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Preface

Since C.A.R. Hoare’s text Communicating Sequential Processes was published in
1985, his notation has been extensively used for teaching and applying concurrency
theory. This book is intended to provide a comprehensive text on CSP from the
perspective that 12 more years of research and experience have brought.

By far the most significant development in this time has been the emer-
gence of tools to support both the teaching and industrial application of CSP. This
has turned CSP from a notation used mainly for describing ‘toy’ examples which
could be understood and analyzed by hand, into one which can and does support
the description of industrial-sized problems and which facilitates their automated
analysis. As we will see, the FDR model checking tool can, over a wide range of
application areas, perform analyses and solve problems that are beyond most, if not
all, humans.

In order to use these tools effectively you need a good grasp of the fundamen-
tal concepts of CSP: the tools are most certainly not an alternative to gaining an
understanding of the theory. Therefore this book is still, in the first instance, a text
on the principles of the language rather than being a manual on how to apply its
tools. Nevertheless the existence of the tools has heavily influenced both the choice
and presentation of material. Most of the chapters have a section specifically on the
way the material in them relates to tools, two of the appendices are tool-related,
and there is an associated web site

http://www.comlab.ox.ac.uk/oucl/publications/books/concurrency/
on which readers can find

e a list of tools available for CSP
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e demonstrations and details of some of the tools

e directories of example files containing most of the examples from the text
and many other related ones

e practical exercises which can be used by those teaching and learning from
this book

e a list of materials available to support teaching (overhead foils, solutions to
exercises, etc.) and instructions for obtaining them

as well as supporting textual material. Contact information, etc., relating to those
tools specifically mentioned in the text can be found in the Bibliography.

The Introduction (Chapter 0) gives an indication of the history, purpose and
range of applications of CSP, as well as a brief survey of the classes of tools that
are available. There is also a discussion of how to go about one of the major steps
when using CSP to model a system: deciding what constitutes an event. It provides
background reading which should be of interest to more experienced readers before
beginning the rest of the book; those with no previous exposure to concurrency
might find some parts of the Introduction of more benefit after looking at Part I.

The rest of the book is divided into three parts and structured to make it
usable by as wide an audience as possible. It should be emphasized, however, that
the quantity of material and the differing levels of sophistication required by various
topics mean that I expect it will be relatively uncommon for people to attempt the
whole book in a short space of time.

Part I (Chapters 1-6) is a foundation course on CSP, covering essentially
the same ground as Hoare’s text except that most of the mathematical theory is
omitted. At an intuitive level, it introduces the ideas behind the operational (i.e.,
transition system), denotational (traces, failures and divergences) and algebraic
models of CSP, but the formal development of these is delayed to Part II. Part
I has its origins in a set of notes that I developed for an introductory 16-lecture
course for Oxford undergraduates in Engineering and Computing Science. I would
expect that all introductory courses would cover up to Section 5.1 (buffers), with the
three topics beyond that (buffer tolerance, communications protocols and sequential
composition!) being more optional.

Part IT and Part IIT (Chapters 7-12 and 13-15, though Chapter 12 arguably
belongs equally to both) respectively go into more detail on the theory and practice

Hnstructors who are intending to deal at any length with the theory presented in Part II should
consider carefully whether they want to include the treatment of sequential composition, since it
can reasonably be argued that the special cases it creates are disproportionate to the usefulness of
that operator in the language. Certainly it is well worth considering presenting the theory without
these extra complications before going back to see how termination and sequencing fit in.
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of CSP. Either of them would form the basis of a one-term graduate course as a
follow-on to Part I, though some instructors will doubtless wish to mix the material
and to include extracts from Parts IT and III in a first course. (At Oxford, intro-
ductory courses for more mathematically sophisticated audiences have used parts
of Chapters 8 and 9, on the denotational semantics and its applications, and some
courses have used part of Chapter 13, on deadlock.) The chapters of Part IIT are
largely independent of each other and of Part II.2

This book assumes no mathematical knowledge except for a basic under-
standing of sets, sequences and functions. I have endeavoured to keep the level of
mathematical sophistication of Parts I and III to the minimum consistent with giv-
ing a proper explanation of the material. While Part II does not require any further
basic knowledge other than what is contained in Appendix A (which gives an intro-
duction to the ideas from the theory of partial orders and metric/restriction spaces
required to understand the denotational models), the mathematical constructions
and arguments used are sometimes significantly harder than in the other two parts.

Part IT describes various approaches to the semantic analysis of CSP. De-
pending on your point of view, you can either regard its chapters as an introduction
to semantic techniques for concurrency via the medium of CSP, or as a compre-
hensive treatment of the theory of this language. Each of the three complementary
semantic approaches used — operational, denotational and algebraic — is directly
relevant to an understanding of how the automated tools work. My aim in this part
has been to give a sufficiently detailed presentation of the underlying mathematics
and of the proofs of the main results to enable the reader to gain a thorough under-
standing of the semantics. Necessarily, though, the most complex and technical
proofs are omitted.

Chapter 12 deserves a special mention, since it does not so much introduce
semantic theory as apply it. It deals with the subject of abstraction: forming
a view of what a process looks like to a user who can only see a subset of its
alphabet. A full understanding of the methods used requires some knowledge of
the denotational models described in Chapters 8, 9 and 10 (which accounts for the
placing of Chapter 12 in Part IT). However, their applications (to the formulation
of specifications in general, and to the specification of fault tolerance and security
in particular), are important and deserve attention by the ‘practice’ community as
well as theoreticians.

Chapter 13, on deadlock avoidance, is included because deadlock is a much

2The only dependency is of Section ?? on Chapter 14. It follows from this idependence that a
course based primarily on Part III need not cover the material in order and that instructors can
exercise considerable freedom in selecting what to teach. For example, the author has taught a
tool-based graduate course based on Section 15.1, Chapter 5, Section 15.2; Appendix C, Chapter
14, Chapter 12 (Sections 12.3 and 12.4 in particular), the first half of Chapter 13 and Section 15.4.



xiv Preface

feared phenomenon and there is an impressive range of techniques, both analytic and
automated, for avoiding it. Chapter 14 describes how the untimed version of CSP
(the one this book is about) can be used to describe and reason about timed systems
by introducing a special event to represent the passage of time at regular intervals.
This has become perhaps the most used dialect of CSP in industrial applications of
FDR. Each of these two chapters contains extensive illustrative examples; Chapter
15 is based entirely around five case studies (two of which are related) chosen to
show how CSP can successfully model, and FDR can solve, interesting, difficult
problems from other application areas.

The first appendix, as described above, is an introduction to mathematical
topics used in Part II. The second gives a brief description of the machine-readable
version of CSP and the functional programming language it contains for manipulat-
ing process state. The third explains the operation of FDR in terms of the theory
of CSP, and in particular describes the process-compression functions it uses.

At the end of each chapter in Parts II and III there is a section entitled
‘Notes’. These endeavour, necessarily briefly, to put the material of the chapter in
context and to give appropriate references to related work.

Exercises are included throughout the book. Those in Part I are mainly
designed to test the reader’s understanding of the preceding material; many of
them have been used in class at Oxford over the past three years. Some of those
in Parts IT and IIT have the additional purpose of developing sidelines of the theory
not otherwise covered.

Except for one important change (the decision not to use process alphabets,
see page 77), I have endeavoured to remain faithful to the notation and ideas pre-
sented in Hoare’s text. There are a few other places, particularly in my treatment
of termination, variable usage and unbounded nondeterminism, where I have either
tidied up or extended the language and/or its interpretation.

Bill Roscoe
May 1997
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Chapter 0

Introduction

CSP is a notation for describing concurrent systems (i.e., ones where there is more
than one process existing at a time) whose component processes interact with each
other by communication. Simultaneously, CSP is a collection of mathematical mod-
els and reasoning methods which help us understand and use this notation. In this
chapter we discuss the reasons for needing a calculus like CSP and some of the
historical background to its development.

0.1 Background

Parallel computers are starting to become common, thanks to developing technol-
ogy and our seemingly insatiable demands for computing power. They provide the
most obvious examples of concurrent systems, which can be characterized as sys-
tems where there are a number of different activities being carried out at the same
time. But there are others: at one extreme we have loosely coupled networks of
workstations, perhaps sharing some common file-server; and at the other we have
single VLSI circuits, which are built from many subcomponents which will often do
things concurrently. What all examples have in common is a number of separate
components which need to communicate with each other. The theory of concur-
rency is about the study of such communicating systems and applies equally to all
these examples and more. Though the motivation and most of the examples we see
are drawn from areas related to computers and VLSI, other examples can be found
in many fields.

CSP was designed to be a notation and theory for describing and analyzing
systems whose primary interest arises from the ways in which different compo-
nents interact at the level of communication. To understand this point, consider
the design of what most programmers would probably think of first when paral-
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lelism is mentioned, namely parallel supercomputers and the programs that run on
them. These computers are usually designed (though the details vary widely) so
that parallel programming is as easy as possible, often by enforcing highly stylized
communication which takes place in time to a global clock that also keeps the var-
ious parallel processing threads in step with each other. Though the design of the
parallel programs that run on these machines — structuring computations so that
calculations may be done in parallel and so that transfers of information required
fit the model provided by the computer — is an extremely important subject, it is
not what CSP or this book is about. For what is interesting there is understanding
the structure of the problem or algorithm, not the concurrent behaviour (the clock
and regimented communication having removed almost all interest here).

In short, we are developing a notation and calculus to help us understand
interaction. Typically the interactions will be between the components of a concur-
rent system, but sometimes they will be between a computer and external human
users. The primary applications will be areas where the main interest lies in the
structure and consequences of interactions. These include aspects of VLSI design,
communications protocols, real-time control systems, scheduling, computer security,
fault tolerance, database and cache consistency, and telecommunications systems.
Case studies from most of these can be found in this book: see the table of contents.

Concurrent systems are more difficult to understand than sequential ones for
various reasons. Perhaps the most obvious is that, whereas a sequential program is
only ‘at’ one line at a time, in a concurrent system all the different components are in
(more or less) independent states. It is necessary to understand which combinations
of states can arise and the consequences of each. This same observation means
that there simply are more states to worry about in parallel code, because the
total number of states grows exponentially (with the number of components) rather
than linearly (in the length of code) as in sequential code. Aside from this state
explosion there are a number of more specific misbehaviours which all create their
own difficulties and which any theory for analyzing concurrent systems must be able
to model.

Nondeterminism

A system exhibits nondeterminism if two different copies of it may behave differently
when given exactly the same inputs. Parallel systems often behave in this way
because of contention for communication: if there are three subprocesses P, and
R where P and @ are competing to be the first to communicate with R, which in
turn bases its future behaviour upon which wins the race, then the whole system
may veer one way or the other in a manner that is uncontrollable and unobservable
from the outside.
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Nondeterministic systems are in principle untestable, since however many
times one of them behaves correctly in development with a given set of data, it
is impossible to be sure that it will still do so in the field (probably in subtly
different conditions which might influence the way a nondeterministic decision is
taken). Only by formal understanding and reasoning can one hope to establish
any property of such a system. One property we might be able to prove of a given
process is that it is deterministic (i.e., will always behave the same way when offered
a given sequence of communications), and thus amenable to testing.

Deadlock

A concurrent system is deadlocked if no component can make any progress, generally
because each is waiting for communication with others. The most famous example
of a deadlocked system is the ‘five dining philosophers’, where the five philosophers
are seated at a round table with a single fork between each pair (there is a picture
of them on page 61). But each philosopher requires both neighbouring forks to eat,
so if, as in the picture, all get hungry simultaneously and pick up their left-hand
fork then they deadlock and starve to death. Even though this example is anthro-
pomorphic, it actually captures one of the major causes of real deadlocks, namely
competition for resources. There are numerous others, however, and deadlock (par-
ticularly nondeterministic deadlock) remains one of the most common and feared
ills in parallel systems.

Livelock

All programmers are familiar with programs that go into infinite loops, never to
interact with their environments again. In addition to the usual causes of this type
of behaviour — properly called divergence, where a program performs an infinite
unbroken sequence of internal actions — parallel systems can livelock. This occurs
when a network communicates infinitely internally without any component com-
municating externally. As far as the user is concerned, a livelocked system looks
similar to a deadlocked one, though perhaps worse since the user may be able to
observe the presence of internal activity and so hope eternally that some output
will emerge eventually. Operationally and, as it turns out, theoretically, the two
phenomena are very different.

The above begin to show why it is essential to have both a good under-
standing of the way concurrent systems behave and practical methods for analyzing
them. On encountering a language like CSP for the first time, many people ask
why they have to study a new body of theory, and new specification/verification
techniques, rather than just learning another programming language. The reason
is that, unfortunately, mathematical models and software engineering techniques
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developed for sequential systems are usually inadequate for modelling the subtleties
of concurrency so we have to develop these things alongside the language.

0.2 Perspective

As we indicated above, a system is said to exhibit concurrency when there can be
several processes or subtasks making progress at the same time. These subtasks
might be running on separate processors, or might be time-sharing on a single
one. The crucial thing which makes concurrent systems different from sequential
ones is the fact that their subprocesses communicate with each other. So while a
sequential program can be thought of as progressing through its code a line at a
time — usually with no external influences on its control-flow — in a concurrent system
each component is at its own line, and without relying on a precise knowledge of the
implementation we cannot know what sequence of states the system will go through.
Since the different components are influencing each other, the complexities of the
possible interactions are mind-boggling. The history of concurrency consists both
of the construction of languages and concepts to make this complexity manageable,
and the development of theories for describing and reasoning about interacting
processes.

CSP has its origins in the mid 1970s, a time when the main practical problems
driving work on concurrency arose out of areas such as multi-tasking and operating
system design. The main problems in those areas are ones of maintaining an illusion
of simultaneous execution in an environment where there are scarce resources. The
nature of these systems frequently makes them ideally suited to the model of a
concurrent system where all processes are able (at least potentially) to see the
whole of memory, and where access to scarce resources (such as a peripheral) is
controlled by semaphores. (A process seeks a semaphore by executing a claim, or
P, operation, and after its need is over releases it with a V' operation. The system
must enforce the property that only one process ‘has’ the semaphore at a time. This
is one solution to the so-called mutual exclusion problem.)

Perhaps the most superficially attractive feature of shared-variable concur-
rency is that it is hardly necessary to change a programming language to accom-
modate it. A piece of code writes to, or reads from, a shared variable in very much
the same way as it would do with a private one. The concurrency is thus, from
the point of view of a sequential program component, in some senses implicit. As
with many things, the shared variable model of concurrency has its advantages and
disadvantages. The main disadvantage from the point of view of modelling gen-
eral interacting systems is that the communications between components, which
are plainly vitally important, happen too implicitly. This effect also shows up when
it comes to mathematical reasoning about system behaviour: when it is not made
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explicit in a program’s semantics when it receives communications, one has to allow
for the effects of any communication at any time.

In recent years, of course, the emphasis on parallel programming has moved
to the situation where one is distributing a single task over a number of separate
processors. If done wrongly, the communications between these can represent a real
bottleneck, and certainly an unrestricted shared variable model can cause problems
in this way. One of the most interesting developments to overcome this has been
the BSP (Bulk Synchronous Parallelism) model [76, 130] in which the processors
are synchronized by the beat of a relatively infrequent drum and where the commu-
nication/processing trade-off is carefully managed. The BSP model is appropriate
for large parallel computations of numerical problems and similar; it does not give
any insight into the way parallel systems interact at a low level. When you need
this, a model in which the communications between processors are the essence of
process behaviour is required. If you were developing a parallel system on which to
run BSP programs, you could benefit from using a communication-based model at
several different levels.

In his 1978 paper [54], C.A.R. Hoare introduced, with the language CSP
(Communicating Sequential Processes), the concept of a system of processes, each
with its own private set of variables, interacting only by sending messages to each
other via handshaken communication. That language was, at least in appearance,
very different from the one studied in this book. In many respects it was like the
language occaM [57, 60] which was later to evolve from CSP, but it differed from
OCCAM in one or two significant ways:

e Parallelism was only allowed into the program at the highest syntactic level.
Thus the name Communicating Sequential Processes was appropriate in a
far more literal way than with subsequent versions of CSP.

e One process communicated with another by name, as if there were a single
channel from each process to every other. In OCCAM, processes communicate
by named channels, so that a given pair might have none or many between
them.

The first version of CSP was the starting point for a large proportion of the
work on concurrency that has gone on since. Many researchers have continued to
use it in its original form, and others have built upon its ideas to develop their own
languages and notations.

The great majority of these languages have been notations for describing and
reasoning about purely communicating systems: the computations internal to the
component processes’ state (variables, assignments, etc.) being forgotten about.
They have come to be known as process algebras. The first of these were Milner’s
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CCS [80, 82] and Hoare’s second version of CSP, the one this book is about. It
is somewhat confusing that both of Hoare’s notations have the same name and
acronym, since in all but the deepest sense they have little in common. Henceforth,
for us, CSP will mean the second notation. Process algebra notations and theories
of concurrency are useful because they bring the problems of concurrency into sharp
focus. Using them it is possible to address the problems that arise, both at the high
level of constructing theories of concurrency, and at the lower level of specifying and
designing individual systems, without worrying about other issues. The purpose of
this book is to describe the CSP notation and to help the reader to understand it
and, especially, to use it in practical circumstances.

The design of process algebras and the building of theories around them has
proved an immensely popular field over the past two decades. Concurrency proves
to be an intellectually fascinating subject and there are many subtle distinctions
which one can make, both at the level of choice of language constructs and in the
subtleties of the theories used to model them. From a practical point of view the
resulting tower of Babel has been unfortunate, since it has both created confusion
and meant that perhaps less effort than ought to have been the case has been
devoted to the practical use of these methods. It has obscured the fact that often
the differences between the approaches were, to an outsider, insignificant.

Much of this work has, of course, strongly influenced the development of
CSP and the theories which underlie it. This applies both to the untimed version
of CSP, where one deliberately abstracts from the precise times when events occur,
and to Timed CSP, where these times are recorded and used. Untimed theories tend
to have the advantages of relative simplicity and abstraction, and are appropriate
for many real circumstances. Indeed, the handshaken communication of CSP is to
some extent a way of making precise timing of less concern, since, if one end of the
communication is ready before the other, it will wait. Probably for these reasons
the study of untimed theories generally preceded that of the timed ones. The timed
ones are needed because, as we will see later on, one sometimes needs to rely upon
timing details for the correctness of a system. This might either be at the level of
overall (externally visible) behaviour, or for some internal reason. The realization
of this, and the increasing maturity of the untimed theories, have led to a growing
number of people working on real-time theories since the mid 1980s.

There are a number of reasons why it can be advantageous to combine timed
and untimed reasoning. The major ones are listed below.

e Since timed reasoning is more detailed and complex than untimed, it is useful
to be able to localize timed analysis to the parts of the system which really
depend on it.

e In many cases proving a timed specification can be factored into proving a
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complex untimed one and a simple timed property. This is attractive for the
same reasons as above.

e We might well want to develop a system meeting an untimed specification
before refining it to meet detailed timing constraints.

There have been two distinct approaches to introducing time into CSP, and
fortunately the above advantages are available in both. The first, usually known as
Timed CSP (see, for example, [29, 31, 98, 99]), uses a continuous model of time and
has a mathematical theory quite distinct to the untimed version. To do it justice
would require more space than could reasonably be made available in this volume,
and therefore we do not cover it. A complementary text by S.A. Schneider, based
primarily round Timed CSP, is in preparation at the time of writing.

The continuous model of time, while elegant, makes the construction of auto-
mated tools very much harder. It was primarily for this reason that the author
proposes (in Chapter 14) an alternative in which a timed interpretation is placed
on the ‘untimed’ language. This represents the passage of time by the regular
occurrence of a specific event (tock) and had the immediate advantage that the
untimed tools were applicable. While less profound than Timed CSP, it does, for
the time being at least, seem more practical. It has been used frequently in industrial
applications of FDR.

0.3 Tools

For a long time CSP was an algebra that was reasoned about only manually. This
certainly had a strong influence on the sort of examples people worked on — the
lack of automated assistance led to a concentration on small, elegant examples that
demonstrated theoretical niceties rather than practical problems.

In the last few years there has been an explosion of interest in the develop-
ment of automated proof tools for CSP and similar languages. The chief proof and
analytic tool for CSP at present is called FDR (standing for Failures/Divergences
Refinement, a name which will be explained in Section 3.3), whose existence has
led to a revolution in the way CSP is used. To a lesser extent it has also influenced
the way CSP is modelled mathematically and the presentation of its models.

A number of other tools, with similar external functionality though based on
very different algorithms, have been or are being developed. FDR appears to be the
most powerful (for most purposes) and complete at the time of writing. Because
of this, and because the author has played a leading role in its development and
is therefore more familiar with it than other tools, this book is, so far as the use
of tools is concerned, centred chiefly on FDR. Many of the examples and exercises
have been designed so they can be ‘run’ on it.
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Equally useful from the point of view of learning about the language are
simulators and animators which allow the human user to experiment with CSP
processes: interacting with them in reality instead of having to imagine doing so.
The difference between this sort of tool and FDR is that simulations do not prove
results about processes, merely providing a form of implementation that allows
experimentation. At the time of writing the most capable such tool appears to be
ProBE (used by the author in a preliminary version and due to be released later in
1997).

The above are general-purpose tools, in that they deal with more-or-less any
program and desired property which you want to investigate. More specific tools are
customized to perform analyses of restricted classes of system (such as protocols)
or to check for specific conditions such as deadlock.

These and other tool developments have led to a restructuring and standard-
ization of the CSP notation itself. The fact that the tools have allowed so many
more practical-size examples to be developed has certainly influenced our percep-
tion of the relative importance and, too, uses of various parts of the language,
especially the parts which are at the level of describing data and operations over it
(for building individual communications, and constructing a process’s state). The
presentation in this book has been influenced by this experience and is based on
the standardized syntax with the important difference that (at the time of writing)
the machine-readable syntax is ASCII, and the textual appearance of various con-
structs therefore differs from the more elegantly typeset versions which appear here
in print. The ASCII syntax is given in an appendix and is used in Chapter 15 (Case
Studies).

