt to H consists of a non-surjective1164

homomorphism from It to H (and there are qt − st,q of these) together with some1165

homomorphism from G to H (and there are at most qn of these). Dividing through1166

by st,q and applying our lower bound for st,q and then inequality (5.1), we have1167

N
(
G→ H

)
≤
N sur

(
Gt → H

)
st,q

≤ N
(
G→ H

)
+

(
qt − st,q
st,q

)
qn1168

≤ N
(
G→ H

)
+

2q(q − 1)
t
qn

qt − 2q(q − 1)
t1169

= N
(
G→ H

)
+

qn

qt

2q(q−1)t
− 1

1170

≤ N
(
G→ H

)
+

1

4
.(5.2)1171

1172

Given Equation (5.2), the proof of [9, Theorem 3] shows that, in order to approximate1173

N
(
G→ H

)
with accuracy ε, we need only use the oracle to obtain an approximation1174

Ŝ for N sur
(
Gt → H

)
with accuracy ε/21. We can then return the floor of Ŝ/st,q. The1175

only remaining issue is how to compute st,q. However, it is easy to do this in time1176

poly(t) = poly(n) since st,q =
{
t
q

}
q! =

∑q
j=0 (−1)

q−j(q
j

)
jt, where

{
t
q

}
is a Stirling1177

number of the second kind.1178

Lemma 5.5. Let H be a connected graph. Then #Hom(H) ≤AP #Comp(H).1179

Proof. If not explicitly defined otherwise, we use the same notation and obser-1180

vations as in the proof of Lemma 5.4. In addition let p be the number of non-loop1181

edges in H and ct,p = 2tst,p. If G is an input to #Hom(H) of size n, Gt is the graph1182

constructed from G by adding a set of t isolated edges distinct from the edges in G.1183

If H is a graph of size 1 the statement of the lemma clearly holds. If otherwise H is a1184

connected graph of size at least 2, every homomorphism that uses all non-loop edges1185

of H is also surjective and therefore a compaction. Thus, we obtain1186

ct,pN
(
G→ H

)
≤ N comp

(
Gt → H

)
≤ ct,pN

(
G→ H

)
+ (2tpt − ct,p)qn.1187

Dividing through by ct,p gives1188

N
(
G→ H

)
≤
N comp

(
Gt → H

)
ct,p

≤ N
(
G→ H

)
+

(
pt − st,p
st,p

)
qn.1189

If we choose t = dlog(5qn2p)/ log(p/(p− 1)e the remainder of this proof is analogous1190

to that of Lemma 5.4.1191

Lemma 5.6. Let H be a graph. Then #Hom(H) ≤AP #Ret(H).1192

Proof. Let q = |V (H)| and G be an input to #Hom(H). Further, let H ′ be a1193

copy of H and (u1, . . . , uq) be the vertices of H ′ ordered in such a way that they1194

induce a copy of H. Then N
(
G→ H

)
= N ret

(
(G⊕H ′;u1, . . . , uq)→ H

)
.1195
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Appendix A. Decomposition of Ncomp
(
G→ K2,3

)
. In this appendix, we1196

work through a long example to illustrate some of the definitions and ideas from1197

Section 3.2. We do this by verifying the statement of Theorem 3.8 for the special case1198

where H = K2,3.1199

Of course, the theorem is already proved in the earlier sections of this paper, but1200

we work through this example in order to help the reader gain familiarity with the1201

definitions. For H = K2,3 and a non-empty, irreflexive and connected graph G we1202

want to prove1203

(A.1) N comp
(
G→ H

)
=
∑
J∈SH

λH(J)N
(
G→ J

)
.1204

First, we set SH = {H1, . . . ,H10}, cf. Figure 3, as defined in Definition 3.6.1205

H ∼= H1 H2 H3 H4 H5

H6 H7 H8 H9 H10

Fig. 3. SH = {H1, . . . , H10}

Next, we recall the definitions of µH and λH from Definitions 3.6 and 3.7. For1206

