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Abstract

Inference of complete genetic regulatory networks is a central problem in modern
bioinformatics. However, because good biological data is still relatively rare, it is hard
to evaluate new machine learning techniques for network inference. In this report
we describe GreenSim, a modular, customisable and extensible genetic regulatory
network simulator. It accurately models motifs, non-linear regulatory functions and
can generate networks ranging in size from N = 100 to N = 104 genes. Code is
available online and from the authors.

1 Introduction

Accurate inference of an organism’s complete genetic regulatory network (GRN) is a
central problem in bioinformatics. Knowledge of the GRN is necessary to understand an
organism’s ontogeny, its phylogenetic relationships and to accurately predict its response
to external stimuli and drugs. Only when such relationships are understood can research
be conducted quickly and efficiently.

Despite the development and increasing use of high-throughput biotechnology, well
understood and validated biological data sets are rare and exist for only a few species.
This means that realistically simulating biological data is essential to fully evaluate new
machine learning and bioinformatic techniques.

In this paper, we describe GreenSim, the genetic regulatory network simulator. In
the rest of this section (subsection 1.1) we summarise the features of GRN that must
be simulated. Section 2 describes GeneSim, and section 3 describes Kyoda’s simulator.
Section 4 outlines the characteristics and modular structure of GreenSim, its usage, and
analyses some networks generated by it. Section 5 concludes and outlines future work.

1.1 Characteristics of Genetic Regulatory Networks

The causal relationships between the genes in an organism make up its genetic regulatory
network. This network is a directed graph, and an edge from the gene i to the gene j and
annotated with a function means that the expression level of i regulates (contributes to,
causes) the expression level of j.

Because of their evolutionary origins[16], GRN are characterised by certain common
features across cell type and species. This section summarises the most important of
these features, and a good GRN simulator should implicitly or explicitly create them.

At the structural level it is important to understand the different distributions across
the in-degree and out-degree of genes (variables, nodes) in GRN. Research[2] suggests
that GRN are not random directed graphs. Instead, the probability distribution for
the out-degree appears to follow a power law[8] with 2 < λ < 3. The distribution for
the in-degree appears to be an exponential distribution, and µ is approximately 3 for
prokaryotes and in the range 4–8 for eukaryotes[4; 11]. These distributions help create a
modular structure in the network. There is no characteristic module size.

GRN are also characterised by the overabundance of motifs. A motif is a small sub-
graph which is much more common in GRN than it would be in a random graph. Motifs
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include auto-regulatory, expanding cascade, convergence and triangular feed-forward mo-
tifs. In a feed-forward motif the gene i regulates j and k, and j regulates k as well. Motifs
are detailed in [6]; it is important that they are appropriately present in any simulated
GRN.

Two key aspects of the regulatory relationship between any pair of connected genes
must be simulated. The first is that genetic regulatory functions are often complex,
non-linear relationships whose functional form varies significantly from case to case. The
gene i may up-regulate (down-regulate) the gene j very strongly (very weakly) and it may
regulated it non-linearly. The nature of these relationships is described in more detail in
[3; 5; 17].

Regulatory functions can also be conditional on the current phenotypic context[13].
Furthermore, the actual biological system is stochastic and discrete; however, a discrete
simulation is not computationally tractable. Nor is a discrete model. This means that
stochastic biological noise[12] will exist in any continuous representation of a GRN.

External phenotypic contexts excluded and assuming a weak central dogma, note
that non-genetic regulatory influences can be ignored in GRN inference. This is because,
under the weak central dogma, the GRN is assumed to be informationally complete. Non-
genetic regulatory factors just manifest themselves as (more complex) genetic regulatory
relationships.

2 GeneSim

GeneSim was developed at Duke University as part of a project which tried to understand
songbird singing behaviour[7; 14; 15; 18; 19]. Used in most of the GRN research there,
[18] and [19] describe GeneSim in detail.