On past experience it is reasonable to expect that the range and power of
tools will increase markedly over the next few years. Thus a snap-shot from mid
1997 would soon get out of date. It is hoped to keep the web site associated with
this book (see Preface) as up-to-date as possible on developments and to include
appropriate references and demonstrations there.

It is only really since the advent of tools that CSP has been used to a sig-
nificant extent for the development and analysis of practical and industrial-scale
examples.

0.4 What is a communication?

CSP is a calculus for studying processes which interact with each other and their
environment by means of communication. The most fundamental object in CSP is
therefore a communication event. These events are assumed to be drawn from a
set 3 (the Greek capital letter ‘Sigma’) which contains all possible communications
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for processes in the universe under consideration. Think of a communication as
a transaction or synchronization between two or more processes rather than as
necessarily being the transmission of data one way. A few possible events in very
different examples of CSP descriptions are given below.

e In a railway system where the trains and signal boxes are communicating,
a typical event might be a request to move onto a segment of track, the
granting or refusing of permission for this, or the actual movement.

e If trying to model the interaction between a customer and a shop, we could
either model a transaction as a single event, so that (4, X, Y') might mean A
buys X for £Y, or break it up into several (offer, acceptance, money, change,
etc.). The choice of which of these two approaches to follow would depend
on taste as well as the reason for writing the CSP description.

e The insertion of an electronic mail message into a system, the various internal
transmissions of the message as it makes its way to its destination, and its
final receipt would all be events in a description of a distributed network.
Note that the user is probably not interested in the internal events, and so
would probably like to be able to ignore, or abstract away their presence.

o If we were using CSP to describe the behaviour of VLSI circuits, an event
might be a clock tick, seen by a large number of parallel communications,
or the transmission of a word of data, or (at a lower level) the switching of
some gate or transistor.

More than one component in a system may have to co-operate in the per-
formance of an event, and the ‘real’ phenomenon modelled by the event might take
some time. In CSP we assume firstly that an event only happens when all its
participants are prepared to execute it (this is what is called handshaken communi-
cation), and secondly that the abstract event is instantaneous. The instantaneous
event can be thought of as happening at the moment when it becomes inevitable
because all its participants have agreed to execute it. These two related abstrac-
tions constitute perhaps the most fundamental steps in describing a system using

CSP.

The only things that the environment can observe about a process are the
events which the process communicates with it. The interaction between the envi-
ronment and a process takes the same form as that between two processes: events
only happen when both sides agree.

One of the fundamental features of CSP is that it can serve as a notation
for writing programs which are close to implementation, as a way of constructing
specifications which may be remote from implementation, and as a calculus for
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reasoning about both of these things — and often comparing the two. For this
reason it contains a number of operators which would either be hard to implement
in a truly parallel system, or which represent some ‘bad’ forms of behaviour, thus
making them unlikely candidates for use in programs as such. The reason for having
the bad forms of behaviour (deadlock, divergence and nondeterminism) represented
explicitly and cleanly is to enable us to reason about them, hopefully proving them
absent in practical examples.



Part 1

A foundation course in CSP

11






Chapter 1

Fundamental concepts

A CSP process is completely described by the way it can communicate with its
external environment. In constructing a process we first have to decide on an
alphabet of communication events — the set of all events that the process (and any
other related processes) might use. The choice of this alphabet is perhaps the
most important modelling decision that is made when we are trying to represent a
real system in CSP. The choice of these actions determines both the level of detail
or abstraction in the final specification, and also whether it is possible to get a
reasonable result at all. But this will only really become clear once we have a grasp
of the basic notation and start to look at some examples, though some guidance is
given in Section 0.4. So let us assume for now that the alphabet 3 of all events has
been established.

The fundamental assumptions about communications in CSP are these:

e They are instantaneous: we abstract the real time intervals the performance
of events takes into single moments — conceptually the moments when the
event becomes inevitable.

e They only occur when both the process and its environment allow them; but
at any moment when the process and its environment do agree on an event
then it (or some other event) must happen.

CSP is about setting up and reasoning about processes that interact with
their environments using this model of communication. Ultimately, of course, we
will want to set up parallel systems of processes that communicate with each other,
but in this chapter we will meet a basic collection of operators that allow us to create
processes that simply describe (internally sequential) patterns of communication.
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1.1 Fundamental operators

1.1.1 Prefixing

The simplest CSP process of them all is the one which can do nothing. It is written
STOP and never communicates.

Given an event ¢ in ¥ and a process P, a — P is the process which is initially
willing to communicate a and will wait indefinitely for this a to happen. After a it
behaves like P. Thus

up — down — up — down — STOP

will communicate the cycle up, down twice before stopping. This operation on
processes (turning P into a — P) is known as prefizing.

Clearly STOP and prefixing, together, allow us to describe just the processes
that make a fixed, finite sequence of communications before stopping.

1.1.2 Recursion

If we want to use a version of the process above which, instead of quickly stopping,
can go on performing up, down indefinitely, we can use recursion. Two different
processes which achieve this effect are defined by the equations

P, = up— down — P

P, = up— down — up — down — P

The idea is that any use of the recursively defined process’s name (P; or Ps)
on the right-hand side of the equations means exactly the same as the whole. It
should be intuitively clear that any process satisfying either of these equations has
the desired behaviour. The form of a recursive definition by a single equation is
that an identifier representing the process being defined is at the left-hand side, and
a process term, probably involving the identifier, is on the right. (If the identifier
does not appear then the recursion is not really a recursion at all and simply defines
the identifier on the left to be the process on the right.) We can draw a picture
illustrating the behaviour of P; and Ps: see Figure 1.1

Instead of defining one process by a single equation we can define a number
simultaneously by a mutual recursion. For example, if we set

P, = wup— Py

P; = down — P,
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down up down down

Figure 1.1: The behaviour of P; and P,.

then P, should behave in just the same way as P; and P defined earlier. The
mutual recursions we meet later will be more interesting!

Most of the recursions in this book will be written in this equational style,
but sometimes it is useful to have a way of writing down a recursive term without
having to give it a name and a separate line. The single recursion P = F(P)
(where F(P) is any CSP term involving P) defines exactly the same process as the
‘nameless’ term p P.F(P). (u is the Greek letter ‘mu’.) Thus

up — (pp.down — up — p)

defines yet another process alternating up’s and down’s.

We have seen quite a few ways of defining recursive processes with all our
examples having very similar behaviour — invariably rather dull since we still can
only create processes whose sequence of communications is completely fixed. In fact
all the theories we explain in this book will allow us to prove that the processes Py,
P, and P, are equal. But that is a subject for later.

1.1.3 Guarded alternative

It is still only possible to define processes with a single thread of behaviour: all we
can do so far is to define processes which execute a fixed finite or infinite sequence
of actions. CSP provides a few ways of describing processes which offer a choice of
actions to their environment. They are largely interchangeable from the point of
view of what they can express, each being included because it has its distinct uses
in programming.

The simplest of them takes a list of distinct initial actions paired with pro-
cesses and extends the prefix operator by letting the environment choose any one
of the events, with the subsequent behaviour being the corresponding process.

(@ —= Py |...| an — Pp)
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UandD a P
down up b a
Q
up down b
@ STOP
® STOP

Figure 1.2: The behaviours of two processes with choice.

can do any of the events aq, ..., a, on its first step and, if the event chosen is a,,
subsequently behaves like P,.. This construct is called guarded alternative. The
process

UandD = (up — down — STOP | down — up — STOP)

can do the two events up and down in either order.

Combining this operator with recursion, it is now possible to define some
complex behaviours. As a relatively simple example, consider the processes

P = (a=P|b—Q)
Q = (a— P|b— STOP)

where P will accept any sequence of a’s and b’s except that it stops if given two
consecutive b’s. Indeed, it should not be hard to see that any deterministic finite
state machine — a finite collection of states, each of which has a finite set of actions
available and the next state depends deterministically on which of this set occurs
(i.e., only one possible state per action) — can be encoded using this operator and
mutual recursion with finitely many equations. The behaviours of this P and of
UandD are illustrated in Figure 1.2

Combining this construct with an infinite mutual recursion which defines one
process COUNT,, for every natural number n € N we can define a system of counter
processes as follows:

COUNT, = up— COUNT,

COUNT,, (up — COUNT 41
| down — COUNT,_1) (n>0)
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Figure 1.3: The behaviour of COUNT,,.

COUNT,, is the process which will communicate any sequence of up’s and down’s,
as long as there have never been n + 1 more down’s than up’s. These are not,
of course, finite state machines: there are infinitely many fundamentally different
states that any one of the COUNT,, processes can pass through. The distinction
between finite-state and non-finite-state CSP processes is extremely important for
model checking, the term usually used for state exploration tools such as FDR, (see
Section 1.4), since that method relies on being able to visit every state. Of course
the pictures of these processes are also infinite — see Figure 1.3.

If A C 3 is any set of events and, for each = € A, we have defined a process
P(z), then

?r:A— P(x)

defines the process which accepts any element a of A and then behaves like the
appropriate P(a). This construct is known as prefiz choice for obvious reasons.
Clearly it generalizes the guarded alternative construction, since any guarded al-
ternative can be recast in this form, but if A is infinite the reverse is not true. It
strictly generalizes it in cases where A is infinite. 7z : {} — P(z) means the same
as STOP and ?z : {a} — P(z) means the same as ¢ — P(a).

This operator tends to be used in cases where the dependency of P(z) upon
z is mainly through its use of the identifier z in constructing subsequent commu-
nications, in constructing the index of a mutual recursion, or similar. Thus we can
write a process which simply repeats every communication which is sent to it:

REPEAT = 1x:%Y — 1z — REPEAT

or one which behaves like one of the counters defined above depending on what its
first communication is:

Initialize = 7?n:N— COUNT,
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In many situations it is useful to have an alphabet ¥ which contains com-
pound objects put together by an infix dot. So if ¢ is the name of a ‘channel’ and T is
the type of object communicated down it, we would have ¢.T = {c.x |z € T} C X.
It is natural to think of processes inputting and outputting values of type T over
c¢: an inputting process would typically be able to communicate any element of ¢.T
and an outputting process would only be able to communicate one. Rather than
write the input in the form ?y : ¢.T — P(y), where the uses of y in P(y) have to
extract z from c.z, it is more elegant to use the ‘pattern matching’ form

c?x: T — P'(z)

where the definition of P’ is probably slightly simpler than that of P because it can
refer to the value z input along ¢ directly rather than having to recover it from a
compound object. For example, the process COPY , which inputs elements of 7' on
channel left and outputs them on channel right is defined

COPY = left?x : T — right'lsx — COPY

It is the simplest example of a buffer process: one which faithfully transfers the
input sequence on one channel to its outputs on another.

Where we want to allow any communication over channel ¢, the set T can
be omitted: ¢?z — P(z) means the same as ¢?z : T — P(z) where T is the type of
c. In cases like this, one frequently writes the ‘outputs’ using an exclamation mark
clz for symmetry or clarity, but this is usually a synonym for c¢.z. (The only cases
where this does not apply arise where a communication is more highly structured
than we have seen here and has both ‘input’ and ‘output’ components — see page
27 where this subject is discussed further.) So, where T is understood, we might
write

COPY = left?r — rightlzx — COPY

It is important to remember that, even though this syntax allows us to model
input and output over channels, the fundamental CSP model of communication still
applies: neither an input nor an output can occur until the environment is willing
to allow it.

We broaden the guarded alternative operator to encompass arguments of the
form c?x : T — P(z) as well as ones guarded by single events. For now we will
assume, as an extension of the earlier assumption of disjointness, that all of the
events and input channels used in the guards are distinct and that none of the
single events belongs to more than one of the input channels.

For example, we can define a buffer process which, unlike COPY, does not
insist upon outputting one thing before inputting the next. If T is the type of
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objects being input and output, and left. T U right. T C 3, we can define a process
B® for every s € T* (the set of finite sequences of elements of T') as follows:
B<°>° = left?lz: T — B(O;>
By = Ueft?z: T = By,
| right!y — B°)

So Bg® is the buffer presently containing the sequence s, and B<°>o is the initially
empty one. Notice the basic similarity between this recursive definition and the ones
(particularly COUNT) seen earlier. This tail recursive style, particularly when each
recursive call is guarded by exactly one communication (one-step tail recursion)
shows the state space of a process extremely clearly. This style of definition is
important both in presenting CSP specifications and in verification techniques.

The use of sequence notation should be self-explanatory here. We will, how-
ever, discuss the language of sequences in more detail in Section 1.3.

The example B above illustrates two important and related aspects of CSP
style that have also been seen in earlier examples: the uses of parameterized mutual
recursions and of identifiers representing ‘data’ values. The value of a parameterized
recursion such as this one or COUNT is that it allows the succinct presentation of a
large (and even, as in both these cases, infinite) set of processes. We will think of the
parameters as representing, in some sense, the state of such a process at the points
of recursive call. In particular, even though the recursive call may be within the
scope of an identifier z, this identifier cannot influence the value of the call unless it
appears within one of the parameters. A parameterized process can have any fixed
number of parameters, which can be numbers, events, tuples, sets, sequences etc.,
though they may not be processes (or tuples etc. that contain processes).

The parameters can be written as subscripts (as in B> above), superscripts
(e.g., R(*?) or as ‘functional arguments’ (e.g., R(n,z)). The first two of these
were the traditional style before the advent of machine-readable CSP, which only
accepts the third. There is no formal difference between the different positions, the
choice being up to the aesthetic taste of the programmer. Often, in more complex
examples, they are combined.

The identifiers used for input (i.e., those following ‘?’) are the second main
contributor to process state. Each time an input is made it has the effect of creating
a new binding to the identifier, whose scope is the process it enables (i.e., in ¢?z — P
and (¢?z — P | d — @) it is P). Both these identifiers and the ones introduced as
parameters can be used freely in creating events and parameters, and in deciding
conditionals (see later). They cannot, however, be assigned to: you should think of
CSP as a declarative language in its use of identifiers. CSP ‘programs’ have a great
deal in common with ones in a functional language such as Haskell.
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EXAMPLE 1.1.1 (CASH-POINT MACHINE) Anyone who has read Hoare’s book will
be familiar with his use of vending machines as examples of CSP descriptions. This
type of example is useful because it models a form of interaction with which the
reader can identify — placing himself or herself in the role of one process communi-
cating in parallel with another.

Cash-point machines (or Automated Teller Machines — ATMs) provide a
related example where, because of the increased value of transactions and the need
for different machines to co-operate with each other and with central databases,
there is perhaps better reason to be interested in formal specification. It is also a
good example later when we come to look at real time, since there are actually a
good many real-time constraints on the operation of these machines.

At various points through this chapter and the rest of this book we will use
examples drawn from this world to illustrate CSP constructs and ideas. For the
moment we will only attempt to describe the interface between the machine and
the customer.

We will have to imagine that the set 3. of all communications contains events
such as in.c and out.c for all cards ¢ € CARD), pin.p for all possible PIN numbers p,
and req.n, dispense.n and refuse for all n drawn from possible withdrawal amounts
(the set of which we denote by WA). In general we will simply assume that ¥
contains all events which are used in our process descriptions.

We first describe a rather simple machine which goes through cycles of ac-
cepting any card, requiring its PIN number, and servicing one request for withdrawal
which is always successful, before returning the card to the customer.

ATM1 = in?c¢: CARD — pin.fpin(c) — req?n : WA —
dispenseln — out.c — ATM1

Here f,in () is the function which determines the correct PIN number of card ¢. The
set of all PIN numbers will be written PIN. It may appear from this description that
we are assuming that the customer never makes a mistake with his PIN number.
But this is not the case: what we are saying is (i) that the machine does not allow
the customer to proceed with his request until he has inserted the right number and
(ii) that we do not deem a ‘handshaken’ communication to have taken place until
the customer has inserted this number. Incorrect numbers are not modelled in this
treatment: they can be thought of in terms of one partner trying out successive
communications until he finds one which is not refused.

This illustrates one of the most important principles which one should bear in
mind when making a CSP abstraction of a system, whether a ‘human’ one like this,
a parallel machine, or a VLSI chip. This is that we should understand clearly when
an event or communication has taken place, but that it is often possible to abstract
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several apparent events (here the cycles of inserting numbers and acceptance or
rejection) into a single one. Clearly in this case both parties can clearly tell when
the communication has actually taken place — a PIN number has been entered
and accepted — which is perhaps the most important fact making this a legitimate
abstraction.

Despite these observations the model, in particular the abstraction surround-
ing the PIN number, is not ideal in the sense that it describes a system we probably
would not want. The chief difficulty surrounding the PIN number insertion is that
a customer who had forgotten his number would be able to ‘deadlock’ the system
entirely with his card inside. In fact we will, in later examples, refine this single
synchronization into multiple entry and acceptance/rejection phases. Later, when
we deal with time, we will be able to model further features that there might be in
the interface, such as a time-out (if no response is received within a set amount of
time, the ATM will act accordingly). (End of example)

EXERCISE 1.1.1 A bank account is a process into which money can be deposited and
from which it can be withdrawn. Define first a simple account ACCT which has events
deposit and withdraw, and which is always prepared to communicate either.

EXERCISE 1.1.2 Now extend the alphabet to include open and close. ACCT'; behaves
like ACCT except that it allows no event before it has been opened, and allows no further
event after it has been closed (and is always prepared to accept close while open). You
might find it helpful to define a process OPEN representing an open account.

EXERCISE 1.1.3 ACCTy and ACCT; have no concept of a balance. Introduce a
parameter representing the balance of an OPEN account. The alphabet is open and close
as before, deposit.N and withdraw.N (which have now become channels indicating the
amount of the deposit or withdrawal) plus balance.Z (Z is the set of positive and negative
integers), a channel that can be used to find out the current balance. An account has
zero balance when opened, and may only be closed when it has a zero balance. Define
processes ACCT2 and ACCT's which (respectively) allow any withdrawal and only those
which would not overdraw the account (make the balance negative).

EXERCISE 1.1.4  Figure 1.4 shows the street map of a small town. Roads with arrows
on are one-way. Define a mutually recursive set of CSP processes, one for each labelled
corner, describing the ways traffic can move starting from each one. The alphabet is
{north, south, east, west}, an action only being available when it is possible to move in the
appropriate direction, and then having the effect of moving the traveller to the next label.

EXERCISE 1.1.5  Define a process SUM with two channels of integers: in and sum. It
is always prepared to input (any integer) on in and to output on sum. The value appearing
on sum is the sum of all the values input so far on in. Modify your process so that it
can also output (on separate channels prod and last) the product of all the inputs and the
most recent input.
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Figure 1.4: A town plan.

1.1.4 Further choice operators
External choice

The various ways of defining a choice of events set out in the last section all set
out as part of the operator what the choice of initial events will be. In particular,
in guarded alternatives such as (¢ — P | b — @), the a and b are an integral part
of the operator even though it is tempting to think that this process is a choice
between the processes a — P and b — . From the point of view of possible
implementations, the explicitness of the guarded alternative has many advantages®
but from an algebraic standpoint and also for generality it is advantageous to have
a choice operator which provides a simple choice between processes; this is what we
will now meet.

P O @ is a process which offers the environment the choice of the first events
of P and of @ and then behaves accordingly. This means that if the first event
chosen is one from P only, then P O () behaves like P, while if one is chosen
from @ it behaves like @. Thus (¢ — P) O (b — @) means exactly the same
as (a — P | b — Q). This generalizes totally: any guarded alternative of the
sorts described in the last section is equivalent to the process that is obtained by
replacing all of the |’s of the alternative operator by 0’s.2 Therefore we can regard
O as strictly generalizing guarded alternative: for that reason we will henceforth
tend to use only O even in cases where the other would have been sufficient. (In
fact, in ordinary use it is rare to find a use of O which could not have been presented

INote that guarded alternative is provided in occam.

2This transformation is trivial textually, but less so syntactically since the prefixes move from
being part of the operator to become part of the processes being combined, and also we are moving
from a single operator of arbitrary ‘arity’ to the repeated use of the binary operator 0. The fact
that O is associative (see later) means that the order of this composition is irrelevant.
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as a guarded alternative, at least if one, as in OCCAM, extends the notation of a
guard to include conditionals.)

The discussion above leaves out one important case that does not arise
with guarded alternatives: the possibility that P and ¢ might have initial events
in common so that there is no clear prescription as to which route is followed
when one of these is chosen. We define it to be ambiguous: if we have written
a program with an overlapping choice we should not mind which route is taken
and the implementation may choose either. Thus, after the initial a, the pro-
cess (a — a — STOP) O (¢ — b — STOP) is free to offer a or b at its
choice but is not obliged to offer both. It is thus a rather different process to
a— ((a — STOP) O (b — STOP)) which is obliged to offer the choice of a and b.
This is the first example we have met of a nondeterministic process: one which is
allowed to make internal decisions which affect the way it looks to its environment.

We will later find other examples of how nondeterminism can arise from
natural constructions, more fundamentally — and inevitably — than this one.

A deterministic process is one where the range of events offered to the envi-
ronment depends only on things it has seen (i.e., the sequence of communications
so far). In other words, it is formally nondeterministic when some internal decision
can lead to uncertainty about what will be offered. The distinction between de-
terministic and nondeterministic behaviour is an important one, and we will later
(Section 3.3) be able to specify it exactly.

Nondeterministic choice

Since nondeterminism does appear in CSP whether we like it or not, it is necessary
to be able to reason about it cleanly. Therefore, even though they are not constructs
one would be likely to use in any program written for execution in the usual sense,
CSP contains two closely related ways of presenting the nondeterministic choice of
processes. These are

PnQ and s

where P and @ are processes, and S is a non-empty set of processes. The first of
these is a process which can behave like either P or (), the second is one that can
behave like any member of S.

Clearly we can represent [ 1S for finite S using M. The case where S is
infinite leads to a number of difficulties in modelling since (obviously) it introduces
infinite, or unbounded, nondeterminism. It turns out that this is somewhat harder
to cope with than finite nondeterminism, so we will sometimes have to exclude it
from consideration. Apart from the explicit operator [ 1S there are several other
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operators we will meet later which can introduce unbounded nondeterminism. We
will mention this in each case where it can arise, and the precautions necessary to
avoid it.

