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Abstract

Diffusion models are a class of generative models that have achieved remarkable

results in image generation, protein modeling, 3D generation, and many other

complex generation tasks. Recent work has established their applicability to

sequential decision-making, exhibiting unusual properties. Most notably, it is

possible to train a diffusion model on reward-agnostic demonstrations and produce

plans optimizing a given reward function without any need for retraining, via

conditional sampling. Meanwhile, the same result can be attained by directly

training the diffusion model on already-optimal (expert) trajectories. The existence

of these two ways of achieving the same goal motivate us to ask the question:

can we go the other direction, and reconstruct the reward function from a reward-

agnostic base model and an expert model? To answer this question, we first define

the notion of relative reward function of two diffusion models and show conditions

under which it exists and is unique. We then devise a practical learning algorithm

for extracting the relative reward function of two diffusion models by aligning

the gradients of a neural network to the difference of their outputs. Our method

empirically finds correct reward functions in different navigation environments. In

addition, we verify that, in high-dimensional locomotion environments, our learned

rewards can be plugged into lower-performance diffusion models to improve their

performance through conditional sampling. Finally, we demonstrate that our

approach generalizes beyond sequential decision-making by applying it to two

large-scale image generation models of 859m parameters, and extracting a reward

function that can distinguish harmful images from harmless ones.
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1 Introduction

Recent work [9, 1] demonstrates that diffusion models – which display remarkable performance

on image generation – are similarly applicable to sequential decision-making. Leveraging a well-

established framing of Reinforcement Learning (RL) as conditional sampling [16], Janner et al. [9]

show that diffusion models can be used to parameterize a reward-agnostic prior distribution over

trajectories, learned from offline demonstrations alone. Using classifier guidance [7], the diffusion

model can then be steered with a neural network computing a (cumulative) reward function to generate

near-optimal behaviors in various sequential decision-making tasks.

Diffusion models can hence achieve near-optimal behaviors in sequential decision-making tasks

through either (a) training an expert diffusion model on a distribution of optimal trajectories, or (b)

by training a base diffusion model on a distribution of lower-quality or reward-agnostic trajectories

and then steering it with the given reward function. This suggests that the reward function can be

extracted by comparing the distributions produced by the base and expert diffusion models.

In this work, we introduce a method for extracting a reward function from pre-trained decision-making

diffusion models. In contrast to prior work on reward learning [24, 18, 30, 4], our method does not

require environment access, simulators, or iterative policy optimization. Further, it is agnostic to the

architecture of the diffusion models used, being applicable to continuous and discrete models, and

making no assumption on their architecture.

We first derive a notion of a relative reward function of two diffusion models. We show that, under

certain assumptions on the trajectory distribution and diffusion sampling process, our notion of

reward exists and is unique, up to an additive constant. Further, the relative reward corresponds to

the true reward under the probabilistic RL framework [16]. Finally, we propose a practical learning

algorithm for extracting the relative reward function of two diffusion models by aligning the gradients

of the learned reward function with the differences of the outputs of the base and expert models.

We empirically evaluate our reward learning method along three axes. Firstly, we show it is able to

recover the goals of the expert model in a long-horizon navigation task. Secondly, we find that the

learned rewards can improve the performance of low-reward models through conditional sampling.

Finally, we apply our method to Stable Diffusion [22], a 859m-parameter image generation model,

and show it is able to extract a reward function distinguishing harmful images from unharmful ones.

In light of the original theoretical and methodological contributions developed during this project, a

version of this work has also been submitted to the 2023 Conference on Neural Information Processing

Systems (NeurIPS 2023).
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Figure 1: Our method learns to assign rewards to trajectories by comparing two diffusion models. In
this example, blue indicates lower predicted reward, and pink indicates a higher predicted reward.
We see that, at the start of generation, the assigned rewards are similar for the base and the expert
model, whose goal is reaching the green square. As the trajectories become more and more denoised,
however, our method assigns them very different rewards.

2 Background

Our method leverages mathematical properties of diffusion-based planners to extract reward functions

from them. To put our contributions into context, we give a brief overview of the probabilistic

formulation of Reinforcement Learning presented in [16], then of diffusion models, and finally of

how they come together in decision-making diffusion models [9].

2.1 Reinforcement Learning as Probabilistic Inference

Levine [16] provides an in-depth exposition of existing methods for approaching sequential decision-

making from a probabilistic and causal angle using Probabilistic Graphical Models (PGM) [10]. We

review some essential notions to understand this perspective on RL.

Denote by ∆X the set of distributions over a set X .

Markov Decision Process (MDP): a tuple ⟨S,A, T , r, s0, T ⟩ consisting of a state space S , an

action space A, a transition function T : S × A → ∆S , a reward function r : S × A → ∆R≥0
, an

initial state s0, and an episode length T .

Evolution of an MDP: The MDP starts at an initial state s0 ∈ S, and evolves by sampling

at ∼ π(st), and then st+1 ∼ T (st, at) for t ≥ 0. The reward received at time t is rt ∼ r(st, at).

The episode ends at t = T . τ = ((st, at))
T
t=0 is called a trajectory.

