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Abstract—We study polynomial-time approximation schemes
(PTASes) for constraint satisfaction problems (CSPs) such as
Maximum Independent Set or Minimum Vertex Cover on sparse
graph classes.

Baker’s approach gives a PTAS on planar graphs, excluded-
minor classes, and beyond. For Max-CSPs, and even more
generally, maximisation finite-valued CSPs (where constraints
are arbitrary non-negative functions), Romero, Wrochna, and
Živný [SODA’21] showed that the Sherali-Adams LP relaxation
gives a simple PTAS for all fractionally-treewidth-fragile classes,
which is the most general “sparsity” condition for which a PTAS
is known. We extend these results to general-valued CSPs, which
include “crisp” (or “strict”) constraints that have to be satisfied
by every feasible assignment. The only condition on the crisp
constraints is that their domain contains an element which is at
least as feasible as all the others (but possibly less valuable).

For minimisation general-valued CSPs with crisp constraints,
we present a PTAS for all Baker graph classes — a definition by
Dvořák [SODA’20] which encompasses all classes where Baker’s
technique is known to work, except for fractionally-treewidth-
fragile classes. While this is standard for problems satisfying a
certain monotonicity condition on crisp constraints, we show this
can be relaxed to diagonalisability — a property of relational
structures connected to logics, statistical physics, and random
CSPs.

I. INTRODUCTION

Min-Ones and Max-Ones, studied by Khanna and Motwani
(under the names of TMIN and TMAX, respectively) [1]
and by Khanna, Sudan, Trevisan, and Williamson [2], are
Boolean CSPs in which one seeks a feasible solution (a 0–1
assignment satisfying all constraints) minimising/maximising
the number of variables assigned the label 1. Classical ex-
amples are the Minimum Vertex Cover and the Maximum
Independent Set problem, respectively. A natural generalisa-
tion to larger alphabets is the problem in which one seeks
a solution to a CSP instance while minimising/maximising a
sum of unary functions. With injective unary functions, such
problems have been studied under the name of Strict-CSP by
Kumar, Manokaran, Tulsiani, and Vishnoi [3], and Min/Max-
Solution by Jonsson, Kuivinen, and Nordh [4]. With arbitrary
unary functions, such problems have been studied under the
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name of Min-Cost-Hom by Gutin, Hell, Rafiey, and Yeo [5],
Takhanov [6], and others [7], [8], [9]. In this paper we consider
the still more general setting of general-valued CSPs, where
constraints are functions which give values to every possible
assignment on a tuple of variables; we allow∞ or −∞ values
to express crisp (also known as strict) constraints, which have
to be satisfied by every feasible (finite-valued) assignment.
While a lot of research is devoted to exact algorithms or
optimal approximation ratios in APX-hard cases (see [10],
[11], [12] for surveys), we seek the most general conditions
that allow to obtain a polynomial-time approximation scheme
(PTAS).

Baker [13] gave an elegant method (sometimes known as the
shifting or layering technique) for constructing polynomial-
time approximation schemes (PTASes) which applies to many
such problems, with the condition that the input instance’s
graph (the Gaifman graph) is “sparse”. This was initially
presented for planar graphs, but it is known that similar struc-
tural properties are exhibited by all proper minor-closed graph
classes [14], [15], [16] and beyond: e.g. graphs embeddable in
a fixed surface with few intersections per edge [17], [18], or
sparse unit ball intersection graphs in few dimensions [19] (but
not e.g. 3-regular expanders: bounded degree is not sufficient
to get a PTAS even for Independent Set [20]). Dvořák [21]
defined fractionally-treewidth-fragile classes — a natural gen-
eralisation of earlier sparsity conditions — which encompasses
all these examples. A class of graphs is fractionally-treewidth-
fragile if one can remove vertices in a randomised way so
that each vertex is removed with arbitrarily small probability
ε, but the treewidth after removal is always bounded, the
bound depending on ε only. He showed that if this notion of
sparsity can be efficiently certified in a class of graphs, then
this suffices to guarantee a PTAS, at least for a few problems
such as Weighted Maximum Independent Set. On the other
hand it is not known whether this suffices for Minimum Vertex
Cover, for example.

To remedy this, Dvořák [22] later defined Baker classes and
proved that (an effective version of) this condition suffices
to provide a PTAS to all monotone optimisation problems
expressible in first-order logic (including of course Vertex
Cover). Very roughly, a class of graphs is Baker if one can
reduce each graph in it to the empty graph by a bounded
number of the following steps: either remove a single vertex,
or select a breadth-first-search layering and recurse into all
subgraphs that can be induced by a few consecutive layers.
Dvořák proved that the family of Baker classes still includes all978-1-6654-4895-6/21/$31.00 c©2021 IEEE



the examples discussed above; on the other hand, it is strictly
included in the family of fractionally-treewidth-fragile classes
(and hence less general) [23]. It is worth mentioning that
proper minor-closed graph classes can be shown to be Baker
(and fractionally-treewidth-fragile) relatively easily, without
using the Graph Minor Structure theorem, in contrast to the
earlier, less general definitions (see [22] for details).

In order to provide a PTAS for a class of general-valued
CSPs, a sparsity condition is not enough: we also need to
restrict what types of constraints can be used in an instance.
Otherwise, even if the values to be optimised are trivial,
either 0 or infinity, one could use the crisp constraints to
express 3-Colouring, which is NP-hard even on planar graphs
of bounded degree [24]. In fact, as long as all crisp constraints
are available, for any possible restriction on Gaifman graphs,
either the restriction implies bounded treewidth, making the
problem exactly solvable, or it is hard to decide whether the
optimum is zero or infinite, by a result of Grohe, Schwentick,
and Segoufin [25]. We will hence require a condition which
ensures that one can easily decide whether a feasible solution
(of finite value) exists. This usually takes the form of a
monotonicity condition.

On the other hand, some sparsity condition is also neces-
sary: on general Gaifman graphs, there is no restriction of
constraint types that would result in a general-valued CSP
that admits a PTAS but is not solvable exactly in polynomial
time.1 In this sense our work follows the line of “uniform” or
“hybrid” CSPs, which include restrictions on both the input’s
Gaifman graph (left-hand side restrictions) and on the types of
constraints (right-hand side restrictions); see [29] for a survey.
However, unlike that line of work, we look for PTASes instead
of exact solvability, which also lets us go well beyond planar
graphs and beyond very specialised algebraic algorithms.

A. Related work

The exact solvability of general-valued CSPs has been
characterised for left-hand side restrictions [30] (tractable
cases are precisely classes that have bounded treewidth, up to
a certain notion of homomorphic equivalence) and right-hand
side restrictions [31] (tractable cases are precisely delineated
by certain algebraic properties); both results include the case
where infinite values are allowed.

