
Programming Research Group

A PATTERN FOR CONCURRENCY IN UML

Charles Crichton, Jim Davies,
Alessandra Cavarra

PRG-RR-01-22

�

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford OX1 3QD

A Pattern for Concurrency in UML

Charles Crichton, Jim Davies, and Alessandra Cavarra

Oxford University Computing Laboratory,
Wolfson Building, Parks Road,

Oxford, OX1 3QD UK
{crc,ale,jdavies}@comlab.ox.ac.uk

Abstract. This paper presents a pattern of usage for the Unified Mod-
eling Language (UML), intended for the description of systems in which
two or more operations may be acting concurrently upon the same ob-
ject. The pattern addresses two common problems—inadequate models,
and complicated state diagrams—with a simple separation of concerns.
Changes in attribute state, and changes in operation state, are described
separately, using two different types of diagram.

Simple examples are used to demonstrate the application of the pat-
tern: at an implementation level, and at a more abstract, design level.
The semantics for concurrency within UML is examined, not only to clar-
ify the interpretation of the pattern, but also to explain why the existing
provision—concurrent composite states and concurrency attributes—is
not applicable.

1 Introduction

The Unified Modeling Language (UML) [1] is widely used in both industry and
academia, providing a common syntax, and a common foundation for reasoning
about object-oriented designs. It is supported by as many as 80 different tools;
a significant number of textbooks and manuals have been written.

To date, most UML descriptions have focussed upon architectural, or static,
aspects of design. Where dynamic or concurrent behaviour is described, it is
usually in terms of representative instances of interaction; no attempt is made
to present models that characterise every possible sequence of interaction (in
terms of the set of actions and events defined in the model). And yet such
a complete, behavioural description is exactly what is required if we wish to:
establish properties of a system in advance of construction; determine how a
component might behave in combination with other, specified components; use
the model to generate a comprehensive selection of tests.

One reason for the absence of such descriptions is the difficulty of creating
them using the state diagram notation of UML. There is often too much infor-
mation for a single state diagram; and the pattern of communication, and the
distribution of attributes, between multiple state diagrams are poorly under-
stood. These problems are exacerbated in the presence of concurrency.

In this paper, we propose a possible solution: a pattern for the description
of concurrent behaviour in UML. In an application of the pattern, we use a

2

single state diagram to describe changes in attribute state—the ‘local’ state of
the object or component—and an activity diagram to explain the possible states
of an operation: the sequences of actions associated with an invocation.

The paper begins with a description of the pattern: an abbreviated meta-
model; an explanation of the diagrams used; and an account of the features of
UML that have a bearing on its application. In Section 3, we show how the
pattern could be used in the description of a single object, with an operation
defined purely in terms of assignment actions. This example demonstrates the
use of the pattern in describing concurrent invocation.

In Section 4, we present a more abstract example, in which the operations on
an object are defined in terms of call and signal actions. This demonstrates the
use of the pattern as a foundation for subsequent analysis: a formal version of
the model is presented, and various properties are established. The paper ends
with a discussion of the existing provision for concurrency within UML, and a
review of related work.

2 A Pattern for Concurrency

The essence of the pattern is simple: use a state diagram for the possible states
of attributes, and activity diagrams for the possible states of operations. A class
diagram will also be required, to introduce the attributes, operations, and refer-
ences that appear in the state and activity diagrams.

2.1 Pattern meta-models

The essence of the pattern can be represented as a fragment of the UML meta-
model: a class diagram linking the diagrams and the entities that they represent.
This diagram—see Fig. 1—abbreviates the associations: each of the lines here
corresponds to a sequence of associations in the actual meta-model.

ActivityDiagram

Class StateMachine

Operation

1 0..*

1 1
0..*

1

ClassDiagram
1 1

Fig. 1. A meta-model for the pattern

The meta-model for snapshots of (applications of) the pattern in execution
cannot be defined within the current UML framework. An essential requirement
of the pattern is the ability to refer to instances, or invocations, of operations.
Although invocations are mentioned in the current UML documentation, there
is no corresponding meta-model element.