The framework in [16] recasts such an MDP as a PGM consisting of a sequence of states (st)Tt=0,

actions (at)Tt=0 and optimality variables (Ot)
T
t=0. The reward function r is not explicitly present.
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Figure 2: Probabilistic Graphical Models for probabilistic Reinforcement Learning

Instead, it is encoded in the optimality variables via the relation: Ot ∼ Ber(e−r(st,at)). See Figure

2b for an illustration. The problem of producing plans of high reward then reduces to sampling from

p(τ |O1:T ).

One can apply Bayes’s Rule to obtain:

p(τ |O1:T ) ∝ p(τ) · p(O1:T |τ) (1)

which factorizes the distribution of optimal trajectories (up to a normalizing constant) as a prior

p(τ) over trajectories and a likelihood term p(O1:T |τ). Observe that, from the definition of O1:T and

the PGM factorization (Figure 2b), we have p(O1:T |τ) = e−
∑

t r(st,at). Hence, −log p(O1:T |τ) (a

negative log-likelihood) corresponds to the cumulative reward of the trajectory τ :

−log p(O1:T |τ) =
∑
t

r(st, at) (2)

2.2 Overview of Diffusion Models

Janner et al. [9] leverage the factorization in (1) to sample from p(τ |O1:T ), using diffusion models

[26] to parameterize the prior p(τ) over trajectories. We give a brief account of the continuous-time

formulation of diffusion models, often used today in image generation [28, 27, 22, 25], and classifier

guidance, a conditional sampling method.

2.3 Diffusion Models in Continuous Time

At a high level, diffusion models work by adding noise to data x ∈ Rn (forward process), and then

learning to denoise it (backward process).

The forward noising process in continuous time follows the Stochastic Differential Equation (SDE):

dxt = f(xt, t)dt+ g(t)dwt (3)
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where f is a function that is Lipschitz, w is a standard Brownian Motion [15] and g is a (continuous)

noise schedule, which regulates the amount of noise added to the data during the forward process.

Song et al. [28] then use a result of Anderson [2] to write the SDE satisfied by the reverse process of

(3), denoted x̄t, as:

dx̄t = [f(x̄t, t)− g(t)2∇xlog pt(x̄t)] dt+ g(t) dw̄t (4)

Here pt(x) denotes the marginal density function of the forward process xt at time t, and w̄ is a

reverse Brownian motion (see [2]). The diffusion model is a neural network sΘ(xt, t) with parameters

Θ that is trained to approximate∇xlog pt(xt), called the score of the distribution of xt. The network

sΘ(xt, t) can then be used to generate new samples from p0 by taking x̄T ∼ N (0, I) for some T > 0,

and simulating (4) backwards in time to arrive at x̄0 ≈ x0, with the score term substituted for the

neural network sΘ:

dx̄t = [f(x̄t, t)− g(t)2sΘ(x̄t, t)] dt+ g(t) dw̄t (5)

This formulation is essential for deriving existence results for the relative reward function of two

diffusion models in Section 3, as it allows for conditional sampling. For example, to sample from

p(x0|y) ∝ p(x0) · p(y|x0), where y ∈ {0, 1}, the sampling procedure can be modified to use

∇xlog p(xt|y) ≈ sΘ(xt, t) + ∇xρ(x, t) instead of sΘ(x̄t, t). Here, ρ(x, t) is a neural network

approximating log p(y|xt). The gradients of ρ are multiplied by a small constant ω, called the

guidance scale. The resulting guided reverse SDE is as follows:

dx̄t = [f(x̄t, t)− g(t)2[sΘ(x̄t, t) + ω∇xρ(x̄t, t)]] dt+ g(t) dw̄t (6)

This method is called classifier guidance, and was introduced in [26]. Informally, it allows for steering

a diffusion model to produce samples with some property y by "gradually pushing the samples" in

the direction that maximizes the output of a classifier predicting p(y|x).

2.4 Planning with Diffusion

The above shows how sequential decision-making can be framed as sampling from a posterior

distribution p(τ |O1:T ) over trajectories. Section 2.3 shows how a diffusion model p(x0) can be

combined with a classifier to sample from a posterior p(x0|y), without any re-training. These two

observations point us to the approach in Diffuser, of Janner et al. [9]: using a diffusion model to

model a prior p(τ) over trajectories, and a reward prediction function ρ(x, t) ≈ p(O1:T |τt) to steer

this diffusion model. Hence, steering decision-making diffusion models in this way allows for

approximately sampling from p(τ |O1:T ), which produces (near-)optimal trajectories.
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The policy produced by Diffuser denoises, at every timestep, fixed-length sequences of future

states and actions using a diffusion model, taking only the first action of the sequence to act in the

environment.

3 Methods

As we established in the previous section, in the probabilistic setting for RL, the (cumulative) return∑
t r(st, at) of a trajectory τ = ((st, at))

T
t=1 corresponds directly with the output of the classifier

p(y|x) used for classifier guidance (Section 2.3). Hence, we consider the problem of finding p(y|x)

(i.e. p(O1:T |τ)) in order to recover the cumulative reward for any given trajectory τ . Further,

in Section 3.4, we show how the single-step reward can be computed by choosing a particular

parametrization for p(y|x).