As discussed above, there are no PTASes for general-
valued CSPs with only left-hand side or only right-hand side
restrictions, beyond exactly solvable cases. In fact Khanna et
al. [2], in their work on Min-Ones and Max-Ones with right-
hand side restriction, remark that “Our framework lacks such
phenomena as PTAS” and discuss left-hand side restrictions
as an interesting avenue for future work for that reason.
Similarly [4] and [10] ask in the context of right-hand side
restricted Min-Solution and Max-Solution problems: “Under

1This follows from the NP-hardness result of Kozik and Ochremiak [26],
which actually shows APX-hardness; for earlier, explicit APX-hardness results
for CSPs see, e.g., [4], [27]. However, we remark non-trivial PTAS examples
are known for “surjective” maximisation finite-valued CSPs [28].

which restrictions on variable scopes does Max Sol admit a
PTAS?”.

Very recently, PTASes for left-hand side restricted Max-
CSP without crisp constraints, such as Max-Cut, have been
studied by Romero, Wrochna, and Živný [32]. More generally,
they consider so-called finite-valued CSPs, where the only
right-hand side restriction is having finite, non-negative values.
They showed a PTAS is possible for every fractionally-
treewidth-fragile class of Gaifman graphs. In fact the algorithm
is simply the Sherali-Adams linear programming relaxation
(with a growing number of levels giving a better and better
approximation), which is oblivious to the graph structure and
does not require it to be efficiently certified in any way.

As for constant-factor approximations, Raghavendra’s cele-
brated result gave the best approximation ratio, assuming the
Unique Games Conjecture of Khot [33], for all right-hand
side restricted Max-CSPs (and also finite-valued CSPs) [34].
Analogous results for monotone Strict-CSPs were obtained
by Kumar et al. [3]. Constant-factor approximation algo-
rithms have been established for right-hand side restricted
Min-Cost-Hom on special graphs by Hell, Mastrolilli, Nevisi,
and Rafiey [8], and for all graphs and some digraphs by Rafiey,
Rafiey, and Santos [9].

B. Our results

To clearly separate left-hand side and right-hand side restric-
tion, it is convenient to phrase a general-valued CSP (VCSP) as
the problem of optimising the value of a function between two
valued structures. Precise definitions are given in Section II.
Briefly, a valued structure A consists of a domain A and a
collection of functions fA : An → Q ∪ {±∞}, indexed by
symbols f belonging to a set of symbols σ called a signature.
For two structures A,C, the value of an assignment h : A→ C
is an expression of the form

∑
fA(x)fC(h(x)). We will be

seeking to find either the minimum or maximum value over
all assignments, denoted minval(A,C) and maxval(A,C)
respectively. Feasible assignments are those of finite value.
The reader should think of the left-hand side structure A
as of a set of variables A together with weighted constraint
scopes: for x ∈ An, fA(x) = w 6= 0 means that the instance
applies the constraint “f” to variables in x with weight w.
The right-hand side structure C encodes the alphabet C (to
which an assignment h maps each variable) and the collection
of available constraints, which could be arbitrary Q∪{±∞}-
valued cost functions in general. An instance of the VCSP
is a pair (A,C); its Gaifman graph, denoted by G(A), is a
graph whose vertex set is the domain A with edges between
two vertices that occur together in a constraint of non-zero
weight.

Minimum Solution

For minimisation, we first consider (Q≥0 ∪ {∞})-valued
right-hand side structures C, in which the sets of zero-
valued tuples and finite-valued tuples are anti-monotone, in
the following sense. There is a total order ≤> on C, and for



all tuples x,y ∈ Cn with x ≤> y (coordinate-wise) we have
that for all non-unary function symbols f of C:
• fC(x) <∞ implies fC(y) <∞, and
• fC(x) = 0 implies fC(y) = 0.

Intuitively, larger tuples are more feasible. We call valued
structures C satisfying this condition Min-Sol structures. We
define Min-SolG to be the general-valued CSP restricted to
instances (A,C) where A is a Q≥0-valued structured with
G(A) ∈ G and C is a Min-Sol structure.

For example, Weighted Minimum Vertex Cover is equiv-
alent to the Min-Sol case where C is the structure with
domain {0, 1} with a 2-ary cost function fC(0, 0) = ∞,
fC(1, 0) = fC(0, 1) = fC(1, 1) = 0, and a unary cost function
uC(0) = 0, uC(1) = 1.

In the full version of this paper [35], we show that Min-SolG
admits a PTAS for all graph classes G that are efficiently
Baker. As discussed above, this captures essentially all graph
classes where a version of Baker’s technique is known to
apply (including excluded-minor classes and more), except for
fractionally-treewidth-fragile classes. We remark that already
the very special case of Minimum Vertex Cover is not known
to admit a PTAS on fractionally-treewidth-fragile classes.

Simultaneously, our results are less restrictive on the right-
hand side, as unlike in earlier work such as the framework of
Strict-CSP of [3], we allow arbitrary values strictly between 0
and ∞ (not only on unary constraints). Once we realise this
is possible, however, the algorithm turns out to be a rather
standard application of Baker’s technique: the only difference
is that we increase the number of layers to account for the
maximum ratio between finite, positive values (which is a
constant depending on values of C only).

The main novelty in our work is establishing the existence
of a PTAS under a weaker assumption on the right-hand
side structure C – we only require that C should be a
diagonalisable structure. (As we will show in Lemma III.4,
all Min-Sol structures are diagonalisable and thus our re-
sult establishes a PTAS for Min-Sol structures as a special
case.) Diagonalisability is a notion derived from the work
of Brightwell and Winkler [36] in the case of graphs and
Briceño, Bulatov, Dalmua, and Larose [37] in the case of
relational structures (which are more general than graphs).
The precise definition of diagonalisability is technical and
can be found in Section III-A. For relational structures, one
characterisation is that a structure C is diagonalisable if and
only if the two projection homomorphisms π1, π2 : C×C→ C
(defined as πi(x1, x2) = xi) are connected by some sequence
of homomorphisms ψ : C × C → C such that consecutive
homomorphisms in the sequence differ at only one vertex,
and all the homomorphisms in the sequence are idempotent
(meaning ψ(x, x) = x). This turns out to be equivalent to
saying that for all structures A, the set of all homomorphisms
from A to C is connected in a similar sense. A few other
characterisations connect diagonalisability to statistical physics
via “mixing” properties. Diagonalisability is also equivalent
to finite duality (the existence of finitely many obstructions
to having a homomorphism into C), a notion important to

the study of CSPs via logic [38]. For these and many other
equivalent definitions of diagonalisability, cf. [37, Corollary
6.3 and Theorem 3.6] with J = V (H).

Our main result for minimisation is an approximation
scheme for instances (A,C) where A comes from a Baker
class and C is diagonalisable.

Theorem I.1. Let G be an (f1, f2)-efficiently Baker class.
Then, for any ε > 0 and any instance (A,C) of general-valued
CSP where A is a Q≥0-valued structured with G(A) ∈ G and
C is diagonalisable, we can find a solution of value at most
(1 + ε) minval(A,C) in time f1(|A|) + f2(c|A|) · c1/ε where
c depends on C and G only.