3

2.2 Class diagram

A class diagram may be used to introduce names for classes of objects, together
with collections of attributes. Operations may also be named, together with
parameter types and return values. Finally, there may be associations between
classes. For the purposes of the pattern, these are important only in that they
introduce names—formal parameters—for referenced objects.

data�attributes
operations

b

class�name

A

b:B

getB():B

B
...
...

role

Fig. 2. the components of a class diagram

Figure 2 shows the components that may appear in a class diagram. The line
linking the two class boxes is an association, and the role b introduces a name
used for an object of Class B in the state and activity diagrams for Class A. The
class diagram notation includes many other features—most notably inheritance
associations—that have no direct bearing on the current pattern.

2.3 Actions

The UML documentation allows for several types of action. Two of these par-
ticular relevance for the pattern:

– A call action corresponds to the invocation of an operation; this is at an ab-
stract level, so no particular mechanism for invocation is specified; the calling
state machine will wait until the invocation is complete before proceeding.

– A send action represents the sending of a signal; again, no particular mech-
anism for transmission is specified; the sending machine does not wait.

We may wish to introduce two further types of action:

– A call* action corresponds to the ‘non-blocking’ invocation of an operation;
the calling state machine will not wait for the operation to complete.

– A local action—typically, an assignment—has effects only upon the current
object; these can be described without the introduction of explicit events.

The use of call* is not necessary; send actions could be used instead. However,
it seems desirable—for reasons of clarity and consistency—to retain the present
separation of signals and operations. (The use of the call* syntax corresponds to
the setting of the isAsynchronous attribute for actions in the UML meta-model).

4

2.4 State diagram

A state diagram can be used to describe those aspects of the behaviour that are
expressible in terms of the values of data attributes, and the effects of atomic
transitions. Transitions and states may be associated with effects, expressed as
sequences of actions; these actions are performed when a transition is triggered,
or on entering or leaving a particular state.

start�state

simple
state

A B

junction
point

final
state

E

GF

C

/e

change
event

trigger
guard

effect

t[g]/e

effect

trigger

composite
state

transition

x+y=z

t

Fig. 3. the components of a state diagram

Unlabelled transitions are triggered by the completion of actions within the
source state. Other transitions are triggered by events: these may correspond to
an actions, or a change in the values of data attributes—in which case we say
that a change event has occurred: see the labelled predicate in Fig. 3.

Different kinds of state (or pseudo-state) may appear in these diagrams: com-
posite states may introduce one or more regions in which sequences of actions
may be arbitrarily interleaved; junction points simplify the presentation of mul-
tiple transitions to or from a single state; start and final states have an obvious
interpretation.

In applications of the pattern, (attribute) state diagrams should not make use
of call or call* actions. The primary reason for this is the run-to-completion
semantics:

– if a state machine calls a synchronous operation upon itself then it will
deadlock—the corresponding call event cannot be processed until the current
action has been completed, but the current action cannot complete until the
corresponding call event has been processed;

– if a state machine calls an asynchronous operation upon itself, then that
operation will be delayed until the current sequence of actions has been

5

completed; this is problematic, as it excludes the (expected) possibility of
the operation starting earlier.

A treatment of invocation in which calls on the current object are a special case
would seem undesirable, particularly as we might not know whether a particular
reference is to this object, or to another object of the same class. Furthermore,
threaded behaviour is easier to explain if call actions are restricted to the oper-
ation diagrams.

Whether call events appear on a state diagram depends upon our view of
the operation concerned. If the operation is considered atomic—nothing else can
happen to the state of the current object while it is executing—then we can use
the corresponding call event in the state diagram. Of course, having added a
call event to the attribute state diagram, it would not make sense to introduce
a separate activity diagram for the same operation.