3.1 Problem Setting

We consider a scenario where we have two decision-making diffusion models: a base model s(1)ϕ that

generates reward-agnostic trajectories, and an expert model s(2)Θ that generates trajectories optimal

under some unknown reward function r. Our objective is to learn a reward function ρ(x, t) such that,

if ρ is used to steer the base model s(1)ϕ through classifier guidance, we obtain a distribution close to

that of the expert model s(2)Θ . From the above discussion, such a function ρ would correspond to the

notion of relative reward in the probabilistic RL setting.

In the following, we present theory showing that:

1. In an idealized setting where s(1) and s(2) have no approximation error (and are thus conservative

vector fields), there exists a unique function ρ that exactly converts s(1) to s(2) through classifier

guidance.

2. In practice, we cannot expect such a classifier to exist, as approximation errors might result in

diffusion models corresponding to non-conservative vector fields.

3. However, the functions ρ that best approximate the desired property (to arbitrary precision ε) do

exist. These are given by Def. 3.4 and can be obtained through a projection using an L2 distance.

4. The use of an L2 distance naturally results in an L2 loss for learning ρ through Gradient Descent.

3.2 A Result on Existence and Uniqueness

We now provide a result saying that, once s
(1)
ϕ and s

(2)
Θ are fixed, we obtain a condition on the

gradients of ρ that, if met, would allow us not only to match the distributions of s(1)ϕ and s
(2)
Θ , but

also their entire denoising processes, with probability 1 (i.e. almost surely, a.s.).
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In the theorem, h plays the role of the gradients ∇xρ(xt, t). Going from time t = 0 to t = T in the

theorem corresponds to solving the backward SDE (4) from t = T to t = 0, and f in the theorem

corresponds to the drift term (i.e. coefficient of dt) of (4). For proof, see Appendix A.

Theorem 3.1 (Existence and Uniqueness). Let T > 0. Let f (1) and f (2) be functions from Rn× [0, T ]

to Rn that are Lipschitz, and g : [0, T ] → R≥0 be bounded and continuous with g(0) > 0. Fix a

probability space (Ω,F ,P), and a standard Rn-Brownian Motion (wt)t≥0.

Consider the Itô SDEs:

dx
(1)
t = f (1)(x

(1)
t , t) dt+ g(t) dwt (7)

dx
(2)
t = f (2)(x

(2)
t , t) dt+ g(t) dwt (8)

dxt = [f (1)(xt, t) + h(xt, t)] dt+ g(t) dwt,where h is Lipschitz (9)

and fix an initial condition x
(1)
0 = x

(2)
0 = x0 = z, where z is a random variable with E[||z||22] <∞.

Then (7), (8), and (9) have almost surely (a.s.) unique solutions x(1), x(2) and x with a.s. continuous

sample paths. Furthermore, there exists an a.s. unique choice of h such that xt = x
(2)
t for all t ≥ 0,

a.s., which is given by

h(x, t) = f (2)(x, t)− f (1)(x, t). (10)

In all diffusion model methods we are aware of, the drift and noise terms of the backward process

indeed satisfy the pre-conditions of the theorem, under reasonable assumptions on the data distribution,

and using a network with smooth activation functions like Mish [17] or GeLU [6].

Therefore, Theorem 3.1 tells us that, if we were free to pick the gradients ∇xρ(xt, t), setting them to

f (2)(xt, t)− f (1)(xt, t) would be the “best” choice: it is the only choice resulting in guided samples

exactly reproducing the whole process x(2) (and, in particular, the distribution of x(2)
0 ). We will now

see that, in an idealized setting, there exists a unique function ρ satisfying this criterion. We start by

recalling the concept of a conservative vector field, from multivariate calculus, and how it relates to

gradients of continuously differentiable functions.

Definition 3.2 (Conservative Vector Field, Definition 7.6 in [14]). We say that a vector field f is

conservative if it is the gradient of a continuously differentiable function Φ,

f(x) = ∇xΦ(x)

for all x in the domain of f . The function Φ is called a potential function of f .

Suppose we had access to the ground-truth scores s(1)true(x, t) and s
(2)
true(x, t) of the forward processes for

the base and expert models (i.e. no approximation error). Then they are equal to∇xlog p
(1)
t (x) and

8



∇xlog p
(2)
t (x), respectively. If we also assume p

(1)
t (x) and p

(2)
t (x) are continuously differentiable,

we have that, by Definition 3.2, the diffusion models are conservative for each t > 0 (we exclude

t = 0 to ensure pt is supported in all of Rn). Thus, their difference is also conservative, i.e. the

gradient of a continuously differentiable function.

Hence, by the Fundamental Theorem for Line Integrals (Th. 7.2 in [14]), there exists a unique ρ

satisfying∇xρ(x, t) = s
(2)
true(x, t)− s

(1)
true(x, t), up to an additive constant, given by the line integral

ρ(x, t) =

∫ x

xref

[s
(2)
true(x

′, t)− s
(1)
true(x

′, t)] · dx′, (11)

where xref is some arbitrary reference point, and the line integral is path-independent.

In practice, however, we cannot guarantee the absence of approximation errors, nor that the diffusion

models are conservative.