Here the constant c depends polynomially on |C| and
exponentially on the maximum ratio between certain finite
positive values of C. Since every class of graphs that excludes
a minor is (O

(
n2
)
,O(n))-efficiently Baker [22, Theorem 2.1],

Theorem I.1 in fact gives an EPTAS on such classes for any
fixed diagonalisable structure C.

Intuitively, diagonalisability allows to interpolate between
any two homomorphisms, and we show this gives a natural
way to combine partial solutions in the way needed in Baker’s
technique (generalising the simple combination used for Ver-
tex Cover: taking the set-theoretic sum of solutions).

Maximum Solution

For maximisation, we extend the results of [32], which
restricted the right-hand side C to be Q≥0-valued. We addi-
tionally allow −∞ values, but the set of tuples y ∈ Cn with
fC(y) = −∞ is restricted to be monotone in the following
very weak sense. There is an element c⊥ ∈ C such that
whenever y is feasible (fC(y) 6= −∞) and y′ is a tuple
obtained from y by replacing some of its elements with c⊥,
then y′ is still feasible (fC(y′) 6= −∞).

We call structures C satisfying this condition Max-Sol
structures and we define Max-SolG to be the general-valued
CSP restricted to instances (A,C) where A is a Q≥0-valued
structured with G(A) ∈ G and C is a Max-Sol structure.

For example, Weighted Maximum Independent Set is equiv-
alent to the Max-Sol case where C is the structure with domain
{0, 1}, with a 2-ary function fC(1, 1) = −∞, fC(0, 0) =
fC(1, 0) = fC(0, 1) = 0, and a unary function uC(0) = 0,
uC(1) = 1 (so c⊥ = 0).

Our main result for maximisation is the following.

Theorem I.2. Let G be a class of graphs that is fractionally-
treewidth-fragile. Then Max-SolG admits a PTAS.

More precisely, for all ε > 0, there is an algorithm that
given (A,C), outputs a value between maxval(A,C) and (1+

ε) · maxval(A,C) in time (|A|+ |C|)k(ε), where k(ε) is a
function depending on G only.

The algorithm in Theorem I.2 does nothing more than solve
a Θ(k(ε))-th level of the Sherali-Adams linear programming
relaxation. This allows the algorithm to be oblivious to the
graph structure, i.e. we do not assume that the fractional-
treewidth-fragility of G can be efficiently certified. Thus the



left-hand side restriction on Gaifman graphs is the most
general for which a PTAS is known; as discussed earlier,
it includes excluded-minor classes and more. In fact simi-
larly to [32], we conjecture that Max-SolG does not admit
a PTAS for any G that is not fractionally-treewidth-fragile.
Since Max-SolG is strictly more general (by allowing negative
infinite values), this conjecture might be easier to prove than
the one in [32].

On the other hand, this approach does not give an EPTAS
even when C is fixed (i.e. the exponent of |A| increases with
ε), and it does not construct an assignment — it only approx-
imates the optimum value. In contrast, given a class of graphs
G for which fractional-treewidth-fragility can be efficiently
certified (which includes essentially all known examples), it
is straightforward to construct solutions to Max-SolG of value
at least (1− ε) ·maxval(A,C) in time |A| · |C|k(ε).

We complement Theorem I.2 with simple constructions
which show that it is impossible to extend other results
of [32] to the setting of crisp constraints. In [32] the notion
of pliability is defined, which is a left-hand side restriction
that takes the whole structure A into account, not only its
Gaifman graph; this allowed the authors of [32] to show that
the same framework applies not only to sparse, fractionally-
treewidth-fragile instances, but also to dense structures. We
define an analogous notion of strong pliability and show in
Lemma IV.13, similarly to [32], the existence of a PTAS under
the strong pliability assumption on the left-hand side structure,
which takes the whole structure A into account, not only its
Gaifman graph. (Thus this is a more general tractability result
than Theorem I.2.) However, in the full version [35] we show
that even the simplest class of dense structures, namely the
class of {0, 1}-valued cliques, does not satisfy strong pliability.
In fact, it is easy to show [35] that the Max-Sol problem is
hard to approximate even when the left-hand side structures
are restricted to cliques.

Paper organisation: Section II introduces basic notations
and defines the studied computational problems. The main
result for minimisation, Theorem I.1, is technical and proved
in the full version [35]. In Section III, we present the main
ideas in the special case of planar structures. The main result
for maximisation, Theorem I.2, is proved in Section IV. Some
of the proofs are deferred to the full version [35].

II. PRELIMINARIES

For an integer k, we denote by [k] the set {1, . . . , k}.
For a tuple x, we denote by xi its i-th coordinate and by
Set(x) the set of elements appearing in x. For two tuples
x and y of length n, we write (x,y) as a shorthand for
((x1, y1), (x2, y2), . . . , (xn, yn)). For a tuple x of length n and
a map h, we denote by h(x) the coordinate-wise application
of h; i.e., h(x) = (h(x1), . . . , h(xn)).

General-valued CSPs: A signature is a finite set σ of
(function) symbols such as f , each with a specified arity ar(f).
For a set of values Ω ⊆ Q∪{−∞,+∞}, an Ω-valued structure
A over a signature σ (or σ-structure, for short) is a finite
domain A together with a function fA : Aar(f) → Ω for each

symbol f ∈ σ. We denote by A,B,C, . . . the domains of
structures A,B,C, . . . .

We define tup(A) to be the set of all pairs (f,x) such that
f ∈ σ and x ∈ Aar(f); and tup>0(A) to be the set of all pairs
(f,x) ∈ tup(A) with fA(x) > 0.

We consider the following computational problem.

Definition II.1. An instance of the general-valued CSP
(VCSP) consists of an ordered pair of σ-structures (A,C).
For a mapping h : A→ C, we define the value of h to be

val(h) =
∑

(f,x)∈tup(A)

fA(x)fC(h(x)).

The goal is to find the minimum or maximum value over
all possible mappings h : A → C, denoted minval(A,C) or
maxval(A,C), respectively.

On the left-hand side we will only use Q≥0-valued struc-
tures, with letters A,B; on the right-hand side we will only use
Q≥0 ∪ {∞} or Q≥0 ∪ {−∞}-valued structures, respectively,
for minimisation and maximisation, with letters C,D.

For λ ≥ 0 we write λA for the rescaled σ-structure with
domain A and fλA(x) := λfA(x), for (f,x) ∈ tup(A). For
a σ-structure A and subset of the domain X ⊆ A, we define
A[X] to be the restriction of A to X . That is, A[X] is a σ-
structure over the domain X , and fA[X](x) = fA(x) for each
f ∈ σ and x ∈ Xar(f).

Following the influential work on decision CSPs by Grohe,
Schwentick, and Segoufin [25], and Grohe [39], we will focus
on fragments of the VCSP parametrised by the class of left-
hand side structures (or their underlying class of graphs).
Given a σ-structure A, the Gaifman graph (or primal graph),
denoted by G(A), is the graph whose vertex set is the domain
A, and whose edges are the pairs {u, v} for which there is a
tuple x and a symbol f ∈ σ such that u, v appear in x and
fA(x) > 0.