2.5 Operation diagrams

Each operation will be described using a separate activity diagram: a restricted
form of state diagram in which the emphasis is upon activity, or flow of control,
rather than state. The principal component of an activity diagram—see Fig. 4—
is the action state: a box that contains a sequence of actions to be performed.

call*�a.op()

x�=�1

call�a.op()

start
state

action
state

local
actionfork

join final
state

send�a.e(x)

Fig. 4. the components of an activity diagram

In applications of the pattern, activity diagrams may perform any of the four
types of action described above: send, call, call*, and local actions. As well as
action states, these diagrams can use forks and joins, for interleaving sequences
of actions, as well as the familiar symbols for start and final states.

6

The transitions in an activity diagram have neither triggers nor effects; how-
ever, they may be guarded by predicates upon attributes of the current class,
formal parameters, or received events: see the next section for suggestions of how
these may be represented.

2.6 Related issues

The definition and use of the pattern raises a number of issues regarding the
syntax and meta-model of UML. Some of these need to be resolved before the
pattern can be applied more widely.

send�signal receive�signal

class

result(x)done
car:Vehicle
[Driving]state

object-flow�state

instance

Fig. 5. Additional notation

Local actions The operation diagrams can refer to any attribute of the corre-
sponding object: reading current values, and assigning new values. Each of these
local actions is considered atomic; their effects could be represented explicitly,
using the standard action–event communication mechanism. However, a more
attractive solution might be to regard local actions as communications with
the underlying object state, and include their effects as change events in the
attribute state diagram: this is the approach taken in the first example.

Signal notation The language of activity diagrams includes control icons to
represent the sending and receiving of signals: see Fig. 5. The send signal icon
may be seen as an abbreviated state: it is equivalent to an action state containing
a single send action. The receive signal action is an abbreviated transition. These
icons are used in the second example, although they would not be required if
state diagrams were used instead—see the final issue listed below.

Passing parameters The UML documentation suggests the following method
of indicating the formal parameter list for an operation: annotate the transi-
tion from the initial state with a call event with the parameters as attributes,
stereotyped <<create>>. Perhaps a better approach would be to use the object-
flow notation. An object-flow state for each incoming parameter is linked to the
first proper state (the initial state is considered as pseudo state in UML) of the
activity diagram, using a dashed version of the transition arrow. This form of
state—see Fig. 5—contains not only the name and class of the formal parameter,
but also an optional constraint upon its current state. This offers an opportunity
to specify preconditions for operations.

7

Return values The existing UML meta-model includes a return action, but
its use would appear to be limited to identifying the value to be returned at
the completion of a synchronous operation call. The target of the action is left
implicit. This is certainly sufficient for the return of references and other ex-
pression. Where an object is being returned, and we wish to specify that it is in
a particular state, we may augment the return action state with an outgoing
object flow. The optional constraint upon the outgoing object-flow state could
be used to specify a postcondition upon the operation.

Invocation references We may wish to refer to a particular invocation of an
operation: to make explicit the target of a return action, or to describe the
effect of an exception. The existing language syntax (and the meta-model) offers
no means of doing this. One approach would be to associate a value with a
call action, allowing an assignment such as i = call a.op(). This need not be
confused with the assignment of return values, as the syntax call x = a.op()
could be used for this purpose. An alternative, and perhaps more attractive,
approach would be to allow a special reference similar to self, or this. This
would identify the caller of an operation, and could be passed as a reference.

Activity diagrams The use of two different diagram types—activity diagrams for
operations, and state diagrams for attribute state—makes the intended separa-
tion more obvious. However, it makes it more difficult to represent the effect
of exceptions upon operations. Ideally, we would be able to use the composite
state mechanism to achieve the effect of a try–catch block in a language such
as Java: that is, the execution of a particular sequence of actions, in a series of
sub-states, can be interrupted at any point, explicitly, by a transition leading
to a new state. The language of activity diagrams has only subactivity states,
which are not interruptable.

3 An implementation-level example

To demonstrate the application of the pattern, we present three descriptions of
a class with two data attributes and a single operation: a sequential description
without the pattern; a concurrent description that uses the pattern; finally, a
complex, concurrent description without the pattern.