J ∈ SH , µH(J) is the number of non-empty connected subgraphs of H that are1207

isomorphic to J . Also, λH(J) = 1 if J ∼= H. If otherwise J is isomorphic to some1208

graph in SH but J � H, we have1209

(A.2) λH(J) = −
∑

H′∈SH
s.t. H′�H

µH(H ′)λH′(J).1210

In order to verify (A.1), we have to determine λH(J) for all J ∈ SH . As λH(J) is1211

defined inductively by (A.2), we first determine λH′(J) for all H ′ ∈ SH with H ′ � H.1212

We start with the graph H10 and determine λH10
. Clearly, H10 has only one1213

connected subgraph and we can choose SH10
= {H10}. Recall that λH10

(J) = 0 for1214

all graphs J that are not isomorphic to any graph in SH10
, i.e. not isomorphic to H101215

in this case. By definition we have1216

µH10
(H10) = 1 as well as λH10

(H10) = 1, see Table 2.1217
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This conforms with our intuition as for the single vertex graph H10, it clearly holds1218

that1219

(A.3) N comp
(
G→ H10

)
= N

(
G→ H10

)
.1220

Thus, we have now verified (A.1) for H = H10.1221

Using this information, we consider the graph H9 next and determine µH9
and1222

λH9
for SH9

= {H9, H10}, see Table 3. H9 contains two connected subgraphs that are1223

isomorphic to H10, therefore µH9
(H10) = 2. Then, from (A.2) we obtain1224

λH9(H10) = −
∑

H′∈{H10}

µH9(H ′)λH′(H10) = −2.1225

Plugging this into (A.1) for H = H9, we get1226

N comp
(
G→ H9

)
=

∑
J∈SH9

λH9
(J)N

(
G→ J

)
1227

= N
(
G→ H9

)
− 2N

(
G→ H10

)
.(A.4)12281229

Now let us verify this expression. Recall that G is connected. The central idea1230

behind our approach is that every homomorphism from G to H9 is a compaction onto1231

some connected subgraph H ′ of H9. Furthermore, µH9
(H ′) tells us how many such1232

subgraphs there are that are isomorphic to H ′. Thus,1233

N
(
G→ H9

)
= µH9

(H9) ·N comp
(
G→ H9

)
+ µH9

(H10) ·N comp
(
G→ H10

)
1234

= N comp
(
G→ H9

)
+ 2N comp

(
G→ H10

)
.12351236

Rearranging and using the fact that N comp
(
G→ H10

)
= N

(
G→ H10

)
from (A.3):1237

N comp
(
G→ H9

)
= N

(
G→ H9

)
− 2N comp

(
G→ H10

)
1238

= N
(
G→ H9

)
− 2N

(
G→ H10

)
.12391240

Thus, we have now proved (A.4) which in turn proves (A.1) for H = H9.1241

Using (A.3) and (A.4) we can now go on to find (see Table 4) that1242

N comp
(
G→ H8

)
= N

(
G→ H8

)
− 2N

(
G→ H9

)
+N

(
G→ H10

)
1243

and so on.1244

This gives the intuition behind the formal definitions of µH and λH . For com-1245

pleteness, we give the values for all graphs H1 through H10 in Tables 2 through 11.1246

From Table 11 we can conclude that for H = K2,3 the statement of Theorem 3.8 gives1247

N comp
(
G→ K2,3

)
= N

(
G→ K2,3

)
− 6N

(
G→ H2

)
+ 6N

(
G→ H3

)
1248

+ 3N
(
G→ H4

)
+ 6N

(
G→ H5

)
− 2N

(
G→ H6

)
1249

− 12N
(
G→ H7

)
+ 3N

(
G→ H8

)
.12501251
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Table 2
Decomposition of H10

H ′ H10

µH10
(H ′) 1

λH10
(H ′) 1

Table 3
Decomposition of H9

H ′ H9 H10

µH9
(H ′) 1 2

λH9(H ′) 1 −2

Table 4
Decomposition of H8

H ′ H8 H9 H10

µH8
(H ′) 1 2 3

λH8(H ′) 1 −2 1

Table 5
Decomposition of H7

H ′ H7 H8 H9 H10

µH7
(H ′) 1 2 3 4

λH7
(H ′) 1 −2 1 0
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Table 6
Decomposition of H6

H ′ H6 H8 H9 H10

µH6
(H ′) 1 3 3 4

λH6
(H ′) 1 −3 3 −1

Table 7
Decomposition of H5

H ′ H5 H6 H7 H8 H9

µH5(H ′) 1 1 2 4 4

λH5
(H ′) 1 −1 −2 3 −1

H ′ H10

µH5
(H ′) 5

λH5
(H ′) 0

Table 8
Decomposition of H4

H ′ H4 H7 H8 H9 H10

µH4
(H ′) 1 4 4 4 4

λH4
(H ′) 1 −4 4 0 0

This manuscript is for review purposes only.