3.3 Relative Reward Function of Two Diffusion Models

To get around the possibility that s(1) and s(2) are not conservative, we may instead look for the

conservative field best approximating s(2)(x, t)− s(1)(x, t) in L2(Rn,Rn) (i.e. the space of square-

integrable vector fields, endowed with the L2 norm). Using a well-known fundamental result on

uniqueness of projections in L2 (Th. A.8), we obtain the following:

Proposition 3.3 (Optimal Relative Reward Gradient). Let s(2)Θ and s
(1)
ϕ be any two diffusion models

and t ∈ (0, T ], with the assumption that s(2)Θ (·, t)− s
(1)
ϕ (·, t) is square-integrable. Then there exists

a unique vector field ht given by

ht = argmin
f∈Cons(Rn)

∫
Rn

||f(x)− (s
(2)
Θ (x, t)− s

(1)
ϕ (x, t))||22 dx (12)

where Cons(Rn) denotes the closed span of gradients of smooth W 1,2 potentials. Furthermore,

for any ε > 0, there is a smooth, square-integrable potential Φ with a square-integrable gradient

satisfying: ∫
Rn

||∇xΦ(x)− ht(x)||22 dx < ε (13)

We call such an ht the optimal relative reward gradient of s(1)ϕ and s
(2)
Θ at time t.

For proof of Proposition 3.3 see Appendix A.3. It is important to note that for the projection to be

well-defined, we required an assumption regarding the integrability of the difference of the diffusion

models. Without this assumption, the integral would simply diverge.
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The result in Proposition 3.3 tells us that we can get arbitrarily close to the optimal relative reward

gradient using scalar potentials’ gradients. Therefore, we may finally define the central notion in this

paper:

Definition 3.4 (ε-Relative Reward Function). For an ε > 0, an ε-relative reward function of diffusion

models s(1)ϕ and s
(2)
Θ is a function ρ : Rn × [0, T ]→ R such that

∀t ∈ (0, T ] :

∫
Rn

||∇xρ(x, t)− ht(x)||22 dx < ε (14)

where ht denotes the optimal relative reward gradient of s(1)ϕ and s
(2)
Θ at time t.

3.4 Extracting Reward Functions

We now set out to actually approximate the relative reward function ρ. Definition 3.4 naturally

translates into an L2 training objective for learning ρ:

LRRF(θ) = Et∼U [0,T ],xt∼pt

[
||∇xρθ(xt, t)− (s

(2)
Θ (xt, t)− s

(1)
ϕ (xt, t))||22

]
(15)

where pt denotes the marginal at time t of the forward noising process.

We parameterize ρ using a neural network (more specifically, a UNet architecture [23]) and optimize

this objective via Empirical Risk Minimization and Adam [12]. See Algorithm 1 for a version

assuming access to the diffusion models and their training datasets, and Algorithm 2 in Appendix B

for one which does not assume access to any pre-existing dataset. Our method requires no access to

the environment or to a simulator. Our algorithm requires computing a second-order mixed derivative

Dθ(∇xρ(x, t)) ∈ Rm×n (where m is the number of parameters θ), for which we use automatic

differentiation in PyTorch [20].

Recovering per-time-step rewards. We can parameterize ρ using a single-time-step neural network

gθ(s, a, t) as ρ(τt, t) = 1
N

∑N
i=1 gθ(s

i
t, a

i
t, t), where N is the horizon and τt denotes a trajectory at

diffusion timestep t, and sit and ait denote the ith state and action in τt. Then, gθ(s, a, 0) predicts a

reward for a state-action pair (s, a).

4 Experiments

In this section, we conduct empirical investigations to analyze the properties of relative reward

functions in practice. Our experiments focus on three main properties we would expect from relative

reward functions. Firstly, the learned rewards should be compatible with the goals of the expert

agent. Secondly, it should be possible to steer the base model using the learned reward and make
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Algorithm 1: Relative reward function training.

Input: Base s(1) and expert s(2) diffusion models, dataset D,
number of iterations I .

Output: Relative reward estimator ρθ.
Initialize reward estimator parameters θ.
for j ∈ {1, ..., I} do

Sample batch: X0 = [x
(1)
0 , ...,x

(N)
0 ] from D

Sample times: t = [t1, ..., tN ] independently in U(0, T ]
Sample forward process: Xt ← [x

(1)
t1 , ...,x

(N)
tN ]

Take an optimization step on θ according to L̂RRF(θ) =
1
N

∑N
i=1||∇xρθ(x

(i)
ti , ti)− (s

(2)
Θ (x

(i)
ti , ti)− s

(1)
ϕ (x

(i)
ti , ti))||

2
2

end
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Figure 3: Learned rewards for
base and expert diffusion models
from Stable Diffusion (Sec. 4).

it achieve higher ground-truth rewards. Finally, it should be possible to learn relative rewards in

domains beyond decision-making, as they are defined for any pair of diffusion models.

4.1 Learning Correct Reward Functions from Long-Horizon Plans

Maze2D [3] features various environments which involve controlling the acceleration of a ball to

navigate it towards various goal positions in 2D mazes.

Implementation. To conduct our experiments, we generate multiple datasets of trajectories in each

of the 2D environments, following the data generation procedure from D4RL [3], except sampling

start and goal positions uniformly at random (as opposed to only at integer coordinates, as is done in

the original library).

For four maze environments with different wall configurations (depicted in Figure 4), we first train

a base diffusion model on a dataset of uniformly sampled start and goal positions, representing

reward-agnostic behavior. For each environment and across five random seeds, we then train eight

expert diffusion models on datasets with fixed goal positions. For each of the resulting 32 expert

models, we train a relative reward estimator ρθ, implemented as an MLP, via gradient alignment, as

described in Alg. 1.