3.1 A simple class

Consider a class A, with integer-valued data attributes x and y, and a single
operation swap(). The intended effect of the operation is to swap the values of
the attributes, simultaneously setting x to the current value of y, and y to the
current value of x. This effect is to be achieved using a transient variable z, in
the obvious fashion: z = x; x = y; y = z, where = denotes assignment.

We will divide the state space for A into three regions: LT, corresponding to
situations in which x is strictly less than y; EQ, corresponding to situations in

8

which x is equal to y; and GT, corresponding to situations in which x strictly
greater than y. In a more sophisticated system, these states, and the transitions
between them, could be associated with actions; here, however, no actions are
necessary.

3.2 A synchronized model

We will begin with a simple model that uses a single state diagram; this describes
the behaviour of an object of class A under the assumption that no more than one
invocation of swap() may be in progress at any one time: that is, each instance
of swap() must complete before the operation can be invoked again.

(a)

A
x:int
y:int

swap():void

(b)

LT

EQ

GT

swap()

swap()

swap()

Fig. 6. A synchronized model

Figure 6(a) shows the class diagram for A, alongside—Fig. 6(b)—the single
state diagram. Each transition in the state diagram is labelled with swap();
the run-to-completion semantics of state diagrams means that each transition is
regarded as atomic and uninterruptable.

This model tells us nothing about the effect of multiple, concurrent invoca-
tions of swap(). Indeed, the run-to-completion semantics suggests that a faithful
implementation of this design should employ a concurrency control mechanism
similar to that indicated by the synchronized keyword in Java.

3.3 Using the pattern

Each of the actions associated with the operation swap() is a local action: an
assignment to one of the data attributes of the current object. In using the
pattern, therefore, we may construct a state diagram—see Fig. 7(b)—in which
each transition is labelled by a change event.

The activity diagram representing the operation swap()—see Fig. 7(c)—has
three action states: one for each assignment. As no other actions are performed,
this separation is simple for clarity: we could employ a single action state con-
taining the same sequence of assignments.

9

(a)

A
x:int
y:int

swap():void

(b)
x=yx<y

x=y x>y

x>yx<y

LT

EQ

GT

(c)

A::swap()

y�=�z

z�=�x

x�=�y

Fig. 7. A model using the pattern

Following two simultaneous calls of swap(), this model admits any interleav-
ing of action sequences: for example,

〈z0 = x; x = y; y = z0; z1 = x; x = y; y = z1〉,
〈z0 = x; x = y; z1 = x; x = y; y = z1; y = z0〉, or

〈z0 = x; z1 = x; x = y; x = y; y = z0; y = z1〉
where z0 and z1 denote the separate, local instances of z. Starting from state
LT, these sequences would lead us to states LT, EQ, and GT, respectively.

3.4 Without the pattern

To represent the interleaving of actions associated with multiple invocations of
swap() in a single diagram, we would need to introduce additional actions—one
for each of the assignments. To explain the effects of these actions, we need to
add additional attributes: to the state; and to the actions themselves.

As the above sample of three interleavings would suggest, a state diagram
adequate for the description of up to two simultaneous invocations would have se-
quences of up to five intermediate states between LT, EQ, and GT. There would be
transitions between these states, and the final destination might not be decided
until the last event matching an action of the form y = z had been processed.

Worse still, to be deterministic, the diagram needs to distinguish between
the two y = z actions: the two copies of temporary variable z may have been
assigned different values. It is also necessary to distinguish between the two
copies of x = y, and the two copies of x = z.

It is possible, with a degree of inspiration and analysis, to construct a model
that uses a single state diagram to describe the possible effects of an arbitrary
number of simultaneous invocations. However, to do this would be to miss the
point: we want models that reflect our design intentions, and allow us to predict
the consequences; a model like this reflects only the consequences—which would
need to be calculated before drawing the state diagram.

10

4 A more abstract example

The previous example used only change events in the state diagram, and the
operations were described at the level of a programming implementation. To
demonstrate the intended use of signals, in communicating between state and
activity diagrams, we will consider a more abstract example.