It is important to appreciate the difference between P O @ and P M Q.
The process (¢ — STOP) O (b — STOP) is obliged to communicate a or b if
offered only one of them, whereas (a — STOP) M (b — STOP) may reject either.
It is only obliged to communicate if the environment offers both a and b. In the
first case, the choice of what happens is in the hands of the environment, in the
second it is in the hands of the process. Some authors call these two forms of
choice external and internal nondeterminism respectively, but we prefer to think of
‘external nondeterminism’ as ‘environmental choice’ and not to confuse it with a
form of nondeterminism.

The process P can be used in any place where P M @ would work, since
there is nothing we can do to stop P M @ behaving like P every time anyway. If
R is such that R = R M P we say that P is more deterministic than R, or that it
refines R. Since (P M Q) M P =P M @ for any P and @, it follows that P is,
as one would expect, always more deterministic than P M . This gives the basic
notion of when one CSP process is ‘better’ than another, and forms the basis of the
most important partial orders over CSP models. When P M R = R we will write

RCP
The concept of refinement will turn out to be exceptionally important.

EXAMPLE 1.1.2 (NONDETERMINISTIC ATM) From the point of view of the user of
our cash-point machine, it will probably be nondeterministic whether his request
for a withdrawal is accepted or not. We could therefore remodel his view of it as
follows:

ATM2 = in?c: CARD — pin.fpin(c) — reg?n : WA —
((dispense.n — out.c — ATM?2)
M (refuse — (ATM2 N out.c — ATM?2)))

Notice that it is also nondeterministic from the point of view of the user whether
he gets his card back after a refusal.

Even if the machine’s decision is entirely deterministic given the information
it can see (such as how much money it has, the state of the network connecting
it to central machines and the health of the customer’s account) this does not
reduce the validity of the above model. For the customer cannot know most of this
information and chooses not to include the rest of it in modelling this interface. He
has introduced an abstraction into the model and is paying for the simple model
with some nondeterminism.
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Abstraction is another important idea of which we will see much more later,
especially Chapter 12. (End of example)

Conditional choice

Since we allow state identifiers into CSP processes through input and process para-
meters, a further form of choice is needed: conditional choice based on the value of
a boolean expression. In the informal style of presenting CSP there is no need to
be very prescriptive about how these choices are written down,? though obviously
a tighter syntax will be required when we consider machine-readable CSP. However
a choice is written down, it must give a clear decision about which process the
construct represents for any legitimate value of the state identifiers in scope, and
only depend on these.

Conditionals can thus be presented as if ... then ... else ... constructs (as
they are in the machine-readable syntax), as case statements, or in the following
syntax which elegantly reduces the conditional to an algebraic operator: P<b} @
means exactly the same as if b then P else ). Because it fits in well with the rest
of CSP notation, we will tend to quote this last version when discussing or using
conditionals. It is also legitimate to use conditionals in computing sub-process
objects such as events. Thus the two processes

ABSy = left?s — right!((—z) ¥z < O0bz) — ABS;

ABSy = left?c — ( (right!(—z) — ABS3)
£z < 0% (right!ls — ABS5))

are equivalent: both input numbers and output the absolute values.

The use of conditionals can obviously reduce the number of cases of a para-
meterized mutual recursion that have to be treated separately to one (simply re-
placing each case by one clause in a conditional), but they can, used judiciously,
frequently give a substantial simplification as well. Consider, for example, a two-
dimensional version of our COUNT process which now represents a counter on a
chess board. It will have two parameters, both restricted to the range 0 < ¢ < 7.
One is changed by the events {up, down}, the other by {left, right}. There are no
less than nine separate cases to be considered if we were to follow the style (used
for COUNT earlier) of dealing with the different possible initial events one by one:
see Figure 1.5. Fortunately these all reduce to a single one with the simple use of

3Indeed, in many presentations of CSP they seem to be considered so informal that they are
not described as part of the language.
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Figure 1.5: The nine case different sets of initial events in Counter(i, ).

conditionals:
Counter(n,m) = (down — Counter(n —1,m))<n > 0pSTOP
O (up — Counter(n+ 1, m))¥n < 7»STOP
O (left — Counter(n,m —1))¥m > 0P STOP
O (right — Counter(n,m+1))¥m < 7HSTOP

Note that the availability of each event has been defined by a conditional,
where the process produced when the event is not available is STOP, which of
course makes no contribution to the initial choices available.*

Multi-part events: extending the notation of channels

Thus far all events we have used have been atomic (such as up and down) or have
comprised a channel name plus one ‘data’ component (such as left.3). In general we
allow events that have been constructed out of any finite number of parts using the
infix dot ‘. (which is assumed to be associative). In written CSP it is a convention,
which is enforced as a rule in machine-readable CSP® (see Appendix B) that a

4This style of coding in CSP is essentially the same as the use of boolean guards on commu-
nications in OCCAM alternatives. We could, of course, explicitly extend the guarded alternative
in CSP to include a boolean component, but since the above style is possible there is little point
from a formal point of view. The machine-readable form understood by FDR does include such a
shorthand: b & P abbreviates if b then P else STOP.

5In machine-readable CSP all channels have to be declared explicitly
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channel consists of an identifier (its name or tag) plus a finite (perhaps empty)
sequence of data types, and that ¥ then consists of all events of the form

C.Iy....%y,

where ¢ is such a name, Ti,..., T, is its sequence of types, and x; € T; for each 3.

The most common use for communications with more than two parts is when
we want to set up what is effectively an array of channels for communication in
a parallel array where the processes are probably similarly indexed. Thus if we
had processes indexed P(i) forming a one-dimensional array, we might well have a
channel of type N.N.T where T is a data type that these processes want to send to
each other. If ¢ were such a channel, then c.i.j.2 might represent the transmission
of value z from P(i) to P(j). We will see many examples like this once we have
introduced parallel operators.

They can also, however, be used to achieve multiple data transfers in a single
action. This can even be in several directions at once, since the input (?) and output
(1) modes of communication can be mixed in a multi-part communication. Thus

c?’z: Ale — P

represents a process whose first step allows all communications of the form {c.a.b |
a € A} where b is the value of the expression e. The identifier z is then, of course,
bound to the relevant member of ¢ in the body of P. The advent of machine-
readable CSP and FDR has proved the usefulness of this type of construct, and has
led to the adoption of conventions to deal with various cases that can arise. One
of these shows the subtle distinction between the use of the infix dot ‘" and the
output symbol ! in communications. For example, if d is a channel of type A.B.C.D
then if the communication d?z.y!z.t appears in a process definition it is equivalent
to d?z?y!z!t because an infix dot following a 7 is taken to be part of a pattern
matched by the input. Thus one 7 can bind multiple identifiers until overridden
by a following !. None of the examples in this book uses this or any other related
convention — in the rare examples where more than one data component follows
a 7 we will follow the good practice of using only ? or ! as appropriate for each
successive one — but further details of them can be found in Appendix B and [39].

One very useful notation first introduced in machine-readable CSP, which
we will use freely, allows us to turn any set of channels and partially defined events
into the corresponding events. This is the {| ¢1, 2 |} notation which forms the
appropriate set of events from one or more channels: it is formally defined as follows.
If ¢ has type T1.T>... T, as above, 0 < k < m and a; € T; for 1 < i <k, then

events(c.ay ... ax) ={c.a1...a5.bps1... 0 | bp41 € Thg1,-..,0n € Ti}
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is the set of events which can be formed as extensions of c.a; ... a;. We can then
define

{ler,...,er |} = events(er) U...U events(e,)

EXERCISE 1.1.6 Extend the definition of COUNT,, so that it also has the events up5,
upl0, downb and downl0 which change the value in the register by the obvious amounts,
and are only possible when they do not take the value below zero.

EXERCISE 1.1.7 A change-giving machine which takes in £1 coins and gives change
in 5, 10 and 20 pence coins. It should have the following events: in£l, outbp, outlOp,
out20p. Define versions with the following behaviours:

(a) CMA gives the environment the choice of how it wants the change, and if an extra
£1 is inserted while it still has a non-zero balance it increases the amount of change
available accordingly.

(b) CMB behaves like CMA except that it will only accept a further £1 if its balance
is less than 20p.

(¢) CMC is allowed to choose any correct combination of change nondeterministically,
only allowing the insertion of £1 when it has zero balance.

EXERCISE 1.1.8 COPY represents a one-place buffer and B{ represents an unbounded
one. These are just two examples of processes representing communication media for trans-
mitting information from channel left to channel right. Describe ones with the following
behaviours (except for the last one, their output streams must always copy the input ones
without loss, and preserving order):

(a) FCOPY behaves like COPY except that it is allowed to input a second item when
it already contains one, but if it does it breaks (STOP).

(b) DELAY can hold up to two items, but cannot output the first one unless it is full.
Thus its outputs are (after the initial input) always one or two behind its inputs,
unlike the case with COPY where they are always zero or one behind.

(c) BUFF|y is a buffer that cannot be guaranteed to accept an input except when
empty, but neither can it be guaranteed not to accept one. When non-empty, it
never refuses to output the next item due.

(d) LEAKY behaves like COPY except that it loses every third item.

EXERCISE 1.1.9 Redesign the process ATM1 so that the action of accepting a PIN
number is broken into the successive input of up to three numbers (any PIN numbers),
with a correct or incorrect one being rewarded with ok or wrong respectively. After ok it
carries on in the same way as the original ATM 1, and after the third wrong it reverts to
the initial state (without returning the card).
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1.1.5 A few important processes

There are a few processes with very basic behaviour that it is useful to have standard
names for. We have already met STOP, the process that does nothing at all. Two
more are

RUNy =72: A— RUN4

the process which, for a set of events A C X, can always communicate any member
of A desired by the environment, and

Chaosa = STOP M (?z : A — Chaos )

which can always choose to communicate or reject any member of A. Evidently
Chaosy and RUN (y are both equivalent to STOP. If no alphabet is specified for
one of these processes (RUN or Chaos) then we understand it (the alphabet) to be
the whole of . Clearly Chaos g4 is refined by both STOP and RUN 4.

Two other important constants (div and SKIP) will be introduced later
(respectively Sections 3.1 and 6.1) once the concepts they involve have been estab-
lished.

1.2 Algebra

One of our primary ways of understanding CSP will be to develop a set of algebraic
laws which the operators satisfy. An algebraic law is the statement that two ex-
pressions, involving some operators and identifiers representing arbitrary processes
(and perhaps other things such as events) are equal. By ‘equal’, we mean that the
two sides are essentially the same: for CSP this means that their communicating
behaviours are indistinguishable by the environment.

Everyone with the most basic knowledge of arithmetic or set theory is familiar
with the sort of algebra we are now talking about. There are a number of basic
patterns that many laws conform to; the following are a few familiar examples
illustrating these:

rT+y = y+zx a commutative, or symmetry law
TXYy = yxz ditto
tUy = yUzx ditto

(z4+y)+2z = z+(y+2) associativity

(z+y)xz = (zx2)+(yxz) (right) distributive law
0+z = = unit law (0 is a left unit of +)
{Inz = {} zero law ({} is a left zero of N)
zUx = =z idempotence
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We will find all of these patterns and more amongst the laws of CSP. Let
us now consider what laws ought to relate the CSP operators we have met so far:
prefixing, external choice, nondeterministic choice, and conditionals.

We would expect the choice between P and itself to be the same as P, the
choice between P and () the same as that between @ and P, and the choice between
three processes P, ) and R to be the same however bracketed. And this will all
apply whether we are talking about internal (nondeterministic) choice or external
choice. In other words, these properties all hold whether the environment or the
process gets to choose which path is chosen. Thus there are idempotence, symmetry
and associative laws for both O and

POP="r (O-idem)
POP =P (M-idem)
POQ =QOP (O-sym)
PrnQ=Qn°P (M-sym)
PO(QUR) = (POQ)BR (D-assoc)
PN(QNR) = (PN Q)NR (M-assoc)

These three laws (idempotence, symmetry and associativity) are just what
is needed to ensure that the nondeterministic choice operator over sets, [ 1.9, makes
sense (see Exercise 1.2.5). For what we mean by this (for finite S = {P1,..., P,})
must be the same as P, M ... P,, and since sets are oblivious to the repetition
and order of their elements, we need M to be idempotent (ignoring repetitions),
symmetric (ignoring order) and associative (so that bracketing is not required).
Clearly the operator [ 15 has laws that we could write down too, but these would
not follow such conventional forms as it is not an ordinary binary operator. We will
always feel at liberty to rewrite [ 1{P1,..., Py} as

PO...OP,

and similar without formal recourse to laws.

Notice that each law has been given a name and a number to help us refer
to it later.



1.2 Algebra 31

If we have any operator or construct F'(-) which, in any ‘run’ takes at most
one copy of its argument, then it is natural to expect that F(-) will be distributive,
in that

F(PM Q) = F(P)NFQ)

F(IS)

[{F(P)|PeS}

(i.e., the operator distributes over M and distributes through [1). In the first of
these, this is because the argument on the left-hand side can act like P or like @,
so the effect of running F(P M Q) must be either like running F(P) or like running
F(Q). Since that is precisely the set of options open to F(P) M F(Q), the two
sides are equal. The second is just the same argument applied to an arbitrary,
rather than two-way, choice. All of the operators, other than recursion, which we
have described so far fall into this category. The distributive laws for some of the
constructs seen to date are:

PO(QNR)=(POQ)N(POR) (O-dist)
POMS=T{POQ|QeS} (O-Dist)
a—(PNQ) = (a— P)N(a— Q) (prefix-dist)
a—T18 =THa—Q|QeS} (prefix-Dist)
A= (PNQ)=(z:A—-P)N(7z: A— Q) (input-dist)
i A—=[1S =THz:A— Q| Qe S} (input-Dist)

Note that there is a pair for each. In fact, of course, the second of each pair implies
the other. An operator that distributes over [ 1S will be called fully distributive,
whereas one that distributes over M will be called finitely distributive. In future,
we will generally only quote one of each pair of distributive laws explicitly, to save
space. It may be assumed that they both hold if either does, except in the rare cases
(always explicitly flagged) of operators that are finitely but not fully distributive.
You should, in general, expect an operator F(P) to be distributive unless it

has the chance, in a single run, to compare two different copies of P. If it can make
such a comparison then F(P M Q) may be different from F(P) M F(Q) because

(1.8)

(1.9)

(1.10)

(1.11)

(1.12)
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the two copies it compares may be different (one P and one ) whereas in the
second case they must be the same (whichever they are). This is why recursion is
not distributive. We only have to consider a simple example like

pp.((a—p)n(b—p) and  (up.a—p)0(up.b—p)

where the left-hand side can perform any sequence of a’s and b’s (at its own choice)
while the right-hand side has to be consistent: once it has communicated one a it
must keep on doing a’s.

(O-dist) is actually only one of the two distributive laws for O over M. The
other one (the right distributive law) follows from this one and (O-sym). There are
also (left and right) distributive laws for M over itself — provable from the existing
set of laws for M (see Exercise 1.2.1 below).

There is a further law relating the two forms of choice whose motivation is
much more subtle. Consider the process P M (Q O R). It may either behave like P
or offer the choice between @ and R. Now consider

(PM1Q)O(PNR)
a process which the distributive laws of O can expand to
(POP)N(POR)N(QDP)MN(QOR)

The first of these four equals P by (O-idem). It follows that the first and last
alternatives provide all the options of the first process. Every behaviour of the
second and third is possible for one of the other two: every set of events they reject
initially is also rejected by P (for they offer the choice of the first actions of P and
another process), and every subsequent behaviour belongs to one of P, @ and R.
We therefore assert that these two processes are equal — in other words, M distributes
over 0.

PN(QUR)=(PNQ)O(PNR) (M-O-dist) (1.13)

The following is the chief law relating prefixing and external choice. It says
that if we give the environment the choice between processes offering A and B, then
we get a process offering A U B whose subsequent behaviour depends on which of
A and B the first event belongs to:

(7z:A—-P)O0(2z:B—Q) =7w:AUB— ((PNQ)
$z € AN B} (O-step) (1.14)
(PLr € A% Q))
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We have called this a step law because it allows us to compute the first-step be-
haviour of the combination (i.e., the selection of initial actions plus the process
that succeeds each action) from the first step behaviour of the processes we are
combining.©

STOP is the process that offers no choice of initial actions. This can of
course be written as the prefix choice over an empty set:

STOP =7z :{} — P (STOP-step)
It is an immediate consequence of the last two laws that
STOPO (7z:A—P) = 72:A— P

Of course we would expect that the external choice of any process with STOP would
have no effect. This gives us our first unit law:

STOPO P = P (O-unit)

(There is no need for a right unit law as well as this one, since it is easily inferred
from this one and the symmetry law (O-sym).)

Conditional choice is idempotent and distributive:

PLb»P = P (€ - B-idem)
(PN Q)«b»R = (PLb¥R) N (QLbdR) (& - p-dist-I)
RLOM(P N Q) = (RLbPP) M (REbF Q) (€ - I-dist-r)

Left and right distributive laws are required here because conditional choice is not
symmetric.

The conditional behaviour is brought out by the following pair of laws:

P&truer @) = P (Ltrued~id)

PLfalser Q = Q (Lfalsex-id)

6From here on, in quoting laws about prefixed processes, we will usually refer only to the form
?z : A — P. The others, namely a — P and c¢?z : A — P (and the more complex forms for
multi-part events discussed above) can be transformed into this form easily, and so quoting a lot
of extra laws to deal with them would serve no particular purpose.

(1.15)

(1.16)

(1.17)

(1.18)

(1.19)

(1.20)

(1.21)
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There are other laws in which conditional choice interacts with boolean op-
erators on the condition(s), but we do not attempt to enumerate them here (though
see the exercises below). One interesting class of laws is that almost all operators
distribute over this form of choice as well as over M. The only ones that do not are
ones (in particular prefix choice) that may modify the bindings of identifiers used
in the boolean condition. An example of a law that does hold is

PO(Q4b»R) = (PO Q)P O R) (€-»-DO-dist)  (1.22)

while the failure of this distribution in the presence of binding constructs is illus-
trated by

¢ :N =72 : N — (PLr is eveny Q) #
7 :N— ((?z:N— P)4z is even} (72 : N — Q))

since the distribution of €z is even} through the inner prefix choice results in z
being bound to the first input rather than the second.

The fundamental law of recursion is that a recursively defined process satisfies
the equation defining it. Thus the law is (in the case of equational definitions) just
a part of the program. For the p form of recursion this law is

wp.P = Plup.P/p] (u-unwind) (1.23)

where the notation Q[R/p] means the substitution of the process R for all free (i.e.,
not bound by some lower-level recursion) occurrences of the process identifier p.

We have already noted that recursion fails to be distributive.

Laws of the sort seen in this section serve several functions: they provide a
useful way of gaining understanding and intuition about the intended meaning of
constructs, they can (as we will see later) be useful in proofs about CSP processes,
and finally, if presented and analyzed highly systematically, they can be shown to
completely define the meaning, or semantics of language constructs (in a sense we
are not yet in a position to appreciate but which is fully explained in Chapter 11).
Whenever we introduce a new operator in later chapters, we will usually use some
of its laws to help explain how it behaves.

EXERCISE 1.2.1  Using the laws quoted in the text for MM, prove that it distributes over
itself (i.e., that PN (Q MR) = (PN Q)N (P MNR)).

EXERCISE 1.2.2  Suggest some laws for [ | S and how it relates to M.

EXERCISE 1.2.3 Write down the left and right distributive laws of -<b3} - through [ .
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EXERCISE 1.2.4 Use (O-step) and other laws given above to prove that

?Pz2:A—-P)0Mr:A—-Q)="z:A—-P)N(7z: A— Q)

EXERCISE 1.2.5  Suppose we try to extend the binary operator & (e.g. 1) to finite
non-empty sets by defining

P{P1,....P.}=Pi®(P2®...(Pnc1®Pn)...)

Show that this makes sense (i.e., the value of @ S is independent of the way S is written
down) only if @ is idempotent, symmetric and associative. For example, it must be
idempotent because {P, P} = {P}, and hence P ® P = @{P, P} = @{P} = P.
In this case prove that (AU B) = () A) @ (P B) for any non-empty A and B.
What additional algebraic property must & have to make @H{} well defined in such

a way that this union law remains true? [Hint: O has this property but M does not.] What
is then the value of Ep{}7

EXERCISE 1.2.6 Complete the following laws of the conditional construct by filling in
the blank(s) (...) in each

(a) PL-bPQ =.. . 4b%. ..
(b) P4bH(QLb A CHR) = ... b3 R
(c) (PLchQ)KbPR=...4ch...

1.3 The traces model and traces refinement

Imagine you are interacting with a CSP process. The most basic record you might
make of what happens is to write down the trace of events that occur: the sequence
of communications between you (the environment) and the process. In general, a
trace might be finite or infinite: finite either because the observation was terminated
or because the process and environment reach a point where they cannot agree on
any event, infinite when the observation goes on for ever and infinitely many events
are transacted.

There are two basic levels of detail at which we might record traces: either
we write down the events that occur in order or we write them down with the exact
times when they happen. The choice of which of these is picked selects between the
two main ways of looking at CSP. The version of CSP covered in this book is untimed
CSP, where only the order of events matters. The more detailed version, Timed CSP,
includes the time of each event in traces. A trace thus becomes a sequence of event/
time pairs (with the times increasing, of course). The basic principle of untimed
CSP is that, while the relative order of what processes communicate does matter
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(and can be used to distinguish and specify them), the exact timing of events does
not. (We will see a way of building a different model of time into ‘untimed’ CSP in
Chapter 14. References to work on Timed CSP can be found in Section 14.8.)

It is natural to model an untimed CSP process by the set of all traces it can
perform. It turns out that recording only finite traces is sufficient in the majority
of cases — after all, if u is an infinite trace then all its finite prefizes (initial subse-
quences) are finite traces — and for the time being we will do this. In Section 8.3.2
and Chapter 10 we will see the subtle distinctions infinite traces can make in some
cases — though at some cost in terms of theoretical difficulty.