36 JACOB FOCKE, LESLIE ANN GOLDBERG AND STANISLAV ŽIVNÝ

Table 9
Decomposition of H3

H ′ H3 H7 H8 H9 H10

µH3(H ′) 1 2 3 4 5

λH3
(H ′) 1 −2 1 0 0

Table 10
Decomposition of H2

H ′ H2 H3 H4 H5 H6

µH2(H ′) 1 2 1 2 1

λH2
(H ′) 1 −2 −1 −2 1

H ′ H7 H8 H9 H10

µH2
(H ′) 6 6 5 5

λH2(H ′) 6 −3 0 0
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Table 11
Decomposition of H1 = K2,3

H ′ H1 H2 H3 H4 H5

µH1
(H ′) 1 6 6 3 6

λH1
(H ′) 1 −6 6 3 6

H ′ H6 H7 H8 H9 H10

µH1
(H ′) 2 12 9 6 5

λH1
(H ′) −2 −12 3 0 0
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[22] P. Hell and J. Nešetřil, On the complexity of H-coloring, J. Combin. Theory Ser. B, 481312

This manuscript is for review purposes only.

https://doi.org/10.1016/j.dam.2012.03.029
https://doi.org/10.1016/j.dam.2012.03.029
https://doi.org/10.1016/j.dam.2012.03.029
https://doi.org/10.1002/rsa.20414
https://doi.org/10.1002/rsa.20414
https://doi.org/10.1002/rsa.20414
https://doi.org/10.1007/3-540-33700-8_18
https://doi.org/10.1006/jctb.1999.1899
https://arxiv.org/abs/1710.00234
https://doi.org/10.1145/3055399.3055502
https://doi.org/10.1145/3055399.3055502
https://doi.org/10.1145/3055399.3055502
https://arxiv.org/abs/1710.01712
https://doi.org/10.1007/s00453-003-1073-y
https://doi.org/10.1007/s00453-003-1073-y
https://doi.org/10.1007/s00453-003-1073-y
https://doi.org/10.1002/1098-2418(200010/12)17:3/4<260::AID-RSA5>3.0.CO;2-W
https://doi.org/10.1002/1098-2418(200010/12)17:3/4<260::AID-RSA5>3.0.CO;2-W
https://doi.org/10.1002/1098-2418(200010/12)17:3/4<260::AID-RSA5>3.0.CO;2-W
https://doi.org/10.1006/jctb.1997.1812
https://doi.org/10.1007/s004939970003
https://doi.org/10.1137/080738866
https://doi.org/10.1137/1.9781611975031.116
https://doi.org/10.1137/15M1020551
https://doi.org/10.1137/15M1020551
https://doi.org/10.1137/15M1020551
https://doi.org/10.1145/2898441
https://doi.org/10.1145/2898441
https://doi.org/10.1145/2898441
https://doi.org/10.3233/COM-180084
https://doi.org/10.3233/COM-180084
https://doi.org/10.3233/COM-180084
https://doi.org/10.1007/s00236-012-0164-0
https://doi.org/10.1007/s00236-012-0164-0
https://doi.org/10.1007/s00236-012-0164-0
https://doi.org/10.1016/j.tcs.2012.06.039
https://doi.org/10.1016/j.tcs.2012.06.039
https://doi.org/10.1016/j.tcs.2012.06.039
https://doi.org/10.1111/j.1749-6632.1979.tb32801.x
https://doi.org/10.1111/j.1749-6632.1979.tb32801.x
https://doi.org/10.1111/j.1749-6632.1979.tb32801.x
https://doi.org/10.1007/BF01300959


COUNTING SURJECTIVE HOMOMORPHISMS AND COMPACTIONS 39

(1990), pp. 92–110, https://doi.org/10.1016/0095-8956(90)90132-J.1313
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