It works as follows. A network of small size (N ≤ 100) is generated and connected in
a uniformly random way. Connections can also be manually specified. Time is measured
in discrete intervals and every δ time steps the expression level is recorded as a sample.
This interval represents the (hidden) changes in expression level that occur in between
successive samples in a time series microarray data set.

yt+1 = y′

t + A × (y′

t − b′) + ε′ (1)

Equation 1 defines the vector equation which calculates the expression level of all genes
(capped at a maximum of 100 and a minimum of 0) at time t + 1, given the expression
level of all genes at time t. Column vectors are denoted with prime (’), and transposition
is implicit. ε′ represents the biological noise and is sampled from a vector Gaussian with
µ = 0 and σb as defined by the user. A represents the relationship between yt+1(k) and
yt. It defines a linear difference equation for each gene. b′ represents the constitutive
level of gene expression.

The constitutive level of gene expression can be explained as follows. Imagine that
each gene has some “normal” level of expression. This is its constitutive level. If i up-
regulates j and i is present at more than its constitutive level then it will cause j to be
more strongly expressed. On the other hand, if i is expressed less strongly than usual
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then the absence of i will cause a lower-than-usual expression of j. It is claimed by Yu
et al. that this model leads to more biologically plausible time series.

Note two key aspects of GeneSim. Firstly, non-linear gene interactions are not mod-
eled. These are essential for biological realism. Secondly, the network edge matching
algorithm does not create motifs or biological distributions over kin and kout.

GeneSim also does not consider the phenotypically conditional nature of gene regula-
tion. However this not a serious problem, for two reasons. Biological data sets typically
come from just one phenotypic situation, and inferring a single network given samples
generated from potentially contradictory regulatory networks is a different and much
more difficult research question. In summary, GeneSim is a useful simulator, however it
does not model several important features of biological GRN.

3 Kyoda’s Simulator

The simulator in Kyoda et al. [10] uses ODEs to model the regulatory relationships. Each
gene was randomly matched to between 1 and k other genes. These genes and random
rate constants defined its regulatory ODE. The auto-regulatory motif was not allowed.
Networks of up to N = 100 with k = 2 and N = 20 with k = 8 were simulated.

4 GreenSim

GreenSim is the GRN simulator we have developed in MatLab. Inspired by GeneSim, it
aims to realistically simulate any kind and size of GRN. This section describes its func-
tional characteristics (4.1), its modular structure (4.2), how to use it (4.3) and analyses
some GreenSim-generated networks (4.4).

4.1 Characteristics

GreenSim can simulate GRN of size N = [100, 104]. It generates realistic non-linear
regulatory functions, and ensures that the degree distributions are accurate. These dis-
tributions also lead to the emergence of motifs in the simulated networks. Section 5
discusses extensions that would allow it to model multiple phenotypic contexts.

4.2 Structure

GreenSim is designed in a modular fashion, and each of the modules can be replaced with-
out affecting the others. For example, the edge matching module was recently replaced,
and no other portions of the code needed to be modified. The algorithm is structured as
follows.

First, half edges (in-edges and out-edges for each gene) are generated according to
the appropriate distributions. Next, the half edges are matched by randomly permuting
the genes and then matching the out-edges with the nearest in-edges. This reflects the
biological reality (genes are frequently physically located near the genes they regulate)
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and is also necessary to create realistic technical noise[9]. Technical noise is described
shortly.

Next, the linear and non-linear regulatory functions are generated. Each gene has a
linear regulatory function as described in equation 1. Call the change in the expression
level of the gene k according to its linear regulatory function lk and its expression level
after the previous time step nk.

