
Practical Formal Verification in Microprocessor Design

R. B. Jones, J. W. O’Leary, C.-J. H. Seger, M. D. Aagaard and T. F. Melham,
‘Practical Formal Verification in Microprocessor Design’,
IEEE Design & Test of Computers,
vol. 18, no. 4 (July/August 2001), pp. 16–25.

Notice

This material is presented to ensure timely dissemination of scholarly and technical work.
Copyright and all rights therein are retained by authors or by other copyright holders. All
persons copying this information are expected to adhere to the terms and constraints
invoked by each author’s copyright. In most cases, these works may not be reposted
without the explicit permission of the copyright holder.

BibTeX Entry

@article{Jones:2001:PFV,
 AUTHOR = {Robert B. Jones and John W. O'Leary and
 Carl-Johan H. Seger and Mark D. Aagaard and
 Thomas F. Melham},
 TITLE = {Practical Formal Verification in
 Microprocessor Design},
 JOURNAL = {{IEEE} Design {\&} Test of Computers},
 VOLUME = {18},
 NUMBER = {4},
 MONTH = {July/August},
 YEAR = {2001},
 PAGES = {16--25},
 ISSN = {0740-7475},
 DOI = {10.1109/54.936245}}

FUNCTIONAL VALIDATION is one of the major

challenges in chip design today, with test genera-

tion, test bench construction, and simulation con-

suming a significant portion of the design effort.

Throughout the 1990s, formal verification emerged

as a promising complement to conventional sim-

ulation-based validation.1 Most formal verification

research concerns algorithms and focuses on tool

capacity limits. Yet almost any serious verification

effort faces many practical difficulties besides

capacity. In a large verification project, the effort

required to organize the multitude of tasks, speci-

fications, and verification scripts can limit the qual-

ity and productivity of the work.

We tackle this problem by coupling our

research on verification algorithms and tools

with research on verification methodology. Our

goal is to address the realities of design prac-

tice—rapid changes and incomplete specifica-

tions—while producing high-quality results and

improving verification productivity. Our

methodology systematically organizes a large

verification effort’s many interdependent activ-

ities and provides a guiding structure for the

verification process.

Any formal verification tool researcher is

keenly aware that what is a routine verification

for the technology expert or tool developer

may be very difficult for others to duplicate.

Our methodology addresses this problem by

tailoring a formal, custom-built verification

framework, Forte, to industrial-scale circuits

and industrial design environments. Forte com-

bines an efficient, linear temporal logic model-

checking algorithm, called symbolic trajectory

evaluation (STE),2 with lightweight theorem

proving. FL—a custom, general-purpose func-

tional programming language—tightly inte-

grates the model checker and the theorem

prover. This combination of model checking,

theorem proving, and a general-purpose pro-

gramming language makes the verification

environment customizable and lets large veri-

fication efforts be organized effectively.

Our methodology has evolved over several

years of use on fully custom, high-performance

Practical Formal Verification
in Microprocessor Design

Formal Verification

16

Practical application of formal methods requires

more than advanced technology and tools;

it requires an appropriate methodology. A

verification methodology for data-path-dominated

hardware combines model checking and theorem

proving in a customizable framework. This

methodology has been effective in large-scale

industrial trials, including verification of an IEEE-

compliant floating-point adder.

Robert B. Jones, John W. O’Leary, and
Carl-Johan H. Seger
Intel

Mark D. Aagaard
University of Waterloo

Thomas F. Melham
University of Glasgow

0740-7475/01/$10.00 © 2001 IEEE IEEE Design & Test of Computers

microprocessors. Verification projects’ life

spans range from a few months to several years,

as some verifications progress from initial

designs to subsequent proliferations. Focusing

our methodology on data-path-intensive cir-

cuits, we usually begin formal verification after

the circuit has undergone initial validation by

conventional simulation.

The methodology we advocate involves

� a process of circuit assessment and encap-

sulation that we call wiggling,

� scalar (1s and 0s) verification,

� symbolic model checking using Boolean

expressions, and

� theorem proving.