For a graph parameter p and a structure A, we define
p(A) := p(G(A)) to be the parameter of the Gaifman graph
of A. In particular, the treewidth of A is defined as tw(A) :=
tw(G(A)). (We will only use treewidth and excluded minors
as black-boxes and thus will not need their definitions. The
reader is referred to Diestel’s textbook for details [40].)

Relational structures: A relational σ-structure C in-
cludes for each symbol f ∈ σ a relation fC ⊆ Car(f).
We will view relational structures as {0,∞}-valued structures
by associating each function fC : Car(f) → {0,∞} to the
relation given by the zero-valued tuples {x | fC(x) = 0}. A
homomorphism from a relational σ-structure C to a relational
σ-structure D is a map ψ : C → D that satisfies, for every
f ∈ σ and every x ∈ Car(f), fD(ψ(x)) ≤ fC(x).

For an n-ary function f , we denote by Feas(f) and Opt(f)
the n-ary relations defined by Feas(f) = {x | f(x) < ∞}
and Opt(f) = {x | f(x) = 0}, respectively. Let C be a
σ-structure. The relational σ-structure Feas(C) contains, for
each f ∈ σ, the relation Feas(fC); similarly, the relational
σ-structure Opt(C) contains, for every f ∈ σ, the relation
Opt(fC).



Our results will be concerned with two particular types of
right-hand side structures.

Maximum Solution

Definition II.2 (vc). For an element c of a set C, we denote
by vc the partial ordering on C defined by c vc x and
x vc x for all x ∈ C. This induces a partial ordering on
Cn coordinate-wise: we write x vc y for x,y ∈ Cn if we
can obtain x from y by changing some (possibly none or all)
of its coordinates to c.

Definition II.3 (Max-Sol). Let σ be a finite signature. A
σ-structure C is called a Max-Sol structure if it is (Q≥0 ∪
{−∞})-valued and there is an element c⊥ ∈ C such that for
all f ∈ σ, the following holds: whenever fC(y) ≥ 0, we
have fC(x) ≥ 0, for all x vc⊥ y in Car(f). Equivalently, if
a tuple y has non-negative value (not −∞), then changing
some of its coordinates to c⊥ still gives a non-negative value.
To avoid clutter, we write v⊥ in place of vc⊥ , with the choice
of c⊥ ∈ C implicit.

We denote by Max-SolG the restriction of the VCSP to
instances (A,C) where A is a Q≥0-valued structure with
G(A) ∈ G and C is a Max-Sol structure.

Observe that every Q≥0-valued structure is a Max-Sol
structure; thus Max-SolG is more general than the restriction
to Q≥0-valued right-hand side structures, which is the problem
considered in [32].

Remark II.4. The “downward monotone Strict-CSP” from [3]
corresponds to Definition II.3 with some extra conditions.
Firstly, there is a special unary symbol u ∈ σ such that uC is
Q≥0 valued and all other symbols f ∈ σ are {0,−∞}-valued
(hence they express “strict” constraints). Secondly, there is a
total order on C, and for each symbol f ∈ σ other than u, fC

is anti-monotone; in other words, lowering some coordinates
of a tuple in Car(f) can not change its value from 0 to −∞.
(Hence the minimum element plays the role of the bottom
label c⊥ ∈ C.)

Minimum Solution

Definition II.5 (Min-Sol). Let σ be a finite signature. A σ-
structure C is called Min-Sol if it is (Q≥0∪{∞})-valued and
there is a total order ≤> on C such that: for all f ∈ σ with
ar(f) > 1 and all tuples x,y ∈ Cn with x ≤> y (coordinate-
wise) we have:
• fC(x) <∞ implies fC(y) <∞, and
• fC(x) = 0 implies fC(y) = 0.

We denote by Min-SolG the restriction of the VCSP to
instances (A,C) where A is a Q≥0-valued structure with
G(A) ∈ G and C is a Min-Sol structure.

Remark II.6. The “upward monotone Strict-CSP” from [3]
corresponds to Definition II.5 with the extra conditions that
there is only one unary symbol u, uC is monotone and
injective, and all other cost functions fC are {0,∞}-valued
(hence they express “strict” constraints).

Remark II.7. We observe that some structure (such as a total
order) on the domain of a right-hand side Min-Sol structure is
needed: We show how to encode 3-Colouring of planar graphs,
which doesn’t admit a PTAS (assuming P6=NP).

Let G be a planar graph. Let A be a structure with domain
V (G) over the signature σ = {u, f} of arities 1 and 2, respec-
tively. Let uA(x) = 1 for all x ∈ V (G), and fA(x, y) = 1
if {x, y} ∈ E(G) and 0 otherwise. Let C be a right-hand
side structure with domain C = {R,G,B, c>}. Here we
think of R,G,B as three colours, and c> as a fourth extra
colour we want to avoid using. We allow a monochromatic
c> edge. Let uC(x) = 1 for x = c> and 0 otherwise;
fC(R,R) = fC(G,G) = fC(B,B) = ∞, and 0 for other
pairs of values (including (c>, c>)). If G is 3-colourable then
minval(A,C) = 0. Otherwise, minval(A,C) ≥ 1. Note that
fC respects the partial order vc> , but it does not respect any
total order on C.

III. MINIMISATION ON PLANAR STRUCTURES

A. Diagonalisability

Briceño, Bulatov, Dalmau, and Larose defined the concepts
of product structure, dismantlability, homomorphisms, adja-
cency, and link graph for relational structures [37]. In this
section, we will extend these concepts to valued structures
in a natural way. In particular, our definitions (for structures)
coincide with the definitions in [37] (for relational structures)
when viewed as {0,∞}-valued structures.

The intuition is that, given two (valued) σ-structures C and
D, we call ψ : C → D a homomorphism from C to D if
ψ is a homomorphism from Feas(C) to Feas(D) and from
Opt(C) to Opt(D). It will be more convenient to consider
both the Feas(C) and Opt(C) simultaneously. Thus with every
structure C we will associate a relational structure Rel[C],
defined as follows.

Definition III.1. If C is a σ-structure, let σ′ =
⋃
f∈σ{f1, f2}

be the signature that for each f ∈ σ includes the relational
symbols f1 of f2 of the same arity as f . Define the relational
σ′-structure Rel[C] over the domain C as follows: for each
f ∈ σ, let fRel[C]

1 = Feas(fC) = {x | fC(x) < ∞} and
f
Rel[C]
2 = Opt(fC) = {x | fC(x) = 0}.

We can now define the concepts of interest for structures
C via the already existing concepts for relational structures
Rel[C] from [37]. We use the following observation.

Observation III.2. For x, y ∈ Q≥0∪{∞}, there exists M > 0
such that y ≤M · x if and only if:
• if x <∞, then y <∞, and
• if x = 0, then y = 0.

