
Formal Verification of
Capability-Safety in the

CHERIoT-Ibex Processor

Tita Rosemeyer

University of Oxford

A thesis submitted for the degree of
MSc in Mathematics and Foundations of Computer Science

Trinity Term 2025

Acknowledgements

Words cannot express my gratitude to my supervisor, Tom Melham, whose
kindness, support and belief in me have been constant throughout this
project. His willingness to devote time to detailed feedback, engaging
discussions and patient guidance has been invaluable to this work. I could
not have hoped for a better supervisor.
This project would not have been possible without the brilliant people at
SCI Semiconductor. I am especially grateful to David Chisnall, Nathaniel
Wes Filardo and Robert Norton, for their patience, expertise, and willing-
ness to answer even my most naive questions. Their generosity with their
time and willingness to help me work through difficulties, gave me the
confidence to keep going. Special thanks as well to Louis-Emile Ploix for
his helpful insights and tips on formal verification of the CHERIoT-Ibex
processor.
Finally, my deepest thanks go to my family and friends. To those who
bravely asked, ‘So, what’s your thesis about again?’ — and listened
through the whole answer. To my Dad and Theo, who made sure I ac-
tually got to work, to Mimi and Roger, who made sure I didn’t work all
the time; and to my Mom, Carola, and Jenny, for providing me with the
environment to do both. Finally, to Lieselotte and Hans for keeping my
inner child alive. (According to Lieschen, I’m not a grown-up anyway:
case closed.)

Abstract

This dissertation presents a comprehensive formal verification of certain key capability
safety properties in the unsealing mechanism of a real-time operating system for the
CHERIoT-Ibex processor — a RISC-V core extended with the CHERI architecture.
Some pathfinding results for the context-switching mechanism are also presented. We
explore a new approach to reasoning about such low-level code: applying hardware
model checking techniques to prove safety and non-interference properties of binary
machine code running on a formal model of the processor RTL. The properties are
expressed in Linear Temporal Logic (LTL). In general, LTL model checking is co-NP
complete, but we achieve practical scalability using the k-induction algorithm com-
bined with modular decompositions into smaller lemmas, resulting in experimentally
linear time complexity.

CHERI introduces capabilities: unforgeable, hardware-enforced memory refer-
ences that combine memory addresses with meta-data about bounds and permissions,
enabling fine-grained memory protection and software compartmentalisation. In mul-
titasking systems, context switches must ensure that capabilities belonging to one
thread or process are not accessible by another. Similarly, the unsealing mechanism
— which handles sensitive capabilities — must not expose these during execution.

This work formally verifies that the unsealing mechanism, implemented in low-
level software, correctly enforces capability-safety: no sensitive capabilities, or capab-
ilities derived from these, are leaked. It also establishes partial verification results for
the context-switching mechanism, showing that derived capabilities from one thread
or process are not accessible after a switch. These key properties of the lowest level
of the operating system are vital for security, and were identified as being of interest
and value by the industrial collaborators on this project, SCI Semiconductor.

Our novel approach to verification formalises the execution of binary code (im-
plementing unsealing and context switching) running directly on a cycle-accurate,
formally verified RTL model of the processor. To the best of our knowledge, this is
the first project to formally verify binary code directly executing on formally verified
hardware. Other approaches typically reason at the C or C++ level, leaving a sub-
stantial compilation gap between what is verified and what is actually executed in
fielded systems. At best, existing work verifies assembly code running on a formal,
and possibly abstracted, model of the ISA semantics —and not the actual processor
architecture. Our approach eliminates this gap, enabling end-to-end verification from
hardware to low-level software, offering unusually strong guarantees for capability-
safety.

Introduction

Low-level software, including real-time operating systems (RTOS), bootloaders and

firmware, forms the foundation of systems execution and security. These components

run at the highest privilege levels and control access to critical hardware resources.

A compromise at this level can undermine the entire system’s integrity and malicious

attacks often target the lower-level components to evade application-level protections

and gain control of entire devices [1]. As such components are increasingly used in

connected and safety-critical environments — including aviation, industrial control,

medical devices and the Internet of Things (IoT) — the consequences of low-level

vulnerabilities can extend to significant societal and safety risk.

Despite its criticality, low-level software is notoriously difficult to secure. It is often

implemented in memory unsafe languages, such as C or assembly, making it highly

susceptible to classes of bugs, such as buffer overflows, use-after-free errors and null

pointer dereferences which are all mentioned in CWE’s 25 most dangerous software

weaknesses 2024 [2]. Moreover, such software often employs concurrency, interrupts

and complex control-flows — features that complicate both reasoning and analysis.

Deployment contexts exacerbate these challenges: components may run in remote or

physically inaccessible systems such as satellites [3], medical implants, or industrial

machinery. In these scenarios, logging and debugging capabilities are limited or non-

existent and updating software to patch discovered vulnerabilities may be infeasible.

While software testing remains a common practice, it cannot exhaustively explore

all execution paths, leaving room for undetected bugs in corner cases. This makes

computer-aided formal verification methods an essential step towards achieving strong

assurance in these critical components.

Model checking techniques. Formal verification uses mathematical methods to

check whether a system satisfies given correctness or security properties. Main ap-

proaches include abstract static analysis, model checking, and symbolic simulation

[4]. Model checking is one of the most widely used techniques. It works by ex-

haustively exploring all reachable states of the system model to determine whether

a given property — often specified in temporal logics such as Linear Temporal Logic

(LTL) — holds. If the state space is finite, model checking is guaranteed to termin-

ate with either a proof or a counterexample, but the computational complexity is

high. In practice, scalability is achieved through mathematical techniques such as

k-induction, which applies the induction principle to establish unbounded guarantees

with reduced complexity. Another widely used approach is bounded model checking,

which restricts exploration to a fixed depth. While it cannot provide full proofs, it

is effective for detecting counterexamples within the chosen bound. Abstract static

analysis constructs a sound, over-approximated model of the system’s behavior, al-

lowing properties to be proved without full state enumeration — but at the cost of

possible imprecision (e.g. spurious alarms). Symbolic simulation provides symbolic

input values and simulates their evolution through the system execution to obtain

expressions of relevant signals in terms of those input values.

Previous Approaches. Most formal verification of low-level software operates at

the source code level — typically C or C++. Tools such as CBMC, Java PathFinder,

and SATABS support automated model checking and symbolic reasoning over these

high-level programs [4]. But this introduces a substantial abstraction gap between

what is verified and what is actually executed in fielded systems: verified source code

must still pass through compilers, linkers and hardware-dependent runtime layers be-

fore execution. The correctness of those layers is often assumed, but not verified. As

noted in the seL4 microkernel verification effort [5]: ‘We assume the correctness of

the compiler, assembly code, boot code, management of caches, and the hardware;

we prove everything else.’ Existing work that verifies lower level assembly code typ-

ically relies on a formal, and possibly abstracted, model of the ISA semantics — and

not the actual hardware implementation. This means that compiler bugs, hardware

anomalies, or mismatches between specification and silicon remain unverified. This

5

project explores a new verification approach that verifies the execution of compiled

binary code running directly on a cycle-accurate formally verified RTL model of the

target processor. This approach closes the gap between high-level correctness guar-

antees and real-world execution, enabling end-to-end assurance for capability-safety

properties in the firmware.

CHERIoT. To demonstrate this verification approach, we target CHERIoT, a

capability-based security architecture designed for resource-constrained IoT systems

[6]. This project focuses on verifying the unsealing mechanism of the CHERIoT RTOS

for the CHERIoT-Ibex processor [7]. The processor and RTOS were designed from

the ground up to enforce object-granularity memory safety on an embedded micro-

controller [8], making it an ideal case study for verifying low-level security-critical

behavior. Both the CHERIoT RTOS and the CHERIoT-Ibex RTL implementation

(in SystemVerilog) are publicly available [7, 9].

CHERI (Capability Hardware Enhanced RISC Instructions) [10] is a hardware-

software architecture that introduces capabilities: unforgeable, hardware-enforced

memory references that combine memory addresses with meta-data about bounds and

permissions, enabling fine-grained memory protection and software compartmentaliz-

ation. CHERIoT (Capability Hardware Extension to RISC-V for Internet of Things)

[10] extends the CHERI principles to resource-constrained systems by implementing a

capability-aware Instruction Set Architecture (ISA) as an extension to RISC-V. The

CHERIoT-Ibex processor, developed by lowRISC C.I.C. and Microsoft, implements

this ISA on a 32-bit RV32IMCB core. The custom CHERIoT RTOS running on the

processor is being jointly developed by SCI Semiconductor, Microsoft, and Google [9].

Verification targets. The key system components include the switcher, the sched-

uler and the allocator. This project is focuses primarily on the allocator, which is

responsible for managing dynamic memory and provides use-after-free prevention. As

a trusted entity — holding a capability with access to the entire heap — its security

6

and safety is crucial to the safety of the system. Within the allocator, the unsealer

handles sealed capabilities — used to build type-safe, opaque types that remain se-

cure even under mutual distrust and delegation [11]. Critical safety properties of the

unsealer include preventing the leakage of the unsealing authority and ensuring that

unsealing does not expose sensitive information of the sealed capability. Another

verification target is the switcher, the most privileged entity in the system, which

performs context switchers. It must ensure strict isolation of thread-local capabilities

to prevent accidental or malicious cross-thread access during task transitions.

These key properties of the lowest level of the operating system are vital for secur-

ity and were identified as being of interest and value by the industrial collaborators

on this project, SCI Semiconductor [12].

Contributions. This project’s novel contribution is the design of a model checking

framework that enables verification of binary code executing directly on a cycle-

accurate, formally verified hardware model. To the best of our knowledge, no previous

work has addressed verification at this low level. Specifically, our contributions include

• the logical formulation of code execution in linear temporal logic (LTL),

which required managing complex pipelined processor timing and identifying

precise processor signals to capture cycle-accurate instruction execution. This

enables direct reasoning about binary code execution through processor RTL

signals without compilation abstractions;

• the formalization of safety properties — such as leakage constraints and

hierarchical ordering of capabilities — in LTL, requiring novel techniques for

capability derivation relationships and register file scanning with state capture.

This enables automated verification of memory security properties previously

verified only manually;

• an instantiation of this framework on the unsealer module of the CHERIoT

RTOS allocator, including a case study and experimental evaluation demon-

strating scalability and approximate linearity with program size, demonstrating

7

the practical applicability of the approach;

• the discovery of a previously unknown bug in the unsealer logic, where the

unsealed object pointer was leaked during exception handling [13]

Together, these results provide an initial demonstration of the technical feasibility

of mathematical verification of binary code running directly on its target processor.

This is verification at an unprecedented level of fidelity to fielded systems, eliminating

the gaps and modelling abstractions discussed earlier.

Tools. Proofs were carried out using Jasper, a commercial formal verification tool by

Cadence Design Systems [14] that supports formal property checking and symbolic

analysis. In our novel approach, the formal RTL model within Jasper serves as

a definitive formal semantics of code execution for binary-level software verification.

Both the CHERIoT RTOS (including the context-switching code) and the CHERIoT-

Ibex RTL implementation (in SystemVerilog) are publicly available [9, 7]. All code,

properties and scripts developed for this thesis are available in a public repository

[15].

8

Contents

1 Background 1
1.1 Model checking . 1

Bounded model checking . 2
k-Induction . 5

1.2 CHERI . 7
Capability systems . 7
CHERI architecture . 9
CHERI capability operations and semantics 10

2 Driving Example: CHERIoT 12
2.1 CHERIoT-Ibex . 12

Pipeline architecture . 13
Capability encoding . 14

2.2 CHERIoT RTOS . 16
Unsealer . 17
Switcher . 19

3 Formulating Safety Conditions 21
3.1 Mathematical representation of capabilities 21

Representability . 22
Derived capabilities . 24

3.2 Safety conditions . 25
Ensuring non-derivability in registers 26
Unsealer safety conditions . 27
Switcher safety conditions . 28

i

4 Logical Encoding of Code Execution 30
4.1 Observation strategy: the writeback stage 30

Motivation . 30
Indicator signals and assumptions . 31

4.2 Encoding instruction sequences . 33
Base encoding . 33
Branching . 34

4.3 Proving safety properties . 36
Capturing at-entry values . 37
Exceptions . 38

5 Verification Results on the Unsealer and Switcher 40
5.1 Complete verification of the unsealer 40

Concrete implementation of security properties 40
Raised issue and bug . 42
Timing results . 43

5.2 Partial results on the switcher . 45
Setup and simplifications . 45
Assumptions and safety conditions 46
Verification and results . 47

5.3 On k-induction for interval properties 48
Intervals and local semantics . 48
Applying k-induction . 49

6 Conclusion and prospects 51

References 52

Appendix 55

ii

Chapter 1

Background

We assume the reader’s familiarity with:

• propositional logic and satisfiability,

• state transition systems and Kripke structures, and

• Linear Temporal Logic (LTL).

In this thesis, we only rely on the safety fragments of LTL, i.e. properties using the
operators X (‘next’) and G (‘globally’). No liveness operators are used, which is
typical for processor verification.

1.1 Model checking

Baier and Katoen define Model Checking in their book Principles of Model Checking
(2008) [16] as follows:

Model checking is an automated technique that, given a finite-state model
of a system and a formal property, systematically checks whether this
property holds for (a given state in) that model.

Model checking techniques. In practice, model checking algorithms fall broadly
in two categories. Explicit-state techniques explore the state space directly, enumer-
ating reachable states one by one, but often suffer from the state explosion problem,
where the number of reachable states grows exponentially with system variables.
Symbolic techniques, by contract, represent sets of states and transitions compactly,
for example using Binary Decision Diagrams (BDDs) or satisfiability (SAT/SMT)
encodings. Modern practice is dominated by symbolic methods, and this thesis uses

1

exclusively SAT-based model checking, which leverages advances in propositional sat-
isfiability solvers to scale verification to realistic hardware/software systems.

SAT-based Model Checking. In SAT-based model checking, the verification
problem is encoded as a propositional satisfiability instance. The system is modelled
as a finite-state transition system M and the safety property as an LTL formula φ.
Given these, a Boolean formula F (M, ¬φ) is constructed such that:

F (M, ¬φ) is satisfiable ⇐⇒ M ̸|= φ

In other words, the SAT solver checks to see if a counterexample to the safety property
— a valuation satisfying F (M, ¬φ) — can be constructed. If the formula is satis-
fiable, its witness constitutes a counterexample disproving the property; otherwise,
the property is proven.

Relevant techniques. Two relevant SAT-based techniques are presented below.
The first technique, bounded model checking (BMC), restricts the search for counter-
examples to a given depth bound k. The second technique, k-induction, uses BMC to
check whether the property can be proven by induction, thus providing unbounded
guarantees. The explanations of these techniques are largely taken from chapter 10
of Model Checking, second edition by Kroening et al. (2018) [17].

Bounded model checking

Bounded model checking (BMC) [17] constitutes the unravelling of the system M

and formula φ up to a given depth bound k. Given a transition system M and a
property φ, BMC constructs a propositional formula that is satisfiable if and only if
there exists a path of length k in M that violates φ — a counterexample of length at
most k. If the formula is unsatisfiable, there exists no counterexample of length k or
less, but there might exist one that is longer.

Thus, BMC is bug-finding oriented: it is exceptionally good at uncovering shallow
counterexamples but does not by itself guarantee correctness unless the bound k

exceeds a previously proven completeness threshold kmax, i.e., a bound such that if
no counterexample exists of length ≤ kmax, then no counterexample exists of any
length and the property holds universally.