A 2nd order non-linear regulatory function for each pair of genes which regulate k is
defined as shown in equation 2. NLk is a random matrix which defines a weight for the
non-linear contribution of each pair of genes i, j (i < j) which regulate k. The bracketed
term in the equation,

(

(yt − b)′ × (yt − b)
)

, takes the product of the expression level of
each pair of genes. This product and NLk are multiplied together member-wise and the
members of the resulting matrix are summed to calculate the total non-linear regulatory
contribution. The updated expression level for k is nk + nlk + lk.

nlk =
∑

(

NLk × (yt − b)′ × (yt − b)
)

(2)

As in GeneSim, expression levels are updated at discrete intervals and can be sampled
at intervals of size δ. Such a sequence of samples is called a set of samples. Samples can
also be corrupted by parameterised levels of technical noise[9]. Technical noise refers to
uncertain, missing or inaccurately measured gene expression levels in the set of samples.
This occurs because of limitations in the biotechnology used to gather samples. Three
kinds of technical noise are modeled.

Spot noise is the low, independent probability that any particular gene expression
value in a set of samples will be covered. This can be caused in biological datasets
by a faulty microarray or by poor handling of the microarray after the experiment has
concluded.

Span noise is the low, independent probability that some contiguous subset of the
genes in a sample is covered. Because of the edge matching algorithm such genes are
likely to be directly involved in each others regulation. The size of the span is normally
distributed according to user-specified parameters.

Value noise is added to the biological noise and further corrupts the gene expression
levels. It represents the ambiguity that can be caused by using mRNA concentrations
and fluorescence levels as a proxy for the level of gene activity[1].

4.3 Using GreenSim

In this subsection we describe how to use GreenSim to simulate GRN and generate samples
from them.

Readers are encouraged to refer to the MatLab source files, comments and included
help documentation for further information.

4.3.1 Generating a Network Structure

To generate a network structure, users call the genNetwork(n, mu, maxReg, noise)

function. This function returns a network structure, and the parameters are as follows:
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n is the number of genes

µ is the location parameter for the exponential distribution over the gene in-degree.

maxReg is the maximum regulatory influence that any one gene or pair of genes can
have on another. A and NLk are in the range (0, 1) and are scaled by this parameter.

noise is the standard deviation of the biological noise in the network, σb.

In most cases, the value of the noise parameter in network generation should be no
more than 0.5×maxReg. If this is not the case then the influence of regulatory genes may
be obscured and the result will be a random walk.

4.3.2 Generating A Set of Samples

A set of samples can generated by calling genSampleSet(net, inity, num, delta).
This function returns a matrix of gene expression levels uncorrupted by noise. The
(i, j)’th entry in the returned matrix is the expression level of the i’th gene in the j’th
sample. The function’s parameters are:

net is a network structure, as returned by genNetwork

inity is a column vector specifying the initial expression level of each gene.

num is the number of samples (columns) to be generated.

δ is the number of hidden gene expression updates between each sample.

In real biological situations, gene expression levels may change between samples. As
in GeneSim, this is represented in GreenSim by a δ parameter and the gene expression
values are updated δ times according to the regulatory functions and biological noise
between each sample.

For example, if num = 3 and δ = 3 then the gene expression values would be updated
9 times according to their regulatory functions, and the third, sixth and ninth vectors
would make up a set of samples.

Note that the relative magnitude of maxReg and the δ used when generating samples
will affect the difficulty of any network inference. We suggest that δ ≤ 1

maxReg
, else

expression levels may change too much and in too complex a manner between samples.
A set of samples can be corrupted by the corruptSample function. This function takes

a set of samples as its first parameter and then five other parameters for the technical
noise. Covered gene expression values are denoted with −1.

Finally, a set of samples can be transformed using the logSample function. The log
(base 2) of each gene expression value is calculated (adjusted for raw values less than
ε = 0.000001) and covered values in the transformed set of samples are denoted with 999.
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4.3.3 Calculating Statistical Network Properties

The genNetworkStats(net) function calculates statistical metrics for a network. This
function takes a network structure as a parameter and returns a statistics structure. The
statistics it calculates are analysed in subsection 4.4.