4.1 A printer

The following fragment of specification describes the behaviour of a printer, in
terms of a class with five operations:

– pause() pause any print job that might be in progress;
– resume() resume any print job that is paused;
– print() start a print job;
– service() replenish the paper tray, pausing the printer first;
– carelessService() replenish the paper tray, pausing the printer at the

same time.

The first two operations—pause() and resume()—will be treated as atomic
interactions: in our model, there is no notion of a printer having started to pause,
but not yet having reached a paused state; the call events for these operations
can be used in the state diagram. The other operations are not atomic, and may
be called concurrently; these will be described as separate, activity diagrams.

4.2 State diagram

The state diagram—see Fig. 8—for the printer has eight states, the product of
three binary conditions: the device is printing or idle; the device is paused, or
not; the door is open or closed. (If the diagram were any more complicated, we
would use binary variables to represent one or more of these conditions, and
place guards upon the transitions.)

jam

printing

idle�open

idle paused

paused�open

pause()

closetray

resume()complete
/send�stopped

start
/initialise

opentray opentrayopentray
closetray

idle�paused

idle
paused
open

opentray
closetray

pause()

resume()

Fig. 8. Printer state

One of the states is clearly problematic: if the event opentray is processed in
the state printing, we reach a state—jammed—that is inescapable: subsequent

11

events will be discarded. The start signal will be sent by an invocation of the
print() operation. The resulting change in state, from idle to printing, is
accompanied by the sending of a signal—initialise—to the hardware.

The device stays in the printing state until the pause button is pressed, the
tray is opened, or a complete signal is received from the hardware. A complete
signal triggers a return to the idle state, and sends a stopped signal to the
print() operation.

4.3 Operation diagrams

Figure 9 includes activity diagrams for the three non-atomic operations associ-
ated with the printer class. The first, print(), begins by sending a start signal
to the printer state machine—we have used the control icon syntax introduced
in Section 2.6—it then waits for a complete signal before terminating.

carelessService()

opentray

closetray

call�pause()

call�resume()

service()

opentray

closetray

call�pause()

call�resume()

stopped

print()

start

Fig. 9. Printer operations

The service() operation pauses, opens the tray, closes the tray, and then
resumes. Because we have left pause and resume as atomic operations on the
state diagram, they appear here as call actions, rather than signal sends.

The description of the carelessService() operation allows the interleav-
ing of two activities: pausing and resuming, opening and closing. When both
activities are complete, the operation terminates.

4.4 Analysis

A careful analysis of the model confirms that, as might be expected, simultane-
ous execution of the print() and service() operations is safe: both complete,
and the printer does not enter the jammed state. Similarly, we can see that the
simultaneous execution of print() and carelessService() can leave us in the
jammed state. The same is true of the simultaneous execution of print() and
two or more invocations of service().

12

Such an analysis is best conducted with the aid of tools. To show how this
might be acheived, and to show that an analysis need not involve the construc-
tion of a single state diagram, we may translate the above description into the
notation of Communicating Sequential Processes (CSP) [2]. The translation is
based in part upon the formal semantics for activity diagrams given in [3].

Figure 10 presents a CSP process description, in eight parts, for the attribute
state machine, and a process description for each of the operations. UML events
and actions become shared, synchronous CSP events (in a multi-object model,
intermediate, buffering processes would be necessary). There is one additional
event: error . This is included to facilitate the analysis of the model: because a
UML state machine is always ready to accept any event, we need some way of
indicating that a problematic state has been reached.

In these descriptions, � denotes external choice, offering a menu of events,
with specified consequences. The menu for each state S includes a process of the
form (� x : A • x → S), indicating that any event in the set A will be discarded.
The prefix notation → links an event to a subsequent process. The infix symbol
||| indicates that its two arguments—both processes—execute independently, but
terminate together. Termination is represented by the symbol SKIP .