Encoding Strategy. Let a finite-state transition system be represented as a
Kripke structure:

M = (S, S0, R, AP, L)

where:

2

• S is the finite set of states,
• S0 ⊆ S is the set of initial states,
• R ⊆ S × S is the transition relation,
• AP is the set of atomic propositions,
• L : S → 2AP is a labelling function.

We can also assume that we can represent S0, R and any p ∈ AP as first-order
predicates over the states of M . For example, we write p(s) for an atomic proposition
p ∈ AP and state s ∈ S to mean that L labels s with p. Each state s ∈ S is encoded
as a valuation of Boolean variables V = {v1, . . . , vn}. To represent a path of length
k, we introduce k + 1 copies of these variables: V0, V1, . . . , Vk. A tuple of valuations
(s0, . . . , sk) of these copies corresponds to a candidate path.

Path formula. We can now construct a boolean formula pathk, that holds true
if and only if π = s0, . . . , sk is a path of M :

pathk(s0, . . . , sk) ⇐⇒ S0(s0) ∧
k−1∧
i=0

R(si, si+1) (1.1)

This enforces that s0 is an initial state and every adjacent pair respects the transition
relation. This definition can be extended to infinite paths, by extending the tuple
(s0, . . . , sk) into an infinite sequence (si)i∈N and requiring S0(s0) and R(si, si+1) for
any i ∈ N.

Lassos. Some temporal properties can be refuted by finite counterexamples, but
others require infinite executions. For example, the property Fp (‘p eventually holds
in any infinite path’) can only be disproved by an infinite counterexample. Such
infinite counterexamples are represented in practice by lassos: paths consisting of
a finite prefix π1 (the stem) followed by a finite cycle π2 (the loop) that repeats
indefinitely:

s0 s1 · · · si−1 si si+1 · · · sk

π1 π2

If the states along the lasso are s0, . . . , sk, we call it a lasso of length k, in the same
way that a finite path of k transitions is described by its k + 1 states. A lasso is a
counterexample of Fp if all of the states in its stem or loop satisfy ¬p. Intuitively,
the execution ‘loops back’ to a previously visited state and cycles forever without
encountering p. Formally, a lasso of length k can be expressed as:

3

lassok(s0, . . . , sk) ⇐⇒ S0(s0) ∧
k−1∧
i=0

R(si, si+1) ∧
k−1∨
i=0

sk = si (1.2)

where the first part mirrors the path equation (1.1), and the final condition ensures
that the last state sk coincides with some earlier state si, forming the loop

Tableaus. For the construction of a BMC encoding for arbitrary LTL properties,
we introduce Kripke structures with fairness, called tableaus. A finite-state Kripke
structure with fairness extends the 5-tuple (S, S0, R, AP, L) of the Kripke structure
(see above) by a set F of fairness constraints, where F = {P1, . . . , Pn} with Pj ⊆ S.
In this Kripke structure, a path is called fair if it visits each of the sets Pi in F

infinitely often. Given any LTL formula φ, we can construct a corresponding tableau
Tφ such that any infinite path in Tφ is fair if and only if it satisfies φ. While not all
fair paths will have the shape of a lasso, it is true that there is a fair path on Tφ if
and only if there is a fair lasso-shaped path on Tφ, so we can restrict to lasso shaped
paths in the following search for counterexamples.

BMC translation. Let’s suppose we are given an LTL property φ and system
model M (as a Kripke structure), and want to check whether M |= φ. To do this, we
construct the tableau T¬φ which accepts exactly the paths violating φ and then form
the product of M with T¬φ. Let Ψ = (SΨ, SΨ

0 , RΨ, AP Ψ, LΨ, F Ψ) be the resulting
structure. The product construction ensures that paths in the combined structure
simultaneously respect the dynamics of M and the temporal restrictions of T¬φ. Any
fair path of Ψ is thus (1) corresponding to a computation of M and (2) satisfies
¬φ, and therefore constitutes a counterexample to φ on M . Thus, there exists a
counterexample to φ on M if and only if there exists a fair path on Ψ and thus if and
only if there exists a fair, lasso-shaped path on Ψ.

Formula construction. We now construct a formula that is satisfiable if and
only if there is a fair, lasso-shaped path on Ψ of length k:

SΨ
0 (s0) ∧

k−1∧
i=0

RΨ(si, si+1) ∧
k−1∨
i=0

sk = si ∧
∧

P ∈F Ψ

FairP
i

 (1.3)

This is the lasso equation (1.2) with the additional fairness condition in the final
conjunct ensuring that each fairness constraint is satisfied in the loop of the lasso
path. The fairness condition FairP

i for P ∈ F Ψ encodes that the loop starting from
state si visits P and is encoded as follows:

FairP
i ⇐⇒

k−1∨
j=i

P (sj)

4

The formula (1.3) can then be passed to a SAT solver to check for satisfiability. If
it is satisfiable, a counterexample to the property φ in M has been found. If it is not
satisfiable, no counterexample of length smaller or equal to k exists, but there might
be one that is longer.

k-Induction

If aimed at verification (providing guarantees of safety properties), BMC relies on
unwinding the model and property up to bound k that exceeds a previously computed
and proven completeness threshold. Since the threshold is typically proportional to
the system diameter, and often infeasible to compute, BMC alone is often insufficient
in establishing unbounded correctness of temporal properties. We now introduce a
technique that employs unwindings as a building block, leveraging the mathematical
principle of induction to prove properties using only a few unwinding. We will explain
the technique on the example of a simple global property Gp, where p is a state
predicate.

Mathematical Foundation. The k-induction technique [17] builds directly on
the classical induction principle which is used to prove that a property holds for
all natural numbers. This is done in two steps: first, one proves that the property
holds for the smallest number (typically 0 or 1); second, one shows that whenever the
property holds for a given number n − 1, it also holds for n. The induction principle
then guarantees that the property holds for all natural numbers. Formally, given a
predicate Q(n) over the natural numbers, to prove ∀nQ(n) one establishes:

1. Base case: Q(0).

2. Inductive step: Q(n − 1) → Q(n) for all n >.

We will apply this principle to invariance properties of the form Gp, which assert
that a (desirable) state predicate p(s) holds in all reachable states. Given a system
in form of a Kripke structure as above (with S0 being the initial state predicate and
R the transition predicate), the initial states play the role of the number 0, while R

plays the role of the successor function n 7→ n + 1. Thus, the induction principle
specializes as follows:

• Base case: show that no initial state violates the property, i.e.:

S0(s0) ∧ ¬p(s0) is unsatisfiable

This ensures that the system does not start in a ‘bad’ state.

5

• Inductive step: show that the property is preserved under transitions, i.e.:

p(s) ∧ R(s, s′) ∧ ¬p(s′) is unsatisfiable

This ensures that once a state satisfies p, every immediate successor does as
well. Note that no assumption is made about s being reachable.

In practice, both conditions can passed to a SAT solver for automatic checking. If
both are unsatisfiable, then Gp is established.

Generalization to k-induction. Intuitively, k-induction extends the classic
induction principle by looking at a block of k past cases instead of just one. This
is useful for properties that depend on a history rather than only the immediately
preceding state. For example, proving that the Fibonacci sequence is monotonic non-
decreasing requires 2-induction: one must assume both Fn−2 ≥ Fn−3 and Fn−1 ≥ Fn−2

to conclude Fn ≥ Fn−1. Formally, mathematical k-induction reads:

• k-induction base case: Q(0) ∧ · · · ∧ Q(k − 1)

• k-induction inductive step: (Q(n − k) ∧ · · · ∧ Q(n − 1)) → Q(n)

In the setting of transition systems, this changes what objects we consider. Plain
induction reasons about individual states: if p holds in one state, then it must also hold
in its successor. k-induction reasons about paths: we assume that p holds throughout
a (not necessarily reachable) sequence of k consecutive states, and then show that it
must also hold in the next state. The k-induction base case checks that the property
holds throughout any given a path of length < k (starting from an initial state); each
state si plays the role of the natural number i. Together, these conditions mirror
the logic of mathematical k-induction and establish that the property p holds in all
states of all reachable paths (which is equivalent to all reachable states). Formally,
we write:

• k-induction base case: show that no state reachable by a path of length < k

violates the property, i.e.:

S0(s0) ∧
k−2∧
i=0

R(si, si+1) ∧
k−1∨
i=0

¬p(si) is unsatisfiable (1.4)

• k-induction inductive step: assume p holds along a sequence of k states,
then show it must also hold at the successor, i.e.:

k−1∧
i=0

R(si, si+1) ∧
k−1∧
i=0

p(si) ∧ ¬p(sk) is unsatisfiable (1.5)

6

Again, s0 is not required to be an initial state in the inductive step — any sequence
of states consistent with R may serve as the induction hypothesis. This means that
if the inductive step equation is satisfiable, the property has not been disproved;
a witness could lie in the unreachable state-space and thus not constitute a valid
counterexample.

Completeness issues. The k-induction method as described here is not com-
plete; there are properties that cannot be proven with the technique. For example,
an unreachable cycle violating the property may block the proof, even though the
property holds in all reachable states. To address this, one augments the encoding of
the inductive step with a loop-freedom constraint ensuring that paths considered in
the step case are simple (do not visit the same state twice):

k−1∧
i=0

k∧
j=i+1

si ̸= sj

With loop-freedom, a completeness result holds: if the property is invariant and k

exceeds the completeness threshold, then k-induction proves the property. In practice,
many properties are established with k values well below this bound, yielding efficient
proofs beyond the capability of plain BMC.

1.2 CHERI

Capability systems

A capability system replaces or augments address pointers with capabilities: unforge-
able tokens of authority that reference objects together with the rights to perform
particular operations on them. Intuitively, a capability is a handle that carries its
own access control policy; possession of the token is the authority. This differs from
traditional access-control lists: authority is expressed by distribution of tokens, not
by central tables checked at dereference time. The CHERI (Capability Hardware
Enhanced RISC Instructions) project [18] realizes capabilities as a first-class archi-
tectural value (hardware data-type) rather than a purely software convention. They
typically include both a reference to a memory address and metadata that constrains
the accessible memory region and operations permitted. This enables architectural
enforcement of spatial safety, as well as fine-grained compartmentalization.

Core Principles. CHERI’s design is guided by two fundamental principles aimed
at minimizing risk and ensuring that authority is exercised safely and deliberately [8]:

7

1. The principle of least privilege: Each component, process, or user should
operate with the minimal authority necessary to perform its function.

2. The principle of intentional use: Access and actions should occur only as the
result of explicit, deliberate requests by the user or system.

These principles shape CHERI’s protection model, ensuring that authority is both
restricted and used intentionally. Building on them, the core security properties of a
capability system implement and enforce these guarantees in practice:

• Unforgeability: capabilities cannot be synthesized; authority only arises from
valid derivation or creation operations.

• Monotonicity of derivation & delegation: capabilities may be derived
only to with monotonic non-increase of authority (e.g. shrink bounds, remove
permissions, or preserve the same rights while changing the address) and can
be handed to other principals to effect delegation.

• Revocation / temporal safety: systems provide mechanisms (hardware or
software) to prevent reuse of authority after an object is deallocated. CHERI,
in its current form, provides strong hardware-enforced spatial safety but leaves
temporal safety to software-level mechanisms.

• Non-bypassability: all accesses to an object must be mediated by a valid
capability; integer addresses alone do not grant authority.

Capability systems are effective for memory safety because they couple spatial bounds,
permissions and provenance to pointers themselves; checks are local and can be en-
forced at point of use. Foundational literature [19, 20] frames these ideas; CHERI
implements them in hardware for performance and stronger guarantees [10].

Capability systems and hybrid designs. A capability system enforces that
all accesses are represented and mediated exclusively through capabilities. By con-
trast, many conventional systems merely support capabilities, meaning that some but
not all accesses are capability-mediated. CHERI exemplifies this hybrid approach: it
integrates capability support into a conventional RISC architecture and operating sys-
tems without requiring that all code use capabilities, and it offers both pure-capability
Application-Binary-Interfaces (ABIs) — in which all pointers are capabilities — and
hybrid ABIs — in which conventional pointers and capabilities coexist. Hybrid ap-
proaches improve adaptability by enabling incremental migration to least-privilege

8

programming, although they provide weaker robustness than a fully capability-based
environment [21].

CHERI architecture

CHERI’s key architectural idea is to make capabilities a first-class hardware type:
capability registers, capability-aware instructions, and tagged memory that preserves
the distinction between ordinary data and capabilities. Enforcing capability invariants
in microarchitecture (and in some implementations, dedicated coprocessors) prevents
the usual classes of pointer corruption exploits (out-of-bounds access, use-after-free,
arbitrary code jumps) while retaining C-language performance and semantics where
possible [18, 22].

Metadata encoding. In CHERI, the architectural capability contains structured
metadata beyond a raw address. A common, concrete encoding (CHERI ISAv8 /
CHERIoT variants) includes:

1. address field: the reference to the memory object as a 32- or 64-bit memory
address.

2. bounds: (logical) base and top bounds (or compressed encodings thereof) that
define the contiguous memory region accessible through the capability; all ac-
cesses must lie in [base, top).

3. permissions field: a set of bits encoding the allowed operations (e.g. Load,
Store, Execute, Seal/Unseal, system-register access).

4. object type / sealing field: an identifier used for sealing / unsealing semantics
(see below).

5. validity tag: an integrity bit indicating that the machine treats the word
as a capability (tagged); tags are stored and checked by the tagged-memory
mechanism and cannot be forged by ordinary store/load sequences. The tag is
preserved by capability-aware load/store primitives.

The exact bit-field layout can be found in the CHERI ISA Specification [23]; CHERIoT
uses a compact encoding adapted for RV32 [6], which will be explained in detail in
Section 2.1.

Essential architectural components of CHERI include: [10, 22]

• Capability registers and instruction extensions: CHERI adds a set of
capability registers (distinct from general purpose registers) and instructions

9

for loading/storing capabilities, deriving new capabilities, setting bounds, and
checking permissions. Capability instructions preserve the tag bit if used cor-
rectly and enforce checks atomically where required.

• Tagged memory architecture: Memory stores carry an out-of-band tag state
(in hardware or a protected memory structure) so that the processor can dis-
tinguish capability words from untagged data. This prevents an attacker from
constructing a valid capability by writing raw bytes into memory: an ordin-
ary store clears the tag bit of any memory region it spans. CHERI’s tagged
memory and enforcing load/store semantics ensure that in-memory capabilities
retain integrity.

• Coprocessor / MMU integration and capability addressing: CHERI
performs capability checks on the addresses generated by capability use. On
systems with a memory management unit (MMU) or memory protection unit
(MPU), these addresses may then be subject to further translation or protection
checks. In this way, a capability encodes the permissible address region, and
hardware ensures access only when capability checks succeed.

CHERI capability operations and semantics

CHERI instructions for manipulation of capabilities fall into three broad categories,
corresponding to how they transform capability values: [23]

1. Transfer operations: Load and store capability instructions ((C)LC , (C)SC)
move capabilities between registers — preserving the tag bit and performing
alignment / tag checks. In addition, when using transitive permissions such as
load-mutable or load-global, load operations may also strip or reduce permis-
sions according to the capability’s authority rules. When a stored word carries
a tag, hardware ensures only capability-aware store semantics may set tag state.

2. Restriction operations: Instructions such as CSetAddr(c,a) , CAndPerms(c,p’) ,
and CSetBounds(c,b,t) derive a new capability from an existing one. These
are monotonic operations: the derived capability grants no more authority than
the source (bounds shrink, permissions are restricted).

3. Transformation operations: Sealing and unsealing operations change whether
a capability is opaque or usable. The CSeal(c, otype) instruction marks a
capability as sealed, associating it with an object type identifier otype . A
sealed capability is opaque: it cannot be dereferenced for memory operations.

