

Christopher Strachey

and the

Programming Research
Group

Fox (Computer Journal, 1961):

It is certainly true that mathematicians ... should know what computing is
about, and something about the nature of programming of machines. On the
other hand it would be a degenerate step to replace, say, the theory of
convergence, or even a more abstract topic in the mathematics syllabus, by a
course designed to produce a breed of professional programmers.
…

This might seem obvious, but there seems to be a great need to labour it. I
have the impression that some people think that programming ... is not only
more important than mathematics but can actually replace mathematics, that, in
a sense it is mathematics.

... the idea must be resisted strenuously that an ability to code a machine is
synonymous with the mathematical ability necessary to make the best use of
this remarkable equipment.

The Germ of the PRG

Response

Gill and Strachey:

Does not practical work on such a scale inevitably call for theoretical work on
studies of common principles -- in this case the theories of programming
languages, algorithms, compiling processes, list structures, recursive
functions etc. ...? Are these not mathematics?

[Computers] are destined to play a part so basic and revolutionary that a
correct appraisal of them is essential to our survival as an important nation.
If this is so then the professional mathematicians must play a leading part ...
as true mathematicians. They must do for computer programs what the
famous mathematicians of the past have done for real and complex
numbers.

Comeback

Fox:

Any undergraduate teaching of topics in “programming languages, compiling
processes, list structures, recursive functions, etc.” must be associated, in black
and white, with a syllabus. The Faculty is disinclined to alter a syllabus, and no
amount of Churchillian rhetoric about ... “our survival as an important nation”, “a
leading part”, “true mathematicians”, ... “famous mathematicians of the past” and
so on, will bring about this change.

But:

[Gill and Strachey] could also perform a valuable service by entering temporarily
the teaching world. ... I would be very happy to organize in 1963 a Summer
School on "Non-numerical algorithms", "Artificial Intelligence", or whatever title is
thought desirable A concrete approach of this kind is, I suggest, the only way
of getting their ideas across.

The Result

● Summer School happens in 1963

● Fox, L (ed): Advances in Programming and Non-Numerical Computation
(1966)

● Fox obtains SRC Research Grant to set up a research group at Oxford

● PRG starts in April 1966 with Strachey as leader

– Strachey, initially paid from the SRC grant, is “taken over” by the
University as an ad hominem Reader in August 1967 (at which time the
grant is extended till 1972).

Two Seminal Books

● Fox, L (ed): Advances in Programming and Non-Numerical Computation (Pergamon
1966)

● Steele, TB (ed): Formal Language Description Languages for Computer
Programming (North-Holland 1966)

– Proceedings of conference in Vienna (1964)
● Semantics by symbol manipulation (→Algol 68)
● Syntax, Chomsky languages etc.
● The CUCH (Bohm)
● λ-calculus (Landin)
● Semantics by functions (Strachey)

Strachey’s Objective:

“It has long been my personal view that the separation of practical and

theoretical work is artificial and injurious.

Much of the practical work done in computing, both in software and in hardware

design, is unsound and clumsy because the people who do it have not any clear

understanding of the fundamental design principles of their work.

Most of the abstract mathematical and theoretical work is sterile because it has

no point of contact with real computing.

One of the central aims of the Programming Research Group as a teaching and

research group has been to set up an atmosphere in which this separation

cannot happen.”

Initial Work
● “Theory”

– Tidying up CPL Papers (several CPL meetings)

– Fundamental Concepts in Programming Languages

– Compound Data Structures (Park)

– Continuing work on program schemata (Park)

– “Mathematical Semantics” – for first Diploma students

● “Practice”

– (Attempts to move CPL from Titan to Atlas)

– Experiments on KDF9
● Streams

– Transfer of other work to KDF9
● GPM
● BCPL

● Visitors

– Doug McIlroy works on coroutines (invents pipes)

McIlroy: “I went to Oxford for a year, solely so I could imbibe denotational semantics from the source."

Aho: “Doug McIlroy, though, I think is probably the author of translation...of pipes. That he had written, I think, this unpublished paper when he [was] at Oxford
back in the ‘60s....You should read this paper because it's UNIX pipes. One of the interesting things about Doug is that he has had these great, seminal ideas
which not everyone knows about. And whether his standards are so high that he doesn't publish them...or what? But it's remarkable...”

● (1968) JH Morris’s thesis (MIT): proves minimality of Y (Y is “worst possible” operator)

● PRG gets its own computer

– (32K store; paper tape; no disc)

– Prepare system on KDF9 in Jan, Feb

– One visit to Hemel Hempstead

– Machine arrives in March; system working within 48hrs.

● Dana Scott visits in Michaelmas Term

– Strachey meets Scott at WG2.2 in Vienna (April)

– Long weekly seminars in Michaelmas Term

1) “Type-theoretic alternative to CUCH, ISWIM, OWHY”

2) More explicit representation and derepresentation

3) Inverse limit construction for reflexive domain

● PRG plans to publish Technical Monographs

1969

Morris’s Thesis Proof

● Definition: A = B : A cnvβ B.

● Definition: A ⊃ B : For any E, whenever E[B] has a normal form,

 E[A] = E[B].

● Theorem: If A ⊃ FA, then A ⊃ YF.

● Corollary: If A = FA, then A ⊃ YF.

● (1968) JH Morris’s thesis(MIT): proves minimality of Y (Y is “worst possible” operator)

● PRG gets its own computer

– (32K store; paper tape; no disc)

– Prepare system on KDF9 in Jan, Feb

– One visit to Hemel Hempstead

– Machine arrives in March; system working within 48hrs.