Each phase has a specific purpose, associated

tasks, and resulting artifacts. We illustrate this

methodology by applying each phase to the

verification of an IEEE-compliant, extended-

precision floating-point adder, one of many

large-scale industrial verifications we have car-

ried out.

We adapted this article from an earlier

work,3 whose references expand on different

aspects of this article.

Methodology
Creating an industrially effective formal veri-

fication methodology is difficult because it must

simultaneously satisfy several requirements:

� Realism. The methodology must conform to

the constraints imposed by a production

design environment. It cannot depend on

resources that are usually not available, such

as complete, up-to-date specifications or

unlimited access to design engineers.

� Transparency and soundness. The verifica-

tion engineer should know what has been

proved and what has not. The methodology

must also be sound so that erroneous verifi-

cation results are impossible.

� Structure. An effective methodology struc-

tures the overall verification effort without

imposing undue constraints. It must help

new users to learn the system and experi-

enced users to increase their productivity.

� Incrementality and recoverability. Preliminary

results are needed early in a verification

effort, and even incomplete verifications

should deliver debugging value. If circuit or

specification changes cause a previously

successful verification to fail, test cases from

earlier in the verification development

process should be available to help isolate

the problem.

� Debugging and feedback. The bulk of any

verification effort is debugging, so optimiz-

ing the verification environment for failure,

rather than success, is crucial. The system

not only must quickly discover failures but

also should provide focused feedback and

a tight debugging loop.

� Top-down and bottom-up decomposition.

The methodology must allow decomposi-

tion of complex verification tasks into small-

er, simpler tasks. Because subtle design

features and model-checking capacity lim-

its are discovered through bottom-up explo-

ration, a realistic methodology must let the

decomposition strategy evolve through a

combination of bottom-up and top-down

development.

� Regression and reuse. A methodology

should produce easily maintainable verifi-

cation artifacts that adapt to changing spec-

ifications and designs. Specifications and

high-level decomposition strategies are par-

ticularly important candidates for reuse.

Our methodology strikes a balance between

these different requirements. It has four distinct,

but overlapping, phases.

The wiggling phase’s goal is to be able to pre-

dictably produce defined values on the circuit’s

outputs. Verification engineers must educate

themselves and their tools about the circuit and

its operating environment. They begin by read-

ing design documentation and register-transfer-

level (RTL) code, then consulting other

verification and design engineers. In practice,

documentation is frequently incomplete or out-

dated, and designers’ time is limited. Therefore,

simulating the circuit on test data and using

Forte to probe the circuit’s structure and behav-

ior provides an important source of additional

information. The wiggling phase’s primary arti-

fact is a circuit application programming inter-

17July–August 2001

face (API) that provides access to the circuit sig-

nals and their timings, allowing the subsequent

phases to abstract from these details.

Targeted scalar verification builds on the wig-

gling phase by using the circuit API to simulate

the circuit with scalar (bit-pattern) inputs. The

goal is to develop a specification reference

model against which the circuit is checked. We

begin with a reference model that covers core

functionality, and then we gradually incorpo-

rate additional features. Our incremental

approach is motivated by the realities of circuit

complexity and incomplete documentation—

factors that frequently force the verification

engineer to reverse-engineer certain design

aspects. This phase’s main artifacts are a refer-

ence model; an improved, debugged circuit

API; and a set of scalar test vectors, which are

saved to support regression testing. At this

phase, the circuit design is usually more mature

than the reference model. Although discover-

ing real design bugs is possible, discrepancies

between the circuit and the reference model

usually stem from errors in the circuit API or

from the reference model itself.

Symbolic model checking, the beginning of

full formal verification, uncovers most hard-

ware bugs. We present the circuit with symbol-

ic values represented by binary decision

diagrams (BDDs)4 and compute a symbolic

representation of the resulting outputs. We then

check this representation against the outputs

predicted by our reference model, to confirm

that the circuit conforms to its specification.

Because Forte allows simulation with an arbi-

trary mix of scalar and symbolic values, we can

incrementally evolve model checking from

scalar verification to exhaustive symbolic veri-

fication. The two artifacts produced in this

phase are a decomposition of the verification

problem into pieces small enough for model

checking, and a set of verification scripts.