Given σ-structures C and D, we say that ψ : C → D is
a homomorphism if ψ is a homomorphism from Rel[C] to
Rel[D]. Equivalently, ψ is a homomorphism if there exists
M > 0 such that for all (f,x) ∈ tup(C),

fD(ψ(x)) ≤M · fC(x).



Here we can use a uniform bound M because we only
work with finite structures; it will be convenient to use this
equivalent definition to keep track of the bound M .

Given σ-structures C and D we define the product structure
C×D as a σ-structure with domain C×D and for each f ∈ σ,

fC×D((x,y)) = fC(x) + fD(y).

Let π1(x, y) = x and π2(x, y) = y be the projections to the
first and second coordinate, respectively. Note that π1, π2 are
homomorphisms from C2 to C for any C.

We say that a ∈ C is dominated by b ∈ C if there is an
M > 0 such that for all (f,x) ∈ tup(C) with xi = a, we
have

fC(x1, . . . , xi−1, b, xi+1, . . . ) ≤M · fC(x).

A sequence of σ-structures C0, . . . ,C` is a dismantling se-
quence if there exists ai ∈ Ci such that ai is dominated in
Ci, and Ci+1 is the substructure of Ci induced by Ci \ {ai},
for i ∈ {0, . . . , `− 1}. In this case, we say that C0 dismantles
to C`. A structure C is diagonalisable if C2 dismantles to the
substructure induced by its diagonal ∆(C2) = {(c, c) | c ∈
C}.

Homomorphisms ψ, φ from C to D are adjacent if there
exists M > 0 such that for all (f,x) ∈ tup(C) and y ∈ Dar(f)

with yi ∈ {ψ(xi), φ(xi)}, we have

fD(y) ≤M · fC(x). (1)

Thus a dominated by b in C if and only if the function
s : C → C \ {a} that maps a to b and everything else
identically is a homomorphism from C to C, and s is adjacent
to the identity homomorphism. (This is stronger than just s
being a homomorphism, since fC(a, a, a) = 0 implies not
only fC(b, b, b) = 0, but also fC(a, a, b) = 0, for example).
Note that adjacency is not a transitive property.

Finally, for σ-structures C and D, we define the link
graph L(C,D) to be the simple graph whose vertices are the
homomorphisms from C to D, with edges between adjacent
homomorphisms.

The following theorem was proved in [37, Theorem 3.6] for
relational structures but the result easily extends to structures.

Theorem III.3. Let C be a σ-structure. Then, the following
are equivalent.
• C is diagonalisable;
• π1 and π2 are connected in L(C2,C) by a path of

adjacent idempotent homomorphisms.
(We say a function ψ : C2 → C is idempotent if
ψ(c, c) = c for all c ∈ C.)

Proof. This follows from the fact that Rel[C2] = Rel[C]2 and
that our definitions are the same as those of [37, Theorem
3.6] applied to H = C and J = ∆(C). Specifically a function
φ : C → C is a homomorphism from C to C if and only if
it is a homomorphism from Rel[C] to Rel[C]. Similarly, a is
dominated by b in C2 if and only if a is dominated by b in
Rel[C2] = Rel[C]2. Thus C is diagonalisable if and only if

Rel[C]2 dismantles to its full diagonal (not just any subset of
it). Further φ, ψ : C → C are adjacent homomorphisms from
C to C if and only if they are adjacent homomorphisms from
Rel[C] to Rel[C]. Finally, π1, π2 are connected by a path of
adjacent idempotent homomorphisms if and only if they are
J-connected by any homomorphisms in L(Rel[C]2,C) in the
sense of [37].

We now show that diagonalisability is more general than
the Min-Sol condition.

Lemma III.4. Let C be a Min-Sol structure. Then C is
diagonalisable. Moreover, there is a path on 3 vertices between
π1 and π2 in L(C2,C).

Proof. Define φ : C2 → ∆(C2) by φ(x, y) =
(max(x, y),max(x, y)), where max is with respect to the total
order on C. We claim for each (x, y) ∈ C2, a := (x, y) is dom-
inated by b := φ(x, y). Indeed, for each (f, (x,y)) ∈ tup(C2)
with (xi, yi) = a and n := ar(f) > 1, we have

fC
2

((x1, y1), . . . , b, . . . , (xn, yn))

= fC(x1, . . . ,max(xi, yi), . . . , xn)

+ fC(y1, . . . ,max(xi, yi), . . . , yn)

≤M · fC(x1, . . . , xi, . . . , xn)

+M · fC(y1, . . . , yi, . . . , yn)

= M · fC
2

((x,y)) ,

for some M > 0, where the inequality follows from the
assumption that C is a Min-Sol structure. For f ∈ σ with
ar(f) = 1, we have that a is dominated by b because with
M ≥ 2 we always have

fC
2

(b) = fC(max(x, y)) + fC(max(x, y))

≤M · (fC(x) + fC(y)) = M · fC
2

(a).

Therefore, we can dismantle the non-diagonal elements
(x, y) in any order to obtain a dismantling sequence from C2

to the substructure induced by ∆(C2).
Let µ : C2 → C be defined by µ(x, y) = max(x, y),

where max is with respect to the total order defined on C.
Then similarly as above, one can check π1, µ, π2 is a path in
L(C2,C).

We remark that [37] show many other equivalent formu-
lations, including a property known as finite duality. They
also discuss how finite duality allows to efficiently solve many
problems such as homomorphism extensions. However, in our
setting it is Rel[C] rather than C that is restricted, so such
a property would not take finite, positive values of C into
account.

Instead, our approach is based on Baker’s technique: we
partition graph into breadth-first-search layers and use the fact
that the problem can be solved exactly on a subgraph induced
by a few consecutive layers. To merge such solutions into
one, we use a small number of overlapping layers and use
the path between projections π1, π2 given by Theorem III.3 to



“blend in” two solutions. By increasing the number of exactly
solved, non-overlapping layers, we can reduce any loss due to
differences between finite, positive values.

B. PTAS

Baker’s approach relies on the following structural property
of planar graphs, which is e.g. a direct consequence of [41,
Theorem 83].

Lemma III.5. Let G be a planar graph and v0 ∈ V (G) be
an arbitrary vertex. Let Li be the set of vertices at distance
exactly i from v0 (i.e. the ith layer of a BFS from v0). Then, the
subgraph induced by any t consecutive layers G[Li ∪Li+1 ∪
· · · ∪ Li+t+1] has treewidth at most 3t.

Theorem III.6. Let P be the class of planar graphs. Then,
for any ε > 0 and any VCSP instance (A,C) with G(A) ∈ P
and C diagonalisable, we can find a solution of value at most
(1 + ε) minval(A,C) in time |A| · c1/ε where c depends on C
only.

Proof. Let (A,C) be a VCSP instance as per the theorem.
Generally, for any left-hand side structure B, we will write
valB(h) for the value of an assignment h : B → C with
respect to the instance (B,C), and write val(·) for valA(·) by
default.