10

The CUnseal(c,ck) instruction reverses this transformation, but only if the
caller holds a capability ck with the matching permit-unseal authority for the
given otype . These operations are the basis for the implementation of encap-
sulation, domain isolation and controlled privilege transitions (see below).

All memory accesses are mediated by capabilities according to the non-bypassability
predicate above. In addition, capabilities are subject to immediate faulting if checks
fail; the fault semantics are architecturally specified (trap vectors, register state guar-
antees) so formal models can treat faults as well-defined control transitions.

Sealed capabilities. CHERI introduces a sealing mechanism that extends cap-
abilities to support secure compartmentalization and controlled domain transitions.
Sealed capabilities are immutable (in the sense that any manipulation clears the tag
bit), non-dereferencable, and protected by hardware against modification or control
transfer, making them opaque handles that can be safely passed between mutually
distrusting components. This enables their use as secure references for domain trans-
itions, where sealed code and data capabilities together represent complete object
references.

Object types. The security of sealed capabilities is enforced through object
types, metadata that links related capabilities and governs unsealing. Object types
are set during sealing using an authorizing capability, allowing delegation of type-
space usage without privileged intervention. Unsealing requires possession of a cap-
ability with matching authorization, ensuring that only intended components regain
mutable and dereferencable access. In practice, domain transitions are supported by
sealed entry capabilities (sentries), code capabilities that are automatically unsealed
when used as jump targets, providing the foundation for secure privilege transitions
and compartmentalized execution [23, 11].

11

Chapter 2

Driving Example: CHERIoT

The Capability Hardware Extension to RISC-V for IoT (CHERIoT) platform is a
scaled, CHERI-inspired capability architecture tailored for 32-bit RISC-V micro-
controllers in IoT and embedded contexts. Drawing upon CHERI principles of spa-
tial and temporal memory safety and compartmentalization, CHERIoT targets rad-
ically resource-constrained environments — micro-controllers with limited compute,
memory, and power budgets [24].

2.1 CHERIoT-Ibex

The CHERIoT-Ibex is the reference implementation: an extension of the lowRISC
Ibex RV32IMCB (a 32-bit RISC-V micro-controller) incorporating CHERIoT ISA
features. It can be configured with either a 2-stage or 3-stage pipeline, similar in
structure to the baseline Ibex core. The CHERI functionalities are optional and can
be configured via the flag CHERIoTEN [7].

Extensions to Ibex. Integration of CHERIoT capabilities into the Ibex core
ensures that capability instructions, tags and safety mechanisms are deeply embedded
in the micro-architecture rather than bolted on at software level [7]:

• The register file is modified so that the original 32-bit general-purpose re-
gisters are extended to 65-bit capability registers, including a hardware-maintained
tag bit. When an integer instruction writes on a register containing a capab-
ility, the tag is cleared automatically, preventing capability forgery via integer
operations.

• The data bus is extended to 33 bits: 32-bit data is extended by a tag bit
to distinguish capabilities from integer data stored in the most significant bit
(MSB).

12

• The load-store unit is modified to support atomic capability load/store (clc,
csc) with tag checking and propagation

• Special Capability Registers (SCRs) are added (e.g. MTCC replacing
mtvec and MEPCC replacing mepc) and the Program Counter Capability Re-
gister (PCC), which serve special purposes.

Pipeline architecture

At its foundation, the CHERIoT-Ibex pipeline may be instantiated as either a two-
stage design (instruction fetch/decode (IF/ID) and execute/write-back (EX/WB)) or
a more performance-oriented three-stage design (IF, ID, EX/WB)) [7]. The CHERIoT
extensions integrate into this pipeline by augmenting the standard instruction path
with capability-aware decode and execution units.

Figure 2.1: The CHERIoT-Ibex pipeline [7]

IF/ID Stage. As shown in Figure 2.1, the IF stage incorporates prefetch buffer-
ing, compressed instruction decoding, and program counter capability (PCC) checks,
ensuring that all instruction fetches are capability-constrained. The ID stage then
employs dual decoders: a standard RV32IMC decoder for base RISC-V instructions
and a dedicated CHERIoT decoder for capability instructions, both feeding into a
shared control path.

EX/WB Stage. The EX stage integrates traditional ALU and multiply/divide
units with the CHERI EX execution unit, which implements capability-specific arith-

13

metic, bounds checking, and sealing/unsealing operations [6]. A CHERIoT-extended
load/store unit mediates all memory accesses, enforcing capability permissions before
issuing requests on the 33-bit data bus — an interface requiring two cycles to load
or store a full 64-bit capability [7]. To support fine-grained memory safety, this unit
interfaces with hardware accelerators, including the TBRE (The Background Revoc-
ation Engine) and STKZ (Stack Zeroization Unit), which operate in the background
to enforce temporal and spatial safety guarantees. The write-back stage updates both
integer and capability registers, with the CHERIoT load filter stage enforcing final
checks on loaded data before it enters the register file.

Hazards. In CHERIoT-Ibex, data hazards are largely mitigated through operand
forwarding. Control hazards occur on branches and interrupts, as the core has no
branch prediction; taken branches and exception entries flush the pipeline and restart
at the resolved target (calculated early in the pipeline), with PCC checks ensuring
valid control flow. Memory-related hazards are more significant: capability loads and
stores require multiple cycles over the 33-bit bus, and the load/store unit is a shared
resource between the CPU and tightly coupled accelerators (TBRE and STKZ), so
contention can introduce stalls when both issue memory requests.

Capability encoding

Capability size. A central challenge in CHERIoT is fitting capabilities into a 32-bit
format. Standard CHERI capabilities are 128 bits; CHERIoT compresses them to
suit embedded contexts. The end result is a compression format that fits all capability
metadata into one 32-bit word, which — together with the 32-bit address — forms a
64-bit capability. The extended 33-bit data path can thus load a capability in 2 words
(metadata + address), where each half carries a validity bit in the MSB tag bit. The
two tags are then ANDed to ensure validity across both words; effectively ensuring
that the entire capability is considered valid only when both words are tagged valid.
The concrete capability format as described in [25] is shown in Figure 2.2; permission,
bounds and sealing type compressions are explained in more detail below.

Permissions encoding. CHERIoT represents the 12 architectural permissions
in a compressed 6-bit encoding by eliminating invalid or redundant combinations. For
example, in CHERIoT, certain permissions are mutually exclusive (execute and write
cannot coexist), while others are only meaningful together (system register access
implies execute permission) [6, 25]. This encoding achieves a compact representation
while still covering the full set of meaningful authority patterns.

14

08917182122242531

R p’6 otype’3 E’4 T’9 B’9

a’32

R a reserved bit; normally zero, but may be set for untagged data (details omitted for brevity)
p a 6-bit compressed permissions field
otype a 3-bit ‘object type’ used for sealing capabilities
E a 4-bit exponent used for the bounds encoding
T a 9-bit top used in the bounds encoding
B a 9-bit base used for the bounds encoding
a the 32-bit address of the capability

Figure 2.2: Capability format as described in [25]

As a consequence of this compression system, no capability can possess all 12
architectural permissions. Instead, there are three capability roots: the write root,
the executable root and the sealing root [25]. Root capabilities with those permissions
are used to derive all further capabilities needed.

Bounds compression. The two 32-bit capability bounds (base and top) are
stored in a compressed format relative to the address using only 22-bits for both
bounds. This compression is achieved by ‘sharing’ some bits with the address, impos-
ing certain restrictions on bounds-address combinations that can be expressed in this
format. The bounds are represented using two 9-bit fields for mid-base and mid-top
bits (B and T) and a 4-bit exponent field (E) taking values 0-14 or the special value
24 (encoded as 1111) to represent a capability spanning the entire address-space. The
middle bound bits B and T are then inserted in the middle bits of the 32-bit address
a as shown in Table 2.1.

address, a = atop = a[31 : e + 9] amid = a[e + 8 : e] alow = a[e − 1 : 0]

base, b = atop + cb B 0

top, t = atop + ct T 0

Table 2.1: Decoding formula for the bounds as shown in [25]

As part of this, the top bits of the bounds are ‘corrected’ to ensure that the bounds
remain the same for addresses in the so-called representable range [b, b + 2e+9). The
corrections cb and ct are calculated according to the following formulae [25]:

cb =
−1 if amid < B

0 otherwise
ct =


−1 if amid < B and T ≥ B

1 if amid ≥ B and T < B

0 otherwise

15

As described above, this encoding supports only a restricted range of bounds-
address combinations, referred to as representable. Any modification of a capability’s
address or bounds therefore requires a representability check to confirm that the new
values can be expressed in the encoding. If the check fails, the hardware either adjusts
to the nearest representable values or clears the validity tag of the capability.

Sealing types. The architectural otype field is reduced to 3 bits in CHERIoT,
yielding two disjoint sets of seven values (0 being reserved for unsealed capabilities)
distinguished by the execute permission of the capability. This is done as in practice,
software typically uses different types for executable and data capabilities. Five of the
executable otypes are consumed by hardware-reserved sentry capabilities, leaving two
for software-defined use, while the data otypes are left entirely to the RTOS, which
reserves four for core components and exposes three to user code. Although this
represents a stricter limit than CHERI’s general sealing model, the CHERIoT RTOS
layers a virtualized sealing abstraction over hardware support, providing sufficient
flexibility for compartmentalization and object encapsulation in practice. [6].

2.2 CHERIoT RTOS

The CHERIoT RTOS represents a clean-slate operating system design specifically
architected to exploit the capability-based security features of the CHERIoT hardware
platform with the principles of least privilege and intentionality at its center [24].
Unlike traditional embedded operating systems that rely on memory management
units for isolation, the CHERIoT RTOS implements a compartmentalization model
based entirely on CHERI capabilities, enabling fine-grained privilege separation with
minimal performance overhead [26].

Core Architecture and Organization. The CHERIoT RTOS is organized
around a set of privilege-separated components that form the trusted computing base
(TCB). The architecture eliminates the concept of an omnipotent kernel, instead
distributing system functionality across multiple isolated components with minimal
necessary privileges [26].

The core components include:

• Switcher: The most privileged component responsible for context switching
between threads

• Allocator: Manages heap allocation with compartment-aware memory safety
and exposes an API for sealing

16

• Scheduler: Implements thread scheduling policies while maintaining compart-
ment and thread isolation

• Loader: Runs when a firmware image is loaded into memory; receives the root
capabilities from hardware and provides restricted capabilities to compartments
and threads

Compartmentalization. Each component operates within its own protection
domain, with inter-component communication occurring exclusively through well-
defined capability-based interfaces. This architectural approach ensures that com-
promise of any single component cannot escalate to full system control; this means
that security properties can be verified locally within individual components, rather
than requiring system-wide invariant maintenance.

Unsealer

The unsealer component, implemented primarily in token_unseal.S within the
token library, provides the fundamental service of converting sealed capabilities back
to their unsealed, usable form. It is architecturally integrated as part of the memory
allocator component, which exposes a sealing API; the library supports both dynamic
sealing (runtime seal / unseal operations) and static sealing (predefined, compile-time
sealed capabilities), which is why it provides two permit-unseal capabilities. This
addresses a critical limitation of the CHERIoT platform: the hardware sealing type
field is only 3 bits, providing space for just 7 different sealing types, while a system
could easily have more than 7 compartments requiring sealing services and/or require
multiple sealing types per compartment [26].

Security Role. In the RTOS compartmentalization model, the unsealer serves as
a critical trust boundary component. It enables secure capability delegation patterns
where sealed capabilities can traverse untrusted compartments without exposing their
underlying authorities until properly authenticated unsealing occurs [11]. Each sealed
capability includes a header that encodes its type and other metadata. Leakage of
this header would be problematic because it serves as the type identifier; if an un-
trusted component could modify it, they could change the type of a sealed capability,
subverting the type-safe guarantees that sealing provides.

The allocator (and the loader, for static sealed objects) virtualizes the sealing
abstraction through several key mechanisms:

17

• Sealing Capability Generation. Callers can request new capabilities that
work exclusively with the allocator’s sealing API, bypassing the direct hardware
cseal / cunseal instruction usage.

• Dual-Capability Allocation. Memory can be allocated via an API that
returns both a sealed and an unsealed capability to the same memory object,
so that trusted code can use the memory immediately while a sealed capability
is available for delegation to untrusted compartments.

• Header-Base Authentication. Sealed capabilities include a header contain-
ing authentication information for subsequent unsealing operations.

Technical Implementation. The unsealing process is provided by the user with
the sealed object pointer and the user’s sealing key, which authorizes the specific type
of the sealed value. In addition, the procedure relies on a global unsealing authority
private to the token library — the hardware unseal key — which can unseal any sealed
capability. The unsealing operation proceeds in a series of checks and transformations
that enforce both authority and type safety:

1. Authority Validation: Verifying that the caller’s sealing key authorizes un-
sealing (e.g., possesses PERMIT_UNSEAL permissions)

2. Hardware Unseal Check: Use the library-private hardware unseal key to
convert the sealed token into a valid unsealed capability (CUNSEAL instruction)

3. Type Matching: Ensure that the sealed capability’s object type matches the
sealing key’s permitted types (software check via BNEQ)

4. Capability Reconstruction: Adjust the bounds and offset of the capability
to produce a usable unsealed capability, effectively removing the sealed header

A critical aspect of the unsealing implementation is the requirement to ‘cut off
the header’ of the sealed data during the unsealing process before returning the un-
sealed capability. This header removal is necessary because sealed objects contain
metadata that must not be exposed to the receiving compartment but is essential for
the unsealing operation’s integrity verification.

The token_unseal.S implementation uses a specific register allocation strategy
to maintain the ability to reason about security during the unsealing process:

• ca0 : Contains the user’s sealing key capability and is replaced by the unsealed
object pointer upon successful unsealing

18

• ca1 : Holds the sealed object capability to be unsealed

• ca2 : Holds the unsealing authority and stores intermediate capabilities during
processing

• a3 : Used for computational operations during the unsealing procedure

This register allocation creates security concerns because sensitive data — such as the
unsealing authority and intermediate states of the unsealed object pointer including
the header — temporarily reside in processor registers and must be ensured not to
be accessible to the user’s code. We now turn to the formulation of the security
properties that should hold in the unsealer.

Security properties. The most fundamental security property of the unsealer is
that the unsealing authority must never remain in the register file after the unsealer’s
execution. The unsealing authority is a powerful authority that could enable the user
to unseal other code’s sealed capabilities and thus compromise the entire sealing-based
security model if exposed. Key protection requirements include:

• Register Isolation: Ensuring that the register ca2 holding the unsealing
authority is correctly clobbered both upon success and failure

• Authority Containment: Preventing the unsealing authority from being du-
plicated or otherwise modified and exposed

The second critical property ensures that the sealed object pointer is only exposed
after full completion of the successful unsealing operation — premature exposure of
the unsealed capability could expose the sensitive metadata stored in the header.
This property encompasses primarily the capability integrity: guaranteeing that the
unsealed object pointer exposed to the user has the correct bounds, excluding the
header.

Formal verification of these properties is highly desirable to guarantee that the
complex register manipulation sequences maintain security invariants throughout the
execution. Special care is to be given to the validation of the security properties even
on failure paths and especially at exception traps.

Switcher

Core functionality. The switcher is the most privileged component of the RTOS
— running with access to untrusted data — and serves as the central mechanism
for context switching between both compartments and threads within the CHERIoT

19

RTOS. According to the CHERIoT RTOS documentation [26], the switcher’s respons-
ibilities include saving register state on interrupts, invoking the scheduler with sealed
references to the register save area and trusted stack, unsealing and setting up the
target context on cross-compartment calls (while shrinking and clearing the stack as
required), and reversing these operations on return.