Theorem proving accomplishes two purpos-

es: mechanically checking the decomposition

strategy’s soundness and verifying the reference

model’s correctness by proving implementa-

tion-independent properties about it. For exam-

ple, we might relate our reference model to a

higher-level benchmark such as the IEEE float-

ing-point standard, the PCI bus protocol speci-

fication, or a programmer’s reference manual.

The artifacts produced in this stage include the

proof script and any associated high-level prop-

erties or specifications. Because this work is the

most removed from the circuit details, it is the

most likely to be reusable across multiple

designs in the same class.

Forte verification environment
An effective methodology requires a robust,

capable verification platform. Forte, which we

evolved from Seger’s Voss system,5 enables the

methodology described here, through its archi-

tecture and features. Forte integrates model-

checking engines, BDDs, circuit manipulation

functions, theorem proving, and the FL func-

tional programming language. Forte compiles

hardware-description-language source code

into formal circuit models and includes tightly

integrated graphical interfaces to display circuit

structures and waveforms.

FL programming language
FL is a strongly typed functional program-

ming language. A distinguishing feature is that

BDDs are built into the language, and every

Boolean object is represented as a BDD. FL pro-

vides a flexible interface for invoking and

orchestrating model-checking runs, serves as

an extensible macrolanguage for expressing

specifications, and provides the control lan-

guage for Forte’s theorem prover. Using a gen-

eral-purpose language as the primary interface

helps make Forte extensible and customizable

to individual verification problems.

Graphical interfaces
Forte includes graphical tools for FL pro-

gramming and debugging. It also has extensive

interactive circuit-visualization capabilities

through three different interfaces: a node

browser, a waveform viewer, and a circuit

browser. These are shown in Figure 1. The node

browser acts as a search interface for circuit sig-

nals, hardware constructs, and module inter-

faces. The waveform viewer displays bit and

vector waveforms from both scalar and sym-

bolic simulation. The circuit browser draws

gate-level representations of circuits and pro-

vides facilities for traversing hierarchy, display-

Formal Verification

18 IEEE Design & Test of Computers

ing special circuit constructs, and dynamically

displaying values on circuit nodes.

Symbolic trajectory evaluation
STE performs model checking with an algo-

rithm, based on symbolic simulation, that is sig-

nificantly more efficient and flexible for data

path verification than conventional model-check-

ing algorithms.2 As a scalar simulator, STE com-

putes the result of executing a circuit with scalar

(0, 1) test vectors as inputs. As a symbolic simu-

lator, it computes signal values as symbolic

expressions in terms of arbitrary Boolean inputs.

As a model checker, it automatically checks the

validity of a simple temporal logic formula for

arbitrary inputs—computing an exact character-

ization of the disagreement if the formula is not

unconditionally satisfied. STE thus provides a

straightforward migration path between scalar

simulation, symbolic simulation, and verification.

ThmTac
Model checking’s capacity limits often force

verification engineers to decompose verifica-

tions. Therefore, Forte includes ThmTac, a high-

er-order-logic theorem-proving system. We call

this a lightweight theorem prover, because it is

optimized for composing and decomposing

model-checking results rather than formalizing

arbitrary mathematical theories. Implemented

in FL, ThmTac is tightly integrated with the STE

model checker. As a result, ThmTac works

directly on model-checking results: there is no

need for translation or reformulation as would

be necessary in a typical approach that uses a

theorem prover with separate logic.

Verifying a floating-point adder
We illustrate the four phases of our method-

ology with a floating-point-adder verification.

The adder performs IEEE-compliant floating-

point addition and subtraction at single, dou-

ble, and double-extended precision, and

supports four rounding modes: toward 0,

toward –∞, toward +∞, and toward the nearest

real number representable in floating-point for-

mat. This adder was verified as part of a large-

scale verification effort undertaken on a recent

Intel IA-32 processor.6

In the methodology’s first three phases, we

verify a gate-level implementation of the adder

against a reference model (data path specifi-

cation). In the fourth phase, we verify the ref-

erence model against an FL interpretation of

the IEEE standard for floating-point addition.