Having defined such a model, we may use the refinement-checking tool FDR [4]
to explore the consequences of our design. To do this, we define a specification
process, identifying a range of acceptable behaviours, and a variety of implemen-
tation processes, representing possible situations, or combinations of the model
components. Figure 11 does exactly this. In this case, the range of acceptable
behaviours is quite wide: we allow an internal choice (�) of every event from the
set Interface; crucially, this set excludes the additional event error .

The implementation processes make use of the infix symbol ‖, representing
communicating parallel. The two argument processes must agree, or synchronise,
upon the occurrence of any event that is mentioned in both descriptions. (The
use of ‖ is facilitated by the definition of process alphabets [2], or by the use of
explicit interface parameters [5]).

Figure 11 includes, alongside the definition of each implementation pro-
cess, the result of the corresponding refinement check. The � relation holds
between two processes precisely when every behaviour—every trace, and every
failure [5]—of the second process is also a behaviour of the first.

Implementation processes System1 and System2 describe situations in which
a single invocation of print(), and the simultaneous invocation of print()
and service() act upon the printer state. In each case, the refinement check
succeeds: error is impossible; the Jammed state is never reached.

System3 describes a situation in which print() and carelessService()
may be invoked simultaneously. In this case, the refinement check fails, and
the tool returns as evidence the sequence 〈start , initialise, open, error〉 to show
how the Jammed state could be reached. Similarly, when we check System4,
which describes the effect of invoking print() concurrently with two invocations
of service(), we are presented with the sequence 〈pause, open, close, pause,
resume, start , initialise, open, error〉: Jammed is reachable here, too.

13

Idle = start → initialise → Printing
� open → IdleOpen
� pause → IdlePaused
� (� x : {resume, close} • x → Idle)

IdleOpen = close → Idle
� (� x : {pause, resume, start , open} • x → IdleOpen)

IdlePaused = open → IdlePausedOpen
� resume → Idle
� (� x : {pause, close} • x → IdlePaused)

IdlePausedOpen = close → IdlePaused
� (� x : {pause, resume, open} • x → IdlePausedOpen)

Printing = pause → Paused
� open → Jammed
� complete → stopped → Idle
� (� x : {start , resume, close} • x → Printing)

Jammed = (� x : {pause, resume, open, close, start} • x → Jammed
� error → Jammed)

Paused = resume → Printing
� open → PausedOpen
� (� x : {pause, close, start} • x → Paused)

PausedOpen = close → Paused
� (� x : {pause, resume, open, start} • x → PausedOpen)

Print = start → stopped → SKIP

Service = pause → open → close → resume → SKIP

CarelessService = (pause → resume → SKIP)
||| (open → close → SKIP)

Fig. 10. A CSP script for the printer model

Interface = {open, close, pause, resume, start , stopped , initialise, complete}
Spec = � e : Interface • e → Spec

System1 = Print ‖ Printer (Spec � System1)

System2 = (Print ||| Service) ‖ Printer (Spec � System2)

System3 = (Print ||| CarelessService) ‖ Printer (Spec �� System3)

System4 = (Print ||| Service ||| Service) ‖ Printer (Spec �� System4)

Fig. 11. Analysis of the printer model

14

5 Discussion

5.1 Existing provision

A casual reader of the UML documentation might be excused for thinking that
concurrent composite states, allowed in state diagrams, could be used to repre-
sent concurrent invocations. However, concurrent invocations of operations are
best seen as peers, alongside the attribute state of the object. Any attempt to
represent them using concurrent substates, within the object state diagram, is
likely to produce a confusing, inadequate model.

The best results would be obtained by using a concurrent composite state
at the outermost level, with a separate region for each operation: rather like
the pattern suggested here. However, even this would be unsatisfactory: the
run-to-completion assumption means that the enclosing composite state must
process one event at a time. As has already been explained, the run-to-completion
assumption also prohibits the use of call actions when the target is the current
state machine.

Another limitation of the existing provision—mentioned in Section 2.1—is
that behavioural features such as operations do not have classifiers. Thus, in
UML, we cannot speak of an instance of an operation. This makes it impossible
to construct an explicit representation of concurrent invocation. The meta-model
needs to be re-factored and extended to allow instances of operations, and thus
references to invocations.