Discriminability results. We assess the effectiveness of the proposed reward learning method in

assigning higher rewards to expert trajectories. We reserve a validation set comprising 10% of the

data for testing purposes and compute the estimated rewards for samples from this set. We find that

the distributions are clearly separated.

To evaluate this quantitatively, we train a logistic regression classifier per expert model on a balanced

dataset to label trajectories (as base or expert) using the predicted reward. We repeat this process
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Figure 4: Maze2D learned reward heatmaps. 8 denotes the ground-truth goal position of the expert
diffusion model. For more examples, see Appendix C.

for each goal position with 5 different seeds, and average accuracies across seeds. The achieved

accuracies range from 65.33% to 97.26%, with a median of 84.49% and a mean of 83.76%. These

results demonstrate that the learned reward effectively discriminates expert trajectories.

Visualization of results. To visualize the rewards, we use our model to predict rewards for fixed-

length sub-trajectories in the base dataset. We then generate a 2D heatmap by averaging the rewards

of all sub-trajectories that pass through each grid cell. Fig. 4 displays some of these heatmaps.

We observe that the network accurately captures the rewards, with peaks occurring at the true goal

position of the expert dataset in 78.75% ± 8.96% of the cases for simpler mazes (maze2d-open-v0

and maze2d-umaze-v0), and 77.50% ± 9.15% for more advanced mazes (maze2d-medium-v1 and

maze2d-large-v1). Overall, the network achieves an average success rate of 78.12% ± 6.40%.

The aforementioned margins are 95% confidence intervals, computed across 5 random seeds as

p̂± 1.96
√

p̂ (1−p̂)
n , where p̂ is the fraction of correct goal predictions, and n is the total number of

predictions.

4.2 Steering diffusion models to improve their performance

Having established the effectiveness of relative reward functions in recovering expert goals in the

low-dimensional Maze2D environment, we now examine their applicability in higher-dimensional

control tasks. Specifically, we evaluate their performance in the HalfCheetah, Hopper, and Walker-

2D environments from the D4RL offline locomotion suite [3]. These tasks involve controlling a

multi-degree-of-freedom 2D robot to move forward at the highest possible speed.

Given that the state spaces of these environments are high-dimensional, visualizing the rewards as

in Maze2D becomes impractical. Instead, we assess the learned reward functions by examining

whether they can enhance the performance of a weak base model when used for classifier-guided

steering. If successful, this provides evidence that our learned relative rewards can indeed bring the

base trajectory distribution closer to the expert distribution.

Implementation. In these locomotion environments, the notion of reward is primarily focused on

moving forward. Therefore, instead of selecting expert behaviors from a diverse set of base behaviors,

our reward function aims to guide a base model of below-average performance towards producing
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Table 1: Diffuser performance with different steer-
ing methods, on three locomotion environments.

Environment Unsteered Discriminator Reward (Ours)
Halfcheetah 30.38± 0.38 30.41± 0.38 31.65 ± 0.32

Hopper 24.67± 0.92 25.12± 0.95 27.04 ± 0.90
Walker2d 28.20± 0.99 27.98± 0.99 38.40 ± 1.02

Mean 27.75 27.84 32.36

Table 2: Results for ablation on generalization
in locomotion.

Environment Unsteered Reward (Ours, Ablation)
Halfcheetah 31.74± 0.37 33.06± 0.31

Hopper 22.95± 0.81 25.03± 0.79
Walker2d 30.44± 1.01 42.40± 1.07

Mean 28.38 33.50

better-performing trajectories. Specifically, we train the base models using the medium-replay

datasets from D4RL, which yield low rewards, and the expert models using the expert datasets,

which yield high rewards. The reward functions are then fitted using gradient alignment as described

in Algorithm 1. Finally, we use classifier guidance (Section 2.3) to steer each base model using the

corresponding learned reward function.

Results. We sample 512 independent trajectories of the base diffusion model steered by the learned

reward, using various guidance scales ω (Eq. 6). We use the unsteered base model as a baseline.

We also compare our approach to a discriminator with the same architecture as our reward function,

trained to predict whether a trajectory originates from the base or expert dataset. We train our

models with 5 random seeds, and run the 512 independent rollouts for each seed. Steering the base

models with our learned reward functions consistently leads to statistically significant performance

improvements across all three environments. Notably, the Walker2D task demonstrates a 36.17%

relative improvement compared to the unsteered model. This outcome suggests that the reward

functions effectively capture the distinctions between the two diffusion models. See Table 1.

4.3 Learning a reward-like function for Stable Diffusion

The notion of a reward function is native to sequential decision-making problems. Still, our analysis

in Section 3 shows a way in which it may be extended to more general domains through the concept

of relative reward functions. We now set out to evaluate this empirically in one of the domains where

diffusion models have displayed the most outstanding performance: image generation. We look at

two 859m-parameter diffusion models widely used in practice: Stable Diffusion [22], a very popular

general-purpose image generation model; and Safe Stable Diffusion [25], a modified version of Stable

Diffusion tailored to preventing shocking images from being generated.