Wiggling
The primary purpose of the wiggling phase

is to develop an API that insulates the rest of the

verification effort from the circuit’s low-level

implementation details. The circuit API for the

adder has two FL functions: one for inputs and

one for outputs.

The first API function, fadd_fsub_pro-

tocol, describes the circuit inputs’ behavior

during an addition or subtraction operation.

This function, shown in Figure 2 (next page),

takes the following arguments:

� uop, the executing instruction’s bit-vector

opcode (FADD or FSUB in this example);

� pc and rc, the operation’s precision and

rounding mode; and

� A and B, the two floating-point operands.

This API’s first few lines impose the conditions

that the circuit is clocked correctly and that no

19July–August 2001

Figure 1. Forte’s graphical user interface.

resets occur during an operation’s execution.

The API then drives the circuit’s inputs with the

opcode, the two input operands, and the

rounding and precision controls—each in the

appropriate clock cycle and accompanied by

data-valid signals. The FL library functions

called by the API (is, isv, and in_cycle)

map specification values to RTL signals and

establish a unit-delay temporal abstraction,

which lets signal timing be specified in terms of

clock cycles rather than absolute time points.

The waveform browser illustrates the protocol

described by the API.

The second API function, fadd_fsub_

result, simply observes output wbdata at

the appropriate clock cycle, checking it against

the given argument, res. The API also checks

that the valid bit, wbdatav, is set.

let fadd_fsub_result res =

(((wbdata isv res) and

(wbdatav is TRUE))

in_cycle 5);

We began wiggling the adder by adding 1.0

and 0.0, along with other trivial operations. In

the API’s first version, we toggled the clocks for

more cycles than were needed and drove the

data and control signals with constant values

for additional clock cycles. At first, the circuit

produced undefined outputs, which we detect-

ed because unspecified circuit nodes in STE

are assigned a special undefined value similar

to X in VHDL (VHSIC hardware description lan-

guage) simulation. By analyzing circuit behav-

ior, viewing circuit structure with the circuit

browser, writing FL functions to probe the cir-

cuit, studying the RTL code, and consulting

with the designers, we identified additional

control signals that needed to be driven, and

we added them to the API’s no_resets por-

tion. Once we had fully defined (non-X) out-

puts, we gradually refined the API by reducing

the number of clock cycles during which sig-

nals were driven.

When the API could reliably generate fully

defined values on the output signals, we moved

from wiggling to targeted scalar verification.

Targeted scalar verification
This second phase develops a reference

model and uses the API to connect it to

the circuit. For the adder, the function

fadd_fsub_result was given a result

value, res, calculated by fspec—a function

encapsulating our FL reference model for

floating-point addition and subtraction. The

reference model began as a straightforward

adaptation of a textbook algorithm.7 At first, it

supported only double-precision operations

and rounding toward zero, and we tested it

only for true addition (addition of operands

with like signs, or subtraction of operands with

different signs). By verifying various corner

cases, we extended our reference model to

support single, double, and double-extended

precisions, and the four rounding modes. For

example, 1.0 × 230 – 1.0 × 20, in single preci-

sion, should yield 1.0 × 230 when rounded

toward +∞, and 1.11111111111111111111111

× 229 when rounded toward –∞. We usually

proceeded by identifying a corner case, work-

ing out the correct behavior with pencil and

paper, coding the desired behavior into the

reference model, and then checking the cir-

cuit against the revised reference model. As a

safeguard against inadvertently incorporating

circuit bugs in the reference model, we later

used theorem proving to check the reference

model against an FL implementation of the

IEEE 754 standard.