Common context installation. After saving the outgoing state and selecting
the next runnable context, the switcher invokes the common context install procedure
(.Lcommon_context_install in entry.S). This procedure restores the selected
context’s saved state from the TrustedStack, including general-purpose and capabil-
ity registers, the stack pointer and the program counter. Once these are installed,
execution resumes from the restored program counter. The install procedure thus
complements the save procedure, together forming the core of CHERIoT’s context
switching mechanism.

Security. From a security perspective, the common context installation proced-
ure presents several critical verification challenges. Since the switcher executes with
‘Access System Registers’ (ASR) permission, it is essential to verify that the newly
installed program counter capability (PCC) never retains ASR permissions, thereby
preventing privilege escalation into system-level authority. Equally important is the
assurance that all registers, and in particular the capability stack pointer (CSP), are
fully sanitized to eliminate residual state that could enable cross-context information
leakage. These properties to be proven by formal verification underpin the integrity
and isolation guarantees of the switcher.

20

Chapter 3

Formulating Safety Conditions

In this chapter, we develop a rigorous framework for reasoning about safety properties
of capabilities in the CHERIoT-Ibex system. We first introduce a precise mathemat-
ical model of capabilities, capturing their metadata, bounds, permissions, and object
types. Building on this formalization, we define notions such as representability and
derivability, which allows us to express the safety conditions that must hold at the
end of code execution.

3.1 Mathematical representation of capabilities

To begin reasoning about safety conditions regarding capabilities, we need a precise
mathematical model of their structure. As described in Section 1.2, representations
of capabilities typically include 5 fields of metadata: the address, the bounds, the
permissions, the object type and the validity bit. We can replicate this mathemat-
ically, as is done in Definition 1, applied to the (uncompressed) representation used
in the CHERIoT-Ibex. This definition is the basis for further discussion of capability
authority, its restriction, transfer and what we want to allow or forbid in a system.

Definition 1 (Capability) A capability is a 5-tuple:

c = (tag, a, (b, t), perms, otype)

where

• tag ∈ {0, 1} is the validity bit,

• a ∈ A32 is the address,

21

• (b, t) ∈ A32 × A∗
32 are the lower and upper bounds,

• perms ⊆ P is the set of permissions, and

• otype ∈ T ∪ {⊥} is the object type, with ⊥ denoting an unsealed capability.

Here, A32 = {0 . . 232 − 1} is the address space, A∗
32 = A32 ∪ {232} is the extended

address space, P denotes the set of architectural permissions, and T is the finite
set of sealing types.

In the CHERIoT-Ibex, the set of permissions consists of 12 elements (i.e. |P| =
12), which are specified in [25], while the set of object types is T = {1 . . 7}, which —
as explained in Section 2.1 — decodes to 7 sealing types each for execute and write
capabilities.

Representability

A critical aspect of the CHERIoT-Ibex implementation of capabilities is the com-
pressed encoding format (see Section 2.1). Each capability must fit into two 32-bit
words so that it can be efficiently loaded or stored in just two cycles. This micro-
architectural constraint is achieved via two mechanisms:

• The hardware uses a 4-bit shared exponent for both bounds, along with one
9-bit field for each bound. This design restricts the combinations of lower and
upper bounds that can be represented, motivating Definition 2.

• The bounds share the top bits with the address field, further reducing space.
For correct and consistent decoding, the address and bounds must lie in a
compatible range. In practice, this is checked by asserting that the address is
in the so-called representable range relative the bounds (Definition 3).

Understanding which bounds and addresses are representable is essential because
operations that change bounds or addresses — for example when deriving new capab-
ilities — must ensure that the requested values can actually be expressed in hardware.
In CHERIoT-Ibex such representability checks are performed directly in the microar-
chitecture, and our verification does not remodel them explicitly. Nevertheless, they
contribute to the overall complexity of reasoning about capability behaviour. The
notion of representability captures exactly which bounds can be stored and which
addresses are valid for those bounds.

22

Definition 2 (Representable bounds) A tuple of bounds (b, t) ∈ A32 × A∗
32 is

said to be representable if either

• b = 0 and t = 232 (encoding the entire address space), or

• There exists an exponent e ∈ {0 . . 14} such that

1. b, t ≡ 0 (mod 2e), and

2. 0 ≤ (t − b) ≤ 2e · 511.

We write B for the subset of A32 × A∗
32 of representable bounds.

This definition encodes the constraints imposed by the CHERIoT-Ibex compres-
sion:

• The exponent e controls the granularity of alignment. A larger e means coarser
alignment but allows larger ranges.

• The length restriction t−b ≤ 2e ·511 ensures the range fits within the limited
9-bit fields for bounds, shifted by the exponent.

• The first case allows capabilities that cover the entire address space, which
is represented by an exponent value 24.

Intuitively, representable bounds are all combinations of bounds that the hardware
can encode using two 9-bit fields and a shared 4-bit exponent.

Definition 3 (Representable range) Let (b, t) ∈ B. The representable range
R(b, t) is defined as

R(b, t) =
A32, if b = 0 and t = 232

[b, b + 2e+9), otherwise

where e ∈ {0 . . 14} is the maximal exponent witnessing representability of (b, t).
We say that (b, t) is representable with respect to an address a ∈ A32 if (b, t) ∈

B and a ∈ R(b, t).

23

Even if bounds are representable, the capability’s current pointer must lie within
a segment that the hardware can reconstruct consistently. The representable range
captures this requirement: it defines the set of addresses for which the bounds can be
decoded and decoded correctly. The range [b, b + 2e+9) arises because the top bits of
the address are shared with the bounds. Only the first e + 9 bits may change without
altering the top bits, yielding a length of 2e+9.

Equivalence with hardware encoding. The notion of representability with
respect to an address captures exactly the conditions under which a bounds-address
pair can be encoded in the CHERIoT-Ibex. This equivalence is formalized in theorem
1, which guarantees that our mathematical definitions of representable bounds and
ranges align precisely with the hardware encoding. This allows rigorous reasoning
about which capabilities can exist in the system.

Theorem 1 A pair (b, t) ∈ A32 × A∗
32 is representable with respect to an address

a ∈ A32 if and only if there are B, T ∈ A9 and E ∈ A4 such that (b, t) are
the decoded base and top bounds according to the procedure of Section 2.1 when
executed with B, T, E and address a.

The theorem can be proven using standard discrete mathematics reasoning over
the encoding procedure.

Derived capabilities

The CHERI architecture provides a fixed set of operations for transforming capabil-
ities (see Section 1.2). These operations are monotonic in the sense that they cannot
create new authority: any capability produced from another has bounds no larger,
permissions no greater, and cannot regain validity once invalidated. From a security
perspective, this monotonicity is crucial: if a sensitive capability is not to be leaked,
then it is insufficient to check that the exact capability does not appear in registers
or memory. One must also ensure that no derived capability — any authority that
originates from the sensitive capability — is present, since even restricted forms of
authority may enable unintended behaviour.

Formally, derivability captures the idea that c′ can be obtained from c via a
sequence of valid CHERIoT capability operations. It is mathematically formulated

24

in Definition 4 and its implementation in SystemVerilogAssertions (SVA) is shown in
Figure 1 in the appendix.

Definition 4 (Derivable Capabilities) Let c, c′ be capabilities. We say that c′

is derivable from c and write c′ ⪯ c if:

1. tag(c) = 1: only valid capabilities can be the basis for derivation,

2. [b(c′), t(c′)) ⊆ [b(c), t(c)): the derived capability c′ has bounds at least as
strict as the source capability c, and

3. perms(c′) ⊆ perms(c): the derived capability does not possess any permis-
sions that the source capability does not.

Thus, c′ represents a restriction of c: it cannot restore validity, can access no
more memory and enables no more operations. The derivability relation ⪯ has the
following structural properties, following from the structural properties of ⊆.

• Reflexivity: c ⪯ c for any valid capability c.

• Transitivity: If c′ ⪯ c and c′′ ⪯ c′, then c′′ ⪯ c.

Hence, ⪯ defines a partial order on the set of valid capabilities. Intuitively, this order
captures containment of authority: higher elements confer as least as much authority
as those below them.

3.2 Safety conditions

In this section, our aim is to formulate the safety conditions we want to hold at the
end of a code sequence. These conditions are naturally phrased as postconditions:
they describe the state that must be achieved once execution completes. Naturally,
our ultimate goal is more complex: we want to prove these conditions hold whenever
the code is executed. That broader question will be taken up later (see Chapter
4). Here we deliberately restrict our focus to the conditions themselves, as precise
end-of-execution invariants.

25

Ensuring non-derivability in registers

Typically, we are interested in safety properties of the form ‘the at-entry value of c
or any capabilities derivable from it, must not be present anywhere in the register file
upon completion of the code sequence.’

Here, c denotes a variable holding a sensitive capability. To express this property
precisely, we must clarify four aspects:

1. The meaning of the at-entry value of c ,

2. What it means for a capability to be derivable,

3. What it means for a capability to be absent from the register file,

4. When a code sequence has completed.

Items 1 and 4 are closely tied to questions of pipeline state and execution timing and
will therefore be addressed in Chapter 4. For the present discussion we assume that
variables are available which refer to the at-entry value of the relevant capabilities,
and focus on the remaining two aspects: derivability (2) and register file contents (3).

1 function automatic bit no_derivatives_except_ca0_ca1_fn(reg_cap_t cap, logic [31:0] addr);
2 for (int i =0; i <32; i++) begin
3 if (i!=10 &&i!=11) begin
4 if(derived_from(`RF.rf_cap[i], regs[i], cap, addr))
5 return 0;
6 end
7 end
8 return 1;
9 endfunction

Figure 3.1: Implementation of register file scanning for derivable capabilities in SVA

Implementation. Derivability is defined formally in Definition 4. In our SVA
implementation (see Figure 1 in the appendix), this check is realized by decompressing
the capabilities and comparing their permission sets and bounds. Although check-
ing directly on the compressed representation would be possible, decompression is
preferred for clarity, with little cost in performance. To enforce the register file con-
dition, we provide a function (see Figure 3.1) that takes the sensitive capability c
as input and iterates through all 32 capability registers. Each register is checked for
derivability from c . If a derivable capability is found, the function terminates imme-
diately and returns False . If the iteration completes without finding any derivable
capability, the function returns True , indicating that the register file is safe. Op-
tional exclusions (e.g. the register holding c itself) can be specified to avoid trivial

26

self-derivation, as is done for registers ca0 and ca1 in the example function shown
in Figure 3.1.

Formally, this function can be defined as the following

not derivable(cap, S ⊆ {1 . . 32}) ⇐⇒
∧
i∈S

(ci ̸⪯ cap)

where cap is the sensitive capability and ci is the capability in register i and S is the
set of indeces to consider.

Unsealer safety conditions

We now apply these concepts to formulate the safety conditions for the unsealer
module. At the entry point of the unsealer, two sensitive capability objects are
available:

• the sealed object pointer obj_ptr , and

• the global unsealing authority us_auth private to the token library (see Section
2.2).

At completion of the unsealer’s execution:

• the unsealing authority, or any of its derivatives, must not appear in the
register file, and

• the object pointer may only appear in two specific registers:

– in register ca1 in its original sealed form,

– in register ca0 in its correctly unsealed form (i.e. with the header re-
moved).

Everywhere else in the register file, neither obj_ptr nor us_auth (nor any derived
capabilities) may be present. For convenience, we assume that the variables obj_ptr
and us_auth represent the at-entry values of the sealed object pointer and unsealing
authority respecively, and by slight abuse of notation we treat them as including their
addresses. The formal safety conditions are:

1. obj_ptr and all derivable capabilities must not be present in the register file.

2. us_auth and all derivable capabilities must not be present in the register file.

3. Exceptions:

(a) Register ca0 may hold the correctly unsealed object pointer.

27

1 // allow ca1 to be exactly the sealed pointer
2 logic ca1_ok =∼ca1.valid ||(ca1 ==obj_ptr &&a1 ==obj_ptr_addr);
3 // allow ca0 to hold the unsealed pointer with correct bounds
4 logic ca0_ok =∼ca0.valid ||is_correct_unsealed_pointer(ca0, a0);
5
6 // check if the unsealing authority is safe (no derivatives anywhere except in the special allowed

↪→ cases)
7 logic us_auth_safe_other_regs =no_derivatives_except_ca0_ca1_fn(us_auth,us_auth_addr);
8 logic us_auth_safe_ca1 =ca1_ok ||∼derived_from(ca1, a1, us_auth,us_auth_addr);
9 logic us_auth_safe_ca0 =ca0_ok ||∼derived_from(ca0, a0, us_auth,us_auth_addr);

10 logic us_auth_safe =us_auth_safe_other_regs &&us_auth_safe_ca1 &&us_auth_safe_ca0;
11
12 // check if the object pointer is safe (no derivatives anywhere except in the special allowed cases)
13 logic obj_ptr_safe_other_regs =no_derivatives_except_ca0_ca1_fn(obj_ptr, obj_ptr_addr);
14 logic obj_ptr_safe_ca1 =ca1_ok ||∼derived_from(ca1, a1, obj_ptr, obj_ptr_addr);
15 logic obj_ptr_safe_ca0 =ca0_ok ||∼derived_from(ca0, a0, obj_ptr, obj_ptr_addr);
16 logic obj_ptr_safe =obj_ptr_safe_other_regs &&obj_ptr_safe_ca1 &&obj_ptr_safe_ca0;

Figure 3.2: SVA implementation of the final safety conditions for the unsealer module

(b) Register ca1 may hold the sealed object pointer in its original form
(obj_ptr).

Implementation. In the SVA implementation (Figure 3.2), we encode the two
exceptions explicitly via the signals ca0_ok and ca1_ok . Invalid capabilities are
ignored, since they cannot be revalidated. For each sensitive capability, we then check:

• whether one of the exceptions applies, and

• if not, whether ca0 / ca1 do not hold a derivable capability.

Finally, the register file scanning function described above is used to verify that
no other register in the file holds a capability derivable from obj_ptr or us_auth .
All results are combined into the predicates us_auth_safe and obj_ptr_safe ,
representing the final safety conditions of the unsealer. The implementation is shown
in Figure 3.2.

Switcher safety conditions

The complete verification of the switcher is out of scope for this thesis. However,
to illustrate how our methodology generalizes beyond the unsealer, we also consider
a fragment of the switcher’s common context install procedure (see Section 2.2).
the details of this setup, including the simplifying assumptions required to make it
tractable, are discussed later in Chapter 5. Here we state only the safety conditions
that guide the verification.

Safety conditions. At entry, the only sensitive value is the capability stack
pointer csp , which is used to restore the processor state and then quarantined in

28

mtdc . It must not be leaked elsewhere in the register file. Let csp_at_entry denote
the at-entry value in the register csp . At completion of the install block (jsut before
mret), the following conditions must hold:

1. Persistence of csp_at_entry : The at-entry value of csp is successfully in-
stalled in the system register mtdc .

2. Non-leakage of csp_at_entry : No register in the capability register file
may contain a capability derivable from csp_at_entry .

Together, these conditions express that the at-entry value of csp is quarantined in
mtdc and otherwise eliminated from the architectural state. Formally, this can be
captured in the formula

32∧
i=1

(ci ̸⪯ csp0) ∧ mtdc = cspo

where ci is the capability present in capability register i and cspo stands for the
capability csp_at_entry .

29

Chapter 4

Logical Encoding of Code
Execution

As explained in Chapter 3, we are not just interested in proving isolated state invari-
ants; we need to show that these invariants hold throughout real code execution. This
requires a way to express, in logic, that a sequence of instructions is actually executed
on the processor.