By Theorem III.3 there is a sequence of adjacent homo-
morphisms ψ1, . . . , ψ` from C2 to C such that ψ1 = π1
and ψ` = π2. Let M ≥ 1 be sufficiently large such
that (1) holds for all adjacent homomorphisms ψi and ψi+1,
i ∈ {1, . . . , `− 1}. Let k := d 2Mε e.

Let A let be a Q≥0-valued structure and let G = G(A) ∈ P
be its Gaifman graph. Fix an arbitrary vertex v0 ∈ A in G(A).
For n ∈ Z, let Ln ⊆ A be the set of vertices whose distance
from v0 is in {n` + 1, . . . , n` + `}. So Ln are intervals of `
layers, which partition the vertex set A. For each j ∈ Z and
i ∈ [k] let

Bij := Ljk−i ∪ · · · ∪ Ljk−i+k,

so that Bij is a block of (k+1) ·` consecutive layers. Iterating
through the indices j gives consecutive blocks that overlap on
` layers; the index i shifts which layers are in the overlap.
That is,

Bij ∩Bij+1 = L(j+1)k−i.

Define the overlaps Oi =
⋃
j B

i
j ∩Bij+1 for i ∈ [k]. We note

that the O1, . . . , Ok are disjoint. Consider an optimal solution
h∗ : A→ C for the VCSP instance (A,C). As the Oi are all
disjoint, there exists i∗ ∈ [k] with

valA[Oi∗ ](h
∗|Oi∗ ) ≤ 1

k
val(h∗) ≤ ε

2M
val(h∗).

We henceforth write Bj = Bi
∗

j and O = Oi
∗
. Note that,

just as in Baker’s original approach, the choice of i∗ is not
available to the algorithm, as we do not know h∗. However,
as the number of choices for i ∈ [k] is linear in 1/ε, we
can proceed with each possible i, construct the solution h′

as discussed below and output the one with the lowest value
val(h′).

Let A+ be a σ-structure with domain A defined by

fA
+

(x) =

{
M · fA(x) if Set(x) ⊆ O
fA(x) otherwise,

so that tuples which lie within O are amplified by a factor of
M .

For each j, the Gaifman graph G(A+[Bj ]) has treewidth
at most O((k + 1)`) = O(M`/ε) by Lemma III.5. Thus
for each j, we can find a treewidth decomposition [42] and
compute an optimal solution hj to (A+[Bj ],C) in total time
|A| · |C|O(M`/ε) via standard dynamic programming. Then by
optimality of hj ,

valA+[Bj ](hj) ≤ valA+[Bj ](h
∗|Bj

).

Therefore, summing over all j, we count the contribution of
every constraint once, except for constraints whose scope is
contained in O (and thus in exactly two sets Bj), which are
counted 2M times in total:∑
j

valA+[Bj ](hj) ≤
∑
j

valA+[Bj ](h
∗|Bj

)

= valA(h∗) + (2M − 1) · valA[O](h
∗|O)

≤ (1 + ε) val(h∗).
(2)

Observe that for each x ∈ A, either x 6∈ O and there is a
unique j for which x ∈ Bj , or x ∈ O and there is a unique j
for which x ∈ Bj ∩ Bj+1. In the latter case, x ∈ L(j+1)k−i∗

and we let s ∈ [`] denote the unique s for which x is at
distance exactly ((j+ 1)k− i∗)`+ s from v0. Let h′ : A→ C
be defined as follows

h′(x) =


hj(x) if x ∈ Bj for a unique j
ψs
(
hj(x), hj+1(x)

)
if x ∈ Bj ∩Bj+1 and
d(x, v0) =

((j + 1)k − i∗)`+ s.

We claim that h′ is a solution to (A,C) with val(h′) ≤
(1 + ε) minval(A,C). Let (f,x) ∈ tup>0(A). Note that by
definition of the Gaifman graph G(A), all xi are adjacent to
each other, so Set(x) is contained in one or two consecutive
layers. Consider the following two cases.

1) If Set(x) 6⊆ O, then there is a unique j such that
Set(x) ⊆ Bj , and so h′(xi) = hj(xi) for each i,
because either: xi 6∈ O and so h′(xi) = hj(xi) by
definition of h′, or xi is in the last layer of Bj−1∩Bj and
h′(x) = ψ`

(
hj−1(x), hj(x)

)
= π2

(
hj−1(x), hj(x)

)
=

hj(x), or analogously xi is in the first layer of Bj∩Bj+1

and ψ1 = π1. Thus

fC(h′(x)) = fC(hj(x)). (3)

2) Else, if Set(x) ⊆ O, then there is a unique j such that
Set(x) ⊆ Bj ∩ Bj+1 = L(j+1)k−i∗ . Since Set(x) is
contained in two consecutive layers, there is some s such



that all vertices in Set(x) are at distance ((j + 1)k −
i∗)`+ s or ((j + 1)k − i∗)`+ s+ 1 from v0. Thus

h(xi) ∈{ψs
(
hj(xi), hj+1(xi)

)
,

ψs+1

(
hj(xi), hj+1(xi)

)
}

for each xi. Finally, as ψs and ψs+1 are adjacent

fC(h′(x)) ≤M · fC
2(
hj(x), hj+1(x)

)
= M ·

(
fC
(
hj(x)) + fC(hj+1(x)

))
.

(4)

Thus, by (2) to (4),

valA(h′) ≤
∑
j

valA+[Bj ](hj)

≤ (1 + ε) val(h∗) = (1 + ε) minval(A,C),

and so h′ is the solution we seek.

Remark III.7. In Theorem III.6 it would be sufficient to
require that C2 dismantles to any substructure of its diagonal,
as opposed to its full diagonal (as in the definition of diagonal-
isability). By [37, Theorem 3.6] (extended as in Theorem III.3)
this is equivalent to saying that C dismantles to a substructure
I such that I is diagonalisable.

In this case, π1 and π2 are still connected in L(C2,C),
but the homomorphisms in the path connecting them will not
be necessarily idempotent. However, the above proof (for the
case of planar graphs) did not rely on this property. This is
in contrast with Theorem I.1 (for Baker classes) where we
actually use the fact that the homomorphisms are idempotent.

Since a Min-Sol structure C is diagonalisable by
Lemma III.4, we have the following corollary.

Corollary III.8. Let P be the class of planar graphs. Given
any ε > 0 and instance (A,C) of Min-SolP , we can find a
solution of value at most (1+ε) minval(A,C) in time |A|·c1/ε,
where c depends on C only.

We remark the proof yields c1/ε = |C|O(M`/ε), and for
Min-Sol structures Lemma III.4 yields ` = 3; hence when
the bound M is a constant (e.g. for {0, 1,∞}-valued Min-Sol
structures) the dependency on C is simply |C|O(1/ε).