Our final reference model comprises five

Formal Verification

20 IEEE Design & Test of Computers

// tie FL identifiers to circuit signals

let opcod = “rsuopcod0c32h[11:0]”;

let opcodv = “rsuopv0c32h”;

let fadd_fsub_protocol [uop, pc, rc, A, B] =

// Drive control signals

generate_clocks and // clocks toggle correctly

no_resets and // reset is false

// Drive opcode and data inputs

(((opcod isv uop) and // opcode

(opcodv is TRUE) and // opcode is valid

(s1 isv A) and // operand 1

(s1v is TRUE) and // operand 1 is valid

(s2 isv B) and // operand 2

(s2v is TRUE)) // operand 2 is valid

in_cycle 2) and

// Round and precision control come one cycle later

(((roundc isv rc) and // rounding mode

(precc isv pc)) // precision control

in_cycle 3);

Figure 2. Function for the circuit API’s inputs.

functional steps, as shown in Figure 3. The first

step inspects the operands and shifts the small-

er operand’s mantissa to the right in prepara-

tion for addition. The second step adds or

subtracts the mantissas. The third step normal-

izes the mantissa, shifting it left or right to align

its significant bits with the binary point. The

fourth step rounds and truncates the mantissa

according to the given rounding mode and pre-

cision. The fifth step renormalizes the mantis-

sa, if required.

Symbolic model checking
Model checking faces two major challenges:

capturing environmental constraints and man-

aging capacity.

Environmental constraints. Many circuits

work properly only under certain environmen-

tal constraints. For example, circuits associat-

ed with decoding instructions may require that

their inputs be legal instructions, or a pipelined

execution unit may require a certain delay

between consecutive operations.

The floating-point adder’s environmental con-

straints require that each operand is either zero

(all exponent and mantissa bits are zero) or nor-

mal (the exponent is between 0 and maximum,

and the mantissa has the form 1.b1b2b3 … bm).

The FL function LEGAL_FP expresses these

constraints, as shown in Figure 4.

For the floating-point-adder verification, we

are interested only in the circuit’s response to

FADD and FSUB opcodes. The environmental

constraint shown in Figure 5, therefore, restricts

the opcode and ensures that operands A and B

are either zero or normal.

In addition to constraints on data and the

opcode, various other conditions typically

restrict the input and state spaces for individual

verification runs, such as excluding cases that

are already known to be incorrect or that are

not yet included in the specification.

Capacity management. Once full symbolic

model checking has begun, BDD sizes start

exceeding the tool’s capacity limits. Good vari-

able orderings prevent immediate BDD explo-

sion, but a top-level decomposition strategy to

combat verification complexity quickly becomes

21July–August 2001

Align Add/
subtract Normalize Round Renormalize

in1

fp1 q

fp2in2

uop

pc

rc

uop

pc

rc

uop

pc

rc

p

uop

pc

rc

y

uop

pc

rc

flags result

faults

flags

Stage 1 Stage 2

Figure 3. Reference model structure for floating-point addition.

let isNORM fp = (exp fp ‘> 0) AND (exp fp ‘< MAX_EXP) AND (Jbit fp);

let isZERO fp = (exp fp ‘= 0) AND (man fp ‘= 0);

let LEGAL_FP fp = (isZERO fp) OR (isNORM fp);

Figure 4. Constraints on operands of the floating-point adder.

let isAdd opcod = (opcod = FADD);

let isSub opcod = (opcod = FSUB);

let LegalInput = (isAdd opcod OR isSub opcod) AND

(LEGAL_FP A) AND (LEGAL_FP B);

Figure 5. Floating-point adder’s environmental constraint.

crucial. Typical decomposition strategies include

case splitting, structural decomposition, induc-

tion, and algorithm-specific techniques.

For the floating-point adder, we divided the

verification into several hundred cases, accord-

ing to the difference between the two exponents,

as shown in Figure 6. Each case required a dif-

ferent BDD variable ordering. We easily generat-

ed the case splits and variable orderings using an

FL script. By iterating over the difference between

the exponents, the operation performed, and the

number of leading zeros in the unnormalized

mantissa, the script builds a Boolean predicate

and variable order for each case.

During symbolic model checking, we

invoke STE through a verification script built

atop the reference model and circuit API. The

inputs to a verification function usually include

� one or more Boolean conditions prescribing

case splits and environmental constraints,

� necessary information for generating the

BDD variable ordering, and

� auxiliary flags to control counterexample

generation and the STE algorithm.

For each case, the verification script installs the

BDD variable order, calls the model checker,

checks the circuit result against the reference

model, and optionally creates a pass/fail entry

in a log file. The script can also generate coun-

terexamples or other debugging information for

the user.