Approach. In this chapter, we develop such a methodology for reasoning about
binary code execution on the formal model of the CHERIoT-Ibex processor. Our ap-
proach is based on observing instructions at the writeback (WB) stage of the pipeline,
where execution is guaranteed to have completed. Using a small set of indicator sig-
nals, we can encode binary execution paths as temporal properties and extend this
encoding to cover timing, exceptions, branching and the capture of ‘at-entry’ values
needed for safety properties.

4.1 Observation strategy: the writeback stage

Motivation

When reasoning about binary execution on a pipelined processor, there are two nat-
ural places to observe instructions:

• At entry (IF/ID stage), where instructions are fetched and prepared for
execution.

• At writeback (WB stage), where results are committed and execution is
guaranteed to have completed.

30

At entry. At first glance, the IF/ID stage seems appealing: it captures instruc-
tions at the moment they enter the pipeline. However, instructions observed at entry
may never execute: branches can flush them, exceptions can interrupt them and stalls
make it unclear when they might complete. Encoding execution at entry would there-
fore require reasoning about hazards, timing and dependencies — all of which quickly
complicate verification.

At writeback. The writeback stage, by contrast, provides what we call the point
of truth. An instruction reaching WB has traversed all earlier pipeline stages and
is about to update the architectural state. From the perspective of verification, this
provides us with a clean and unambiguous marker that the instruction has indeed
executed; hazards and stalls are resolved before WB. The price of this simplicity
is that we shift certain responsibilities elsewhere: we implicitly assume that earlier
stages behave correctly (e.g. no interrupts), and we treat branches and exceptions
separately.

Indicator signals and assumptions

Assumptions. We adopt several high-level assumptions to simplify reasoning about
timing and control; these have been reviewed with SCI Semiconductors, who con-
firmed they are fair in practice. .

• Instructions run at minimum latency: The latency depends on the in-
struction type: most are single-cycle, while (capability-) loads and stores may
take two or three cycles.

• Memory returns within one cycle: Together with the previous assumption,
this eliminates combinatorial timing blow-ups. For example, two instructions
each taking between one and three cycles already create nine possible timing
combinations. Fixing latency keeps the verification state space manageable.

• No interrupts during execution: For the sequences we check, interrupts are
disabled by context, so we may safely assume they do not occur.

Indicator signals. To make the WB stage usable as a logical observation point,
we rely on a small set of indicator signals introduced in the follower module by Ploix
[27]. These are not part of the RTL design itself but are additional instrumentation
for formal reasoning about CHERIoT-Ibex. In model checking, the RTL and the
follower are combined so that properties can be expressed over both hardware state

31

and these derived indicators. The full implementation of the follower is provided in
Figure 3 in the appendix.

Exception handling. The writeback stage in CHERIoT-Ibex also serves as the
point where exceptions are latched. When an instruction raises an exception in EX,
its decoded bits and status are still passed into WB, where they remain until the
exception is fully handled. The prefix wbexc_* in the indicatoor signals reflects this
dual role: they describe the instruction resident in WB, regardless of whether it is
committing normally or waiting due to an exception.

Latching. The follower latches values into the wbexc_* registers whenever the
signal instr_will_progress is true. At that hand-off, the instruction in EX moves
into WB, and the follower records the decompressed instruction bits, the branch de-
cision and any associated fetch/exception flags. If WB later finishes, wbexc_exists
is cleared, creating a bubble or letting the executing instruction proceed to WB.

We use the following signals as our vocabulary for describing execution:

• wbexc_decompressed_instr : the 32-bit (decompressed) instruction latched
into WB. Ignore its value when wbexc_exists is false (bubble). Is wbexc_err
is true, this still holds the instruction that raised the exception; the handling
of the exception is modelled separately.

• instr_will_progress : signals that the pipeline will advance to the next
cycle, i.e. the instruction currently in EX will move into WB. In principle this
can coincide with exceptions, but in our usage it marks non-exceptional pro-
gression: if an exception had occurred, handling would take more than one cycle
and instr_will_progress would not line up with the next WB instruction.

• wbexc_exists : true whenever the WB stage holds a valid instruction (or an
exception). If false, WB is a bubble and associated fields are meaningless.

• wbexc_has_branched : the branch-taken decision for the instruction that just
advanced to WB. Only meaningful if that instruction is a branch instruction.

• wbexc_fetch_err : indicates that the instruction in WB encountered a fetch
error.

• wbexc_err : true when the WB slot corresponds to an exception rather than a
normal commit. This can result from an error detected in EX or from exception
handling in WB.

These indicators give us exactly the hooks to say ‘instruction X is meaningfully in
WB’, ‘the pipeline advances now’, and ‘a branch was taken here’, without exposing

32

low-level hazard and control logic. In the next section, we use them to encode concrete
sequences of binary instructions as temporal properties.

4.2 Encoding instruction sequences

Base encoding

To reason about execution, we first introduce a macro that tells us when a specific
binary instruction is present in the WB/exception stage:

1 `define INSTR wbexc_decompressed_instr
2 `define INSTR_WB(instr) \
3 wbexc_exists &&∼wbexc_fetch_err &&`INSTR ==instr

Intuitively, INSTR_WB(i) is true whenever the decompressed instruction in WB
matches i , WB is not a bubble, and no fetch error occurred. In other words: ‘the in-
struction i has been correctly fetched and has now reached WB/exception handling’.
Whether an exception is/was raised will be handled separately in Section 4.3.

Logical perspective (LTL). The goal is to describe traces through WB, where
one instruction appears, completes, and the next one follows. For clarity, we use
shorthand state predicates when writing temporal logic:

• wb(l): instruction l is in WB (from INSTR_WB(l))

• ready: the pipeline will progress (from instr_will_progress)

With this notation, a simple step looks like:

(wb(l0) ∧ ready) ∧ Xwb(l1) (4.1)

which reads: ‘the instruction labelled l0 is in WB, the pipeline is ready progress and
in the next cycle l1 is in WB’. If the instruction l0 takes more than one cycle (e.g. a
load), we capture that explicitly:

(wb(l0) ∧ ¬ready) ∧ Xready ∧ XXwb(l1) (4.2)

This says ‘l0 is in WB but does not progress, one cycle later the pipeline is ready to
progress, and one cycle after that l1 appears in WB’. By construction, ¬ready implies
that the instruction in WB does not change, so wb(l0) does not need to be restated
in the stalled cycle. From these patterns,longer code sequences are built by chaining
such formulas, ensuring that instructions appear in WB exactly in order, with explicit
timing and no bubbles or spurious instructions in between.

33

Encoding in SVA. In practice, we express these properties in SystemVerilo-
gAssertions (SVA). Here, the operator ##1 plays the role of the LTL ‘next’ operator
X. The operator stacks naturally:

• a ##1 b ≡ a ∧ Xb

• a ##1 b ##1 c ≡ a ∧ Xb ∧ XXc

• in general, every element after a ##1 is shifted one more cycle into the future

For example, the stalled case above (4.2) translates directly to:
1 sequence stalled_instruction;
2 (`INSTR_WB(l0) &&∼instr_will_progress
3 ##1 instr_will_progress
4 ##1 `INSTR_WB(l1));
5 endsequence;

Here, the first line says ‘l0 is in Wb but does not progress’, the second line says ‘one
cycle later the pipeline is ready’, and the third line says ‘one more cycle later l1 is
in WB’. To illustrate how binary code is translated into our WB-based encoding,
consider the following fragment from the unsealer binary:

1 0: fe4506db ct.cgettag a3, ca0 ; l00_cgettag
2 4: c281 beqz a3, .Lexit_failure ; l04_beqz
3 6: fe2506db ct.cgetbase a3, ca0 ; l06_cgetbase
4 a: 00d51063 bne a0, a3, .Lexit_failure ; l0a_bne
5 e: fe3506db ct.cgetlen a3, ca0 ; l0e_cgetlen

This sequence of instructions corresponds, in our base encoding, to the following SVA
fragment:

1 sequence straight_line_example;
2 (`INSTR_WB(l00_cgettag) &&instr_will_progress
3 ##1 `INSTR_WB(l04_beqz) &&instr_will_progress
4 ##1 `INSTR_WB(l06_cgetbase) &&instr_will_progress
5 ##1 `INSTR_WB(l0a_bne) &&instr_will_progress
6 ##1 `INSTR_WB(l0e_cgetlen) &&instr_will_progress);
7 endsequence;

The structure of the encoding is straightforward: each instruction from the binary is
represented as an ISNTR_WB(l) predicate in WB, conjoined with the requirement
that the pipeline progresses, and linked to the next instruction by ##1 . At this stage
we ignore branching; the encoding will be refined in Section 4.2 to account for branch
decisions.

Branching

So far we have considered straight-line execution: each instruction reaches WB, the
pipeline progresses, and the next instruction follows in order. Real binaries, however,
often contain branch instructions, which may either continue along the fall-through

34

path or or redirect control flow to a branch target. At the WB stage, this decision is
visible through the indicator signal wbexc_has_branched .

The signal wbexc_has_branched records the branch decision made in EX for the
instruction that has just entered WB. When this flag is true, the pipeline does not
also assert instr_will_progress in the same cycle. Intuitively this makes sense:
a taken branch flushes the pipeline, so progression to the next sequential instruction
does not occur. Instead, the pipeline produces a one-cycle bubble in WB before
the branch target arrives, since CHERIoT-Ibex (without branch prediction) already
prefetches and decodes the branch target once the branch is identified (see Section
2.1.

Logical perspective (LTL). We extend the shorthand predicates from Section
4.2 with two additional symbols:

• br: the current WB instruction branched (from wbexc_has_branched)

• bubble: WB is empty (from ˜wbexc_exists)

Together with the semantic invariant discussed above (br ∧ wb(l) → ¬ready), we can
capture both outcomes of a branch. Let lbr denote the branch instruction, lnext its
sequential successor, and ltarget the branch target.

• Fall-through (branch not taken):

(wb(lbr) ∧ ready) ∧ Xwb(lnext) (4.3)

• Branch taken:

(wb(lbr) ∧ br) ∧ Xbubble ∧ XXwb(ltarget) (4.4)

Intuitively, at a branch instruction in WB, we can describe the outcome as:

• Not taken: use ready and step to lnext

• Taken: replace ready with br, insert one bubble, then continue at ltarget

Practicality. In practice, we must explicitly encode the code sequence that follows
both possibilities. Each outcome is expressed as its own sequence (e.g. success vs.
failure), and properties are checked separately for each. This can in principle lead
to exponential blow-up when branches are nested. In our case study, however, each
branch instruction presents an ‘off-ramp’ from a short success path: execution either
continues along the success path or jumps to a failure path of fixed length with no
further branching. This containment keeps the encodings tractable.

35

Encoding in SVA. The following worked example extends the straight-line frag-
ment used in Section 4.2 (see Code Snippet 4.2) with the branch at l0a_bne being
taken. We keep ˜wbexc_has_branched explicit on the fall-through line for readab-
ility (even though instr_will_progress already implies it).

1 sequence branch_2_l06_cgetbase;
2 (`INSTR_WB(l00_cgettag) &&instr_will_progress
3 ##1 `INSTR_WB(l04_beqz) &&instr_will_progress &&∼wbexc_has_branched
4 // Branch at l04_beqz is not taken; execution continues normally
5 ##1 `INSTR_WB(l06_cgetbase) &&instr_will_progress
6 ##1 `INSTR_WB(l0a_bne) &&wbexc_has_branched
7 // Branch taken at l0a_bne: use br, bubble, then jump to target sequence
8 ##1 ∼wbexc_exists
9 ##1 failure_sequence);

10 endsequence;

How to read this. The fragment proceeds straight-line up to l06_cgetbase .
At l0a_bne , we consider the taken case: the property checks wbexc_has_branched
, enforces the one-cycle WB bubble, then continues at failure_sequence , the sep-
arately defined branch target path. The fall-through case can be seen earlier at
instruction l04_beqz , where execution continues as normal.

4.3 Proving safety properties

In Chapter 3 we defined safety conditions on processor states, loosely of the form ‘the
at-entry value of this capability is not exposed’. At that point we treated at-entry
values as given, without yet explaining how they are captured in the execution model.

The actual properties we want to prove, however, are not state conditions in
isolation, but properties of the form

sequence → condition

meaning: ‘if a given code sequence executes, then at the point of exit the correspond-
ing safety condition holds’. In Section 4.2 we developed a methodology for encoding
concrete execution paths of a binary on CHERIoT-Ibex, including both straight-line
execution and branching. This gives us the ‘left-hand side’ of the implication above:
we can formally capture all expected execution sequences up to a normal return.

To complete the picture, two elements remain:

1. At-entry values, which let us make precise the notion used in Chapter 3 and
allow safety conditions to compare the final state against the initial state of
execution.

36

2. Exceptions as exit points, since execution can also leave a module through
exception handlers, and the safety conditions must hold in those cases as well.

The remainder of this section develops these two extensions, thereby closing the
gap between abstract safety conditions and concrete verifiable properties over binary
execution.

Capturing at-entry values

The encodings in Section 4.2 capture the control flow of instruction sequences, but
they do not yet let us relate the final state of execution to its intial state. Safety con-
ditions from Chapter 3, however, are defined precisely in terms of such comparisons:
for example, requiring that a capability’s entry value is not present in the register
file at exit. To reason about these properties, we therefore need a way to refer to the
at-entry value of relevant registers or signals throughout the verification of a sequence.

Challenges. Naive strategies such as using a circular buffer of past values or
fixed-cycle delays from the beginning of the sequence, proved unwieldy in System-
VerilogAssertions: dynamic indexing is not well supported, and fixed delays break
down in the presence of branching or variable-length sequences. Solution. These
limitations led us to a more direct approach:

• When the first instruction of the sequence enters WB, we snapshot the
relevant register or signal into a dedicated _at_entry variable.

• This value is then held constant for the rest of the execution, providing a stable
reference for safety conditions.

• This approach works reliably as long as the first instruction of the sequence is
unique (so we know when to take the snapshot), which holds in our case study.

Implementation. To illustrate, consider the capability register ca2 holding the
unsealing authority. We define a companion variable ca2_at_entry that snapshots
the value of ca2 as soon as the first instruction of the sequence appears in WB:

1 reg_cap_t ca2_at_entry =NULL_REG_CAP;
2 always_latch begin
3 if (($past(instr_will_progress) &&`INSTR ==ENTRY_INSTR &&wbexc_exists) ||∼rst_ni) begin
4 ca2_at_entry =ca2;
5 end
6 end

• The guard $past(instr_will_progress) ensures that we only latch when
the pipeline has just progressed (instr_will_progress was true in the previ-

37

ous cycle). That is, we snapshot exactly when the entry instruction first arrives
in WB.

• The test ‘INSTR == ENTRY_INSTR checks that this instruction is the desig-
nated first instruction of the sequence.

• The signal wbexc_exists ensures that WB is valid (not a bubble).

• The clause ˜rst_ni reinitializes the snapshot on reset.

Together, these conditions guarantee that the snapshot is taken exactly once, at the
moment the entry instruction first appears in WB. The variable ca2_at_entry then
remains constant for the remainder of the execution (the entry instruction does not
reappear in WB within the same sequence) and can be used in the RHS of safety
properties. In practice, we generate such latches for many variables using a simple
macro (shown in Figure 2 in the appendix), so that at-entry values can be defined
systematically without duplicating code.

This approach isolates the at-entry state once and for all, so conditions like

code sequence → (cap ⪯ cap at entry)

are well-defined and meaningful. With at-entry values captured, we can now apply
the safety conditions from Chapter 3 at the precise exit point of each encoded path.
The remaining case is to ensure they also hold at exceptional exits.

Exceptions

So far we have provided a framework for checking safety conditions along complete
execution sequences: given a sequence of instructions, we can assert that the safety
condition holds when the sequence terminates as expected, typically at a cret or
mret . This covers executions where the full code block runs to completion. What
we have not yet considered are executions that end prematurely, namely when an
instruction raises an exception. Since safety must hold at any exit point, we must
extend the framework to cover these exceptional exits as well.