Models. The models under consideration are latent diffusion models, where the denoising process

occurs in a latent space and is subsequently decoded into an image. These models employ classifier-

free guidance [8] during sampling and can be steered using natural language prompts, using CLIP

embeddings [21] in the latent space. Specifically, Safe Stable Diffusion [25] introduces modifications

to the sampling loop of the open-source model proposed by Rombach et al. [22], without altering

the model’s actual weights. In contrast to traditional classifier-free guidance that steers samples
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toward a given prompt, the modified sampler of Safe Stable Diffusion also directs samples away from

undesirable prompts [25, Sec. 3].

Prompt dataset. To investigate whether our reward networks can detect a "relative preference"

of Safe Stable Diffusion over the base Stable Diffusion model for harmless images, we use the I2P

prompt dataset introduced by Schramowski et al. [25]. This dataset consists of prompts specifically

designed to deceive Stable Diffusion into generating imagery with unsafe content. However, we use

the dataset to generate sets of image embeddings rather than actual images, which serve as training

data for our reward networks. A portion of the generated dataset containing an equal number of base

and expert samples is set aside for model evaluation.

Separating Image Distributions. Despite the complex and multimodal nature of the data distribu-

tion in this context, we observe that our reward networks are capable of distinguishing between base

and expert images with over 90% accuracy, despite not being explicitly trained to do classification.

The reward histogram is visualized in Figure 3.

Qualitative Evaluation. We find that images that receive high rewards correspond to safe content,

while those with low rewards typically contain unsafe or disturbing material, including hateful or

offensive imagery. To illustrate this, we sample batches from the validation set, compute the rewards

for each image, and decode the image with the highest reward and the one with the lowest reward

from each batch. Considering the sensitive nature of the generated images, we blur the latter set as an

additional safety precaution. Example images can be observed in Figure 5.

4.4 Ablations

Dataset size in Maze2D. The main experiments in Maze2D were conducted with datasets of 10

million transitions. To evaluate the sensitivity of our method to dataset size, we conducted a small

ablation study of 24 configurations with datasets that contained only 10 thousand transitions, hence

on the order of tens of trajectories. The accuracy in this ablation was at 75.0% (as compared to

78.12% in the main experiments). This ablation indicates that our method can perform well even

when given little data.

Generalization in Locomotion. We conducted an ablation study to investigate whether the learned

reward function generalizes to other base models, i.e. yields significant performance increases when

used to steer a base model that was not part of the training process. We trained additional base models

with new seeds and steered these base diffusion models with the previously learned reward function.

We report results for this ablation in Table 2, and find that relative improvements are comparable to

14



Figure 5: The 3 images with the highest learned reward in their batch (“safe”), and 3 with the lowest
reward (“unsafe”, blurred), respectively.

those in Table 1 and therefore conclude that our learned reward function generalizes to new base

diffusion models.

5 Limitations and Further Work

The main limitation of this work is the extent of the experiments. Further work could hence evaluate

our method’s performance in a wider set of tasks and domains. In addition, we believe some of our

theoretical results could be strengthened; Proposition 3.3 in particular. Finally, a deeper study of the

implications of our work in AI Safety is left to further work.

6 Conclusion

To the best of our knowledge, our work introduces the first method for extracting relative reward func-

tions from diffusion models. We provide theoretical justification for our approach and demonstrate its

effectiveness in diverse domains and settings. We expect that our method has the potential to facilitate

the learning of reward functions from large pre-trained models, improving our understanding and the

alignment of the generated outputs.
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We use the following technologies and repositories as components in our code: PyTorch [20], NumPy
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Appendix A Details on Main Derivation

A.1 Existence and Uniqueness of Strong Solutions to Stochastic Differential Equations

Theorem A.1 (Existence and uniqueness theorem for SDEs, c.f. pp. 66 of Øksendal and Øksendal [19]). Let

T > 0 and b(·, ·) : [0, T ]× Rn → Rn, σ(·, ·) : [0, T ]× Rn → Rn×m be measurable functions satisfying

|b(t, x)|+|σ(t, x)|≤ C(1 + |x|); x ∈ Rn, t ∈ [0, T ]

for some constant C, (where |σ|2=
∑

|σij |2 ) and such that

|b(t, x)− b(t, y)|+|σ(t, x)− σ(t, y)|≤ D|x− y|; x, y ∈ Rn, t ∈ [0, T ]

for some constant D. Let Z be a random variable which is independent of the σ-algebra F (m)
∞ generated by

Bs(·), s ≥ 0 and such that

E
[
|Z|2

]
< ∞

Then the stochastic differential equation

dXt = b (t,Xt) dt+ σ (t,Xt) dBt, 0 ≤ t ≤ T,X0 = Z

has a unique t-continuous solution Xt(ω) with the property that Xt(ω) is adapted to the filtration FZ
t generated

by Z and Bs(·); s ≤ t and

E

[∫ T

0

|Xt|2 dt
]
< ∞.

Remark A.2. In the above, the symbol | · | is overloaded, and taken to mean the norm of its argument. As

everything in sight is finite-dimensional, and as all norms in finite-dimensional normed vector spaces are

equivalent (Theorem 2.4-5 in Kreyszig [13]), the stated growth conditions do not depend on the particular norm

chosen for Rn.