Theorem proving
Our first theorem-proving goal was to prove

that the case analysis just described covered

all possible legal situations and hence that our

verification’s decomposition into several hun-

dred model-checking runs was sound. To

prove that our case analysis was exhaustive,

we computed the disjunction of the legality

conditions for all cases. Because each condi-

tion is represented as a BDD in FL, a simple

BDD computation sufficed to reduce the dis-

junction to TRUE.

Our second goal was more ambitious: veri-

fy the FL reference model against the signifi-

cantly more abstract IEEE standard for

floating-point addition. Our formalization of the

standard had four cases, one for each rounding

mode mandated by the standard. In each case,

we compared reference model output result

with the infinitely precise result, in1 + in2. For

Formal Verification

22 IEEE Design & Test of Computers

e1 – e2 > n

e1 – e2 = n

nlz = n nlz = 1 nlz = 0

e2 – e1 = ne1 – e2 = 3

e1 – e2 = 1 e1 – e2 = 0 e2 – e1 = 1

e1 – e2 = 2 e2 – e1 = 2 e2 – e1 = 3

n ≥ e1 – e2 > 1

True subtraction True addition

1 ≥ e1 – e2 ≥ –1 1 < e2 – e1 ≤ n n < e2 – e1

Variable shift
for renormalization

Variable shift
for alignment

Variable shift
for alignment

Variable shift
for alignment

e1

e2

Exponent1 – bias
Exponent2 – bias

Number of leading 0s
Number of mantissa bits

nlz
n

Result = 2Result = 1

Figure 6. Case analysis for floating-point addition and subtraction.

example, when rounding toward –∞, our for-

malization said

where ulp (unit of least precision) is the dis-

tance between consecutive representable num-

bers that share result’s exponent, and precision

is the number of fractional bits in result_man-

tissa. The first conjunct says that the inputs’ true

sum, in1 + in2, lies between the computed result,

result, and the next representable floating-point

number, result + ulp, as required by the IEEE

standard. The property’s second conjunct

addresses a special case: when result is nega-

tive (result_sign = –1) and the fractional portion

of result_mantissa is zero, the exponent of result

is one larger than the exponent of the next-

largest representable value. In this case, the

distance from result to the next-largest repre-

sentable value is one-half the distance between

the representable numbers that share result’s

exponent.

To verify our reference model, we grouped

its five steps into two stages, as shown in Figure

3. Stage 1 includes alignment, addition and sub-

traction, and normalization. Stage 2 includes

rounding and renormalization. For each step,

we wrote assumptions about the inputs, identi-

fied properties to prove for the outputs, and

selected auxiliary properties for the algorithm’s

subsequent steps. We combined properties of

individual steps into stage-level lemmas. We

concluded the proof by combining the lemmas

for stage 1 and stage 2 to derive one theorem

verifying the adder reference model’s outputs,

and hence the RTL, against our formalization

of the IEEE standard. The theorem character-

izes the reference model’s input-output behav-

ior and includes all rounding modes and

precisions.

In this example, the theorem-proving phase

produced two major results. First, it ensured

that the decomposition from the top-level cor-

rectness statement to the model-checking runs

was correct. In principle, a model checker with

no capacity limitations could have verified this

result. However, the second result goes much

further, checking the reference model against

the IEEE standard. Here, we derived a theorem

beyond the expressive power of BDD-based

specification languages. Although theorem

proving is effort intensive, our methodology

mitigates the cost by reusing the verified refer-

ence model to verify multiple implementations.

Meeting requirements
One key to satisfying our requirements was

tightly integrating tools and capabilities in the

Forte framework. This was made possible by

Forte’s architecture, which focuses all activities

around a general programming environment

that is augmented with specialized verification

functions and libraries.

We addressed the requirement for realism in

many ways, from the scalability of Forte’s tools

to the availability of STE simulations when

specifications aren’t available. For transparen-

cy and soundness, FL plays a central role. Users

can frame specifications in FL in their own

terms rather than using a fixed set of predefined

constructs. All proof artifacts are embodied as

FL source code. The methodology gives struc-

ture to large verification efforts by defining the

main work stages and associated artifacts. Both

a skeleton work plan and concrete best-prac-

tice models are available to users for their veri-

fication code.