1.3.1 Working out traces(P)

For any process P, we define traces(P) to be the set of all its finite traces — members
of ¥*, the set of finite sequences of events. For example:

o traces(STOP) = {()} — the only trace of the process that can perform no
event is the empty trace;

o traces(a — b — STOP) = {(),(a), (a, b)} — this process may have commu-
nicated nothing yet, performed an a only, or an a and a b;

e traces((a — STOP) O (b — STOP)) = {(),{(a), (b)} — here there is a choice
of first event, so there is more than one trace of length 1;

o traces(up.((a — p) O (b — STOP))) = {{a)™,(a)™"(b) | n € N} — this
process can perform as many a’s as its environment likes, followed by a b
after which there can be no further communication.

Note the use of finite sequence notation here: (ay, as, ..., ay) is the sequence
containing a;, as to a, in that order. Unlike sets, the order of members of a sequence
does matter, as does the number of times an element is repeated. Thus (a, a, b),
(a,b) and (b, a) are all different. () denotes the empty sequence. If s and ¢ are two
finite sequences, then s°t is their concatenation: the members of s followed by those
of t: for example (a, b)"(b,a) = (a,b,b,a). If s is a finite sequence and n € N,
then s™ means the n-fold concatenation of s: s° = () and s"*1 = (s")%s. If s is
an initial subsequence, or prefiz of ¢, in that there is a (possibly empty) sequence
w with t = s"w, then we write s < t. We will meet more sequence notation later

when it is required.

For any process P, traces(P) will always have the following properties:

e traces(P) is non-empty: it always contains the empty trace ();

o traces(P) is prefix closed: if s°t is a trace then at some earlier time during
the recording of this, the trace was s.
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There are two important things we can do with traces(P): give a meaning,
or semantics, to the CSP notation, and specify the behaviour required of processes.
The set of all non-empty, prefix-closed subsets of ¥* is called the traces model —
the set of all possible representations of processes using traces. It is written 7 and
is the first — and simplest — of a number of models for CSP processes we will be
meeting in this book. The formal definitions of the rest of them can be found in
Part I1.

Hopefully, given the earlier explanations of what the various constructs of
CSP ‘meant’, the example sets of traces are all obviously correct in the sense that
they are the only possible sets of traces that the various processes might have. We
can, in fact, calculate the trace-set of any CSP process by means of a set of simple
rules — for in every case we can work out what the traces of a compound process
(such as a — P or P O Q) are in terms of those of its components (P and @). Thus
the traces of any process can be calculated by following its syntactic construction.

The rules for the prefixing and choice constructs are all very easy:

1. traces(STOP) = {()}

2. traces(a — P) = {()}U{(a)"s | s € traces(P)} — this process has either done
nothing, or its first event was a followed by a trace of P.

3. traces(?x : A — P) ={(}U{{a)’s | a € AN s € traces(P[a/z])} — this
is similar except that the initial event is now chosen from the set A and
the subsequent behaviour depends on which is picked: Pla/z] means the
substitution of the value a for all free occurrences of the identifier z.

4. traces(c?’x : A — P) ={(}U{{c.a)’s | a € ANs € traces(P[a/z])} — the
same except for the use of the channel name.

5. traces(P O Q) = traces(P) U traces(Q)) — this process offers the traces of P
and those of @.

6. traces(P M Q) = traces(P) U traces(Q)) — since this process can behave like
either P or @, its traces are those of P and those of Q.

7. traces([18) = |U{traces(P) | P € S} for any non-empty set S of processes.

8. traces(P b} Q) = traces(P) if b evaluates to true; and traces(Q) if b eval-
uates to false.”

7 Technical note: The treatment of identifiers representing input values and process parameters,
and appearing in boolean expressions, is very lightweight here. This treatment implicitly assumes
that the only terms for which we want to compute traces(P) are those with no free identifiers —
so that for example any boolean expression must evaluate to true or false. The advantage of
this approach is that it frees us from the extra notation that would be needed to deal with the
more general case, but there is certainly no reason why we could not deal with processes with free
identifiers as ‘first class objects’ if desired.
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The traces of a guarded alternative can be computed by simply re-writing it
as an external choice (i.e., replacing all |’s by O’s).

Notice that the traces of internal and external choice are indistinguishable.
What this should suggest to you is that traces(P) does not give a complete de-
scription of P, since we certainly want to be able to tell P O @ and P M @ apart.
We will see the solution to this problem later, but its existence should not prevent
you from realizing that knowledge of its traces provides a great deal of information
about a process.

The final construct we need to deal with is recursion. Think first about
a single, non-parameterized, recursion p = @ (or equivalently pp.Q, where @ is
any process expression possibly involving the identifier p). This means the process
which behaves like @ when the whole recursively defined object is substituted for
the process identifier p in its body: Q[up.Q/p] as in the law (p-unwind). The way
traces have been calculated through the other constructs means that a term, like
@, with a free process identifier p, represents a function F' from sets of traces to
sets of traces: if p has set of traces X, then @ has traces F(X). For example, if
Qisa—p, F(X)={(0}uU{{a)s|s e X}. traces(up.Q) should be a set X that
solves the equation X = F(X).

Now it turns out that the functions F' over 7 that can arise from CSP
process descriptions always have a least fized point in the sense that X = F'(X) and
X C Y whenever Y = F(Y) — this least fixed point always being the appropriate
value to pick for the recursion. Two separate mathematical theories can be used
to demonstrate the existence of these fixed points — but we will leave the details of
these till Chapter 8 and Appendix A.

The case of parameterized and other mutual recursions is little different,
though the greater generality makes it somewhat harder to formulate. In this case
we have a definition for a collection of processes, where the definition of each may
invoke any or all of the others. This defines what we might term a vector of process
names (where, in the case of a parameterized family, the parameter value is part of
the name, meaning that there are as many names as there are parameter values)
to be equal to a vector of process expressions. The problem of determining the
trace-set of one of these mutually defined processes then comes down to solving an
equation X = F(X) where X is a vector of trace-sets — one for each process name
as above — and F(-) is now a function which both takes and delivers a vector of
trace-sets. For example, in the mutual recursion

P = (a—P)0(b— Q)
Q = (c—QO00b—P)

all the vectors have length 2 — one component corresponding to each of P and Q.
Given a vector X = (Xp, Xg), the function F' produces a vector, (Yp, Yq) say,
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where

o Vp={()}U{(a)'s|se XptU{(b)'s|se€ Xq} i.e., the result of substituting
X into the recursive definition of P, and

o Yo={(0}U{{(c)'s|seXqgtU{(b)'s|se€ Xp}ie., the result of substituting
X into the recursive definition of Q.

In the case of COUNT, the vectors would be infinite — with one component for each
natural number. B will also produce infinite vectors, but this time there is one
component for each finite sequence of the type being transmitted.

The extraction of fixed points is mathematically the same whether the func-
tions are on single trace-sets or on vectors. The only difference is that the intended
process value in the case of a mutual recursion will be one of the components of the
fixed point vector, rather than the fixed point itself.

All of the recursions we have seen to date (and almost all recursions one
meets in practice) have a property that makes them easier to understand — and
reason about. They are guarded, meaning that each recursive call comes after (i.e.,
is prefixed by) a communication that is introduced by the recursive definition®
rather than being exposed immediately. Examples of non-guarded recursions are
wp.p (perhaps the archetypal one), up.p O (a — p), and the parameterized mutual
recursion (over the natural numbers)?

P(n) = (a— P(1))4n =1+P((3n+1)div24n odddn div2)

The point about a guarded recursion is that the first-step behaviour does not
depend at all on a recursive call, and when a recursive call is reached, the first step
of its behaviour, in turn, can be computed without any deeper calls, and so on. In
other words, we are guaranteed to have communicated at least n events before a
recursive call is made at depth n.

1.3.2 Traces and laws

In Section 1.2 we introduced the notion of equality between processes provable
by a series of laws. One can have two quite different processes, textually, which

8This definition will be modified later to take account of language constructs we have not met
yet.

9The interesting thing about this particular example is that it is not known whether or not the
series (of parameters) generated by an arbitrary starting value will always reach 1, so in fact we
do not know whether all the components of this recursion will always be able to communicate an
a. Of course not nearly this amount of subtlety is required to give unguarded mutual recursions!
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are provably equal by a series of these laws. Whatever the text of a process, the
previous section gives us a recipe for computing its set of traces. We should realize
that these two theories have to be squared with each other, since it would be a
ridiculous situation if there were two processes, provably equal in the algebra, that
turned out to have different trace-sets.

Of course this is not so, and all the laws quoted are easily shown to be valid
in the sense that the traces of the processes on the left- and right-hand sides are
always the same. For example, since the traces of P O @ and P M @ are both
given by union, the trace-validity of their idempotence, symmetry and associative
laws follow directly from the same properties of set-theoretic union (U). Since M1
and O are indistinguishable from each other in traces, their distributive laws over
each other are equally simple, for example

traces(P M (Q O R)) = traces(P)U (traces(Q) U traces(R))

= (traces(P) U traces(Q))
U (traces(P) U traces(R))

= traces((PMN Q)0 (PN R))

On the other hand, since there are distinctions we wish to make between
processes that we know are not made by traces, we would expect that there are
processes P and @ such that traces(P) = traces(Q) (which we can abbreviate
P =1 Q) but such that P = @ is not provable using the laws. This is indeed so, as
our investigations of more refined models in later chapters will show.

Clearly the validity of the various laws with respect to traces means we can
prove the equality of traces(P) and traces(Q) by transforming P to Q by a series of
laws. The rather limited set of operators we have seen to date means that the range
of interesting examples of this phenomenon we can discuss yet is rather limited.
However, there is one further proof rule which greatly extends what is possible: the
principle of unique fixed points for guarded recursions.

Unique fixed points

If Z = F(Z) is the fixed-point equation generated by any guarded recursion (single,
parameterized or mutual) for trace-sets and Y is a process (or vector of processes)
whose trace-sets satisfies this equation, then X =7 Y where X is the process (or
vector) defined by the recursion. In other words, the equation has precisely one
solution over'® 7 or the appropriate space of vectors over 7. This rule is often

OIMPORTANT: though the UFP rule is stated here in terms of the traces model 7, because
this is the only model we have seen so far, it applies equally to all models of CSP to be found in
this book except for some introduced in Chapter 10.
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abbreviated UFP; theoretical justification of this rule will have to wait until we
have developed the mathematics of fixed points.

For example, recalling the first two recursive processes we defined:

P1 = up— down — P

P, = up— down — up — down — P
We know, by unwinding the first of these definitions twice, that

Py = up— down — up — down — P )

Thus it satisfies the equation defining P5. Since Ps is guarded we can deduce
that Py =1 Py — in other words, traces(P;) is a solution to an equation with only
one solution, namely traces(Pz). Of course it was obvious that these two processes
are equivalent, but it is nice to be able to prove this!

In applying this rule in future we will not usually explicitly extract the trace-
sets of the process we are claiming is a fixed point. Instead, we will just apply laws
to demonstrate, as in (1) above, that the syntactic process solves the recursive
definition.

Most interesting examples of the UFP rule seem to derive from mutual recur-
sions, where we set up a vector Y that satisfies some mutual recursion X = F(X).
Indeed, the mutual recursion is usually in the form of a one-step tail recursion (pre-
cisely one event before each recursive call). The thing to concentrate on is how
these vectors Y are constructed to model the state spaces that these tail recursions
so clearly describe.

As an easy but otherwise typical example, suppose our COUNT process were
extended so that the parameter now ranges over all the integers Z rather than just
the non-negative ones:

ZCOUNT, = wup— ZCOUNT 41 O down — ZCOUNT,,_1

The striking thing about this example, when you think about it, is that the value
of the parameter n actually has no effect at all on the behaviour of ZCOUNT ,:
whatever its value, this process can communicate any sequence of up’s and down’s.
This might lead us to believe it was equal to the process

AROUND = wup — AROUND O down — AROUND

and indeed we can use the UFP rule to prove AROUND = ZCOUNT,, for all
n. Let A be the vector of processes with structure matching the ZCOUNT recur-
sion (i.e., it has one component for each n € Z) where every component equals



42 Fundamental concepts

AROUND. This is a natural choice since we conjecture that every ZCOUNT,,
equals AROUND. Applying the function Fzc of the ZCOUNT recursion to this
vector we get another whose nth component is

Fzc(A)n = up — Apy1 O down — Ay
= up — AROUND O down — AROUND
= AROUND
= A,

(where the second line follows by definition of A and the third by definition of
AROUND). Thus A is indeed a fixed point of Fz¢, proving our little result.

The basic principle at work here is that, in order to prove that some process P
(in this case AROUND) is equivalent to a component of the tail recursion X = F(X)
(in this case ZCOUNT) you should work out what states P goes through as it
evolves. Assuming it is possible to do so, you should then form a hypothesis about
which of these states each component of X matches up with. In our case there
is only one state of P, and all the components of ZCOUNT match up with it.
You then form the vector Y by replacing each component of X by the state of P
conjectured to be equivalent, and then try to prove that this creates a solution to
the tail recursion: if you can do this, you have completed the proof.

Both in the text and the exercises, there will be a number of examples fol-
lowing basically this argument through the rest of Part I (see, for example, pages
59, 87 and 148, and Exercises 2.3.3 and 6.3.1).

EXERCISE 1.3.1  Prove the validity in traces of the laws (prefix-dist) (1.9) and (O-step)
(1.14).

EXERCISE 1.3.2  Recall the processes Pi, and P, and P, from Section 1.1.2. Prove

that P, =7 P; by the method above. [Hint: show that a vector consisting of P and one
other process is a fized point of the (Py, Pq) recursion.]

EXERCISE 1.3.3 Use laws and the UFP rule to prove that
Chaosa M RUN g4 =7 Chaosa

for any alphabet A.

1.3.3 Specification and refinement

Traces are not just a dry and abstract model of processes to help us decide equality,
but give a very usable language in specification. A specification is some condition
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that we wish a given process to satisfy. Since a CSP process is, by assumption,
characterized completely by its communicating behaviour, it is obviously the case
that we will be able to formulate many specifications in terms of ¢races(P). In
fact, most trace specifications one meets in practice are what we term behavioural
specifications: the stipulation that each s € traces(P) meets some condition R(s).
This is termed a behavioural specification because what we are doing is ‘lifting’
the specification R on the individual recorded behaviours (i.e., traces) to the whole
process.

There are two different approaches to behavioural specifications and their
verification. The first (which is that adopted in Hoare’s book, where you can find
many more details than here) is to leave R explicitly as a specification of traces
(generally using the special identifier ¢r to range over arbitrary traces of P). Then

Psat R(tr) means Vir € traces(P).R(tr)

This is meaningful however R is constructed, though usually it is expressed in
predicate logic using trace notation.

In order to be able to express this sort of property it is useful to extend our
range of trace notation:

e If s is a finite sequence, #s denotes the length of s (i.e., number of members).

e If s € ¥* and A C X then s | A means the sequence s restricted to A: the

sequence whose members are those of s which are in 4. () [ 4 = () and
(s(a)) | A=(s] A){a) if a € A, s | A otherwise.

o If s € ¥* then s | ¢ can mean two things depending on what ¢ is. If ¢
is an event in ¥ then it means the number of times ¢ appears in s (i.e.,
#(s | {c})), while if ¢ is a channel name (associated with a non-trivial data
type) it means the sequence of values (without the label ¢) that have been
communicated along ¢ in s. For example

(e.1,d.1,¢.2,¢.3,ed) | c=(1,2,3)

The following are some examples of specifications describing various features
of some of the processes we have already met.

e The various processes in Section 1.1.2 all satisfy the condition:
tr | down < tr | up < tr | down + 1 1)

which states that they have never communicated more down’s than up’s, and
neither do they fall more than one behind.



44 Fundamental concepts

e The specification of COUNT,, is similar but less restrictive:

tr | down < tr | up+n

° B<°>° and COPY both satisfy the basic buffer specification:
tr | right < tr | left

(noting that here < means prefix and the things to its left and right are
sequences of values). This is in fact the strongest specification that By
meets, but COPY meets further ones.

Hoare gives a set of proof rules for establishing facts of the form P sat R(tr) —
essentially a re-coding into logic of the rules we have already seen for computing
traces(P). The following rules cover the operators we have seen to date (bearing in
mind the known equivalences between forms of prefixing).

STOP sat(tr = ())
Va € A.P(a)sat Ry(tr)
?a:A— Psat(tr={()VIaec A Ttr' tr = {(a)tr' AN R,(tr"))

Psat R(tr) A @ sat R(tr)
P O @Qsat R(tr)
Psat R(tr) A Qsat R(tr)
P Qsat R(tr)
Psat R(tr) AV tr.R(tr) = R'(tr)
P sat R'(tr)

Psat R(tr) A Psat R'(tr)
Psat R(tr) A R'(tr)

The most interesting is that relating to recursion, and in fact Hoare’s rule can
usefully (and validly) be generalized in two ways: his assumption that the recursion
is guarded is not necessary for this style of proof (though it is in many similar
proof rules, some of which we will see later), and we can give a version for mutual
recursion by attaching one proposed specification to each component of the vector
of processes being defined.

PROOF RULE FOR RECURSION Suppose X = F(X) is the fixed point equation for
(vectors of) trace-sets resulting from some recursive definition, and that X is the
(least) fixed point which it defines. Let A be the indexing set of the vectors, so that
X = (X | A € A). Suppose that for each X there is a specification Ry such that
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o STOPsat Ry(tr) for all A € A, and
e VYA e AY, sat R,\(tr) =VAe AF(Z))\ sat R,\(tr)

then X, sat Ry(tr) for all X € A.

Paraphrasing this: we attach a specification Ry to each component of the
mutual recursion, and providing all of these are satisfied by STOP and, on the as-
sumption that they all hold of recursive calls they hold of the body of the recursion,
then we can infer they hold of the actual process(es) defined by the recursion. This
rule is formally justified in Section 9.2.

The above can be used to prove that the COUNT processes meet the vector
of specifications quoted for them above and, provided one can come up with appro-
priate specifications for the B> processes for s # (), one can prove that B<°>o meets
its specification.

The most curious feature of this is the role played by STOP. It does not
seem a very useful process and yet its satisfying R is a precondition to the above rule
(and Hoare’s). At first sight it seems unlikely that many useful specifications will
be met by STOP, but in fact any behavioural trace specification which is satisfied
by any process at all is satisfied by STOP. For traces(STOP) = {()} C traces(P)
for any P, and so if all the traces of P satisfy R, so do all those of STOP.

This shows precisely the limitation of trace specifications: while they can say
that a process P cannot do anything stupid, they cannot force it to do anything at
all. For this reason they are often termed safety or partial correctness conditions,
while liveness or total correctness conditions are ones that additionally force a pro-
cess to be able to do things. In later chapters we will develop models that allow us
to build liveness specifications.

In order to satisfy ‘sat R(tr)’ a process’s traces must be a subset of the traces
which R allows. In fact, most of the example specifications given above have the
property that the target process has the largest possible set of traces of any process
satisfying it. This can be expressed in several different, but equivalent, ways (where
P is the process and R the trace condition):

e P=7[1{Q | Qsat R(¢r)} or, in other words, P is trace-equivalent to the
nondeterministic choice over all processes meeting the specification.

o @ sat R(tr) = traces(Q) C traces(P)

o traces(P) = {s |Vt < s.R(t)} the largest prefix-closed set of traces satisfying
R. (It is worth noting that the set of traces satisfying each of the trace
specifications on page 43 above is not prefix closed. For example, the trace
(down, up) satisfies the specification (f) there, but since the prefix (down)
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does not, the longer trace is not possible for a process all of whose traces
satisfy (1).)

Remember we defined that @ refines P, written P C @ if P = @ M P.
Interpreted over the traces model, this leads to the slightly weaker concept of
traces refinement

PCpr Q= P=p QNP = traces(Q) C traces(P)

The above properties demonstrate that, for any satisfiable behavioural trace speci-
fication R there is always a process Pr (given by the formula in the first, and whose
traces are the expression in the third) that is the most nondeterministic satisfying
R and such that

QsatR(ir) < PrRCr @

Let us say that Pg is the characteristic process of R. In other words, satisfaction
(sat) can be replaced by deciding refinement against a suitably chosen process.

For example, B<°>° is the (characteristic process of the) trace specification of
a buffer, and a process will trace-refine it if, and only if, it meets the trace-based
buffer specification. Thus COPY B<‘>>°7 and all but the last of your answers to
Exercise 1.1.8 should have the same property. (Here, we are taking the liberty of
writing P Jp @ as the equivalent of Q@ C1 P. We will do this for all order relations
in future without comment, as the need arises.)

Which approach one prefers — abstract or process-based specification — will
depend on both personal taste and, to some extent, the example being considered.
Perhaps the major hurdle to overcome in adopting the latter is grasping the idea
that a CSP process can be a specification as well as a model of an implementation.
Of course, ideally, one should cultivate the ability to move backwards and forwards
between the two approaches.

There are some major advantages in identifying each specification with the
most nondeterministic process satisfying it.

e As we will see, this is the form in which the proof tool FDR codes specifica-
tions and allows them to be mechanically verified or refuted.

e Refinement has many properties that can be exploited, for example it is
transitive:

PCQAQCT=PLCT
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and monotone: if C[] is any process context, namely a process definition
with a slot to put a process in, then

PLC Q= C[P|C C[Q]

If C[Q] is a process definition with component @, with an overall target
specification S, we might be able to factor the proof of S C C[Q)] into two
parts. First, find a specification P such that S T C[P]. Second, prove
P C @, which implies thanks to monotonicity that C[P] C C[Q]. Transitiv-
ity then gives S C C[Q]. This software engineering technique is known as
compositional development.

Note how the identification of processes and specifications allowed us to con-
sider the object C[P], which we might read as ‘C[Q], on the assumption that
the process () satisfies the specification P’.

e It allows one to move gradually from specification to implementation, using
the transitivity property quoted above, creating a series of processes

SpecC Py C...C P, C Impl

where the first is the specification, and each is created by refining the previous
one till an acceptable implementation is reached. This is known as stepwise
refinement.