The way in which events are processed by state diagrams—they are held in
a reliable, possibly-reordering medium, until they can be processed; they are
then accepted one at a time by the state machine: triggering a transition, being
discarded, or being deferred—tells us a great deal about communication be-
tween state machines; enough to allow a translation of simple state and activity
diagrams into CSP processes, as in Section 4.4.

The translation of more complex diagrams, in which transitions cross bound-
aries between regions, or the same event appears on two conflicting transitions,
requires more work. If such diagrams are to be used with the pattern, certain
semantic variation points need to be decided: see, for example, [6].

Another source of complexity is the event deferral mechanism. An event e
is deferred if it is processed when the machine is in a state associated with the
attribute e/defer. The present semantics tells us that such an event is placed
upon a local queue—exclusive to the current region—and then processed (after
any entry actions) as soon as the machine reaches a state without the e/defer
attribute.

Although multiple events may be deferred, only one of these will ever be pro-
cessed: the others will be lost; clearly, in a description of concurrent behaviour,
this may not be appropriate. A simple solution is to avoid the use of deferred
events, and to include a component within the model whose role is the manage-
ment and delivery of signal events. Another alternative would be a persistent
version of the local queue: one that retains deferred events until they are used
to trigger transitions, or are explicitly discarded by the state machine.

15

5.2 Related work

The work in this paper is based upon the action semantics of UML (Version
1.4). There are proposals [7] to extend this semantics to allow composite action
sequences, or maps, in which several actions may be executing concurrently.
There is also a proposal to introduce the notion of ports for objects, allowing
the attachment of several state machines to a single object; this would make the
implementation of our pattern easier.

There is a considerable amount of research underway regarding concurrency
and UML, but—to the best of our knowledge—very little of this is addressing
the problem of defining complete, or essential models: models that characterise
every possible sequence of interaction. The AGEDIS project [8] requires models,
defined in a subset of UML, for the purposes of test generation, but the existing
AGEDIS modelling language—a subset of UML—does not allow for concurrent
invocation of operations on the same object.

Sendall and Strohmeier [9] have shown how OCL can be used to specify
constraints upon state machines: they focus upon timing constraints, but the
technique could clearly be applied in combination with the current pattern. Our
use of activity diagrams to describe operations has a close parallel in the work
of Petriu and Wong [10], who use such diagrams to describe messaging between
objects, with the intention of elucidating concurrent behaviour.

References

1. Unified Modeling Language Specification, Version 1.4. Object Management
Group. http://www.omg.org/cgi-bin/doc?formal/01-09-67.

2. C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall. 1985.
3. Christie Bolton and Jim Davies and Jim Woodcock. On the Refinement and

Simulation of Data Types and Processes. In Proceedings of the 1st International
Conference on Integrated Formal Methods. Springer 1999.

4. Formal Systems (Europe) Limited. Failures-Divergences Refinement: FDR2,
1997. FDR2 User Manual.

5. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall Series in
Computer Science, 1998.

6. A. Cavarra. Applying Abstract State Machines to Formalize and Integrate the
UML Lightweight Method. PhD thesis. University of Catania, Italy. 2000.

7. Action Semantics for the UML. OMG ad/2001-03-01. Response to OMG RFP
ad/98-11-01. http://cgi.omg.org/cgi-bin/doc?ad/01-03-01.

8. AGEDIS: Automated Generation and Execution of test suites for DIstributed
component-based Software. www.agedis.de.

9. S. Sendall and A. Strohmeier. Specifying concurrent system behavior and timing
constraints using OCL and UML. In the Proceedings of UML 2001: The Unified
Modeling Language: Modeling Languages, Concepts and Tools LNCS 2185.
Springer 2001.

10. D. C. Petriu and E. Wong. Using Activity Diagrams for Representing Concurrent
Behaviour. Carleton University, Ottawa, 2001. Submission to concurrency
workshop at UML 2001 :
http://wooddes.intranet.gr/uml2001/SubmittedPapers/