Corollary A.3. Fix a Brownian Motion w and let (Ft)t≥0 be its natural filtration. Consider an SDE dxt =

f(xt, t) + g(t)dwt with initial condition z ∈ L2 independent of F∞ Suppose f : Rn × [0, T ] → Rn is

Lipschitz with respect to (Rn × [0, T ],Rn) and g : [0, T ] → R≥0 is continuous and bounded.

Then the conclusion of A.1 holds and there is an a.s. unique (Fz
t )t≥0-adapted solution (xt)t≥0 having a.s.

continuous paths that is adapted to F , where (Fz
t )t≥0 is defined as in A.1.

Proof. Firstly, note that, as f and g are continuous, they are Lebesgue-measurable. It remains to check the

growth conditions in A.1.

As f is Lipschitz, there exists C1 (w.l.o.g. C1 > 1) such that, for any x,y ∈ Rn and t, s ∈ [0, T ]:

|f(x, t)− f(y, s)| ≤ C1(|x− y|+|t− s|) (16)

≤ C1(|x− y|+T ) (17)
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In particular, taking y = 0 and s = 0, we obtain that |f(x, t)− f(0, 0)|≤ C1(|x|+T ). Let M = |f(0, 0)|/C1.

Then, by the triangle inequality, |f(x, t)|≤ C1(|x|+T +M).

As g is bounded, there exists C2 > 0 such that |g(t)|≤ C2, and so for any t, s ∈ [0, T ], we have:

|g(t)− g(s)|≤ 2C2 (18)

Hence we have, for t ∈ [0, T ] and x,y ∈ Rn:

|f(x, t)|+|g(t)|≤ ((T +M)C1 + C2)(1 + |x|) |f(x, t)− f(y, t)|≤ C1|x− y| (19)

which yields the growth conditions required in A.1, and the conclusion follows.

A.2 Proof of 3.1

Proof of Theorem 3.1. We reference the fundamental result on the existence and uniqueness of strong solutions

to SDEs, presented in Section 5.2.1 of [19] and reproduced in Appendix A. In particular, Corollary A.3 shows

that the Existence and Uniqueness Theorem A.1 applies for SDEs 7 and 8, by our assumptions on f (1), f (2) and

g. As also we restrict our attention to h that are Lipschitz, and sums of Lipschitz functions are also Lipschitz, the

corollary also applies to SDE 9. This establishes the existence of a.s. unique (adapted) a.s. continuous sample

paths x(1), x(2) and x.

Denote h1(x, t) = f (2)(x, t) − f (1)(x, t). The choice h = h1 makes SDE 9 have the same drift and noise

coefficients as SDE 8, and so, by the uniqueness of solutions we established, it follows that x(2)
t = xt for all t,

a.s.

Now suppose we have a Lipschitz-continuous h̃ which yields an a.s. unique, t-continuous solution (x̃t)t≥0 that

is indistinguishable from x(2). (i.e. equal for all t, a.s.). We show that h̃ = h1.

As x̃ and x(2) are indistinguishable and satisfy SDEs with the same noise coefficient, we obtain a.s., for any

t ∈ [0, T ]:

0 = x̃t − x
(2)
t (20)

=

(∫ t

0

f (1)(x̃s, s) + h̃(x̃s, s)ds+

∫ t

0

g(s) dws

)
−

(∫ t

0

f (2)(x(2)
s , s)ds+

∫ t

0

g(s) dws

)
(21)

=

∫ t

0

f (1)(x̃s, s) + h̃(x̃s, s)ds−
∫ t

0

f (2)(x(2)
s , s)ds (22)

=

∫ t

0

f (1)(x(2)
s , s) + h̃(x(2)

s , s)ds−
∫ t

0

f (2)(x(2)
s , s)ds (23)

=

∫ t

0

h̃(x(2)
s , s)− (f (2)(x(2)

s , s)− f (1)(x(2)
s , s))ds (24)

=

∫ t

0

h̃(x(2)
s , s)− h1(x

(2)
s , s)ds (25)

where in 21 we substitute the integral forms of the SDEs satisfied by x̃ and x(2), and in 23 we use that the

processes are indistinguishable and replace x̃ by x(2) in one of the integrals.
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Hence, with probability 1,
∫ t

0
h̃(x

(2)
s , s)ds =

∫ t

0
h1(x

(2)
s , s)ds. As x(2) is a.s. continuous, we also have that

the mappings s 7→ h1(x
(2)
s , s) and s 7→ h̃(x

(2)
s , s) are continuous with probability 1. We may hence apply the

Fundamental Theorem of Calculus and differentiate 25 to conclude that a.s. h̃(x(2)
s , s) = h1(x

(2)
s , s) for all s.

Finally, as g(0) > 0, x(2)
t is supported on all of Rn for any t > 0. Therefore, the above implies that

h̃(x, s) = h1(x, s) for all s ∈ (0, T ] and all x ∈ Rn.

More formally, let ∆(x′, s) = h̃(x′, s)− h1(x
′, s). Then ∆(x

(2)
s , s) = 0 for all s a.s.. Also, ∆ is Lipschitz.