4.3.4 Saving and Loading GreenSim Data

A network can be saved or loaded using the writeNet and readNet functions. Similarly,
a sample can be saved or loaded using the writeSample and readSample functions and a
network statistics structure can be saved or loaded using the writeStats and readStats

functions.
For samples and statistics structures the read... functions take a source filename

as a parameter. To save a sample or statistics structure the save... functions take
a variable of the appropriate type as their first parameter and a target filename as the
second parameter.

writeNet and readNet have the same parameters and parameter ordering as the
functions for samples and statistics structures. However, networks are serialised to more
than one file. This means that only a root filename needs to be specified in the function
calls, and the functions will append the appropriate extensions to save or load the network.

To obtain an edge matrix which can be converted into a dot file for GraphViz the
writeEdgeMatrix function can be used.

4.4 Examples and Analysis

This section describes some networks generated using GreenSim, ranging in size from 3
to 104 genes. Subsubsection 4.4.1 introduces the analysis by providing visualisations of
networks’ edge matrices, for networks ranging in size from 3 to 103 genes. Subsubsec-
tion 4.4.2 provides more detailed statistical analysis, for networks ranging in size from 3
to 104 genes.

4.4.1 Visual Analysis

This subsubsection contains figures and commentary depicting the edge matrices of net-
works ranging in size from 3 to 1000 genes. Each edge and each pair of edges to a
gene defines a regulatory function which relates the expression level of the parent(s) at
time t to the expression level of the child at time t + 1. The child’s expression level
can be calculated in full by using all parents and all pairs of parents, as described in
subsection 4.2.

The network shown in figure 1 illustrates GreenSim’s ability to generate very small
networks, and also shows how the combination of the different distributions over the in
and out-edges can lead to auto-regulation and feed-forward motifs.

Figure 2 illustrates the automatic generation of modules, cascade and convergence
motifs by the edge matching algorithm, even in small GreenSim-generated networks.
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Figure 1: A GreenSim network with 3 genes.
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Figure 2: A GreenSim network with 10 genes.
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Figure 3 shows the expected growth in module size as the network grows (a conse-
quence of the power law distribution over out-edges). Cascade and convergent motifs also
occur more often in larger networks.

Figure 3: A GreenSim network with 100 genes.

Figure 4 is very difficult to interpret at the printed resolution. However, it is clear that
maximum module size continues to grow while smaller modules and motifs also continue
to exist.

Observation of these graphs shows that GreenSim networks possess many of the char-
acteristics of real biological networks, including a messy modular structure, and the auto-
regulatory, feed-forward, cascade and convergence motifs.

8



Figure 4: A GreenSim network with 1000 genes.
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4.4.2 Statistical Analysis

This subsubsection presents and analyses some basic statistical properties of networks
generated using GreenSim. Statistics for several different network sizes are shown in
table 1 and more detailed discussion follows.

Table 1: This table contains the averages of 10 networks for each n. Statistics are
displayed to 4 significant figures.

Statistic / Num. of genes n = 3 n = 10 n = 102 n = 103 n = 104

Time (s) 0.1073 0.1404 0.2268 5.057 725.5

Total Edges 4.3 22 344.5 3518 35190

max(kin) 2.1 4.4 15.2 21.8 27.3

max(kout) 2.6 8.6 72.9 791.1 7968

Auto-regulatory motif 1.5 3.2 8.8 35.8 188.2

Feed-Forward Motif 0.3 13.1 723.4 4569 45150

The networks used to calculate the statistics displayed in table 1 were generated on
an Asus M6A laptop (Pentium 4 1.8 GHz, 1 GB RAM, Win XP Pro). Observation of the
results shows that the time it takes to generate a network is non-linear. Some of this is
due to virtual memory paging issues. The remaining non-linearity appears to be created
when the half edges are being matched.

For n ≥ 100 we see that the number of edges per gene stabilises at ≈ 3.5. Given
that the networks were generated with exponential in-degree µ = 3 this is unsurprising.
Furthermore in the full vectors of in and out-edges for each network we have observed
that kout and kin are distributed correctly.