IV. MAXIMISATION

To present our algorithm for maximisation, we first define
what it means for two left-hand side structures A,B to be
“close”, in a sense relevant to approximately solving Max-Sol.
We then show that there is a dual view which allows to certify
“closeness” by a fairly concrete mapping: a distribution of
partial homomorphisms. This is then used to show that values
given by Sherali-Adams linear programming relaxations of
Max-Sol instances on A and on B are also close. Since the
level-k Sherali-Adams relaxation solves the problem exactly
on instances of treewidth O(k), it gives a PTAS for classes
of structures that are “close” to bounded treewidth, as for-
malised by the notion of “strong pliability” below. The proofs
are similar to those in [32]; the main new contribution is
finding a suitable “dual” definition (a distribution of partial

homomorphisms) that makes the proofs work in the Max-Sol
setting. We remark we were unable to find an analogue for
the Min-Sol setting.

A. Pliability

Definition IV.1. For two left-hand side σ-structures A,B, we
say A strongly overcasts B, denoted A � B, if for all Max-Sol
σ-structures C, maxval(A,C) ≥ maxval(B,C).

In contrast, [32] defined (weak) overcasting in terms of
Q≥0-valued structures C only, instead of the wider class of
Max-Sol structures. The “strong” qualifier is only to avoid
confusion with [32]: we will not consider weak overcasts in
this paper, nor analogous weak variants of the definitions given
below.

Definition IV.2. The strong opt-distance between two left-
hand side σ-structures A and B is defined as

dopt(A,B) := inf{ε | A � e−εB and B � e−εA}.

Observation IV.3. Using the fact that maxval(λA,C) =
λmaxval(A,C), it is an easy exercise to see that dopt(A,B) =
∞ if exactly one of maxval(A,C),maxval(B,C) is −∞, or
exactly one of them is 0, for some Max-Sol σ-structure C;
otherwise

dopt(A,B) = sup{ε | A 6� e−εB or B 6� e−εA} =

sup
C
|ln maxval(A,C)− ln maxval(B,C)|.

where the latter supremum is over all Max-Sol σ-structures C
such that neither is −∞ nor 0. It follows that dopt is symmetric
and satisfies the triangle inequality.

The only graph parameter p we consider in this paper will
be treewidth, tw. Just as in [32], one can prove that treedepth,
or the Hadwiger number, give rise to equivalent definitions.

Definition IV.4. A class of Q≥0-valued structures A is
strongly p-pliable with respect to a graph parameter p if for
all ε > 0 there exists k = k(ε) such that for every σ-structure
A ∈ A there exists a Q≥0-valued σ-structure B with p(B) ≤ k
and dopt(A,B) ≤ ε.

B. Duality

Definition IV.5 (partial functions and homomorphisms). For a
partial function g : A→ B and a tuple x ∈ An, g(x) is defined
as (g(x1), . . . , g(xn)) ∈ Bn if all coordinates are defined, and
is undefined otherwise. For y ∈ Bn, we define g−1(x) :=
{x ∈ An | g(x) is defined and equal to y}.

For left-hand side σ-structures A,B, a partial homomor-
phism from A to B is a partial function g : A→ B such that:
for any positive tuple (f,x) ∈ tup>0(A), there is a positive
tuple (f,y) ∈ tup>0(B) such that yi = g(xi) whenever g(xi)
is defined (and yi is arbitrary otherwise — in particular yi 6= yj
is allowed even if xi = xj). We denote the set of partial
homomorphisms from A to B by p-hom(A,B).

Remark IV.6. Partial homomorphisms can also be understood
as follows. For a left-hand side σ-structure B, let B+ be the



left-hand side σ-structure with domain B ∪ {?}, where ? is
a new element, where the value for f ∈ σ of arity n and an
input x ∈ (B ∪ {?})n is defined as

fB
+

(x) := max
y∈Bn

xv?y

fB(y).

In particular fB
+

(x) = fB(x) for x ∈ Bn. Let Pos(A) be
the relational σ-structure consisting of positive tuples of A.
Then a partial homomorphism g from A to B is the same
as a homomorphism from Pos(A) to Pos(B+) (undefined
assignments are the same as assignments to ?).

Lemma IV.7. Let A,B be left-hand side σ-structures. Then,
the following are equivalent:
• A strongly overcasts B, i.e. for all Max-Sol σ-structures

C, maxval(A,C) ≥ maxval(B,C);
• there is a distribution of partial homomorphisms
ω : p-hom(A,B)→ Q≥0 (

∑
g ω(g) = 1) such that

E
g∼ω

fA(g−1(y)) ≥ fB(y) for all (f,y) ∈ tup(B).

(Here fA(g−1(y)) is a shorthand for
∑
fA(x) over all x ∈

g−1(y), i.e. all x ∈ Aar(f) such that g(x) is defined and equal
to y.)

C. PTAS

We first define the Sherali-Adams LP hierarchy [43] for
Max-Sol. Let (A,C) be an instance of Max-Sol over a signa-
ture σ and let k ≥ maxf∈σ ar(f). We write

(
A
≤k
)

for the set
of subsets of A with at most k elements. The Sherali-Adams
relaxation of level k [43] of (A,C) is the linear program given
in Fig. 1, denoted by SAk(A,C), which has one variable
λ(X, s) for each X ∈

(
A
≤k
)

and each s : X → C. We
denote by maxvalk(A,B) the optimum value of SAk(A,C),
and define maxvalk(A,B) = −∞ if SAk(A,C) is infeasible.

Observation IV.8. Let (A,C) be an instance of Max-Sol,
k ≥ maxf∈σ ar(f) and λ ≥ 0. Then, maxval(λA,C) =
λmaxval(A,C) and maxvalk(λA,C) = λmaxvalk(A,C).

Observation IV.9. Let (A,C) be an instance of Max-Sol.
Then, for any k ≥ maxf∈σ ar(f), maxvalk(A,C) ≥
maxval(A,C).

Proof. Let h : A → C be an optimal solution to (A,C).
Consider the solution λ(X, s) = 1[s = h|X ] for SAk(A,C). It
is trivially feasible and achieves the value maxval(A,C).

The following easy result shows that an appropriate level of
the Sherali-Adams relaxation is exact for bounded treewidth.

Proposition IV.10. Let (A,C) be an instance of Max-Sol and
k ≥ tw(A). Then, maxvalk(A,C) = maxval(A,C).

Definition IV.11. Let A and B be left-hand side σ-structures,
and k ≥ maxf∈σ ar(f). We write A �k B if for all Max-Sol
σ-structures C we have maxvalk(A,C) ≥ maxvalk(B,C).

Using the dual characterisation of strong overcasts
(Lemma IV.7), we can show the following.

Proposition IV.12. Let A and B be left-hand side σ-structures,
and k ≥ maxf∈σ ar(f). If A � B, then A �k B.

We are now ready to prove our main tractability result for
maximisation problems.

Lemma IV.13. Let A be a left-hand side σ-structure, ε ≥ 0
be small and k ≥ maxf∈σ ar(f). Suppose that there exists
a left-hand side σ-structure B such that dopt(A,B) ≤ ε and
tw(B) ≤ k. Then, for every right-hand side σ-structure C, we
have that

maxval(A,C) ≤ maxvalk(A,C) ≤ (1+O(ε)) maxval(A,C).