The methodology achieves incrementality by

using STE for debugging with targeted scalar

simulation, potentially delivering results well

before full model checking is attempted. The

methodology’s distinct stages and code struc-

tures also foster incrementality, and aid recov-

erability. Along with Forte’s visualization tools,

STE’s simulation capabilities enable debugging

and feedback. When a symbolic-model-check-

ing run fails, STE can generate a counterexam-

ple, which the user can analyze through

simulations. STE can also characterize the

entire failure domain, which an advanced user

can explore using FL.

The methodology’s stages decouple model

checking and overall problem decomposition.

The beginning stages are bottom up, grounding

the whole verification effort in concrete simu-

result in in result ulp

result sign result mantissa

in in result ulp

precision

≤ + < +()
∧

= − ∧ =
⇒

+ < +















1 2

1 2
1
2

1 2_ _

23July–August 2001

lations. The top-down activity of developing an

overall proof strategy starts a bit later but then

proceeds in parallel. This aspect requires under-

standing the algorithm, but the earlier bottom-

up explorations help foster this understanding

and set a definite target for decomposition.

The identification of circuit APIs as a sepa-

rate artifact aids reuse. A circuit API decouples

the specification of data path functionality

(which can remain constant for a design’s life-

time) from signal names and timing (which

change frequently). We have reused the results

of several verification efforts on subsequent

designs, reducing the verification effort in some

instances by up to 80%. As long as a design is

live, any part of the verification code may have

to be adapted to track design changes. But the

structure our methodology imposes on proof

artifacts helps localize changes textually, thus

supporting our requirement for regression. For

example, if a signal name or the interface pro-

tocol changes, the user typically needs to mod-

ify only the API. The rest of the verification

script should run unchanged.

WE DEVELOPED OUR METHODOLOGY and its

requirements over a series of case studies

carried out at Intel, including verifications of an

IA-32 instruction-length decoder;8,9 IEEE com-

pliance of many of the IA-32 floating-point

instructions;6 and other, unpublished studies.

Nevertheless, our methodology is not com-

plete. It is a useful first step, but industrial hard-

ware verification is very challenging, and much

work remains in defining the methodology and

the underlying technology. Although extensive

literature on design methodology and some lit-

erature on design validation methodology are

available, the literature on formal-verification

methodology is sparse. Most reports of formal

verification in industry have been limited to

technical accounts of particular verification

achievements or techniques. An exception is

Pixley’s account of applying model checking at

Motorola.10

We hope this article helps motivate the con-

tinuing spread of formal verification in indus-

try, particularly in the development of effective

usage methodologies. �

References
1. T Kropf, Introduction to Formal Hardware Verifica-

tion, Springer-Verlag, New York, 1999.

2. C.-J.H. Seger and R.E. Bryant, “Formal Verifica-

tion by Symbolic Evaluation of Partially-Ordered

Trajectories,” Formal Methods in System Design,

vol. 6, no. 2, Mar. 1995, pp. 147-189.

3. M.D. Aagaard et al., “A Methodology for Large-

Scale Hardware Verification,” Proc. Formal Meth-

ods in Computer-Aided Design, Lecture Notes in

Computer Science, vol. 1954, Springer-Verlag,

New York, 2000, pp. 263-282.

4. R.E. Bryant, “Graph-Based Algorithms for Boolean

Function Manipulation,” IEEE Trans. Computers,

vol. 35, no. 8, Aug. 1986, pp. 677-691.

5. C.-J.H. Seger, Voss: A Formal Hardware Verifica-

tion System User’s Guide, tech. report 93-45,

Dept. of Computer Science, Univ. of British

Columbia, 1993.

6. J. O’Leary et al., “Formally Verifying IEEE Compli-

ance of Floating-Point Hardware,” Intel Technical

J., 1st Quarter 1999;

http://developer.intel.com/technology/itj/.

7. J. Feldman and C. Retter, Computer Architecture:

A Designer’s Text Based on a Generic RISC,

McGraw-Hill, New York, 1994.