Encoding strategy. To cover exceptions, we extend the verification to every
prefix of the code sequence. Whenever execution reaches instruction li in WB, we
assert that either

• no exception is raised at this point (˜wbexc_err), or

• the safety condition already holds.

38

This captures the intuition that an exception exit at instruction li must be just as
safe as returning normally at the end of the sequence.

Formalization. In temporal logic, the property for prefix l0, . . . , li can be ex-
pressed as:

wbr(l0) ∧ Xwbr(l1) ∧ · · · ∧ Xiwb(li) → Xi(¬wbexcerr ∨ condition)

Here, wbr(l) ≡ wb(l) ∧ ready, and for simplicity we assume single-cycle steps (multi-
cycle cases insert the appropriate number of X operators, as in Section 4.2). Note that
for li, we use wb(li) (not wbr(li)), because we must also consider the case where an
exception is raised at li, which would be excluded by ready. In SVA, this corresponds
to reusing the existing straight-line encoding of the prefix, cut off at li, and adding
the exception check on the right-hand side:

1 (property_prefix_up_to_li)
2 |->∼wbexc_err |safety_condition;

Worked example. As a concrete illustration, consider the prefix of the previ-
ously discussed unsealer code fragment (see Section 4.2) that ends at instruction
l06_cgetbase . The following property states: if execution reaches this point in
WB, then either no exception occurs, or the two safety conjuncts obj_ptr_safe
and us_auth_safe already hold:

1 property no_wbexc_err_3_l06_cgetbase_prop;
2 (`INSTR_WB(l00_cgettag) &&instr_will_progress
3 ##1 `INSTR_WB(l04_beqz) &&instr_will_progress &&∼wbexc_has_branched
4 ##1 `INSTR_WB(l06_cgetbase))
5 |->∼wbexc_err |(obj_ptr_safe &&us_auth_safe);
6 endproperty;

Such properties must be generated for every prefix of the code sequence; we automated
this with a Python script to avoid boilerplate.

Together with the sequence → condition checks for normal returns, these prefix
properties ensure that safety conditions hold at all exit points: both when execution
returns to completion and when it diverts into an exception handler. This completes
the framework for proving safety properties of binary execution on CHERIoT-Ibex.

39

Chapter 5

Verification Results on the
Unsealer and Switcher

In the previous chapters we developed both the safety conditions to be proved (Chapter
3) and the execution encoding framework needed to reason about binaries on the
CHERIoT-Ibex (Chapter 4). We now turn to the central question: do the unsealer
and switcher modules of the CHERIoT RTOS satisfy their intended security guaran-
tees when verified against the RTL model of the CHERIoT-Ibex?

Overview. This chapter presents the outcome of applying our methodology to
these two case studies. For the unsealer, we report a complete verification: all normal
and exceptional execution paths were checked against the safety conditions, revealing
one previously unknown bug which we discuss in detail. For the switcher, we present
partial results: a simplified code fragment was verified under additional assumptions,
establishing safety for the capability stack pointer (csp). Alongside the verification
outcomes, we also evaluate the practical feasibility of our approach, including timing
results. In addition, Section 5.3 offers an exploratory discussion of how k-induction
could be adapted to interval properties in this setting.

5.1 Complete verification of the unsealer

Concrete implementation of security properties

The unsealer’s verification rests on two security conditions introduced in Section 2.2
and expanded in Section 3.2:

1. Unsealing Authority Protection: The global unsealing authority (us_auth)
must not be present in the register file at any exit point from the unsealer.
Neither us_auth nor any capability derived from it may be exposed.

40

2. Controlled Sealed Object Exposure: At any exit point, the sealed object
pointer (obj_ptr) may only appear in:

• register ca1 in its original sealed form, or

• register ca0 in its correctly unsealed form, with the header removed. Any
other appearance of obj_ptr or a derived capability in the register file
violates safety.

Together, these claims characterize the safety properties of the unsealer. In prac-
tice, we work with the predicates us_auth_safe and obj_ptr_safe defined in
Section 3.2, which capture these conditions precisely.

Paths through the unsealer. The unsealer binary (see Figure 5 in the ap-
pendix) consists of a single success path (see Figure 4 in the appendix) with a sequence
of checks, each of which can branch to a short failure handler, encoded as:

1 sequence failure_sequence;
2 (`INSTR_WB(l40_li_a2) &&instr_will_progress
3 ##1 `INSTR_WB(l42_li_a0) &&instr_will_progress
4 ##1 `INSTR_WB(l44_cret));
5 endsequence

There are six such off-ramps. Together with the full success path, this yields seven
execution paths to be verified. For each of these we constructed an SVA sequence
following the methodology of Chapter 4. This ensured that every possible control-flow
outcome of the binary was covered.

Branch properties. For each sequence, we constructed a property of the form:
1 property branch_2_safe_prop;
2 (branch_2_l06_cgetbase ands assumption
3 |->us_auth_safe &&obj_ptr_safe);
4 endproperty

This example corresponds to the branch at l0a_bne , directly following the check at
l06_cgetbase . The sequence definition can be found in Section 4.2. The property
states that if this path is taken under the pre-execution assumptions, then both safety
conditions hold at exit. Analogous properties were generated for all six off-ramps and
the full success path.

Exception properties. To cover exceptional exits, we generated one property
for every prefix of the success path, as discussed in Section 4.3. The failure sequence
was treated separately: here, we proved with a dedicated property that it cannot raise
exceptions (all instructions only zero registers), so no additional exception properties
were required for the branch paths. In total, 18 exception properties were generated
for the 18 instructions of the success path.

41

Assumptions. The proofs relied on a single baseline assumption: at the entry
point of the code sequence, no registers other than ca0 , ca1 , and ca2 may hold
any capability derivable from the two sensitive inputs us_auth and obj_ptr . This
captures the intended RTOS usage, where these arguments are provided directly in
their designated registers, and the rest of the register file is assumed clean: Stronger
refined assumptions were introduced later, when analysing the discovered bug (see
next subsection).

Completeness. With seven branch properties and 18 exception properties, the
verification covered all 25 possible exit points of the unsealer binary. Together, they
form a complete proof obligation: if all hold, then the unsealer satisfies its safety
conditions at every normal and exceptional exit. All properties proved in this setup,
except for one exception property, which produced a counterexample uncovering a
previously unknown bug. We discuss this bug in the next subsection.

Raised issue and bug

One exception property failed during verification and revealed a subtle bug in the fast
unsealer implementation. The property concerned the prefix ending at instruction
l28_clw , where the unsealer attempts to load the software type tag from the just-
unsealed pointer:

1 property no_wbexc_err_13_l28_clw_prop;
2 (assumption and (`INSTR_WB(l00_cgettag) &&instr_will_progress
3 ##1 ...
4 ##1 `INSTR_WB(l28_clw) &&∼instr_will_progress)
5 |->(∼wbexc_err |(obj_ptr_safe &&us_auth_safe)));
6 endproperty;

The counterexample showed that if the allocator provides a sealed capability whose
length is < 16 bytes, the clw traps (bounds violation). At that point, register
ca2 holds the unsealed capability including its sensitive header, violating the safety
condition obj_ptr_safe . This issue was raised with SCI and confirmed. As they
summarized:

If the allocator uses its loader-provided hardware sealing key to construct
a sealed cap whose length is less than 16, then the fast unsealer’s load of
the virtual object type can trap. [...] as of that load instruction, ca2 is the
unsealed pointer to the underlying allocation, which is not stellar. [13]

From a verification perspective, the property proves once we add the explicit as-
sumption that the sealed object pointer ca1 has load permission and appropriate

42

bounds (ca1_assumption), which reflects the intended preconditions for calling the
unsealer.

Derived-capability assumptions. A separate question concerned possible re-
lationships between the sensitive inputs (obj_ptr and us_auth) at entry. If one
were derivable from the other, parts of the safety claims could become vacuous. SCI
indicated that, in the intended RTOS usage, the arguments should be independent,
though this may not be mechanically guaranteed in all contexts. For completeness,
we therefore considered two regimes:

• Baseline: no registers other than ca0 , ca1 , and ca2 holds any capability
derived from obj_ptr or us_auth .

• Independent-args: in addition to the baseline, obj_ptr and us_auth are
not derivable from each other; i.e. ca1 must not contain a capability derived
from us_auth and vice versa.

Both regimes were sufficient to prove the properties; the independent-args setting
best reflects the intended system model. The implementation of the final assumption
block, integrating the object-pointer well-formedness and argument independence,
can be found in Figure 6 in the appendix.

Timing results

Beyond correctness, a central question is the feasibility of our verification workflow:
can the safety properties be discharged within practical time bounds? To evaluate
this, we measured solver runtimes for all unsealer properties under the assumptions
described above. There results represent unoptimized runs: no advanced mechan-
isms such as SST tunnelling or cone-of-influence reduction were applied. In practice,
such optimizations can often reduce proof times by a constant or even multiplicative
factor.

The runtimes reported are wall-clock runtimes per property, but since all proofs
were executed in parallel, the overall verification time is determined not by the sum
but by the longest proof.

Exception properties. Each of the 18 exception properties (prefixes of the
success path) discharged in under two minutes, with runtimes between 43 s and 57
s, except for one outlier at 163 s (see Table 5.1). This outlier corresponds exactly to
the property at l28_clw , which had previously produced a counterexample. The

43

longer runtime is plausibly explained by the solver having to explore the possibility
of an exception and check capability-derivability conditions before convergence.

Property Time (s)

no_wbexc_err_1_l00_cgettag 43.7
no_wbexc_err_2_l04_beqz 57.6
.
no_wbexc_err_13_l28_clw 163.1
.
no_wbexc_err_17_l36_sub 57.6
no_wbexc_err_18_l3a_csetbounds 43.7

Table 5.1: Runtime of exception properties (excerpt).

Branch properties. The seven branch properties (success path plus six off-
ramps) were all proven using k-induction (see Section 1.1). This is because properties
of the form that we have been using ((p0 ∧Xp1 ∧· · ·∧Xnpn) → Xnpsafe) adapt easily
to the k-induction formulas, as explored in Section 5.3. In every case, the solver chose
a k exactly one larger than the number of cycles in the antecedent. This is natural:
the antecedent spans n steps, and proving the implication requires induction at depth
n + 1 to capture the final exit state.

The runtimes show a clear near-linear scaling with the length of the antecedent
sequence. The shortest off-ramp sequence (6 cycles) proved in ≈ 406 s, while a mid-
length path of 13 cycles required ≈ 1800 s. Figure 5.1 plots runtime against sequence
length for the first 6 branch properties, confirming this linear trend.

6 8 10 13 16 190

500

1,000

1,500

2,000

2,500

Antecedent length (cycles)

W
al

l-c
lo

ck
tim

e
(s

)

Measured (branches 1–6)
Linear fit y ≈ 173 x − 581 (R2 ≈ 0.999)

Figure 5.1: Runtime scaling of branch properties with antecedent length. Values can
be found in Table 1 in the appendix. All proofs ran in parallel; overall wall-clock is
the maximum single runtime.

44

Success path property. The only outlier is the full success path (20 cycles),
which required ≈ 14480 s — substantially longer than the ≈ 2800 s suggested by the
linear trend. The reason is likely structural: unlike the branch paths, which clear
sensitive registers in the failure path, the success path retains and transforms them
throughout execution. As a result, the solver must maintain capability-derivability
constraints across a much larger portion of the trace, significantly inflating runtime.
This suggests that the underlying linear scaling still holds, but with a larger constant
factor in cases where sensitive values persist longer. In practice, established optim-
isation techniques (e.g. SST tunnelling) could reduce this constant substantially,
bringing such proofs closer to the expected trend.

Takeaway. The timing results show that:

• Exception properties are cheap, proving in under 2 minutes.

• Branch properties scale linearly with path length.

• All properties are provable overnight (max. 4h) even without optimization.

• This linearity is a strong indicator that the WB-stage encoding is tractable.
With solver tuning and engineering effort, we expect runtimes could be improved
by a constant factor.

5.2 Partial results on the switcher

Setup and simplifications

Scope. The complete verification of the switcher is beyond the scope of this thesis.
The switcher is significantly more complex than the unsealer, and a full treatment
would require reasoning about the provenance of values, constructing a faithful memory
model for values read from the trusted stack, and handling the switcher’s intricate
control flow. However, having established our methodology on the unsealer, we can
already explore a simplified fragment of the switcher to demonstrate how the ap-
proach generalizes. Importantly, this limitation is not methodological, but practical:
with appropriate support for memory modelling and provenance reasoning, the same
WB-stage encoding could in principle be scaled to the full switcher.

Simplifications. The exploration concerns a fragment of the context restore
functionality of the switcher, which is responsible for restoring the state at the end
of a context switch (see Section 2.2). The only sensitive capability here is csp . For
this first exploration, we apply several simplifications to make the verification task

45

tractable: the capability stack pointer csp is assumed valid with sufficient bounds (so
loads will not trap); the guard branches in the code are assumed not taken. These
simplifications eliminate code paths and reduce the number of restore instructions
that must be checked. In practice, this boils the context-restore code down to a
limited straight-line fragment:

1 cspecialw mtdc, csp
2 clc ct2, TrustedStack_offset_mepcc(csp)
3 clw ra, TrustedStack_offset_mstatus(csp)
4 csrw mstatus, ra
5 cspecialw mepcc, ct2
6 clc cra, TrustedStack_offset_cra(csp)
7 clc ct2, TrustedStack_offset_ct2(csp)
8 clc csp, TrustedStack_offset_csp(csp)
9 mret

The verification challenge posed by SCI was:

Prove that this block of instructions results in the at-entry value of csp persisting
in mtdc , assuming that non- csp registers are zero at entry, the general-
purpose register file does not hold a capability that could be derived from
csp ’s at-entry value.

Assumptions and safety conditions

At entry, the only sensitive value is the capability stack pointer csp . let csp_at_entry denote
its at-entry value. The following assumptions capture the intended execution envir-
onment on this code fragment:

• Validity of csp : The capability csp is valid, has sufficient bounds and in-
cludes load permission, so all memory accesses through it succeed. This is
summarized by the predicate csp_assumptions .

• Independence: Initially, we assumed that all non- csp registers are zero, but
this can be relaxed to: at entry, no capability register apart from cra , ct2
and csp holds any capability derivable from csp .

• Memory independence: All capabilities loaded from memory during the
block are assumed not to be derivable from csp_at_entry .

• System register access: We assume the switcher executes with sufficient
privilege to access system registers, so writes to mstatus , mepcc , and mtdc do
not trap.

These entry-state assumptions are implemented directly in SVA and asserted once at
the start of the sequence (see Figure 7 in the appendix).

46

The memory-independence assumption, by contrast, must hold not just at the
start but throughout execution: every capability fetched from memory must remain
independent of csp_at_entry . To capture this, we implement a derivability check
on the incoming LSU capability, asserted at each step of the code sequence. The
following SVA snippet shows how this invariant is encoded.

1 logic csp_at_entry_no_memory_overlap =∼derived_from(lsu_cap_i, lsu_addr_i, csp_at_entry,
↪→ csp_addr_at_entry);

2
3 // usage (where code_sequence is the previously defined code sequence):
4 sequence memory_independence;
5 csp_at_entry_no_memory_overlap throughout code_sequence;
6 endsequence

As defined in Section 3.2, the verification target is:

1. Persistence of csp_at_entry : The at-entry value of csp is successfully in-
stalled in the system register mtdc .

2. Non-leakage of csp_at_entry : No register in the capability register file
may contain a capability derivable from csp_at_entry .