It is worth noting that, since the refinement P C () is expressible as the
equality P M @ = P, it makes sense to try to prove it algebraically. Recall Exercise
1.3.3.

Of course, the limitations of trace specification discussed earlier still apply
here. It is worth noting that STOP Jr P and RUN C ¢ P for all processes P.

From here on this text will tend to emphasize the refinement-based approach
to formulating and proving specifications. And while we will still sometimes for-
mulate specifications abstractly in terms of traces and other behaviours we will see
later, we will usually look to refinement-based (often automated) proofs based on
their characteristic processes. Therefore we will not give any of the sat rules for the
further operators and models we introduce later in this book; the interested reader
can, of course, find many of them in Hoare’s text.

1.3.4 Afters and initials

If P is any process, initials(P) (abbreviated P° in some publications on CSP) is
the set of all its initial events

initials(P) = {a | (a) € traces(P)}
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This set is often used in specifications and other definitions.
For example, initials(STOP) = {} and initials(?z : A — P(z)) = A.

If s € traces(P) then P/s (pronounced ‘P after s’) represents the behaviour
of P after the trace s is complete. Over the traces model, P/s can be computed

traces(P/s) = {t| s"t € traces(P)}

This operator should not be thought of as an ordinary part of the CSP
language, rather as a notation for discussing behaviour of processes in fairly abstract
contexts, to represent the behaviour of P on the assumption that s has occurred.
The best reason for not including it as an operator you could use in programs is
that it is not implementable in a conventional sense: the process

(STOP M a — a — STOP)/{a)

is equivalent to a — STOP, but no reasonable implementation acting on the non-
deterministic choice here can force it to do anything.

Over the traces model it is true that
P =7 ?z : initials(P) — P/{z)
but we will find that this is not true over more discriminating models.

EXERCISE 1.3.4 (a) Let N > 0. Give a trace specification for a process with events
a, b and ¢ which states that the difference between the number of a’s and the total number
of b’s and ¢’s is at most N.

(b) Now find a CSP definition of a process Dy for which this is the strongest spec-
ification. [Hint: give a parameterized recursion whose parameter is the present difference.]
Dy is equivalent to a well-known simple process: what is it and why?

(c) What traces refinements hold between the Dy?

EXERCISE 1.3.5  Give the strongest trace specification satisfied by COPY = left?z —
right!lt — COPY . Use the proof rules for sat given above to prove that COPY meets it.

EXERCISE 1.3.6  See Exercise 1.1.7. Give a trace specification that a machine with
events {in£1, outbp, out10p, out20p} has never given out more money than it has received.

1.4 Tools

There are two types of tool available at the time of writing which will help the
reader learn the ideas of this chapter: animators and refinement checkers.
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With an animator such as ProBE you can write an arbitrary process de-
scription and interact with it much as described in the text. In other words, you can
play at being ‘the environment’. In fact, an animator may give you various options
about how much control you want over the process (i.e., how much you want to be
automatic) and, in particular, will give you the option of controlling the process
more precisely than the real environment could. For example, if you like, it will let
you make all its internal decisions: an internal choice P M @ will be implemented
as a process which can take an invisible 7 (tau) action to each of P and Q. If
you decide to take control over the 7 actions, then you have the power to resolve
the nondeterministic choices and can thus explore whichever avenue you desire. 7
actions will be discussed properly in Chapter 3. In essence, an animator allows you
to explore the transition picture of your process, like the simple examples shown in
Figures 1.1 and 1.2.

Both ProBE and FDR work by loading in scripts: files of definitions (of
processes and functions, etc., used within the process code). You then select pro-
cesses defined within the current script to animate or prove things about. A file
containing all the important examples in this chapter can be found on the web site
associated with this book (see the Preface). You are, naturally, encouraged to try
out your solutions to exercises on the tools. They must, of course, be written in
the machine-readable (ASCII) version of CSP that these tools use. Full details of
this version can be found in Appendix B. In this version, events and channels are
written very much as in this chapter, but must all be declared.

Of the constructs defined in this chapter, two are not supported in the
machine-readable version because their effects can easily be achieved in other ways.
These are guarded alternative (¢ — P | ... | z — Q) and the form of prefix choice
without a channel name preceding the ‘?’: one can write c?x, c.n?x:T, etc., but
there is no direct equivalent of 7z : A — P. Both of these can be written in terms
of the external choice operator (written [] rather than O): the case of guarded
choice has already been discussed in the text, and the prefix choice above can be
written []1 a:A @ a -> P which is the literal translation of Oyca a — P. |~| (the
machine-readable version of M) and several other operators we will meet later also
have indexed forms like this.

The machine-readable version of conditional is if..then..else.. rather
than P b} (). Process parameters are written in ‘argument’ style P(a,b,...,z).
Look at the demonstration files for examples of all these things and more.

The alphabet 3 of all events is written Events in machine-readable CSP.
You will quickly appreciate the difference, once you have used them, between
animators and refinement checkers like FDR. FDR does not let you interact with

a process, rather it allows you to check assertions about them and will explore
all of the states of a process necessary to verify these. It only shows you specific
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behaviours when you debug failures of refinement.

The checks for FDR to perform can be pre-loaded into FDR by including
lines such as

assert Spec [T= Imp

in the scripts you write for it. (This represents the check of process Imp trace-
refining process Spec.) Note that it gives you a choice of modes and models for
checks; the only thing we are in a position to understand yet is ¢race checks in the
refinement mode.

Finite-state machines

Thanks to the existence of infinite types it is all too easy to write process descrip-
tions, such as COUNT( and B which have infinitely many states. Since FDR
works by expanding the state spaces of processes it will not terminate if asked to
do much with one of these. There is nothing to stop you applying an animator to
an infinite-state process, though obviously you will never be able to explore all of
one of these!

One can usually get round this problem by restricting the range of the offend-
ing parameter(s) to that which will be encountered in the example being considered.
Examples of this can be found in this chapter’s demonstration file, and we have al-
ready seen one: the process Counter(n,m) restricts both its parameters to the
range {0,1,...,7} and thus has 64 states.

This restriction is most often annoying at the specification end of refinement,
since it is sometimes the case that we would (as with buffers) like to have an
infinite-state specification, since this is what best represents our requirements. All
one can do at the time of writing is to choose a finite-state specification which
we know refines the ‘real’ one (for example, the specification that a process is a
buffer with capacity no greater than 5) and prove it. It is likely that future releases
of the tool will be able to handle some infinite-state specifications (though not
implementations), but you should always expect this to be less efficient.

You will, after using the tool, get a feel for the sizes of process it can handle
comfortably. As a guide, with the syntax you have seen so far, the current version
of FDR will deal comfortably with a few hundred states to a few thousand states.
(This number will increase vastly as we meet the syntax of parallelism.)



Chapter 2

Parallel operators

All the processes defined so far have, at least in their obvious executions, only one
thread of action. The whole idea of concurrency is to be able to reason about systems
where there are a number of processes with independent control, interacting where
necessary. In this chapter we see how to add operators which model this within our
framework.

2.1 Synchronous parallel

We have already set down the principle that processes interact by agreeing, or
handshaking, on communications. The simplest form of the CSP parallel operator
insists that processes agree on all actions that occur. It is written P || Q. For
example, if a € X, then

(a — REPEAT) | REPEAT

will have the same behaviour (except, perhaps, for precise timing details that we
choose to ignore) as up.a — p. We can see this by following through how this
combination works. Recall that

REPEAT =72:% — 1z — REPEAT

Since both sides have to agree on all events, it is clear that the only possible first
event is a, and this indeed is a possible event for the right-hand process. The copy
of REPEAT on the right-hand side then forces the second event to be an a, which
is accepted by REPEAT on the left-hand side, forcing the third event to be a also,
and so on for ever.



52 Parallel operators

Perhaps the clearest description of this parallel operator is contained in the
following law:

2w A—P|?72:B—->Q =7:ANB— (P| Q) (||I-step)  (2.1)

|| is also symmetric, associative and distributive. We do not quote these laws ex-
plicitly here since they will be subsumed later into laws for generalizations of ||.

Turning parallel processes into sequential ones

It is important to realize that CSP makes no fundamental distinction between ‘par-
allel’ and ‘sequential’ processes. There are just processes, and you can use any
operator on any process. Indeed, any parallel CSP process is equivalent to sequen-
tial processes with the same pattern of communications.

The law (||-step) (together with the other properties listed above, and the
laws quoted in the previous chapter) can be used for this transformation. For
example, if

P = (a—a— STOP)O (b — STOP)
Q = (a— STOP)O (¢ — a— STOP)

these laws prove P || @ = a — STOP.

When the component processes are recursively defined, the algebraic laws
alone will probably not be enough. In this case we use a combination of laws and
the UFP rule: the parallel combination is expanded until we have a guarded expres-
sion for it and every other parallel combination discovered during the exploration.
Consider, for example, the combination

(e — REPEAT) || REPEAT
discussed earlier:

(a = REPEAT) || (2 : ¥ — & — REPEAT)
= a — (REPFAT || (e — REPEAT))

The underlining here indicates the parallel expression we have uncovered behind
the guard a. Now we could use the symmetry of || to observe that this second
combination equals the original one, so that

(a — REPEAT) | REPEAT = a — (a — REPEAT) || REPEAT

showing that the process satisfies the guarded recursion P = a — P. Alternatively
(as would have been the only option if this example were not so symmetric) we
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could expand this second parallel combination in the same way that we did the
first, and would find

REPEAT || (a — REPEAT) = a — (a — REPEAT) | REPEAT

At this point we notice that the parallel combination reached here is one we have
seen before, so there is no need to expand it again (in general you should proceed by
expanding each combination you find until there is none you have not seen before).
We have thus expanded two processes and shown that they satisfy the guarded
mutual recursion

R
Q

a— Q

a— R

Depending on which route we have followed, this has proved via the UFP
rule that the parallel combination is trace equivalent to one of the processes P
and R above. Of course, the fact that P, @) and R are equivalent is itself an easy
consequence of the UFP rule.

When the processes in parallel depend on a parameter introduced by recur-
sion or input, it is likely that the family of processes uncovered by the exploration
will be another parameterized one. Some examples can be found in the exercises
below and in later sections.

EXAMPLE 2.1.1 (CUSTOMERS AND ATM’S) A customer of one of our cash-point
machines might be described by the following expression.

CUST1 = in.card — pin?p:S — req.50 —
dispense?z : {y € WA | y > 50} — out.card — CUST1

He only has one card (card), after which he remembers his PIN number belongs to
the set S C PIN and so will try these numbers. He always expects to withdraw
£50, and get his card back. Notice that he is quite happy to accept more than £50
from the machine. Provided his memory is accurate and fyin, (card) € S, the parallel
combination ATM1 || CUST1 is equivalent to

wq. in.card — pin.fpi, (card) — req.50 —
dispense.50 — out.card — q

Since we are insisting that both parties must agree on all communications
taking place in P || @, there is the unavoidable possibility that they might be unable
to agree (even when each process has some events it could have performed if it were
not forced to agree). This is illustrated by what happens when fp;, (card) ¢ S, when
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the above combination becomes in.card — STOP. This is known as deadlock. We
discussed deadlock in general terms earlier, but this is the first proper example
we have come across of a deadlocking CSP network. Note that STOP behaves
just like a deadlocked process — one of its main roles in CSP is to provide a clean
representation of deadlock, just like M provides one of nondeterminism.

If we force CUST1 to use ATM?2 rather than ATM1, then it will deadlock
as soon as the ATM decides to refuse a request — for this customer will not take no
for an answer. It is important here that the decision of whether to accept or refuse
a request is made by M (nondeterminism) rather than O (external choice), for the
latter would not have given rise to the deadlock. We can modify the customer to
accept refusals more gracefully.

CUST2 = in.card — pin?n: S — req.50 —
((dispense?z : {y € WA |y > 50} — out.card — CUST2)
O (refuse — out.card — CUST?2))

But this combination still deadlocks if the customer does not get his card back.
(Presumably the machine designer wants the customer to be deadlocked in this
circumstance!)

wq. (in.card — pin.fpi(card) — req.50 —
((dispense.50 — out.card — q)
N (refuse — (out.card — q) M STOP)))

(End of example)

The traces of P || @ are easy to compute: since this process can perform an
action just when its two arguments can, it follows that

traces(P || Q) = (traces(P)) N (traces(Q))

It is worth noting that, even though this implies traces(P || P) = traces(P),
the existence of nondeterminism (which we know is not described fully by traces)
makes it possible that P || P will not behave like P: for both sides may make
different nondeterministic choices and so fail to agree on any communication. This
means || is not idempotent. For example, if P = (a — STOP) N (b — STOP),
which cannot deadlock on its first step, then P || P = P 1 STOP, which can. The
reasons for this are closely connected with our discussion of distributivity in Section
1.2: P || P clearly requires two copies of P and so can compare them.

EXERCISE 2.1.1 How do COUNT, || COUNTs, COUNTy || Counter(0,0) and
COUNTy || REPEAT behave, where they are all as described in the previous chapter?
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For each either find an existing process that behaves like the appropriate combination, or
define a new (sequential) process that does.

Prove trace equivalence in at least one case using the UFP rule.

EXERCISE 2.1.2 Construct a customer for ATM2 who has two cards, and whose
reaction to refuse of the first card is to attempt to take money out with the second. He
should do this whether or not the machine is prepared to give him the first card back. Hint:
you might find it easier to solve the problem of how the customer deals with an arbitrary
list of cards (as a parameter to the process).

2.2 Alphabetized parallel

The more processes we combine using ||, the more have to agree on every event.
This is not what we will usually want (though it is a theme we will expand on
in Section 2.5), and so we require a more general version of the parallel operator.
What we need to reflect is the truth that, when two processes P and @ are placed
in parallel, some of the communications of P are with (), and some are not.

If X and Y are subsets of ¥, P |, @ is the combination where P is
allowed to communicate in the set X, which we will call its alphabet, @ is allowed
to communicate in its alphabet Y, and they must agree on events in the intersection

XNY. Thus P ||y, @ =P | Q. So, for example,

(@ —=b—b—STOP) (, ey (b= c—b— STOP)
behaves like

a—b—c—b— STOP

since initially the only possible event is a (as the left-hand side blocks b); then both
sides agree on b; then the right-hand side blocks b so only c¢ is possible and finally
they agree on b again. In most cases, as in this one, the alphabets of individual pro-
cesses composed in parallel will be the sets of events which they can communicate.
But they have to be given explicitly for a number of subtle reasons — for example,
we often give processes strictly larger alphabets than the sets of events they actually
use (frequently the process is then STOP). You should note that the same process
can be used in different parallel compositions with different alphabets.!

A pantomime horse has two actors in it: one playing the front and one the
back. You can think of it as a parallel composition of two processes showing that

n allowing this we are giving a different presentation to that in Hoare’s book, where a process
has an intrinsic alphabet aP which makes the presentation of this particular parallel operator
easier. See Section 2.7 for more details of this difference.
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Figure 2.1: A parallel process.

the two halves have to co-operate on moving, but each has control of some other
activities.

Front .||z Back

where F = {forward, backward, nod, neigh}
B = {forward, backward, wag, kick}

If, in fact, Front will only nod the horse’s head until it has moved forwards, and
Back will only wag its tail until it has moved backwards:

Front = forward — Front'
O nod — Front

Back = backward — Back'
0 wag — Back

then the composition will never move whatever the processes Front’ and Back’ are
(since they are never reached), but it will simply nod and wag for ever. It will be
equivalent to RUN {04, wag}-

When P can perform any of the events A (being equivalent to a process of
the form ?z : A — P’) and @Q can perform the events B (respectively 7z : B — Q’),
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then P ||, @ can perform any of
C = AnX\Y)HuBN(Y\X) )U(ANBNXNY)

The first component of this union are the events P can perform on its own (because
they are in X and not Y); similarly, the second are the events @ can do by itself.
The final component are the events which they can synchronize on: the ones that
they both can do and are in both their alphabets. The law expressing this is the
following

Pylly @ =72:C—( Pz e X}P

xlly (xly-step)
Q' ¥z e YHQ)

where C' is as above. || is distributive, like most operators, over M and 4b}. The
second of these can be used to give an alternative version of the above law:

Pylly @ = 22:C—((P 4lly )<z e XNY»
(P xlly Q¥z € X P x|y Q"))

All we have done here is to distribute the two conditionals in (||, -step) outside
«|ly and to discard the one of four cases (z ¢ X U Y) that cannot arise.

The rest of its basic laws are given below. It has symmetry and associativity
laws that are slightly more complex than usual because of the alphabets.

Pxly (@MTR) = (P xlly @ N (P xlly R) (x| y~dist)
PX”Y Q=20 Y”X P <XHY'Sym>
(P xly @) xuvllz B =P xlyuz (@ vz R) (x|l y-assoc)

As the last of these begins to show, composing a large network using this
binary operator gets rather clumsy because of the bookkeeping required on the
alphabets. We therefore include a better, indexed notation for n-way parallel com-
position:

n
||i:1(Pi’Xi> = Pixlxu.ox, G (Pt llx, Po)-)

So, for example, if

COPY'(¢c,d) = c?z:T — d.x — COPY'(c,d)
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Figure 2.2: A simple chain connected in parallel.

and X, = ¢,. T U ¢pq1.T (with ¢g, c1, ..., ¢, all being distinct) then

(COPY/(CH CTJrl)v XT)

n—1
r=0

represents a chain of n one-place buffer processes. COPY'(cy, ¢1) can input a
value on channel ¢y without requiring the co-operation of any other process in the
network. This value is then communicated across the channels ¢y, ..., ¢,—1 in turn
(each transfer requiring the agreement of the two processes involved) until it appears
at the far end and COPY”(¢,,—1, ¢,) is able to output it without needing any other
process to agree. The network is shown in Figure 2.2. It is natural to think of the
channels ¢y and ¢, as external, because they are only in the alphabet of one process
each, and the rest are internal.

The reason it is natural to think of the above network as a chain is because the
alphabets X, = ¢,.T U ¢,41.T of the processes only have non-empty intersection —
corresponding to the possibility of communication between them — for consecutively
numbered cells. By appropriate choices of alphabets it is possible to construct
networks using || which have any chosen finite graph structure. The graph with
one node per process and an edge between processes with non-empty intersection
of alphabets is termed the communication graph. One might be tempted to put
arrows on this graph to correspond to the direction of the channels, but this would
be a mistake: you should remember that communication in CSP is symmetric and
that channels are just a gloss on this.

Just as with the synchronous parallel operator, any system of sequential pro-
cesses put in parallel with ||, can be expanded into a (usually recursive) sequential
one using the laws (predominantly (||, -step)) and the UFP rule. Consider, for
example, the combination

COPY"(a,0) (003l jp.c)y COPY'(b, ¢)

The initial events of the two processes are respectively {| a |} and {| b |} (since
they are both ready to input). The initial events of the combination are therefore
(showing the full calculation!)

{lal3n{lo}nd{la b} {lb,ecl})
Ulal}n({lab3v{lb,cl}))
Ulo Nl b c3vflabl})
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which reduces to {} U{| a |} U{} = {] @ |} (i-e., there is no shared event possible
initially, no event possible for the right-hand process, but the left-hand one can
input). This is, of course, exactly what one would have expected.

Thus the original process (which we will name CCp) equals (by (| y-step))

Call the parallel combination here CCi(z) (the z is needed because it depends on
the input value). Now both processes can only perform shared (b) events, and agree
on one, so by another use of (|| -step) turns CCi(z) into

b!x — (COPY/(G, b) {\a,b|}||{\b,c\} C!I — COPY/(b, C))

If we similarly call the parallel combination here CCy(z), we find that neither
process can perform any b action, but each can perform some of its own actions
independently. It equals

a?y — (bly — COPY'(a,b) ¢, 43/l pp,epy clz — COPY'(b, c))
O C!CL' — (COPY/(G, b) {\a,b|}”{\b,c\} CYO.P)/V(I)7 C))

which, naming the first parallel combination CCs(y, z), equals

a?y — CCs(y, )
Oclz — CCy

In CCs(y,x), the left-hand process can only perform the shared event bly, while
the right-hand one can only perform its own action c!z. It follows that this process
equals

which is ¢lz — CCi(y). Since there are no more parallel combinations to ex-
pand, the state exploration is complete and we have shown that the processes CCp,
CCy(z), CCy(z) and CCs(y, z) satisfy a guarded mutual recursion:

CcCcl = alx — CC{(z)

CCl(z) = blz— CCy(z)
CCi(z) = (clz— CC)) O (a?y — CC4i(y,x))

CCi(y,z) = clz — CC(y)

Thus these two systems are trace-equivalent by the UFP rule. A picture of this
system of states is in Figure 2.3 (the picture over-simplifies the values input and
output in that it does not allow you to reconstruct the relationship between the



60 Parallel operators

a?x

b.x

a?x

Figure 2.3: The states of two one-place buffers in parallel.

values going in and those going out). Clearly this simple example is already getting
a bit tedious to expand. Much larger examples are impractical by hand — fortu-
nately, however, tools like FDR are much better able to deal with the expansion
and bookkeeping than we are, and in fact a large part of what they do is precisely
this.

The traces of P ||y @ are just those which combine a trace of P and a
trace of @) so that all communications in X N Y are shared.

traces(P ||y Q) = {se€(XUY)" |s|X € traces(P)
ANs Y € traces(Q)}

EXAMPLE 2.2.1 (FIVE DINING PHILOSOPHERS) This is perhaps the best known of
all examples in this field: it has already been briefly described in the introduction.
As shown in Figure 2.4, five philosophers share a dining table at which they have
allotted seats. In order to eat (in the figure, from a tangled bowl of spaghetti in
the middle of the table!), a philosopher must pick up the forks on either side of him
or her but, as you see, there are only five forks. A philosopher who cannot pick up
one or other fork has to wait. We can model this story in various ways in CSP by
choosing different episodes of philosophers’ lives as events, but the essential things
from the point of view of interaction are when they pick up or put down their forks.
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Figure 2.4: The five dining philosophers.

61
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In order to make sure no fork can be held by two philosophers at once, we also
require a process to represent each fork.