Let C be its Lipschitz constant. Take x ∈ Rn and fix ε > 0 and t > 0. Then P(||x(2)
t − x||2< ε

2C
) > 0, as

x
(2)
t is supported in all of Rn. Hence, by the above, there exists yε ∈ B(x, ε

2C
) such that ∆(yε, t) = 0. As h̃

is Lipschitz, for any x′ ∈ B(x, ε
2C

), we have that

||∆(x′, t)|| ≤ C||x′ − yε|| (26)

≤ C(||x′ − x||+||x− yε||) (27)

≤ C(
ε

2C
+

ε

2C
) (28)

= ε (29)

As ε was arbitrary, we have that ∆(x′, t) → 0 as x′ → x. As ∆ is continuous (since it is Lipschitz), it follows

that ∆(x, t) = 0. As x was also arbitrary, we have that h̃(x, s) = h1(x, s) for all s ∈ (0, T ] and all x ∈ Rn.

As h must be chosen to be (Lipschitz) continuous also with respect to t, for any x it must be that

h̃(x, 0) = lim
s↓0

h̃(x, s) = lim
s↓0

h(x, s) = h1(x, 0) (30)

This which completes the proof of the uniqueness of the choice h = h1.

A.3 Existence and Uniqueness of Minimizer of (12)

Definition A.4. L2(Rn,Rn) is the Hilbert space given by

L2(Rn,Rn) =

{
f : Rn → Rn :

∫
Rn

||f(x)||22dx < ∞
}

(31)

Remark A.5. It is easy to show L2(Rn,Rn) is a Hilbert Space with norm given by

||f ||22=
∫
Rn

||f(x)||22 dx (32)

For instance, one can start from the standard result that L2(Rn,R) is a Hilbert Space, and apply it to each

coordinate of the output of f .

Definition A.6. Denote by Cons(Rn) the space of the gradients of smooth, square-integrable potentials from

Rn to R with square-integrable gradient, i.e.

Cons(Rn) =

{
∇f : f is smooth,

∫
Rn

|f(x)|2dx < ∞ and
∫
Rn

||∇f(x)||22dx < ∞
}

(33)

Remark A.7. Clearly Cons(Rn) ⊆ L2(Rn,Rn). The condition that “f is square-integrable and has a square-

integrable gradient” corresponds to f being in the Sobolev space W 1,2(Rn) (see Jost [11], Chapter 9).
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Denote by Cons(Rn) the closure of Cons(Rn), i.e.

Cons(Rn) = {f : there exists (∇fk)k≥0 ⊆ Cons(Rn) such that ||∇fk − f ||22→ 0 as k → ∞} (34)

By construction, Cons(Rn) is a vector subspace of L2(Rn,Rn), and is closed, i.e. stable under taking limits.

Theorem A.8 (Complementation in Hilbert Spaces, c.f. Kreyszig [13], Theorem 3.3-4). Let (H, ⟨·, ·⟩, ||·||) be

a Hilbert space, and let Y ⊆ H be a closed vector subspace. Then any x ∈ H can be written as x = y + z,

where y ∈ Y and z ∈ Y ⊥.

Corollary A.9 (Uniqueness of Projection). Then the minimum of v 7→ ||v − x|| over v ∈ Y is attained at the

(unique) y given in the theorem, as ||v − x||2≥ |⟨v − x, z⟩|= ||z||2, and setting v = y attains this bound.

Proof of Proposition 3.3. Firstly note that we assumed s
(2)
Θ (·, t)−s

(1)
ϕ (·, t) is in L2(Rn,Rn) for each individual

t.

It follows directly from the above that, as Cons(Rn) is a closed subspace of L2(Rn,Rn), Corollary A.9 applies,

and we have that there is a unique minimizer ht ∈ Cons(Rn) in Equation 12.

As Cons(Rn) consists of L2(Rn,Rn) limits of sequences in Cons(Rn), there exists a sequence (∇Φk)k≥0 of

gradients of W 1,2-potentials such that ||∇Φk − ht||22→ 0 as k → ∞. From the definition of convergence, we

get that, for any ε > 0, there is k large enough such that∫
Rn

||∇xΦk(x)− ht(x)||22 dx < ε (35)

which completes the proof.
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Appendix B Relative Reward Learning Algorithms

Algorithm 2: Relative Reward Function Training with Access Only to Diffusion Models

Input: base diffusion model s(1) and expert diffusion model s(2).
Output: relative reward estimator ρθ.
// Dataset pre-generation using the diffusion models
D1 ← ∅
D2 ← ∅
for m ∈ {1, 2}, K times do

xT ∼ N (0, I)
for t ∈ T − 1, ..., 0 do

x
(1)
t ← xt+1 denoised by 1 more step using s(1)

x
(2)
t ← xt+1 denoised by 1 more step using s(2)

xt ← x
(m)
t

Add (t+ 1,xt+1,x
(1)
t ,x

(2)
t ) to Dm

end
end

// Training
D ← D1 ∪ D2

Initialize parameters θ
for i ∈ 1...n_train_steps do

// Using batch size of 1 for clarity
Sample (t+ 1,xt+1,x

(1)
t ,x

(2)
t ) from D

// use pre-computed diffusion outputs to compute loss
L̂RRF(θ)← ||∇xρθ(xt+1, t+ 1)− (x

(2)
t − x

(1)
t )||22

Take an Adam [12] optimization step on θ according to L̂IRL(θ)
end
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Appendix C Further Maze2D Reward Heatmaps
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