● Dana Scott visits in Michaelmas Term

– Strachey meets Scott at WG2.2 in Vienna (April)

– Long weekly seminars in Michaelmas Term

1) “Type-theoretic alternative to CUCH, ISWIM, OWHY”

2) More explicit representation and derepresentation

3) Inverse limit construction for reflexive domains

● PRG plans to publish Technical Monographs

1969

The Modular One and OS1...
● Always used with IC interpreter, never the raw machine

● OS

“The most important single feature, however, is the hierarchical nature of its control structure, which avoids
the need for a special job-control language.”

– “Job Control Language” should be (subset of) the programming language

– Job invocation same as function call
● Difference: in case of error abandon job

● Streams (and later files)

“The input/output system uses a very general form of stream; the filing system is designed to have a clear
and logical structure.”

– a stream characterized by operations available on it

– file structure very similar to Unix’s
● inodes, hard and symbolic links, etc
● (eventually) predecessor directories (form of version control)

A Stream

let Next[S] = (S↓NEXT)[S]

and Out[S,x] be (S↓OUT)[S,x]

. . .

The Modular One and OS1...
● Always used with IC interpreter, never the raw machine

● OS

“The most important single feature, however, is the hierarchical nature of its control structure, which avoids
the need for a special job-control language.”

– “Job Control Language” should be (subset of) the programming language

– Job invocation same as function call
● Difference: in case of error abandon job

● Streams (and later files)

“The input/output system uses a very general form of stream; the filing system is designed to have a clear
and logical structure.”

– a stream characterized by operations available on it

– file structure very similar to Unix’s
● inodes, hard and symbolic links, etc
● (eventually) predecessor directories (form of version control)

1969
● PRG gets its own computer

– (32K store; paper tape; no disc)

– Prepare system on KDF9 in Jan, Feb

– One visit to Hemel Hempstead

– Machine arrives in March; system working within 48hrs.

● Dana Scott visits in Michaelmas Term

– Strachey meets Scott at WG2.2 in Vienna (April)

– Long weekly seminars in Michaelmas Term

1) “Type-theoretic alternative to CUCH, ISWIM, OWHY”

2) More explicit representation and derepresentation

3) Inverse limit construction for reflexive domains

● Plan PRG Technical Monographs

Later Work
● Theoretical

– Continuations (starts 1972) (Wadsworth)

– Semantics of Algol 60 (Mosses)

– Monographs

– Lecture courses

– Proof Rules and Math. Semantics (Ligler)

– Adams Essay (Strachey and Milne)

● Practical

– OS6 / OSPub

– Design of Instruction Sets (McGregor)

– Semantics & Pragmatics of λ-calculus (graph-reduction) (Wadsworth)

– Compiler Generator (Mosses)

– (Implementation of PAL) (Turner)

→SASL→KRC→Miranda (→Haskell)

– Computing Mechanisms (Derret)

PRG-10: The Varieties of Programming Language

PRG-10: The Varieties of Programming Language

Later Work
● Theoretical

– Continuations (starts 1972) (Wadsworth)

– Semantics of Algol 60 (Mosses)

– Monographs

– Lecture courses

– Proof Rules and Math. Semantics (Ligler)

– Adams Essay (Strachey and Milne)

● Practical

– OS6 / OSPub

– Design of Instruction Sets (McGregor)

– Semantics & Pragmatics of λ-calculus (graph-reduction) (Wadsworth)

– Compiler Generator (Mosses)

– (Implementation of PAL) (Turner)

→SASL→KRC→Miranda (→Haskell)

– Computing Mechanisms (Derret)

Later Work
● Theoretical

– Continuations (starts 1972) (Wadsworth)

– Semantics of Algol 60 (Mosses)

– Monographs

– Lecture courses

– Proof Rules and Math. Semantics (Ligler)

– Adams Essay (Strachey and Milne)

● Practical

– OS6 / OSPub

– Design of Instruction Sets (McGregor)

– Semantics & Pragmatics of λ-calculus (graph-reduction) (Wadsworth)

– Compiler Generator (Mosses)

– (Implementation of PAL) (Turner)

→SASL→KRC→Miranda (→Haskell)

– Computing Mechanisms (Derret)

What was he thinking? (1970)

 Is Computing Science? — Girton Centenary Symposium, 1970

What was he thinking? (1970)

 Is Computing Science? — Girton Centenary Symposium, 1970

What was he thinking? (1973)
1. Current State of Programming Language Theory

 1.1 Formal Semantics [the longest subsection]

 1.2 Proofs of Properties of Programs [State of Art — Hoare]

 1.3 Programming Methodology ["In the absence of science we have to fall back on art."]

2. Influence of Programming Theory on Programming Practice

 2.1 Choice of Programming Language

 2.2 Size of Programs [Modularity; but problems of scale -- not much help from theory yet]

3. Possible Technical Improvements

 3.1 Technical Problems and Myths

 (a) Unsuitable language facilities [justified concern]

 (b) Inefficient object code [not justified]

 (c) Compiling slow [no comment]

 (d) Inadequate debugging facilities [justified]

 3.2 Technical Remedies

 (a) Better languages [not designed by amateurs]

 (b) Better compilers and object code [designed together]

4. Practical and Human Problems

 4.1 Programming Style

 4.2.Toughness [Don't put up with inadequate equipment etc.]

5. Prospects

 No overnight change [e.g. jet engines co-existing with props and turbo-props]

 How Can we Put Programming Theory into Practice? — Loughborough Tech. July 1973