We will therefore describe two classes of process: PHIL; and FORK ;, in each
case for i € {0,1,2,3,4}. The events of FORK; are

o picksup.i.i and picksup.i©1.i where © represents subtraction modulo 5 (with
@ being the corresponding addition operator). These respectively represent
FORK ; being picked up by PHIL; and PHIL;s;.

e putsdown.i.i and putsdown.iS1.1, representing the fork being put down again.

FORK, = (picksup.i.i — putsdown.i.i — FORK;)
O (picksup.i©1.i — putsdown.i©l.i — FORK;)

The philosophers have these same events, plus some individual ones. What
turns out to be crucial in describing the philosophers is the order in which they pick
up their forks. There are various options: either left-hand one first, right-hand one
first, or some form of choice between the two. And of course different philosophers
might have different preferences. For simplicity, the following definition asserts that
each philosopher picks up the left fork first and puts it down last.

PHIL; = thinks.i — sits.i — picksup.i.i —
picksup.i.i®1 — eats.i — putsdown.i.i®l —
putsdown.i.i — getsup.i — PHIL;

The complete system is then formed by putting all of these processes in
parallel, each having as its alphabet the set of events it can use. If AF; and
AP; are these sets for FORK; and PHIL; respectively, the network is formed by
composing together the ten pairs

{(FORK,;, AF;),(PHIL;,AP;)|i€{0,1,2,3,4}}

in parallel. The communication graph of the resultant network, with an edge be-
tween two processes if their alphabets have non-empty intersection, is shown in
Figure 2.5.

So how does this system behave? We have already noted that one philosopher
might have to wait for a neighbour to put down a fork. The greatest danger,
however, is that they might all get hungry at once and all manage to pick up their
left-hand fork (as is about to happen in Figure 2.4). For then none can make any
progress and the system is deadlocked. The philosophers starve to death. We will
return to this example in Chapter 13 when we study the subject of deadlock in
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PHIL,

FORK,

FORK,

Figure 2.5: The communication network of the dining philosophers.

more detail. Amongst other things, we will examine the impact of different choices
of fork-picking-up. (End of example)

As well as demonstrating the use of the parallel operator, this example also
illustrates uses of events we have not seen before. Like many networks we will see,
this one has numbers of processes which behave similarly except for the precise
events they use. Of course the easy way to define these is to use parameterization:
PHIL; rather than PHILy, ..., PHIL, separately. Notice, however, that unlike pre-
vious parameterized recursions, these processes do not depend on each other: PHILo
only makes recursive calls to PHILs, for example. To create the arrays of events
that are needed to tie in with these arrays of processes, we use the channel notation
to create arrays of events as anticipated on page 27. Sometimes, as with the picksup
and putsdown events, we need a two-dimensional array (or even more).

One can mix the array and data-passing uses of channels. The best way of
implementing the chain of COPY’ processes is to create an array of channels ¢
whose communications look like c.ilz or ¢.i?z. COPY'(c.i,c.i + 1) would then be
equivalent to the process

EXAMPLE 2.2.2 (CASH-POINT MACHINE WITH EXTENDED INTERFACE) The model
of ATM and customer given above using synchronous parallel only gives their com-
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mon interface. The new operator allows us to bring in the actions which they
perform by themselves or at other interfaces. This has already been seen in the
pantomime horse and dining philosopher examples.

We can, for example, bring in a component of an ATM’s state to represent
the amount of money it contains: it can always (except when full) be refilled when
not in use by a customer, but rejects requests for more money than it has in; the
customer spends nondeterministic amounts of money and goes back for more when
he has none left. The refill and spend events only belong to one of the two alphabets.

If the capacity of the machine is £N, and the customer makes withdrawals
of £M (where M < N ), we need to define processes ATMref, and CUST spend,,
for each integer 0 < n < N and 0 < m < M. They are

ATMref,, = ((refill = ATMref y)€n < N} STOP)
O (in?c : CARD — pin.fpin(c) — req?w : WA —
((dispense.w — out.c — ATMref, _,,)
{w < nP
(refuse — out.c — ATMref ,)))

CUSTspend, = in.card — pin?p:S — req.M —
((dispense?z : {y € WA|y> M} —
out.card — CUST spend,)
O (refuse — out.card — CUST spend,))

CUSTspend,, = [ spend.r — CUST spend
(m >0)

[1<r<m}

m—r

The alphabets of ATMref, and CUSTspend,, are respectively X and Y,

where
Z = m.CARD U out.CARD U pin.PIN U req. WA
U dispense. WA U {refuse}
X = ZU{refill}
Y = ZUspend N

(Z represents the common communications of the two processes; the others are their
‘external’ actions.) The combination ATMref,, ||y CUSTspend,, then represents
their interaction given initial capital £n and £m respectively. Note again that the
customer has no control over refilling and the machine has none over spending.
(End of example)



2.2 Alphabetized parallel 65

EXERCISE 2.2.1 Find pairs of actors (Front;, Back;) (i = 1,2,3) for the pantomime
horse so that the overall behaviour is respectively (using the same alphabets for the parallel
composition as on page 56)

PH, = neigh — forward — kick — backward — PH;

PHy = forward — neigh — PH>
O backward — kick — PH>

PHs = neigh — wag — forward — PHs
0 wag — neigh — forward — PHs

Find a process with alphabet F'U B which cannot be constructed in this way, and explain
why it is impossible.

EXERCISE 2.2.2 Let X ={a,b,¢,d} and Y = {¢, d}, and let

P = a—c—P
Ob—d—P
Q = ¢c—d—Q

What are the traces of P ||, @7 Which of these traces are terminal, in the sense that
they are not prefixes of any other trace? What can you say about the behaviour of a
process after it has performed such a trace?

EXERCISE 2.2.3  Use the methods illustrated in this section to expand P |, @ to a
sequential process (where P and @ are as in the previous question). You should find some
states in this expansion equivalent to STOP — corresponding to deadlock. Compare these
states to the terminal traces.

Find a process R with alphabet Z = {a,b} such that R .|, (P |, Q) is
deadlock-free.

EXERCISE 2.2.4 Extend the definition of ATM ref,, by adding an additional pair of
channels with which it communicates with a central computer. After a customer has
requested a withdrawal the request is relayed by the ATM to the computer, which sends
one of three responses: OK, OD or retain. These indicate, respectively:

e Issue the money, if there is enough in the ATM.

e The request is too large for the balance, refuse it but give the card back.

e Refuse the request and retain the card.
Your ATM should now be a process defined without nondeterministic choice which, from

the customer’s perspective (since he or she cannot see these other interactions), looks just
like ATM ».

EXERCISE 2.2.5 Formulate trace specifications of the following properties in the alpha-
bets of the examples to which they refer.
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(a) The numbers of times the pantomime horse has wagged its tail and neighed always
differ (in absolute value) by at most one.

(b) The number of cards handed back by the ATM is never greater than the number
inserted into it.

(¢) Whenever PHIL; eats, PHIL;g1 is not holding any fork.

Find the characteristic process (over the respective alphabet) for each. How do you deal
with the events each system can do which are irrelevant to the specification? Which of
these is finite state? If any is infinite state can you suggest a stronger, finite-state one
which the appropriate network will still satisfy and which is as close in meaning to the
original as possible? Prove (either manually or using FDR or a similar tool) that each
holds of one or more of the systems we have already seen (in the first case in Exercise 2.2.1

(©)):

2.3 Interleaving

The parallel operators seen so far (|| and ||, ) have the property that all partners
allowed to make a particular communication must synchronize on it for the event to
occur. The opposite is true of parallel composition by interleaving, written P ||| Q.
Here, the processes run completely independently of each other. Any event which
the combination communicates arose in precisely one of P and @. If they could
both have communicated the same event then the choice of which one executed it
is nondeterministic, but only one did. The law governing this is the following: if
P=70:A— P and Q =72 : B — Q' then

PIlQ ="2:Au0B— (P[Q)N(PIQ)

£r € AN By (|||-step)
(P || Q)«z € AX(P ||| Q')

As one would expect, ||| is symmetric, associative and distributive.

PllQ=QIlP (|[]-sym)
(Pl &= P (QIR) ([[l-assoc)
PI(Q@NR) = (P Q) (P R) ([l|-dist)

The process Ly = up — down — L; keeps ¢r | down (the number of down’s
it has communicated to date) between ¢r | up — 1 and ¢r | up. By interleaving a

(2.6)

(2.7)

(2.8)

(2.9)
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number of these we can increase this margin:
L,=L ||| L1 ||| --- ||| L1 n copies of Ly

keeps tr | down between tr | up — n and tr | up. Even though which of a number
of processes performs a given event is usually nondeterministic, the overall effect
here is actually deterministic.

Clearly Ly, ||| Lim = Lyym, whereas Ly || L, = Liin{n,m}-

The combination of interleaving and recursion can allow us to describe com-
plex behaviours which would otherwise need infinite mutual recursions. For exam-
ple, we can simulate the infinite-state recursion COUNT by a single line

Ctr = wup — (Ctr ||| down — STOP)
or, more subtly

Ctr'
Ctr"

up — (Ctr' ||| w P.down — up — P) or even
up — (Ctr'" ||| down — Ctr"")

All of these behave the same as COUNT). In each case see if you can understand
why.

The above uses of ||| have all involved combinations of processes that use the
same events, creating nondeterminism about which side carries out an event. In
practice such uses, though clever when they work, are rather rare except for the
special case of an abstraction mechanism we will meet in Chapter 12. In creating
practical networks, it is usual to find processes which use disjoint sets of events
or perhaps soon come into a state where they do this. Think back to the five
dining philosophers: the five philosophers do not (in our model!) talk to each other,
and neither do the five forks. Therefore we can achieve exactly the same effect as
previously by first composing these two groups by interleaving:

FORKS
PHILS

FORK, ||| FORK ||| ... ||| FORK,
PHILy ||| PHIL, ||| ... ||| PHIL,

and then, if AFS = AFyUAF,UAF;UAF3UAF,, we can form the complete system

FORKS gl PHILS

The traces of P ||| @ are just the interleavings of traces of P and Q. We
need to define an operator for producing the interleavings of a given pair of traces:
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this is defined recursively below

{s}
{s}

{{a)u ] ue sl (b)°t}
UE0) u [ uw e (a)s ||| t}

A

=)

=

>

w»

= . -
=

-~ =

o

~ pum—

>~

~ ~

ol

Given this
traces(P ||| Q) = U{s ||| t| s € traces(P) At € traces(Q)}

EXERCISE 2.3.1 A bag is a process with channels left and right which behaves like a
buffer except that the order in which things come out is not necessarily that in which they
are put in. Use ||| and COPY to define a bag with capacity N. Explain your definition.
Now define an infinite capacity bag by following the style of recursion in the process Ctr
above.

EXERCISE 2.3.2  Prove that COUNT ||| COUNT, is trace-equivalent to COUNT .
You should do this by calculating the sets of traces directly (bearing in mind what has
already been established about traces(COUNT)).

EXERCISE 2.3.3  Consider the following mutual recursion indexed by pairs of natural
numbers N x N:

CT2(n,m) = wup— (CT2(n+1,m)N CT2(n,m+ 1))
O ((down — CT2(n —1,m))¥n > 0% STOP)
O ((down — CT2(n,m — 1))<m > 0} STOP)

Show that it is satisfied by the vectors (COUNT nym | (n,m) € N x N) and
(COUNT,, ||| COUNT, | (n,m) € N x N)

and deduce that COUNT,, ||| COUNT,, and COUNT 4+ are trace-equivalent for all
(n,m) € NxN.

If you look at this question carefully, you will see that it shows a way of using the
UFP rule to prove the equivalence to two systems where there is a many—one relation of
equivalence between the underlying state spaces.

EXERCISE 2.3.4  Suppose we need multiple cash-point machines to cope with increased
customer demand. Why is an interleaving of two or more of our existing machines (for
example ATM?2 ||| ATM2) not a good idea?

Hint: think what might happen in this model when two customers are using them
simultaneously. How might you avoid this problem?
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2.4 Generalized parallel

The effects of all the parallel operators we have seen so far, and more, can be
achieved with a single operator which, for whatever reason, has become the most
commonly used with FDR even though it does not appear in Hoare’s book. In
P «|ly @, we decide which events are synchronized and which are not by looking
at X and Y. In the new operator, we simply give the interface: P )||( Q is the

process where all events in X must be synchronized, and events outside X can
proceed independently. It is called generalized or interface parallel. We will always
have

Plle=P| @
{3
and, provided P and @ never communicate outside X and Y,
Pxly@=p | @
XNy

(The case when P or @ do not satisfy this condition is left as an exercise.)

In almost all cases one meets, this new operator just gives a different presen-
tation of something we could have written with |,. However, you should realize
there are new effects that could not have been achieved without it: if X is non-
empty but does not cover all events that can be used by P and by @ then P || Q

X
acts a little bit like the alphabetized parallel and a little bit like P ||| @. There
are some events that are synchronized and some which can ambiguously come from

either side. For example, COUNTo || COUNTy is a process that will allow twice
{up}
as many down’s as up’s, since the down events proceed independently.

If P=?:A4— P and Q =?z : B — Q' then the initial events of P | Q
X

are C = (X NANB)U(A\X) U (B\X). The behaviour is shown by the following
step law, whose complexity reflects the operator’s generality: an event may now be
synchronized, unsynchronized but ambiguous, or from one side only

PllQ="2:C— (P|Q)¥ze X+
X

(P QNP Q))«z e AN B* )
X X (||-step)
(P || Q) kz € AX(P || Q")) X
X X
It is symmetric and distributive:
Ple=elr (Jl-sym)

X

(2.10)

(2.11)
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PIl(QMNR)= (Pl QnN(PIR) (||-dist) (2.12)
X X X X

It has the following weak (in that both interfaces are the same) associativity
property

P )H( (@ )”( R) = (P)”( Q) )”( R) <)||(-assoc) (2.13)

but the possibility, in P || (Q || R), of X containing an event not in Y that Q
X Y

and R can both perform, makes it hard to construct a universally applicable and
elegant associative law.

The traces of P || Q are simply combinations of traces of P and @ where
X

actions in X are shared and all others occur independently. As with the interleaving
operator, the best way to calculate the trace-set is in terms of an operator that maps
each pair of traces to the set of possible results (which is always empty when they
do not agree on X). The following clauses allow one to calculate s )H( t (a set of

traces, like s ||| ) for all s, ¢ € ¥*; below z denotes a typical member of X and y a
typical member of ¥\ X.
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st = tls
X

be
(@)s | ()t = {(nuluels)s| t}
X be
(ys || ()t = {(z)u|ues| t}
X X
(@)s| (@)t = { ifz#al
X
s | ()t = {Wuluesl ()t}
be X

(Y ulue s | 1)
Given this, it is possible to define

traces(P || Q) =U{s || t| s € traces(P) At € traces(Q)}
X X

EXERCISE 2.4.1 If we do not assume that P and Q never communicate outside X and
Y, how can we express P .||, @ in terms of [|? [Hint: use STOP.]
z

EXERCISE 2.4.2  Describe the behaviours of the following processes; in each case find
a tail-recursive process equivalent to it.

(i) cory | copry
{lteftly

(i) cory | coPY
{Iright|}

EXERCISE 2.4.3  Show that (P ||| @) || R and P ||| (Q || R) need not be equivalent.
What does this tell you about the ‘law’

PI@IB =] QR

2.5 Parallel composition as conjunction

The uses seen so far of the synchronized parallel operator || and the alphabetized
one y |l have all had broadly the intuition one would have expected of a parallel
operator, namely describing interactions between processes which might reasonably
be expected to run concurrently and communicate with each other. But they can
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be used in a rather different way in situations where we are using CSP more in
the manner of a specification language than as a method of describing systems as
implemented.

It turns out to be very difficult, even impractical, to implement handshaken
communication in anything like the generality implied by the CSP parallel oper-
ators, at least if a genuinely parallel implementation is required. In particular,
handshakes involving more than two parties come into this ‘impractical’ category.
Except in special circumstances, CSP descriptions which are intended to model the
construction of parallel systems tend to respect this restriction.

Multi-way handshaking is nevertheless an extremely useful construct in CSP:
it is used to build up specifications of intended behaviour (i.e., processes that are
probably going to be used on the left-hand side of a refinement check). For parallel
composition turns out to be equivalent to the conjunction (i.e. logical ‘and’) of
trace specifications. In this style of use, you should view parallel as belonging to
the category of CSP operators (for example M) whose main role is in constructing
specifications rather than implementations.

Suppose @ is a process using only events from Y. In P ||, @ = P || @Q,
Y

it can be thought of as adding to P, since every communication of P in Y must
be possible for ). As P participates in all of the combination’s events, we can
think of @’s role as simply being to restrict P’s behaviour. If P represents a trace
specification, then P |, @ is a stronger one.

As a simple example, consider a robot which roams around the plane by mak-
ing movements in the four directions {N, S, E, W}. It can also report its position.
If its initial co-ordinates are (0,0), it becomes the process ROBOTq ¢ where

ROBOT,, ,, = position.(n,m)— ROBOT,, ,
0N — ROBOTi1m
08 — ROBOT,—1.m
0 E — ROBOT i1
O W — ROBOT, 1

We can restrict the area it can roam over by placing it parallel with processes
stopping it entering forbidden areas. For example, if it is actually sitting on a rect-
angular table whose corners are {(0,0), (n,0), (n,m), (0, m)} then we can enforce
this either by putting it in parallel with four COUNT-like processes:

E, W) alphabet {E, W}
E)m alphabet {E, W}
S)o alphabet {N, S}

S,N)p alphabet {N, S}
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where

CT(a,b)g = a— CT(a,b)
CT(a,b), = a— CT(a,b)r+1
Ob— CT(a,b)p—1 ifr>0

or by using two processes (each imposing both limits in one dimension) or just one
(imposing all four limits). We could prevent it entering a specific square, (7, s), say,
by placing it in parallel with the following process with alphabet {N, S, E, W}:

BLOCK(r, $)n,m =

(N — BLOCK (71, $)n41,m)d¥n # r—=1V m # s»STOP

O (S — BLOCK (1, $)n—1,m)¥n # r+1V m # sk STOP

O(E — BLOCK(r, $)n,m—1)¥n # rV.m # s+1%STOP

O (W — BLOCK (7, 8)n,m+1)d¥n # rV m # s—1%STOP

Note the use we have again made here of the conditional construct to reduce the
number of clauses. Clearly we can use as many of these as we like to ban any finite
region of space. Notice that BLOCK(0,0) stops the robot from re-entering the
origin once it has left it — it cannot be prevented from being there initially!

Other things we could do would be to stop it doing more than K actions in
total say, representing its fuel capacity, or from communicating its position when
in specified areas.

One of the simplest and most useful examples of this style is the banning of
events: P |y STOP = P || STOP is the process which behaves like P except
that events in X are banned.X

This style of use of the parallel operator amounts to building up a complex
behaviour by adding together a number of simple constraints. Clearly the number
of participants in a given action in this example might get very large. But this
need not worry us since, as we already know, it is quite possible to have a parallel
process equivalent to a sequential one, and the eventual implementation of our
specification will almost certainly be very different from the combination of the
parallel constraints.

The exercises below illustrate this style well, and we will see further examples
at various points in this book, especially in Section 15.1.

EXERCISE 2.5.1  We can describe a bank as a process that simply opens and closes:
BANK = bank_open — bank_close — BANK
Interleave this with the process that records what day of the week it is:

DAYS = Monday — Tuesday — ... — Sunday — DAYS



74 Parallel operators

Figure 2.6: Some railway track (see Exercise 2.5.3).

Express the following as parallel constraints to this system:
(i
(ii

(ii

) It opens no more than once per day.

) It is always closed at midnight (when the day events occur).
) It is never open on a Sunday.

(iv) It is always open at least two times per week.

EXERCISE 2.5.2  Put your solutions to the previous exercise and Exercise 1.1.3 in
parallel via interleaving. Impose the following constraints:

(i) An account can only be opened or closed when the bank is open.

(ii) Balance enquiries may not be made on Sundays.

EXERCISE 2.5.3 Figure 2.6 shows a section of a railway network. There are signals at
A, B, C governing entry to the section, and points at P which connect the line from A to
either B or C. The alphabet is as follows:

signal. X.Y for X € {A,B,C} and Y € {red, green} indicate the change of the signal at
X to colour Y
point.X for X € {B, C'} represents the points being switched to connect A to X

enter. X.t for X € {A,B,C} and t € Trains represents train ¢ entering the section at
X

leave.X.t (X and ¢ as above) represents ¢ leaving at X.

Assume that initially all signals are red, the points connect A to B, and the track
is empty.

Give trace specifications for each of the following properties:
(i) Each signal alternates between turning green and red.
(ii) Only one signal can be green at any time.

(iii) The points alternate between the two directions.
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(iv) The points only switch when all signals are red and there is no train on the track.
(v) A signal can only turn green when there is no train on the track.

(vi) The signals at B and C only turn green when the points are appropriately set.

Build a process that meets all of these specifications and which has, within reason,
all of the traces which they allow. Do this by building one or more processes for each
constraint and combining them appropriately in parallel.

The above specifications allow a train to enter against a red signal. Introduce an
extra event alarm which occurs (before anything else) if this happens, and modify your
process definition appropriately.

2.6 Tools

The last three binary parallel operators we have seen are supported in machine-
readable CSP. They are written as follows:

P |y @ iswritten P [XI1Y] Q
Pl @ is written P ||| Q

Pl @ is written P [1X|] Q
X

(P || @ can easily be modelled using the others, for example P[|Events|] Q.)

Indexed versions are written as follows:

N

||._ (P, Ai)  is written|| i:{1..N} @ [A(1)] P()
| ilpi is written| || 1:{1..N} @ P(i)

1N P is written[1X1]1 i:{1..N} @ P(i)
Xi=1

Note that the last of these assumes that all the P; synchronize on the set X, and
that no other event is synchronized at all.