8. M.D. Aagaard, R.B. Jones, and C.-J.H. Seger,

“Formal Verification Using Parametric Represen-

tations of Boolean Constraints,” Proc. 36th Design

Automation Conf., ACM Press, New York, 1999.

9. M.D. Aagaard, R.B. Jones, and C.-J.H. Seger,

“Combining Theorem Proving and Trajectory

Evaluation in an Industrial Environment,” Proc.

Design Automation Conf., ACM Press, New York,

1998, pp. 538-541.

10. C. Pixley, “Integrating Model Checking into the

Semiconductor Design Flow,” Electronic Systems

Technology & Design, Mar. 1999, pp. 67-74.

Robert B. Jones is a
member of the technical staff
at Intel’s Strategic CAD Labs
in Hillsboro, Oregon. His
research interests include
practical application of formal

methods to hardware systems specification,
architecture, and verification. Jones has a PhD in
electrical engineering from Stanford University.
He is a member of the IEEE and the ACM.

Formal Verification

24 IEEE Design & Test of Computers

John W. O’Leary is a
member of the technical staff
at Intel’s Strategic CAD Labs.
His research interests include
formal specification and veri-
fication of hardware. O’Leary

has a PhD in electrical engineering from Cornell
University. He is a member of the IEEE.

Carl-Johan H. Seger is a
principal engineer at Intel’s
Strategic CAD Labs. His
research interests include
formal hardware verification
and asynchronous circuits.

Seger has a PhD in computer science from the
University of Waterloo.

Mark D. Aagaard is an
associate professor in the
Department of Electrical and
Computer Engineering at the
University of Waterloo. His
research interests include

high-level digital system design and verification.
Aagaard has an MSc and PhD in electrical engi-
neering from Cornell University. He is a member
of the IEEE.

Thomas F. Melham is a
professor of computing sci-
ence at the University of
Glasgow in Scotland. His
research interests include
software architectures for for-

mal-methods tools, industrial-scale hardware
verification, combined model checking and the-
orem proving, and integration of formal verifica-
tion into hardware design methodologies.
Melham has a PhD in computer science from the
University of Cambridge.

Direct questions or comments about this arti-
cle to Robert B. Jones, Strategic CAD Labs, Intel
Corp., JF4-211, 2511 NE 25th Ave., Hillsboro,
OR 97123; rjones@ichips.intel.com.

25July–August 2001

How to Contact Us
Subscription Questions
IEEE Computer Society

PO Box 3014
Los Alamitos, CA 90720

Paper, electronic, or combination subscriptions to IEEE
Design & Test are available. Send subscription change-of-
address requests to address.change@ieee.org. Be sure to
specify IEEE Design & Test.

Membership Change of Address
Send change-of-address requests for the Computer
Society membership directory to directory.updates@
computer.org.

IEEE Design & Test on the Web
Visit our Web site at http://computer.org/dt/ for article
abstracts, access to back issues, and information about
IEEE Design & Test. Full articles are available online to
subscribers of the magazine’s electronic version.

Writers
Author Guidelines and IEEE copyright forms are

available from dt-ma@computer.org, or access
http://computer.org/dt/edguide.htm.
Letters to the Editor

Send letters to Managing Editor, IEEE Design & Test,
10662 Los Vaqueros Circle, PO Box 3014, Los Alamitos,
CA 90720. Please provide an e-mail address with your
letter.

Reprints of Articles
For price information or to order reprints, send e-mail to
dt-ma@computer.org or fax to IEEE Design & Test at (714)
821-4010.

Reprint Permission
To obtain permission to reprint an article or column, con-
tact William Hagen, IEEE Copyrights and Trademarks
Manager, at w.hagen@computer.org.

Missing or Damaged Copies
If you did not receive an issue or you received a damaged
copy, contact help@computer.org.

News Releases
Mail microprocessor, microcontroller, operating system,
embedded system, microsystem, and related systems
announcements to IEEE Design & Test, 10662 Los Vaqueros
Circle, PO Box 3014, Los Alamitos, CA 90720.