Verification and results

Property encoding. The straight-line fragment of line 1-8 was encoded as w WB-
stage sequence with explicit stall delays. The property asserts that if the sequence
executes under the assumptions, then mtdc equals the at-entry csp and no other
register contains a derivable capability. As with the unsealer, the engine used was k-
induction, with k one greater than the number of cycles in the sequence. The property
discharged successfully and thus establishes the quarantine of csp in mtdc .

Timing. The full 8 line sequence (with antecedent length of 15 cycles due to
a number of stalls) proved in approximately 180 s — significantly faster than the
unsealer due to lesser complexity. We also checked all prefixes of the sequence with
correspondingly adapted safety conditions and observed that runtimes followed an
approximately linear trend with sequence length.

Takeaway. This case study confirms that the WB-stage encoding methodology
can be applied to the switcher as well. The absence of branching and exceptions made
proofs straightforward, but scaling to the full switcher will require richer infrastructure
for memory modelling, provenance reasoning and control-flow coverage.

47

5.3 On k-induction for interval properties

Note: The material in this section is exploratory. The verification tool used in this
project (Jasper) applies proprietary proof engines internally. While the specific proofs
in this work were discharged by a k-induction engine, its exact implementation is not
accessible. The following material therefore does not describe the tools internal work-
ings, but presents an adaptation of the k-induction principle to interval properties, as
a mathematical illustration.

In this thesis, we have mostly considered properties of the form

φn ≡
(
p0 ∧ Xp1 ∧ · · · ∧ Xn−1pn−1

)
→ Xnps

where pi are state predicates and ps is the safety predicate. We call this an interval
property of length n. Our aim is to prove global properties of the form Gφn: on every
execution path, whenever an interval meets the antecedent, the safety condition ps

must hold at its end.
Interval properties are not only useful in software verification, but also especially

well-suited to k-induction, since their truth depends on fixed-length intervals rather
than isolated states. However, most standard definitions of k-induction apply only to
state invariants, so we develop the necessary adaptation here.

Intervals and local semantics

Throughout this section we consider a Kripke structure M = (S, S0, R, AP, L) as
described in Section 1.1 with the representation of S0, R and p ∈ AP as first-order
predicates.

We define an interval of length m to be a sequence of m+1 states that is connected
by the transition relation (see Definition 5).

Definition 5 (Interval) An interval I of length m (or m-interval) is an (m+1)-
tuple of states (s0, . . . , sm) such that R(si, si+1) holds for all 0 ≤ i < m.

• The interval is initial, if s0 is an initial state.

• It is reachable if it appears as a consecutive subsequence of some path π =
(sj)j∈N (see Equation (1.1))

• A subinterval of I is any subsequence (sa, . . . , sb) with 0 ≤ a ≤ b ≤ m.

48

Localization. By a mild abuse of notation, we also write φn for the local satis-
faction relation that we define on n-intervals (si, . . . , si+n):

φn(si, . . . , si+n) ≡

n−1∧
j=0

pj(si+j)
 → ps(si+n) (5.1)

Its negation expands to

¬φn(si, . . . , si+n) ≡
n−1∧
j=0

pj(si+j) ∧ ¬ps(si+n) (5.2)

Here, φn(si, . . . , si+n) captures the condition on a single interval, while the LTL prop-
erty Gφn requires that this condition holds on every reachable n-interval in the model.

Applying k-induction

To apply k-induction, note that an interval property of length n requires n+1 states,
so we need k ≥ n + 1. The proof follows the same structure as classical k-induction
(see Section 1.1), but with intervals replacing single states.

• Base: Any initial interval of length n satisfies φn:

S0(s0) ∧
n−1∧
i=0

R(si, si+1) ∧ ¬φ(s0, . . . , sn) is unsatisfiable

• Step: If in an interval of length n + 1, the first subinterval of length n satisfies
φn, then the shifted subinterval also satisfies φn:

n∧
i=0

R(si, si+1) ∧ φ(s0, . . . , sn) ∧ ¬φ(s1, . . . , sn+1) is unsatisfiable

Expanded into state predicates (applying equations (5.1) and (5.2)), we obtain:

• Base:

S0(s0) ∧
n−1∧
i=0

R(si, si+1) ∧
n−1∧
i=0

pi(si) ∧ ¬ps(sn) is unsatisfiable

• Step:

n∧
i=0

R(si, si+1)∧
(

n−1∧
i=0

pi(si) → ps(sn)
)

∧
(

n∧
i=1

pi(si) ∧ ¬ps(sn+1)
)

is unsatisfiable

Why this proves Gφn. If both the base and step formulas are unsatisfiable, then
φn holds on every reachable interval of length n.

49

• The base case guarantees that the initial interval (s0, . . . , sn) of any path
satisfies φn.

• The step case guarantees that if an interval (si, . . . , si+n) of a path satisfies
φn, then the shifted interval (si+1, . . . , si+n+1) does as well, so satisfaction moves
forward along the path.

Therefore, starting from the base interval of a path, satisfaction propagates induct-
ively to all subsequent intervals. Since this holds for every path, all reachable intervals
satisfy φn, i.e. the global truth condition Gφn.

Generalization to k ≥ n + 1. While k-induction requires k ≥ n + 1 to cover
intervals of length n, larger k can also be used. The scheme is:

• Base: No initial interval of length k − 1 contains a n-subinterval violating φn:

S0(s0) ∧
k−2∧
i=0

R(si, si+1) ∧
k−n−1∨

i=0
¬φ(si, . . . , si+n) is unsatisfiable

• Step: In any interval of length k, if all but the last n-subinterval satisfy φn,
then so must the last:

k−1∧
i=0

R(si, si+1) ∧
k−n−1∧

i=0
φ(si, . . . , si+n) ∧ ¬φ(sk−n, . . . , sk) is unsatisfiable

Conclusion. This construction adapts k-induction from state invariants to tem-
poral interval properties. The essential change is that the inductive invariant is not a
predicate on single states but on intervals of states. While exploratory, this illustrates
how temporal reasoning about bounded execution fragments can be expressed in an
inductive verification framework.

50

Chapter 6

Conclusion and prospects

This thesis addressed how to formally verify that sensitive capabilities in CHERIoT-
Ibex binaries are not exposed or misused during execution. It developed and evaluated
a methodology that expresses safety properties directly over binary execution paths
and proves them against the RTL implementation of the processor.

The central contribution is a systematic WB-stage encoding framework. By ob-
serving effects at the writeback stage, the framework supports temporal properties
across straight-line, branching, and exceptional execution, while also tracking at-entry
values of sensitive capabilities. This yields a tractable yet expressive verification meth-
odology.

Two case studies demonstrated the framework’s usefulness:

• Unsealer: all normal and exceptional paths were verified, uncovering a subtle
bug in the fast unsealer implementation, later confirmed by SCI Semiconductor.

• Switcher: a simplified fragment of the context-restore procedure was verified
under assumptions about memory and control flow, suggesting that the ap-
proach generalises to more complex components.

Finally, the work established feasibility: all properties discharged with k-induction,
proof times scaled linearly with path length and even the longest proofs completed
within hours. To our knowledge, this is the first demonstration of verifying binar-
ies directly against a cycle-accurate RTL model, closing the compilation gap and
providing unusually strong end-to-end guarantees for capability safety.

The results point to several natural extensions:

• Automation: properties were constructed by hand; automating their genera-
tion from binaries would eliminate the main bottleneck and enable larger-scale
verification.

51

• Proof optimisation: while runtimes were tractable, established techniques
such as SST tunnelling could further reduce solver cost and enable subsystem-
scale verification.

• Generality: the methodology is not limited to CHERIoT-Ibex: it could be
applied to other CHERI processors or more broadly wherever binary-level reas-
oning is required.

Beyond the specific results on the unsealer and switcher, this work points to
a broader possibility: that security mechanisms in compartmentalised systems can
be not only designed but formally proven end-to-end, from cycle-accurate hardware
through to system binaries. With further progress in automation and optimisation,
such methods could raise the assurance bar for real-world systems well beyond current
practice.

52

References

[1] A. Robison, “Anatomy of a Firmware Attack - Eclypsium | Supply Chain Security for the
Modern Enterprise,” Eclypsium | Supply Chain Security for the Modern Enterprise, Dec. 2019.
[Online]. Available: https://eclypsium.com/threat-reports/anatomy-of-a-firmware-attack-2

[2] “CWE - 2024 CWE Top 25 Most Dangerous Software Weaknesses,” Nov. 2024, [Online;
accessed 4. Aug. 2025]. [Online]. Available: https://cwe.mitre.org/top25/archive/2024/
2024 cwe top25.html

[3] A. Cudmore, “Current and Future Flight Operating Systems,” May 2007, [Online; accessed 5.
Aug. 2025]. [Online]. Available: https://ntrs.nasa.gov/citations/20080040872

[4] V. D’Silva, D. Kroening, and G. Weissenbacher, “A Survey of Automated Techniques for Formal
Software Verification,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., vol. 27, no. 7,
pp. 1165–1178, Jul. 2008.

[5] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe, K. Engel-
hardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood, “seL4: formal verification
of an OS kernel,” in ACM Conferences. New York, NY, USA: Association for Computing Ma-
chinery, Oct. 2009, pp. 207–220.

[6] S. Amar, D. Chisnall, T. Chen, N. W. Filardo, B. Laurie, K. Liu, R. Norton, S. W. Moore,
Y. Tao, R. N. M. Watson, and H. Xia, “CHERIoT: Complete Memory Safety for Embedded
Devices,” in ACM Conferences. New York, NY, USA: Association for Computing Machinery,
Oct. 2023, pp. 641–653.

[7] microsoft, “cheriot-ibex,” Aug. 2025, [Online; accessed 6. Aug. 2025]. [Online]. Available:
https://github.com/microsoft/cheriot-ibex/blob/main/README.md

[8] D. Chisnall, “Why did you write a new RTOS for CHERIoT?” CHERIoT Platform, Oct. 2024.
[Online]. Available: https://cheriot.org/rtos/philosophy/history/2024/10/24/why-new-rtos.
html

[9] Cheriot-Platform, “cheriot-rtos,” Aug. 2025, [Online; accessed 6. Aug. 2025]. [Online].
Available: https://github.com/CHERIoT-Platform/cheriot-rtos/blob/main/README.md

[10] J. Woodruff, R. N. M. Watson, D. Chisnall, S. W. Moore, J. Anderson, B. Davis, B. Laurie,
P. G. Neumann, R. Norton, and M. Roe, “The CHERI capability model: revisiting RISC
in an age of risk,” in ACM SIGARCH Computer Architecture News. New York, NY, USA:
Association for Computing Machinery, Jun. 2014, vol. 42, no. 3, pp. 457–468.

[11] D. Chisnall, “Introducing sealed types,” CHERIoT Platform, Jan. 2025. [Online]. Available:
https://cheriot.org/sealing/compiler/2025/01/30/introducing-sealed-types.html

[12] “SCI Semiconductor - Home,” Aug. 2025, [Online; accessed 26. Aug. 2025]. [Online]. Available:
https://www.scisemi.com

[13] Cheriot-Platform, “cheriot-rtos,” Jul. 2025, [Online; accessed 6. Aug. 2025]. [Online]. Available:
https://github.com/CHERIoT-Platform/cheriot-rtos/issues/550

53

https://eclypsium.com/threat-reports/anatomy-of-a-firmware-attack-2
https://cwe.mitre.org/top25/archive/2024/2024_cwe_top25.html
https://cwe.mitre.org/top25/archive/2024/2024_cwe_top25.html
https://ntrs.nasa.gov/citations/20080040872
https://github.com/microsoft/cheriot-ibex/blob/main/README.md
https://cheriot.org/rtos/philosophy/history/2024/10/24/why-new-rtos.html
https://cheriot.org/rtos/philosophy/history/2024/10/24/why-new-rtos.html
https://github.com/CHERIoT-Platform/cheriot-rtos/blob/main/README.md
https://cheriot.org/sealing/compiler/2025/01/30/introducing-sealed-types.html
https://www.scisemi.com
https://github.com/CHERIoT-Platform/cheriot-rtos/issues/550

[14] “Cadence | Computational Software for Intelligent System Design,” Aug. 2025, [Online;
accessed 26. Aug. 2025]. [Online]. Available: https://www.cadence.com/en US/home.html

[15] Tita Rosemeyer, “cheriot-ibex,” Sep. 2025, [Online; accessed 4. Sep. 2025]. [Online]. Available:
https://github.com/TitaRosemeyer/cheriot-ibex

[16] C. Baier and J.-P. Katoen, Principles of Model Checking. The MIT Press, Apr. 2008, https:
//web.eecs.umich.edu/∼movaghar/Principles%20of%20Model%20Checking-Book-2008.pdf.

[17] D. Kroening, D. Peled, E. M. Clark Jr, H. Veith, and O. Grumberg, Model Checking, second
edition (Cyber Physical Systems Series). The MIT Press, Dec. 2018.

[18] “Department of Computer Science and Technology: Capability Hardware Enhanced RISC
Instructions (CHERI),” Oct. 2024, [Online; accessed 17. Aug. 2025]. [Online]. Available:
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/

[19] J. B. Dennis and E. C. Van Horn, “Programming semantics for multiprogrammed
computations,” Commun. ACM, vol. 9, no. 3, p. 143–155, Mar. 1966. [Online]. Available:
https://doi.org/10.1145/365230.365252

[20] H. Levy, Capability-based Computer Systems. Digital Press, 1984. [Online]. Available:
https://books.google.de/books?id=dQMnAAAAMAAJ

[21] “Department of Computer Science and Technology: CHERI Frequently Asked Questions
(FAQ),” Oct. 2020, [Online; accessed 16. Aug. 2025]. [Online]. Available: https:
//www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-faq.html

[22] “Redesigning Hardware to Support Security: CHERI,” Feb. 2023, [Online; accessed
17. Aug. 2025]. [Online]. Available: https://www.usenix.org/publications/loginonline/
redesigning-hardware-support-security-cheri

[23] R. N. M. Watson, P. G. Neumann, J. Woodruff, M. Roe, H. Almatary, J. Anderson,
J. Baldwin, G. Barnes, D. Chisnall, J. Clarke, B. Davis, L. Eisen, N. W. Filardo,
R. Grisenthwaite, A. Joannou, B. Laurie, A. T. Markettos, S. W. Moore, S. J. Murdoch,
K. Nienhuis, R. Norton, A. Richardson, P. Rugg, P. Sewell, S. Son, and H. Xia, “Capability
Hardware Enhanced RISC Instructions: CHERI Instruction-Set Architecture (Version 8),”
University of Cambridge, Computer Laboratory, Tech. Rep. UCAM-CL-TR-951, oct 2020.
[Online]. Available: https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-951.pdf

[24] “CHERIoT Platform,” Apr. 2025, [Online; accessed 19. Aug. 2025]. [Online]. Available:
https://cheriot.org/

[25] S. Amar, T. Chen, D. Chisnall, F. Domke, N. Filardo, K. Liu, R. Norton-Wright, Y. Tao,
R. N. M. Watson, and H. Xia, “CHERIoT: Rethinking security for low-cost embedded
systems,” Microsoft Research, Feb. 2023. [Online]. Available: https://www.microsoft.com/
en-us/research/publication/cheriot-rethinking-security-for-low-cost-embedded-systems

[26] Cheriot-Platform, “cheriot-rtos,” Mar. 2023, [Online; accessed 19. Aug. 2025]. [Online]. Avail-
able: https://github.com/CHERIoT-Platform/cheriot-rtos/blob/main/docs/architecture.md

[27] L.-E. Ploix, A. Armstrong, T. Melham, R. Lin, H. Wang, and A. Courtney, “Comprehensive
Formal Verification of Observational Correctness for the CHERIoT-Ibex Processor,” arXiv,
Feb. 2025.