The addition of parallel operators has an enormous effect on the expressive
power of the language, in the sense that it becomes possible to describe many com-
plex and interesting systems concisely and naturally. One effect that is very notice-
able is the exponential state explosion that can, and frequently does, occur when

N

we put a lot of processes in parallel. If each P; has just two states, then | | ’i_l P;
. -

has 2. Synchronizing events, as in Hi—l(Pi’ A;), usually prevents the combination

reaching some arrangements of component states; it often leaves enough of them to
leave a lot of work.
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With an animator this state explosion only shows up if you seek to cover
all the states, but with a model checker? you usually have to visit each reachable
state, and so it is common experience (one each reader who uses these techniques
will doubtless share) that the time and space taken for refinement checks frequently
increases exponentially with the size of a parallel system.

Overcoming this complexity barrier is a major active research topic at the
time of writing. It seems most unlikely that it can be got around for every parallel
combination and specification; the objective is to do so for as many classes of useful
problems as possible. We will discuss the techniques FDR uses at several later points
in this book, especially Section C.2, when we understand enough of the theory.

The existence of this barrier does not prevent one from modelling many
systems which are both non-trivial and practical without any attempt to get around
it at all other than by making the enumeration of states as efficient as possible in
both space and time, and sometimes careful coding of the CSP to avoid unnecessary
states. Thus at the time of writing FDR can, even on the author’s laptop computer,
deal entirely explicitly with combinations with order 107 states at several million
states per hour.

In order to achieve this efficiency, FDR uses very different techniques for
computing the state spaces of low-level processes (broadly speaking, ones definable
in the syntax introduced in Chapter 1) and high-level ones (broadly speaking, par-
allel combinations of low-level ones). When FDR says it is compiling a system it
is using relatively slow symbolic techniques for turning low-level components into
explicit state-machines. This does not enumerate the states of the entire system
(assuming it involves a high-level construct), but rather gives efficient rules for com-
puting the initial actions and next states of any combination of low-level states that
might arise.

A process structured as the parallel combination of reasonably-sized low-
level components will thus tend to be explored much more efficiently by FDR than
an equivalent one which is structured so that it is entirely compiled at low level.
Certainly one of the keys to the successful use of FDR, is an understanding of this
fact and the division into high- and low-level syntax that lies behind it. This is
explained in more detail in Appendix C.

2Model checker is the name for the class of tools to which FDR. belongs in a broad sense:
one can define a model checker as a tool which seeks to verify that a system which is defined
by transitions between (sometimes very large) finite sets of states satisfies some specification and
which performs the verification by traversing the entire state space. (This traversal might be one-
state-at-a-time or use some way of dealing with many at once.) In other classes of model checkers,
the specification is usually defined in a language other than that used for the implementation
(often a specially defined logic). What characterizes a refinement checker like FDR is that the
specification is another process in the same language.
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2.7 Postscript: On alphabets

The most significant difference between the version of CSP used in this book and
that in Hoare’s text is the treatment of alphabets. Hoare stipulates that every
process P has its own associated alphabet aP. One can think of the alphabet of a
process as representing its type. A process may only communicate events from its
alphabet, but there may be events in its alphabet which it can never communicate
and which do not even appear in its description. The presence of alphabets makes
the parallel operator more elegant, since by writing P || @ we know immediately
that P has control over aP and @ has control over (), and so they interact in, and
must co-operate on, P Na@. This is in contrast with our version where alphabets
are given explicitly: P |y . Hoare makes a number of stipulations about the
alphabets of the processes that are composed together; most of the operators require
that all processes combined have the same alphabet and that the result is the same
again. Others, such as || and hiding, have special rules. The CSP operators in the
alphabetized theory are thus polymorphic in a sense very close to the usual one.

The disadvantages of the alphabetized version of CSP are firstly the need
to give all processes alphabets (which can clutter definitions, especially recursions),
the occasional need for special language constructs to get the ‘typing’ right, and
additional theoretical complexity. The main manifestation of the last of these is the
need to construct separate mathematical models for every different alphabet where
we can get away with just one.

The choice of one version or the other is largely a matter of taste, though it
is certainly the case that the balance changes from application to application. We
do not regard this as an important issue, since everything done in one version of
CSP can be done in the other with trivial changes.

In this book we sometimes refer to the ‘alphabet’ of a process. This, in an
informal sense, means the same as Hoare’s, namely the set of communications it
might use. However, whenever we need such an alphabet to have semantic signifi-
cance (as in the set of events a P controls in a parallel combination), it has to be
defined and used explicitly.
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Chapter 3

Hiding and renaming

It is often useful either to remove certain actions from the view of the environment or
to apply mappings to a process’s events. In this chapter we introduce the operators
that allow us to do these things.

3.1 Hiding

Consider the parallel combination of COPY'(¢,, ¢y11) processes we saw on page
58. We said there that it would be natural to think of ¢y and ¢, as being external
channels, and the others as internal ones. If they really are internal then the fact
that we can still see the communications passing along them is unfortunate from
several points of view.

e Seeing these communications clutters up our picture of the process and makes
it impossible to show that this system behaves like an n-place buffer imple-
mented some other way. We should not have to see unnecessary internal
details of a system.

e By leaving the internal communications visible we are leaving open the possi-
bility that another process might be put in parallel with the currently defined
network, with some of these internal events in its alphabet. Thus, it would
be able to stop these events from happening. In this case, and in many like it,
we would expect ‘internal’ communications such as these to proceed without
requiring further control from outside.

Both of these difficulties can be avoided by hiding the internal events, making them
invisible to and uncontrollable by the environment.
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Given any process P and any set of events X, the process P \ X behaves
like P except that the events from X have been internalized in this way. If we want
to hide a single event or channel a then we will sometimes write P \ a rather than
P\{a}or P\{|al}

Thus, if we want to hide all the communication between a pair of parallel
processes we would write (P |y @) \ (X NY) or (P g Q) \ Z. This creates

point-to-point, invisible communication, which is arguably closest to the ‘natural’
parallel operator of implementations such as 0cCcAM. In specifying a real parallel
communicating system, rather than one devised as a specification where the parallel
operator takes the role of conjunction as described in Section 2.5, one almost always
uses a combination of the parallel and hiding operators.! The natural view of the
chain of buffers would be

n—1

(|| (COPY"(cr, crsn) Al erscrpn I\ (] 1,y cumt 3)

The only communications visible in this system are its inputs and outputs,
namely {| co, ¢y |}. Since we are no longer seeing the internal workings, we can
potentially prove this equivalent to a totally different one which might have differ-
ent internal channels or none at all, or to another CSP description intended as a
specification.

Perhaps the easiest way of understanding the effect of the hiding operator
is to see how it transforms the picture of a process’s transitions. We saw a few of
these in previous chapters (Figures 1.1, 1.2, etc.). Any process can be given such a
transition system, which provides a much less abstract view of how it behaves than
its set of traces?. The shape of the transition system remains exactly the same, but
hidden actions are transformed into invisible actions, which we label 7 (the Greek
letter ‘tau’). An example is shown in Figure 3.1. Invisible (or internal) actions
are to be thought of as ones which (a) do not contribute to the trace, because the
environment cannot see them and (b) the process can perform by itself. 7 is a
special event that is never in X.

Since it is a unary (one-place) rather than binary operator (on processes),
the only one of the ‘usual’ sorts of algebraic laws that apply to it is the distributive
law. There is a rich collection of laws, nevertheless, of which the following are a
few:

(PAQ\X = (P\X)N(Q\ X) (hide-dist)  (3.1)

1Some other process algebras, notably CCS, combine parallel and hiding into a single operator:
they do not factor the ‘natural’ operator into two parts like CSP.

2A complete set of recipes for deriving these transition systems is given in Chapter 7, where it
is the method of presenting the operational semantics of CSP.
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Figure 3.1: The effects of hiding on a transition system.

(P\Y\X = (P\X)\Y (hide-sym)
(P\Y)\X = P\ (XUY) (hide-combine)
P\{} =P (null hiding)

P\ X ifae X .

P)\X = hide-step 1

(a—=P)\ {a—>(P\X) if o f X (hide-step 1)

The second of these is an easy consequence of the third. The final law above shows

the hiding actually happening: the a disappears when it is an element of X. Note

that this shows that a process whose only initial action is a single 7 is equivalent
to whatever state follows the 7.

This is not a full ‘step’ law, in the sense we have already used to describe
other operators, since that requires the process to have an arbitrary set of initial
actions. The full version is more complex because it has to deal with what happens
when (i) there is a choice of hidden actions and (ii) there is a choice between hidden
and visible actions. Rather than writing down the whole law immediately let us
look at each of these two situations separately.

(a—=P0Ob— Q)\{a,b}

has two hidden actions possible. Now only one happens, and we cannot be sure
which, so in fact this equates to (P \ {a,b}) M (@ \ {a,b}). This creates the
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first principle we are looking for here: when there is more than one hidden action
possible, it is nondeterministic which occurs. And in fact the usual® way of creating
a transition picture of the process P M () is by creating one whose initial state has
two 7 actions: one to P and one to Q.

It is tempting to think that we should either give hidden actions the ability
to exclude visible ones from the same choice — because the hidden action occurs as
soon as it is possible — or perhaps the reverse. In fact, neither of these views is
consistent with what we already know. Consider the process

(a—POb—Q)\b

(the same as above except that only one of the two events is hidden). If either the
unhidden or the hidden event were preferred, this would equal

a— P\b or Q\b

which, if we then hid a, would in either case give a different answer from hiding
{a, b} together, in contradiction to the law (hide-combine). Thus both the hidden
and unhidden actions must remain possible. The right way to think about how this
type of process behaves is that as soon as an internal action becomes available then
something must happen, but it might be a visible action rather than a hidden one.
Unless we do manage to get a visible communication, a hidden one must occur. The
right answer to what the above process equals turns out to be

((a— (P\b)NSTOP)O (Q\ b)

We must get the options of @ \ b if we wait long enough, but may also get the
chance of the a if we are quick enough. The principle underlying this is that, in a
choice between visible and hidden actions, we may get the chance of communicating
one of the visible ones, but given a long enough wait, one of the hidden ones must
occur. It is perhaps easiest to understand this by considering transition pictures
like Figure 3.2.

The combination (P M STOP) O @ arises frequently in theoretical work on
CSP because of this phenomenon with hiding. It is convenient to introduce an extra,
asymmetric choice operator to represent it directly: P > (). This can be thought
of as a ‘time-out’ or ‘sliding choice’ operator in which, as above, the options of P
are offered for a short time before it opts to behave like (). For obvious reasons the
representation of a time-out is very imperfect in a model without time — we will see
how to make them more realistic in Chapter 14. There is no need to quote P > @)’s

3This is exactly how FDR and ProBE represent nondeterministic choice, as previously described
in Section 1.4.
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Figure 3.2: Hiding creating a ‘time-out’.

algebraic laws, etc., formally because they can all be derived from those of M, O
and STOP. See Exercise 3.1.6, for example.

The complete step law for hiding is given below:

(Pz:A—P)\ X =
0:A— (P\X) fANX =4} (hide-step)  (3.6)
(?z: (AVX) — (P \ X))
> M{(Plo/a) \ X [a € ANX} £ ANX # ()

It should be noticed that this ‘step’ law is unlike all of the ones we have seen before,
in that, while it obviously uses one step of the process it is applied to, it does not
necessarily give us the first visible action of the result. Of course this is perfectly
natural with a hiding operator, but it does mean that one might never come to a
conclusion from it about what the initial actions of P \ X are: just think what
would happen if you were to apply it to (up.a — p) \ a.

Notice that in the buffer example above we hid all the internal communica-
tions at once, at the outermost level, where we could have combined the cells in
steps hiding the internal channels as we go. This is represented by the complex
expression

((---(COPY'(co, c1) {|c0,c1|}|\{\c1,cQ\} COPY'(cr,e2)) \{l ex [}-.")
fleoseasH1ens,cay COPY (en—1,en)) \ Al en1 [}

(We will see a much more convenient way of writing this down in Section 4.1.)
Provided that moving the hiding does not influence the number of processes that
have to agree on an action, it should not matter whether we hide that action at an
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inner or an outer level of a parallel combination. Thus, we can expect

(P xlly @\ 2 = I()fO\\fifeg f()mxl\/a%(ZQ:\ {Z}ﬂ Y) (hide- || ~dist)
Pl\Nz= (P\2)](Q\2Z)
X X

(hide- ||-dist)
provided X N Z = {} X

These laws are helpful in understanding how a network put together with
parallel and hiding operators behaves: we can move all the hiding to the outermost
level so we can ‘see’ all of the communications in the network at once before applying
a single hiding operator to get rid of the ones we don’t want to see. As we will see
in later chapters, these laws are vital in support of reasoning about deadlock, and
are crucial in advanced model-checking techniques.

Hiding can remove other details aside from communications between part-
ners. For example, we might want to conceal the spending of CUST spend and the
refilling of ATM ref in order to concentrate on their common interface.

CUSTspend, \ spend.N

can be expected to behave exactly like CUST2, while ATMref, \ refill behaves
like an implementation of ATM?2: it is strictly more deterministic because it never
swallows the card. It is nevertheless nondeterministic, even though ATM ref . is
deterministic, because since we cannot see when the machine is being refilled, we get
imperfect knowledge of when a request for funds is refused. Notice how this hiding of
details actually invisible to the customer makes the ATM exhibit nondeterminism,
just as he or she observes. We will study the process of abstracting like this from a
subset of a process’s events in Chapter 12.

Hiding is the most common source of nondeterminism in CSP descriptions.
It often shows up in real systems where one parallel partner has to arbitrate between
two others. For example, we know that the process

P=a—c—STOPOb—d— STOP

offers the environment the choice between a and b, with subsequent behaviour
depending on which option is chosen. If we give it the alphabet X = {a, b, ¢, d} of
all events it can perform, then simply putting it in parallel with processes which
choose a and b respectively does not change the way it looks to the outside world:

N = P yll{apy (a— STOP (|l b— STOP)

(3.7)

(3.8)
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N can be expected to behave in the same way as P. If, however, we ‘complete’
the parallel composition by hiding the internal events N \ {a, b} then we introduce
nondeterminism. The result will behave like

(¢ = STOP) M (d — STOP)

This type of behaviour is what makes nondeterminism an inevitable constituent of
any theory describing concurrency where arbitration is present in some form.

If we had allowed our ATM to be refilled when full, or the customer to spend
a zero sum, then the hiding above would have introduced divergence, which is the
possibility of a process entering into an infinite sequence of internal actions. For
then the ATM would allow an infinite sequence of hidden refill actions without
ever interacting with the user, and the customer could perform an infinite number
of hidden spend.0’s. Clearly a process which is diverging is useless, and arguably
more useless than STOP, since we can never detect by the lack of internal activity
that a diverging state will never do anything. A common source of divergence in
CSP occurs in parallel networks with internal communications hidden, where the
processes can communicate infinitely with each other without ever communicating
externally. This is sometimes termed ‘livelock’ or ‘infinite internal chatter’.

On the same principle that led us to introduce an operator for nondetermin-
ism (i.e., that it is useful to have a clean representation of it) we will use a special
symbol for a divergent process: div is the process that does nothing but diverge.*
The only way of introducing divergence except through hiding and the symbol div
is by ill-formed recursions. The simplest recursive definition of them all, pp.p is
an example: clearly evaluating it will lead to an infinite unwinding without getting
anywhere. Divergence plays an important role in the mathematical modelling of
CSP, so we will meet div frequently in later chapters.

Particular care has to be exercised in dealing with infinite hiding, i.e., P\ X
for infinite sets of events X. For it can introduce unbounded nondeterminism in just
the same way as the unconstrained use of [ ]. That this is so is readily demonstrated:
it §={Py| e A} for aset of events A chosen to be disjoint from those which the
P, themselves can communicate, then clearly

M8 = (2A:A— Py)\ A

4In Hoare’s text, the process CHAOS is assumed to be able to diverge as well as everything
else it can do, and there is no special representation for a simply diverging process. We distinguish
the special process div because it represents an important concept and, as we will see in later
chapters, different mathematical theories of CSP treat it in widely varying ways. For us, Chaos
is not a divergent process and is in every model equivalent to its definition on page 29.
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The traces of P \ X are very easy to compute: if we define s \ X, for any
trace s, to be s [ (X\X), then

traces(P\ X) = {s\ X | s € traces(P)}

Hiding versus constructiveness

It must be pointed out that the very useful notion of a guarded recursion fits
uneasily with hiding. For the meaning of ‘guarded’ is that information — in the
sense of communications — is added by a recursion. Another (and, in general, more
accurate) term we can use is ‘constructive’. Hiding deletes events: consider the
recursion

P =a— (P\a)

which, according to our earlier definition, is guarded because the recursive call
is prefixed by an event. The problem is that communications are deleted by the
hiding, so that what the recursion gives with one hand it takes away with the other.
In fact this recursion does not have a unique fixed point over the traces model 7:
if S is any member of 7 at all (possibly able to communicate events other than a),
then

{0YU{{a)(s\ a) | s €5}

is a solution to the fixed point equation we get from the recursion. The least and
natural solution is, of course, {(), (a)}. After the trace (a) we would expect that
this process would diverge, since it would perform a sequence of increasingly deeply
hidden a’s. Our intuition, therefore, is that this P = a — div.

This behaviour forces us to add a caveat to the definition of guardedness:
no recursion in which the hiding operator is applied (directly or indirectly) to a
recursive call should be considered guarded (at least, without a careful analysis
based on mathematical models).

Of course, this restriction applies equally to the derived operators we will
meet later that use hiding in their definition. In a few cases it is possible to assert
that recursions involving hiding are constructive, but to do this we will have to
understand the mathematics of constructiveness a great deal better: see an example
on page 108 and Sections 8.2 and 9.2 for some of the theory.

It is easy to think that the above restriction prevents us from applying the
UFP rule to any process involving hiding: this is not so, it is only the recursion to
which the rule is applied that has to be constructive. A good example is the process
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we get when we hide the internal channel of the combination we studied in the last
chapter:

(COPY'(a,b) {|a,b\}||{|b,c|} COPY'(b,c)) \ {| b [}

Now of course we already know that the process inside the hiding is equivalent to
CCy, where

CCy = alzr — CC{(x)

CCl(z) = blz — CCy(z)
CCy(z) = (clz — CC)) O (a?y — CCi(y,z))

CCi(y,z) = clz — CC(y)

When we hide {| b |} in this we find (applying (hide-step)) that

CCi\Nb = alz — CC{(z)\ b
CC{(z)\b = CCyxz)\b
CCHx)\b = (clz— CC{\b)O (a?y — CCL(y,z) \ b)
CCi(y,x) \ b = clz— CC(y) \ b
which is not (applying the usual trick of replacing each term on the left-hand side

by a new recursive variable) guarded. However, the above equations imply trivially
that CC§ \ b, CC{(z) \ b and CC4(y,z) \ b satisfy the recursive definition

B2 = a? — Bi(x)
Bi(z) = aly— Bi(y,x)
O clz — B
Bi(y,z) = clz— Bi(y)

which is guarded. (Note that Bf, B?(z) and B3(xz,y) respectively denote a two-
place buffer with nothing in, with z in and with z and y in.) So we have shown that
our original processes satisfy this guarded recursion and therefore equal its unique
fixed point. It is quite irrelevant that the definition of the original processes involved
hiding. There was, we should point out, no need to go through the intermediate
step of discovering the C’ recursion: it would have been just as good to prove that
a vector of parallel/hiding combinations satisfy the B? recursion.

Note that what we actually proved here was that the parallel combination of
two one-place buffers, placed in parallel with the middle channel hidden, behaves
like a two-place buffer — clearly something we would expect.
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EXERCISE 3.1.1  Take the dining philosophers network from pages 62 and 67 with the
picksup and putsdown events hidden (after the entire network has been combined). Can
this system still deadlock? Do you think hiding can ever affect deadlock? Think carefully
and write down your conclusions — we will later develop theories that will answer this
question definitively.

EXERCISE 3.1.2 If P = (a — P)O (b - a — P), we would expect that P \ b is
equivalent to pp.a — p. Use (hide-step) (3.6) and the laws of choice to show that

P\b=a—(P\b)

and hence that this equivalence is true by the UFP rule. Make sure you understand why
the rule is valid here when it was invalid on the very similar equation P = a — (P \ a).

EXERCISE 3.1.3 If P = a?z — blz — blz — P then it is possible to find a process @
such that

(P {\a,b\}H{\b,g\} A \{lb[} =r COPY'(a,c)

(i.e., a one-place buffer). Find @ and use the UFP rule to prove the equivalence.

EXERCISE 3.1.4  Give a CSP expression defining the process equivalent to the one on
the left-hand side of Figure 3.1. Use the step law and laws about the choice operators to
prove that the hidden process P \ {a} satisfies the equation

P\ {a} = b— (STOPMb— P\ {a})

EXERCISE 3.1.5  Use (M-O-dist), (O-dist) and other standard laws to prove that

(Q O R)N STOP (QOR)M QM RMNSTOP and hence

(POQORNMP = (POQORN(POQ)NP

EXERCISE 3.1.6  Prove, using the laws set out in Section 1.2, that > is distributive in
each argument and is associative. Hint: for associativity, use the result of the previous

exercise.

Can you find any other laws it satisfies (perhaps in relation to other operators)?

3.2 Renaming and alphabet transformations

In the previous section we saw how to remove certain events from sight. A less
drastic effect is achieved by remaming, which means applying a map that changes
which (visible) member of ¥ a process is performing.

While one can imagine that the alphabet transformation thus accomplished
might change through the life of a process — perhaps event a maps to b if it appears
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before the 12th event and to ¢ later — in practice we rarely want to do this. Thus,
our renaming operators apply the same transformation throughout a process’s life:
in this section we see three increasingly general ways of doing this.®

3.2.1 Injective functions

Suppose P is a CSP process and f : ¥ — X is an injective, or 1-1, function (simply
meaning that f(z) = f(y) implies z = y) from X to itself. f can be a partial
function provided its domain contains every event possible for P. Then f[P] is
the process which can communicate f(a) whenever P can communicate a. The
communications of P have been renamed, or equivalently P has been subjected to
an alphabet transformation. The transition system of f[P] is that of P with the
function f applied to the arcs.