Analysis of the motifs is more interesting. It is clear that the incidence rate of the
feed-forward motif is much larger in the mid-size networks. When n = 3 there is an
average of 0.1 feed-forward motifs per gene and there are approximately 4.5 such motifs
per gene when n ≥ 1000. In contrast there are more than 7 feed-forward motifs per gene
when n = 100. We suspect that this is a side-effect of the edge-matching algorithm but
do not think it is a problem.

The change in the incidence rate of the auto-regulatory motif for very large networks
is potentially more problematic. The source of this trend is difficult to determine. Given
the network size, the correlation between the total number of edges and the incidence
rate is almost 0. However, confusingly and independently of the number of genes, the
correlation between the total number of edges and the auto-regulatory incidence rate is
0.792. There is also some correlation between network size and the incidence rate (0.747).
The correlations of max(kin), the network size and other combinations are all less than
the correlation of the total number of edges and the incidence rate, independent of the
network size, but greater than 0.6.

In short, naive correlations are uninformative and it is not clear what is driving this
trend. However, it may be due to the distributions over kin and kout and the edge

10



matching algorithm. Because the range of kout grows much more quickly than the range
of kin, and because the edge matching algorithm matches genes in descending order of
the number of out-edges, if a network has “hub” genes which connect to the majority of
other genes in the network then these genes may absorb all or most of the in-edges of a
large proportion of most of the genes. This means that most genes cannot auto-regulate.

5 Discussion and Future Work

GreenSim is importantly different from previous simulators such as GeneSim. In particu-
lar, GreenSim:

• Explicitly and correctly models the in and out degree distributions.

• Implicitly models the other important features of a GRN, through its explicit mod-
eling of the in and out degree distributions.

• Uses non-linear regulatory functions.

• Accurately models the various kinds of noise which exist in biological data sets.

• Is modular, easily customised and highly parameterised.

• Generates GRN ranging in size from 100 to 104 genes.

The visual analysis, statistical analysis and realistic regulatory functions suggests that
GreenSim can be used to simulate and sample from realistic GRN of widely varying size.

One aspect of GreenSim that needs further investigation and which may need im-
provement is the edge matching algorithm. This is because it appears to under-represent
the auto-regulatory motif in very large and very small GRN. If the biological literature
confirms that this is inaccurate then a new matching algorithm would need to be devel-
oped.

Like GeneSim, the regulatory functions in GreenSim are only representative of a single
phenotypic context. Although this is not a problem, for the reasons discussed in section 2,
GreenSim could be extended to simulate the phenotypically context-dependent logical
discontinuities in the regulatory functions that can be seen in biological organisms[13] as
well.

For example, rather than generating just one set of functions (A and {NLk}), GreenSim
could be modified so that it generates m sets of functions. The set of functions (Ai and
NLi

k
) used to generate each sample could be changed with some probability or according

to environment-state variables. If a different edge matrix was necessary then the genes
could be re-permuted and re-matched for each member of this set of regulatory functions.
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and Olli Yli-Harja. Simulation of microarray data with realistic characteristics.
Bioinformatics, 7:349, July 2006.

[13] E. Segal, Nir Friedman, N. Kaminski, A. Regev, and D. Koller. From signatures
to models: Understanding cancer using microarrays. Nature Genetics, 37:S38–S45,
June 2005. By invitation.

[14] V. A. Smith, E. D. Jarvis, and A. J. Hartemink. Evaluating functional network
inference using simulations of complex biological systems. Bioinformatics, 18:S216–
S224, 2002.

[15] V. Anne Smith, Erich D. Jarvis, and Alexander J. Hartemink. Influence of net-
work topology and data collection on network inference. In Pacific Symposium on
Biocomputing, pages 164–175, 2003.

[16] Kim Sterelny and Paul E. Griffiths. Sex and Death : An Introduction to Philosophy
of Biology (Science and Its Conceptual Foundations series). University Of Chicago
Press, June 1999. ISBN 0226773043.
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