[28] Cheriot-Platform, “cheriot-rtos/sdk/core/token library/token unseal.S,” Sep. 2025, [Online;
accessed 1. Sep. 2025]. [Online]. Available: https://github.com/CHERIoT-Platform/
cheriot-rtos/blob/main/sdk/core/token library/token unseal.S

54

https://www.cadence.com/en_US/home.html
https://github.com/TitaRosemeyer/cheriot-ibex
https://web.eecs.umich.edu/~movaghar/Principles%20of%20Model%20Checking-Book-2008.pdf
https://web.eecs.umich.edu/~movaghar/Principles%20of%20Model%20Checking-Book-2008.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/
https://doi.org/10.1145/365230.365252
https://books.google.de/books?id=dQMnAAAAMAAJ
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-faq.html
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-faq.html
https://www.usenix.org/publications/loginonline/redesigning-hardware-support-security-cheri
https://www.usenix.org/publications/loginonline/redesigning-hardware-support-security-cheri
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-951.pdf
https://cheriot.org/
https://www.microsoft.com/en-us/research/publication/cheriot-rethinking-security-for-low-cost-embedded-systems
https://www.microsoft.com/en-us/research/publication/cheriot-rethinking-security-for-low-cost-embedded-systems
https://github.com/CHERIoT-Platform/cheriot-rtos/blob/main/docs/architecture.md
https://github.com/CHERIoT-Platform/cheriot-rtos/blob/main/sdk/core/token_library/token_unseal.S
https://github.com/CHERIoT-Platform/cheriot-rtos/blob/main/sdk/core/token_library/token_unseal.S

Appendix

Supplementary Material
All SystemVerilogAssertions code, properties, and scripts developed for this thesis are
available in the accompanying repository at https://github.com/TitaRosemeyer/
cheriot-ibex [15].

The repository contains the complete verification environment, including the CHERIoT-
Ibex RTL code base, the follower module, property encodings, and the case study for
the unsealer and switcher.

Code Fragments
Figures 1-7 collect the main code listings and encodings referenced in Chapters 3-5.
Table 1 holds the reference values for the proof times referenced in Chapter 5.

Branch property Antecedent length (cycles) Time (s)

branch_1_safe 6 426.5
branch_2_safe 8 803.1
branch_3_safe 10 1193.1
branch_4_safe 13 1680.5
branch_5_safe 16 2155.7
branch_6_safe 19 2708.1

Table 1: Reference values for Figure 5.1.

55

https://github.com/TitaRosemeyer/cheriot-ibex
https://github.com/TitaRosemeyer/cheriot-ibex

1 function automatic bit has_fewer_perms(reg_cap_t cap1, reg_cap_t cap2);
2 // Check if cap1 has at least as strict permissions as cap2
3 logic [11:0] perms1 =expand_perms(cap1.cperms);
4 logic [11:0] perms2 =expand_perms(cap2.cperms);
5
6 return (perms1 &perms2) ==perms1;
7 endfunction

1 function automatic bit has_stricter_bounds(reg_cap_t cap1, logic [31:0] addr1, reg_cap_t cap2, logic [
↪→ 31:0] addr2);

2 // Check if cap1 has at least as strict bounds as cap2
3 logic [32:0] top1 =get_bound33(cap1.top, cap1.top_cor, cap1.exp, addr1);
4 logic [32:0] top2 =get_bound33(cap2.top, cap2.top_cor, cap2.exp, addr2);
5 logic [32:0] base1 =get_bound33(cap1.base, {2{cap1.base_cor}}, cap1.exp, addr1);
6 logic [32:0] base2 =get_bound33(cap2.base, {2{cap2.base_cor}}, cap2.exp, addr2);
7
8 return (top1 <=top2) &&(base1 >=base2);
9 endfunction

1 function automatic bit derived_from(reg_cap_t cap1, logic [31:0] addr1, reg_cap_t cap2, logic [31:0]
↪→ addr2);

2 // Check if cap1 is derivable from cap2
3 logic both_valid =(cap1.valid &&cap2.valid);
4 logic fewer_perms =has_fewer_perms(cap1, cap2);
5 logic stricter_bounds =has_stricter_bounds(cap1, addr1, cap2, addr2);
6
7 return both_valid &&stricter_bounds &&fewer_perms;
8 endfunction

Figure 1: Implementation of derivability as described in defintion 4 in SystemVerilo-
gAssertions (SVA)

1 `define MAKE_VAR_AT_ENTRY(VARNAME, VARTYPE, TRIGGERINSTR) \
2 VARTYPE VARNAME``_at_entry; \
3 always_latch begin \
4 if (($past(instr_will_progress) &&`INSTR ==TRIGGERINSTR &&wbexc_exists) ||∼rst_ni) begin \
5 VARNAME``_at_entry =VARNAME; \
6 end \
7 end

Figure 2: Macro for creation of at-entry snapshots of variables

56

1 `define INSTR `CR.instr_rdata_id
2
3 assign ex_success =`ID.instr_done;
4 assign ex_err =`IDC.exc_req_d;
5 assign ex_kill =`ID.wb_exception |∼`ID.controller_run;
6 // Note that this only kills instructions because e.g. of a jump ahead of it or an exception
7
8 assign exc_finishing =`IDC.ctrl_fsm_cs ==`IDC.FLUSH;
9 assign wbexc_handling_irq =`IDC.ctrl_fsm_cs ==`IDC.IRQ_TAKEN;

10 assign wb_finishing =wbexc_is_wfi? wfi_will_finish:`CR.instr_done_wb;
11 assign wfi_will_finish =`IDC.ctrl_fsm_cs ==`IDC.FLUSH;
12 assign wbexc_err =wbexc_ex_err |
13 `IDC.wb_exception_o |
14 ((`IDC.ctrl_fsm_cs ==`IDC.FLUSH) &∼wbexc_csr_pipe_flush);
15
16 assign wbexc_finishing =wbexc_exists &(wbexc_err ?exc_finishing :wb_finishing);
17
18 assign instr_will_progress =(∼wbexc_exists |wbexc_finishing) &∼ex_kill &(ex_success |ex_err);
19
20 always_comb begin
21 if (`CR.instr_new_id) begin
22 ex_has_branched_d =1'b0;
23 end else begin
24 ex_has_branched_d =ex_has_branched_q;
25 end
26 ex_has_branched_d =ex_has_branched_d |(`IF.branch_req &&∼ex_kill &&`IDC.ctrl_fsm_cs ==`IDC.DECODE);
27 end
28
29 always @(posedge clk_i or negedge rst_ni) begin
30 if (∼rst_ni) begin
31 wbexc_exists <=1'b0;
32 idex_has_compressed_instr <=1'b0;
33 ex_has_branched_q <=1'b0;
34 wbexc_csr_pipe_flush <=1'b0;
35 end else begin
36 if (wbexc_finishing) begin
37 wbexc_exists <=1'b0;
38 end
39
40 ex_has_branched_q <=ex_has_branched_d;
41 if (instr_will_progress) begin
42 ex_has_branched_q <=1'b0;
43 wbexc_has_branched <=ex_has_branched_d;
44 wbexc_post_wX <=spec_post_wX;
45 wbexc_post_wX_addr <=spec_post_wX_addr;
46 wbexc_post_wX_en <=spec_post_wX_en;
47
48 ...
49
50 wbexc_instr <=idex_compressed_instr;
51 wbexc_decompressed_instr <=`CR.instr_rdata_id;
52 wbexc_compressed_illegal <=`CR.illegal_c_insn_id;
53 wbexc_exists <=1'b1;
54 wbexc_ex_err <=ex_err;
55 wbexc_fetch_err <=`ID.instr_fetch_err_i;
56 ...
57 end
58
59 if (`IF.if_id_pipe_reg_we) begin
60 idex_compressed_instr <=`IF.if_instr_rdata;
61 idex_has_compressed_instr <=1'b1;
62 end
63 end
64 end

Figure 3: The follower module implemented by Louis-Emile Ploix [27] (abridged)

57

1 sequence branch_7_success;
2 (assumption and (`INSTR_WB(l00_cgettag) &&instr_will_progress
3 ##1 `INSTR_WB(l04_beqz) &&instr_will_progress &&∼wbexc_has_branched
4 ##1 `INSTR_WB(l06_cgetbase) &&instr_will_progress
5 ##1 `INSTR_WB(l0a_bne) &&instr_will_progress &&∼wbexc_has_branched
6 ##1 `INSTR_WB(l0e_cgetlen) &&instr_will_progress
7 ##1 `INSTR_WB(l12_beqz) &&instr_will_progress &&∼wbexc_has_branched
8 ##1 `INSTR_WB(l14_cgetperm) &&instr_will_progress
9 ##1 `INSTR_WB(l18_andi) &&instr_will_progress

10 ##1 `INSTR_WB(l1c_bne) &&instr_will_progress &&∼wbexc_has_branched
11 ##1 `INSTR_WB(l1e_cunseal) &&instr_will_progress
12 ##1 `INSTR_WB(l22_cgettag) &&instr_will_progress
13 ##1 `INSTR_WB(l26_beqz) &&instr_will_progress &&∼wbexc_has_branched
14 ##1 `INSTR_WB(l28_clw) &&∼instr_will_progress
15 ##1 instr_will_progress
16 ##1 `INSTR_WB(l2a_bne) &&instr_will_progress &&∼wbexc_has_branched
17 ##1 `INSTR_WB(l2e_cgettop) &&instr_will_progress
18 ##1 `INSTR_WB(l32_cinoffset) &&instr_will_progress
19 ##1 `INSTR_WB(l36_sub) &&instr_will_progress
20 ##1 `INSTR_WB(l3a_csetboundsexact) &&instr_will_progress
21 ##1 `INSTR_WB(l3e_cret))
22);
23 endsequence;

Figure 4: The encoding of the success path of the unsealer in SVA

58

1 ...
2 .Ltoken_unseal_internal:
3 /*
4 * Register allocation:
5 * - ca0 holds the user's sealing key, and is replaced with the unsealed
6 * value or NULL
7 * - ca1 holds the user's sealed object pointer
8 * - ca2 holds the unsealing authority and is clobbered on failure
9 * explicitly and on success with a scalar (the sealed payload's length)

10 * - a3 is used within each local computation and never holds secrets
11 */
12
13 /* Verify key tag */
14 cgettag a3, ca0
15 beqz a3, .Lexit_failure
16
17 /* Verify key address == base and len > 0 */
18 cgetbase a3, ca0
19 bne a0, a3, .Lexit_failure // as-integer access to ca0 gives address
20 cgetlen a3, ca0
21 beqz a3, .Lexit_failure
22
23 /* Verify key has unseal permission */
24 cgetperm a3, ca0
25 andi a3, a3, CHERI_PERM_UNSEAL
26 beqz a3, .Lexit_failure
27
28 /* Unseal, clobbering authority */
29 cunseal ca2, ca1, ca2
30
31 /* Verify tag of unsealed form */
32 cgettag a3, ca2
33 beqz a3, .Lexit_failure
34
35 /*
36 * Load software type tag. This will not trap, thanks to above tag check and
37 * because IRQs are deferred (see our export entry below)
38 */
39 clw a3, TokenSObj_offset_type(ca2)
40
41 /* Verify that the loaded value matches the address of the key. */
42 bne a0, a3, .Lexit_failure
43
44 /* Subset bounds to ->data */
45 // Get the top into a3
46 cgettop a3, ca2
47 // Move the address to the start of the data, clobber the user's sealing key
48 cincoffset ca0, ca2, TokenSObj_offset_data
49 // Subtract the address of the (to-be-returned-unsealed) data from the top to
50 // give the length, clobbering our unsealing key.
51 sub a2, a3, a0
52 // Set the new bounds, using an exact setting so that any errors in the
53 // allocator's alignment turn into an untagged capability here.
54 csetboundsexact ca0, ca0, a2
55
56 /* And that's an unwrap. */
57 cret
58
59 .Lexit_failure:
60 /* Failure; clobber potential sensitive state in ca2 and return null */
61 zeroOne a2
62 zeroOne a0
63 cret
64
65 ...

Figure 5: Implementation of the unsealer in token unseal.S (abridged) [28]

59

1 // check object pointer assumptions
2 logic [11:0] ca1_has_load =expand_perms(ca1.cperms)[5]; // LD permission
3 logic [32:0] ca1_top =get_top_bound33(ca1, a1);
4 logic [31:0] ca1_base =get_base_bound32(ca1, a1);
5 logic ca1_clw_in_bounds =((ca1_base <=a1) &&(a1 <=(ca1_top -32'h4)) &&(ca1_top >=32'h4));
6 logic ca1_assumption =ca1_has_load &&ca1_clw_in_bounds;
7
8 // assume that the unsealing authority and object pointer are not leaked at the beginning of the

↪→ execution
9 logic assumption;

10 always_comb begin
11 if (`ASSUME_INDEPENDENT_ARGS) begin
12 assumption =ca1_assumption &&no_derivatives_except_ca2_fn(ca2, a2) &&

↪→ no_derivatives_except_ca1_fn(ca1, a1);
13 end else begin
14 // assume that the two sensitive input arguments are not derived from each other
15 assumption =ca1_assumption &&no_derivatives_except_ca0_ca1_ca2_fn(ca2, a2) &&

↪→ no_derivatives_except_ca0_ca1_ca2_fn(ca1, a1);
16 end
17 end

Figure 6: Final assumption block for the unsealer verification

1 // ensure well-formedness of csp
2 logic csp_unsealed =csp.otype ==3'b000;
3 logic csp_has_permit_load =csp.cperms[4:3] ==2'b11 |csp.cperms[4:2] ==3'b101 |csp.cperms[4:1] ==4'b1001

↪→ |csp.cperms[4:3] ==2'b01;
4 logic csp_addr_in_bounds =(csp_addr >=csp_base) &&(csp_addr +32'h88 +32'h8 <=csp_top);
5 logic csp_addr_aligned =(csp_addr %8 ==0);
6 logic csp_assumptions =csp.valid &&csp_unsealed &&csp_has_permit_load &&csp_addr_in_bounds &&

↪→ csp_addr_aligned;
7
8 // Ensure system register access
9 logic PCCHasASR =(pcc.cperms[4:2] ==3'b011);

10
11 //combine all assumptions
12 logic assumption =PCCHasASR &&csp_assumptions &&no_derivatives_except_cra_ct2_csp(csp, csp_addr)

Figure 7: Implementation of the assumption for the switcher

60

	Background
	Model checking
	Bounded model checking
	k-Induction

	CHERI
	Capability systems
	CHERI architecture
	CHERI capability operations and semantics

	Driving Example: CHERIoT
	CHERIoT-Ibex
	Pipeline architecture
	Capability encoding

	CHERIoT RTOS
	Unsealer
	Switcher

	Formulating Safety Conditions
	Mathematical representation of capabilities
	Representability
	Derived capabilities

	Safety conditions
	Ensuring non-derivability in registers
	Unsealer safety conditions
	Switcher safety conditions

	Logical Encoding of Code Execution
	Observation strategy: the writeback stage
	Motivation
	Indicator signals and assumptions

	Encoding instruction sequences
	Base encoding
	Branching

	Proving safety properties
	Capturing at-entry values
	Exceptions

	Verification Results on the Unsealer and Switcher
	Complete verification of the unsealer
	Concrete implementation of security properties
	Raised issue and bug
	Timing results

	Partial results on the switcher
	Setup and simplifications
	Assumptions and safety conditions
	Verification and results

	On k-induction for interval properties
	Intervals and local semantics
	Applying k-induction

	Conclusion and prospects
	References
	Appendix