Proof. By definition of dopt we have that,

A � eεB � e2εA,
and so

A �k eεB �k e2εA

by Proposition IV.12. From Observations IV.8 and IV.9
and Proposition IV.10 we obtain that,

maxval(A,C) ≤ maxvalk(A,C) ≤ eε maxvalk(B,C)

= eε maxval(B,C) ≤ e2ε maxval(A,C).

Finally, for ε small we have e2ε = 1 +O(ε), completing the
proof.

Since maxvalk(A,C) can be computed in time
(|A| · |C|)O(k), we obtain that any strongly tw-pliable
class of structures admits a PTAS.

Corollary IV.14. Let A be a strongly tw-pliable class of left-
hand side structures. Then, the class of Max-Sol instances
(A,C) with A ∈ A admits a PTAS.

In the following subsection, we show that when we look at
the class of Gaifman graphs only, the appropriate condition is
fractional-treewidth-fragility.

D. Fragility and pliability

To give Dvořák’s definition of fractional fragility [21] we
first define ε-thin distributions.

Definition IV.15. Let F be a family of subsets of a set V and
ε > 0. We say a distribution π over F is ε-thin if PrX∼π[v ∈
X] ≤ ε for all v ∈ V .

Definition IV.16. For a graph parameter p and a number k,
we define a (p ≤ k)-modulator of a graph G to be a set
X ⊆ V (G) such that p(G −X) ≤ k. A fractional (p ≤ k)-
modulator is a distribution π of such modulators X . We say
that a class of graphs G is fractionally-p-fragile if for every
ε > 0 there is a k such that every G ∈ G has an ε-thin
fractional (p ≤ k)-modulator.

We need some more notation. We denote the disjoint union
of graphs G and H by G ]H . For σ structures A1, . . . ,Ak,
we define the σ-structure B =

⊎k
i=1 Ai to be over the domain

B =
⊎k
i=1Ai and by fB(x) = fAi(x) whenever (f,x) ∈

tup(Ai), and 0 otherwise.



max
∑

(f,x)∈tupA, s : Set(x)→C

λ(Set(x), s)fA(x)fC(s(x))

λ(X, s) =
∑

r : Y→C, r|X=s

λ(Y, r) for X ⊆ Y ∈
(
A
≤k
)

and s : X → C

∑
s : X→C

λ(X, s) = 1 for X ∈
(
A
≤k
)

λ(Set(x), s) = 0 ∀(f,x) ∈ tup(A) with fA(x)fC(s(x)) = −∞
λ(X, s) ≥ 0 for X ∈

(
A
≤k
)

and s : X → C

Fig. 1. SAk(A,C), the Sherali-Adams relaxation of level k ≥ maxf∈σ ar(f) of (A,C).

While we are mostly interested in the following result with
treewidth as the graph parameter, we state it more generally
since the proof is the same.

Lemma IV.17. Let p be a monotone2 graph parameter such
that p(G ]H) ≤ max(p(G),p(H)) for all graphs G and H
and p(G) ≤ p(G − v) + 1 for all v ∈ V (G). Let A be a
class of structures with bounded arity r such that the class G
of their Gaifman graphs is fractionally-p-fragile. Then A is
strongly p-pliable.

The proof closely follows the proof of [44, Lemma 4.6],
where the same result was shown for several particular mono-
tone graph parameters.

Proof. Given ε > 0, A ∈ A, let π be a fractional (p ≤ k)-
modulator such that for every v ∈ V (G),

Pr
X∼π

[v ∈ X] ≤ ε. (5)

For each X ⊆ V (G) = A in the support of π (π(X) > 0),
define A/X to be the σ-structure obtained by contracting X
to a single vertex and summing values. That is, let {?X} be a
new element and define gX : A→ (A−X)∪{?X} that maps
X to ?X and A−X identically. Let A/X be over the domain
(A−X) ∪ {?X} and

fA/X (y) := fA(g−1X (y)) =
∑

x∈g−1
X (y)

fA(x)

for each f ∈ σ of arity n and each y ∈ ((A−X) ∪ {?X})n.
Define BX = π(X) ·A/X , and let B =

⊎
BX . By definition

of π and properties of p, we have p(G(BX)) ≤ p(G(A)−X)+
1 ≤ k + 1, and so p(G(B)) ≤ k + 1.

View gX as a function to B (instead of as function to BX ⊆
B), so that gX : A→ B is the (total) function mapping A−X
identically to its copy in BX and mapping X to ?X . It is clear
that gX ∈ p-hom(A,B). Define the strong overcast ω : A→ B
to take the value gX with probability π(X). To check this is
indeed a strong overcast, observe that for (f,y) ∈ tup>0(B),
there is a unique X such that (f,y) ∈ tup(BX), hence

E
g∼ω

fA(g−1(y)) = π(X)fA(g−1X (y)) = fB(y).

2p(H) ≤ p(G) for all graphs G and subgraphs H of G.

Define g : B → A to be the partial function mapping each
element of BX − {?X} identically to A, leaving it undefined
on ?X . It is clear that g ∈ p-hom(B,A). Consider the overcast
ω′ : B → (1− rε)A that is deterministically g. To check that
ω′ is indeed a strong overcast, let (f,x) ∈ tup(A). Then x is
covered by copies in BX for those X that do not intersect x,
hence

fB(g−1(x)) = E
X∼π

[
1[X ∩ x = ∅] · fA(x)

]
= fA(x) Pr

X∼π
(X ∩ x = ∅)

≥ fA(x) · (1− rε),

where the final inequality follows by (5), the union bound, and
the fact that |x| ≤ r. Hence by Lemma IV.7 applied to ω and
ω′,

A � B � (1− rε)A.

By construction p(G(B)) ≤ k + 1. As r is fixed and ε > 0
was arbitrary, this implies that A is strongly p-pliable.

Proof of Theorem I.2. Let G be a class of graphs that is
fractionally-treewidth-fragile and let A be a class of structures
with bounded arity with Gaifman graphs in G. Since treewidth
satisfies the assumptions of Lemma IV.17, we have that A is
strongly tw-pliable. By Corollary IV.14, Max-SolG admits a
PTAS.

If we only look at Gaifman graphs, one cannot use the
presented approach to go beyond fractionally-treewidth-fragile
classes. This is because [44, Lemma 6.1] together with the
above Lemma IV.17 implies that for a class of graph G and
an integer r, if A(r)

G denotes the class of all Q≥0-valued
structures of arity at most r and whose Gaifman graphs are in
G, thenA(r)

G is strongly tw-pliable if and only if G fractionally-
treewidth-fragile. In the full version [35], we give a simple
example of a class of structures (not parametrised by their
Gaifman graphs) that is strongly tw-pliable but not captured
by fractional-treewidth-fragility.
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