All of this works whether f is injective or not. The reason why we want to
distinguish this case is because it is both simpler to understand and is used most
often in CSP descriptions of real systems. The point is that, in this case, f[P] works
ezactly like P except for the names of its events. (The sense in which this is not
true when f is not 1-1 will be seen later.)

If f is the function that swaps the events down and up, then f[COUNT)
will behave like a counter through the negative numbers, since it will never allow
any more up’s than down’s.

If g is a function that maps (for any « € T) left.x to a.x and right.z to b.z
then g[COPY] is the same as the parameterized process COPY’(a, b) (assuming,
of course, that left, right, a and b are all channels of type T'). One could similarly
devise a renaming that would map a single FORK; from the dining philosophers
to any other FORK j, and likewise for the philosopher processes. In each case this
is possible because, except for the names of their events, the target process always
behaves identically to the original: evidently no renaming could make FORK ; into
PHIL;!

Thus, renaming is an alternative to parameterization as a way of creating
many similar processes to put into a network. Which method is better depends on
the example and the taste of the programmer.

One form of renaming that is useful when we want to create copies of a process
with entirely disjoint alphabets is process naming. If the compound event a.z is in
Y. for each event communicable by P, then a.P is the process which communicates
a.x whenever P communicates z. The renaming function here is clear, but this
form of use is sufficiently common that the shorthand a.P is commonly used. If

5In Section 14.4.1 we will see how the variable renaming can be constructed by combining
constant renaming with other constructs; see also Exercise 3.2.5 below.
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a1, ag, ..., a, are distinct names, we can get n copies of P running independently
in parallel by naming them:

||j:1(a'r~P; ar.X) or equivalently ’H:L:l a,.P

where X is whatever alphabet is natural for P and a.X = {a.z | £ € X}. Since
these processes have disjoint alphabets they do not interact at all. If either the
environment or another process wants to communicate with one of them it has to
select the one by name, since the communications all include the given name.

Since injective renaming leaves the behaviour of a process unchanged except
for the names of actions, it has an extremely rich set of laws — too many to write
down conveniently! Essentially it distributes over all operators. We will give a list
of laws that apply to any sort of renaming later, but three that apply specifically
to this one are

/1P 1 Ql = f1P] f(l)l() flQI if fis 1-1 L) |-dist)  (39)
P xlly @ = f[P] f(X)”f(Y) fIQ) if fis 1-1 (fI]-x Il y-dist) (3.10)
fIP\NX] = fIPP\f(X) if fis 171 (f[]-hide-sym)  (3.11)

The third of these is frequently used, in combination with the following, to change
the name of hidden actions. This might be done to prevent a clash of names for the
subsequent application of other laws. An example may be found in Section 13.7.

fIP\X] = P\ X iff(y)=yforal yeE\X (f[-]-hide-null)  (3.12)

3.2.2 Non-injective functions

The most common use of renaming f[P] when f is not injective on the events of
P is when we want to forget about some level of detail in a process. Consider a
splitting process which accepts inputs on channel in and, depending on what the
input is, sends it either to outl or to out2.

SPLIT = in?z:T —
((outl.z — SPLIT) <z € S¥(out2.2 — SPLIT))

For some purposes the composition of messages may be unimportant. If we forget
that detail by using the renaming function forget which remembers only the channel
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name, the process forget[SPLIT| we get is equivalent to SPLIT’, where
SPLIT' = in — (outl — SPLIT' M out2 — SPLIT")

This has introduced nondeterminism because we have deliberately forgotten the
information which allowed us to know whether outl or out2 occurs. Though this
might appear a retrograde step, this type of abstraction is frequently beneficial, for

e it allows us to demonstrate that some aspect of the correctness of the system
does not depend on precisely how decisions are made, and

e in cases where this is true the details of decision making frequently clutter
proofs.

Several examples of this type of abstraction in deadlock analysis can be found later,
on pages 358 and 374, for example.

Non-injective renaming becomes more dangerous when the alphabet trans-
formation f in use maps an infinite set of events to a single one (i.e., f is not
finite-to-one). This, like [ 1S for infinite S, and P \ X for infinite X, is a construct
which can introduce unbounded nondeterminism.

3.2.3 Relational renaming

Various treatments of CSP have included a second sort of renaming, using inverse
functions: f~![P] can communicate a whenever P can communicate f(a). This is
equivalent in expressive power to the direct image renaming we have seen already
when f is 1-1, but it can produce some interesting effects when f is many-to-one.
For a single event in P can be transformed into the choice between many different
ones — though all leading to the same place. What we will now describe here is a
more general form of renaming that encompasses both direct and inverse functions,
and at the same time corresponds most closely to the notation for renaming used
in machine-readable CSP.

A function can be thought of as a set of ordered pairs: (z,y) is in the set
if f(z) = y. A set of pairs is a function if no z is mapped to more than one y. A
relation on the other hand, is any set of ordered pairs, with no restriction as to how
many things a given object can be related to. If (z,y) € R we write  Ry. If R is
a relation, its domain and range are respectively

dom(R) = {z|3y.xz Ry}
ran(R) {y|3z.z Ry}

The composition of two relations R o S is

{(z,2) | 3yx Ry Ay Sz}
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(confusingly, because of a clash of conventions, this is the opposite way round to
the way composition of functions works). The relational image R(z) of  under R
is{y|zRy}.

If R is a relation whose domain includes all the events of P, then P[R] is
the process that can perform each event in R(a) whenever P can perform a. If R
is a function then this is identical to the renaming R[P]. If f is a function then
its inverse f~! is the relation {(y,z) | (z,y) € f}. The operator f~![P] is then
identical to P[f~!]. For example, if D is the relation which relates a to both itself
and b, then

(a — STOP)[D] = (a — STOP) O (b — STOP)

If U is the universal relation 3 x 3, then P[U] = RUN if and only if the
divergence-free process P is deadlock-free.

The following laws, etc., are thus all true (suitably translated from the forms
below) for the functional form of renaming. Renaming distributes over both choice
operators:

(PN Q)R]

P[R] N Q[R] ([R]-dist) (3.13)

(PO Q)R] = PIR]C QIR] ([RI-O-dist) (314)
If the initials of P’ are A, then those of P'[R] are R(A) ={y | 3z € A.(x,y) € R}:
(?z: A— P)[R] =7y : R(A) - TH{(P[z/z))[R] | 2 € ANz Ry} ([R]-step) (3.15)

This shows that renaming can introduce nondeterminism when more than one
event in A maps under R to the same thing. This cannot happen when R is either
an injective function or f~! for any function: in these cases the nondeterministic
choice is over a set of one process — no choice at all — as there is then only ever one
z such that z R y.

Renaming by one relation and then another is equivalent to renaming by the
composition of these relations:

(P[R])[R'] = P[RoR'] ([R]-combine) (3.16)

This law is one reason why relations are written on the right of a process rather than
(as with functions) on the left. It implies the following law for functional renaming,
where the opposite sense of composition is used

flglP]] = (fog)[P] {f[-]-combine)  (3.17)
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Renaming in this most general form is such a powerful operator that most of
the useful distribution laws that held for 1-1 renaming are no longer true. (In most
cases versions can be found, but these tend to come with an unfortunately complex
set of side conditions.)

The traces of P[R] are just the images of those of P under the obvious
extension of R to traces:

(a1, .. an)R*(b1,...,; b)) & n=mAVi<n.agRD;

traces(P[R]) = {t|3s € traces(P).s R*t}

A good way of defining relations for use as alphabet transformations is to
use a notation like substitution: we can write P[%/b] to mean that the event or
channel b in P is replaced by a. (Note that all others remain the same — including
any a that is already there.) To modify more than one thing, or to send one thing
to more than one place, we write something like

P[% b/b,a]] or P[[bvc/a, a]

Note that the first of these swaps a and b and the second maps a to both b and c.

One-to-many renaming as a magic wand

Relational renaming gives us the ability to create a process that will offer several
alternatives in place of a single event. On first encountering this possibility one
is inclined to wonder what purpose it might serve, particularly since the result of
performing any of these alternatives is exactly the same. However there are two
important uses for it that one tends to meet in practice.

The first is as an aid to creating processes that treat large numbers of events
in the same way. Typically these are specification processes or simple components
of larger systems. For example you can define a process in which members of the
sets A and B of events alternate by defining one yp.a — b — p alternate, and
then renaming a and b (respectively) to all members of A and B. One could define
Chaos 4 as

(1p-((a— p) N STOP))[*/a |z € A]

By using this style it is sometimes possible to achieve greater clarity than without
(since evidently any use in this style could be replaced by a prefix choice), and in
some cases it results in a more efficient implementation for FDR.

The second use is rather more interesting, not least since it produces results
that do not seem possible using any other CSP construct. That is to create, in effect,
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a renaming operator that maps each event only to a single target, but one which
varies with more than just the input event. Thus we might rename the event apple
to either Cox or Braeburn depending on what has gone before it. This is achieved
by first renaming the event to all its targets, and then designing a regulator process
that is put in parallel with the resulting process and which selects which of the new
events happens on each trace. For example, if Adam and Eve prefer the different
varieties here we might define

Reg = Braeburn — Reg
O Adam — Reg
O Eve — Reg’

Reg = Braeburn — Reg’
0O Adam — Reg
O Eve — Reg’

The construct

P[[Adam, Eve/apple7 apple] I Reg
{Adam,Eve,Braeburn,Coz}
creates a process that will do one or other of Braeburn and Coz whenever P would
have done apple.

All sorts of weird and wonderful effects can be achieved with variations on
this theme, such as hiding every other event a process does, or just the first one.
Certainly when trying to achieve something unusual in CSP, it is one of the first
things the author usually tries, and indeed we will see several indispensible uses of
this idea in later chapters.

EXERCISE 3.2.1 Recall that COPY = left?’c — right!lr — COPY. Suppose we
want, instead, a process CELLy; which inputs values v on channel left and immediately
outputs f(v) on right. Find an appropriate alphabet transformation gy so that CELLy =
gs[COPY]. Under what conditions is gy injective?

EXERCISE 3.2.2  Use an alphabet transformation to connect the output channel of
COPY to the input channel of CELL; and vice-versa (i.e., there are two processes running
in parallel). How does this process behave? How does it behave if COPY is replaced by
right!lt — COPY?

Add an extra channel in to COPY so that the resulting process can be initialized
along this channel and thereafter behaves as before, so achieving the effect of the second
case in the last paragraph for any z.

EXERCISE 3.2.3  Find renaming relations R; which, applied to the process COUNTY,
achieve the following effects:
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(i) A process with events a, b and ¢, where the number of ¢’s is always less than or
equal to the total of the a’s and b’s.

(ii) A process that can always communicate either up or down.

(iii) A process that has the same traces as COUNTo but may nondeterministically
sometimes refuse to communicate down when COUNT( would have accepted it.

EXERCISE 3.2.4 Find examples to show that the laws for distributing injective renam-
ing over hiding and general parallel composition do not work when the function f is not
injective.

What weaker restrictions on the renamings could you make so that these laws
become valid again? You might find thinking about the laws for distributing hiding over
parallel helpful here.

EXERCISE 3.2.5 Remember the possibility quoted at the start of this section of map-
ping a to b if it is before the 12th event and to ¢ thereafter. Use a combination of a
relational renaming and parallel composition with a process you define to achieve this
effect. (Assume that the process P does not itself use events b and c.)

EXERCISE 3.2.6 Show how to hide the odd-numbered communications that a process
performs, and how to hide just the first communication it performs. (Assume that the
alphabet of your process is contained in A, and that ¥ contains a disjoint set of events A’
that are in natural correspondence with A via a +— a’.)

3.3 A basic guide to failures and divergences

Though we knew this well enough already, our exposure to nondeterminism and
divergence in this chapter has shown that traces alone give a far from complete
picture of the way a process behaves. Whether or not you intend to study the
details of how these phenomena are modelled in detail — this is done in Chapter 8 —
you should at least gain a basic understanding of the two main tools that are used,
in addition to traces.

Traces tell us about what a process can do, but nothing about what it must
do. The processes up.a — p and (up.a — p) M STOP have the same traces, even
though the second is allowed to do nothing at all no matter what we offer it. In
order to distinguish these processes we need to record not only what a process can
do, but also what it can refuse to do. A refusal set is a set of events that a process
can fail to accept anything from however long it is offered. (It is not enough for it
simply to be refused for a finite time.) refusals(P) is the set of P’s initial refusals.

In fact, we need to know not only what P can refuse to do after the empty
trace, but also what it can refuse after any of its traces. A failure is a pair (s, X),



96 Hiding and renaming

where s € traces(P) and X € refusals(P/s). (Recall that P/s represents process P
after the trace s.) failures(P) is the set of all P’s failures.

One can calculate the failures of a process P in exactly the same way as we
have already shown how to calculate the traces of P: by induction on P’s syntax.
For details of this you should see Chapter 8. But they can be calculated just as
easily from the transition diagram of a process: you simply collect together all of
the routes through this diagram which (ignoring 7’s) result in a given trace. If the
node you end up at is stable — i.e., has no 7 action leading out of it — then it gives
rise to a failure, since it can (and must) refuse all actions which do not lead out of
it. On the other hand, a node with one or more 7’s (an unstable node) does not
give rise to a refusal since the internal action will eventually happen: as we cannot
sit at this node for ever it cannot give rise to a refusal. In other words, we have
to wait for the 7’s to run out before we get refusals. In Figure 3.3 we see how to
calculate the failures of a few simple processes in this way. Assuming the alphabet
is {a, b, c}, each stable node is labelled with its maximal refusal. (If a node can
refuse X, then it can clearly refuse ¥ C X.)

Py is (a = b — STOP) O (b — a — STOP) (or equivalently (e — STOP) |||
(b — STOP)). It has a deterministic transition system (as it has no 7’s, and
no ambiguous branching on any visible actions). It follows that there is a
unique path through the tree for any trace. Thus, there will be just one max-
imal refusal for any trace s: the complement of initials(P/s). Examples of

this process’s failures are ({), {}), ((),{c}), ({a),{a, c}) and ((b, a), {a, b, c}).

Py shows how internal actions can introduce nondeterminism. It could have
arisen as ((¢ — a — STOP) O (b — ¢ — STOP)) \ c. Its initial refusals are
the subsets of {b, ¢} but it can also accept b initially. Its complete failures
are

{(0, X) [ X € {b, e}y U{((a), X), ((b), X) [ X € {a, b, c}}

Ps could be (a — STOP) N (b — STOP). It has two initial 7’s to choose from.
Its initial refusals are {X | {a, b} € X}. It can refuse either a or b separately
but must accept something if {a, b} is offered. Notice how this is different
from the initial behaviours of both P; (which must accept either) and P
(which must accept a), even though all three have exactly the same initial
events possible.

P, which could be (¢ = a — STOP) O (¢ — b — STOP) shows how ambiguous
branching on a visible action can lead to nondeterminism. Its refusals after
the trace (c) are {X | {a,b} € X}. The similarity to the initial refusals of
Pj5 is no accident: we know this process is equivalent to ¢ — (¢ — STOP N
b — STOP) and the equality simply reflects this fact.
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P, {c}
a b
{a,c} {b,C}
b a
a T
[ ] [ ] [ ] [ ]
{a,b,c} {a,b,c} {ab,c} {a,b,c}

{b.c}
a b
[ J [ J
{a,b,c} {a,b,c}

Figure 3.3: The refusal sets of some transition systems.
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One process failures-refines another: P Cp @ if and only if
traces(P) 2 traces(Q) and failures(P) 2 failures(Q)

or, in other words, if every trace s of @ is possible for P and every refusal after this
trace is possible for P. @) can neither accept an event nor refuse one unless P does.
Among the processes of Figure 3.3, P, and P3 are trace equivalent and both trace-
refine P;. The only failures refinement that holds is that Ps refines P3. Make sure
you understand why this is. We can define two processes to be failures-equivalent
(=r) if each failures-refines the other.

Failures allow us to distinguish between internal and external choice, some-
thing we could not do with traces alone. This is shown by the examples in Figure
3.3, but comes across more clearly when we consider the failures of

& = (a— STOP)O (b — STOP) and
@ = (a— STOP)N (b — STOP)

If ¥ = {a, b}, the only refusal on () of the first of these processes is {}: the only time
it will not communicate is if it is offered nothing at all! () can additionally refuse
{a} and {b}, but cannot refuse {a, b} since whichever way the nondeterministic
choice is resolved it has to accept one or the other. On the other hand, the process

Qs = STOPM ((a — STOP) DO (b — STOP))

can refuse any set of events, because it can behave like STOP. In general, a process
can deadlock if, and only if, it can refuse the whole of . The failures specification
of deadlock freedom is thus that, for all traces s, (s,X) & failures(P).

Full calculation of the failures of @)1, @2 and ()3 would reveal that
Q3 Cr QCr Q1

Failures refinement gets very close to the natural notion of what refinement
‘ought’ to mean for CSP processes. The only real problem comes from the phe-
nomenon of divergence that we noticed earlier in this chapter. A diverging process
such as (up.a — p) \ a is neither doing anything useful nor is it refusing anything
in the sense discussed above. The only really satisfactory way of dealing with diver-
gence is to record the set of traces on which a process can diverge. We can calculate
this from one of our transition systems, since divergence here is simply an infinite
path of 7’s (if this graph is finite, this implies the existence of a 7-loop: a path of
7’s from a node back to itself).

When we look into the mathematical theory of how divergences are calcu-
lated, it turns out that seeing accurately what a process can do after it has already
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been able to diverge is very difficult, and not really worth the effort.® (This can
happen, for example, if a process has a nondeterministic choice between diverging
or doing something else.) For once we take a process up to the point where it can
diverge, there is no way we can rely on it doing anything. Therefore, the standard
mathematical model of CSP, the failures/divergences model, takes the decision that
any two processes that can diverge immediately (whatever else they can do) are (i)
equivalent and (ii) completely useless. Specifically, once a process can diverge, we
assume (whether it is true or not) that it can then perform any trace, refuse any-
thing, and always diverge on any later trace. divergences(P) thus contains not only
the traces s on which P can diverge, but also all extensions st of such traces. We
also need extended, strict sets of traces and failures when working with divergences:

traces) (P) = traces(P) U divergences(P)
failures, (P) = failures(P) U {(s, X) | s € divergences(P)}

You can think of the second of these as saying that a process which is diverging is,
in effect, refusing everything. The representation of a process P in this model is

(failures | (P), divergences(P))

This can either be extracted from the transition graph by simply recording which
behaviours it can perform, as in Figure 3.3, or via clauses like those seen earlier
for traces(P). The latter can be found in Section 8.3, as can further details of
the model, but for now it is quite sufficient for you to think primarily in terms
of the former. That is, after all, essentially how FDR works out the failures and
divergences of a process. Your main aim in reading this section should, perhaps, be
to understand what failures and divergence are, so that you know what it means
when FDR does the calculations involving them for you.

Because of the closure under divergence, over this model any process that
can diverge immediately (i.e., without any visible communication) is equivalent to
div, no matter what else it may also be able to do.

One process failures/divergences-refines another, written P Crp @ (or just
P C @ when the context is clear), if and only if

failures | (P) D failures | (Q) A divergences(P) D divergences(Q)

(it turns out that this implies the corresponding relation for traces, so there is no
need to include that clause). div is the least refined process under Cpp: div Cpp P
for all P.

60n the other hand, the traces model and a refinement of it we will be meeting in Section 8.4,
the stable failures model, allow one to see beyond any divergence by ignoring divergence altogether.
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The corresponding notion =gp of equivalence in the failures/divergences
model is the standard notion of equivalence for CSP processes over most of the
literature.”

Even though almost all of the correct processes one ever writes are divergence-
free, we often need to be able to demonstrate that this is indeed so for ones we have
constructed. This is why we need to go to the trouble of including divergence in
our model of refinement: if it were not there, we would have no way of telling if a
process could diverge or not.

It is only when we know the failures and divergences of a process that we
can definitively tell whether it is deterministic or not. A process P is defined to
be deterministic if, and only if, divergences(P) = {} and s*(a) € traces(P) =
(s,{a}) & failures(P). In other words, it cannot diverge, and never has the choice
of both accepting and refusing any action. It turns out that the deterministic
processes are exactly the maximal ones under Cpp — the processes that have no
proper refinements. P Cpp @ means, rather precisely, that @ is more deterministic
than P. Of the processes in Figure 3.3, only P; is deterministic (as any process
with a deterministic transition system is, though the reverse is not true). We will
study the class of deterministic processes further in Part II of this book, especially
in Section 9.1. The unique fixed point (UFP) rule is valid with respect to both
failures and failures/divergences equivalence.

Failures and divergences in specifications

These three levels of refinement — traces, failures, and failures/divergences — are
what FDR allows you to check. Indeed, FDR stands for Failures/Divergences Re-
finement.

The two new modes of refinement C r and C gp allow us to formulate stronger
specifications of processes than are possible with traces refinement, since you can
now make assertions about what a process can refuse and when it can diverge as
well as what traces it can perform. Just as with trace specifications, they can
be formulated either as behavioural specifications or, directly, as their characteris-
tic processes. Thus deadlock freedom (either as a failures or failures/divergences
specification) becomes the behavioural specification

Vs.(s,X) & failures(P) or ref #3

In other words, P can never refuse all events; so there is always something it can do.
The right-hand form extends the convention seen on page 43, that ¢r represents an
arbitrary trace, to the assumption that (¢r, ref) is an arbitrary failure (i.e., tr and

"Though one needs to be careful with unboundedly nondeterministic ones.
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ref are respectively identifiers used to represent a trace and a refusal within a logical
expression which thus becomes a predicate on failures). ¢r does not appear in the
above simply because this specification is independent of traces. The characteristic
process of the above deadlock specification is DF's;, where

DF 4 = I_I{a—>DFA|a€A}

DFy; is, of course, the most nondeterministic deadlock-free process for, just
as over the traces model, the characteristic process of any behavioural specification
is equivalent to the nondeterministic choice of all processes that meet it. In similar
vein, the most nondeterministic divergence-free process (in the failures/divergences
model) is Chaos.

A specification can be extremely abstract like the above, can be highly spe-
cific and attempt to define all the behaviour of one’s implementation — for example
if @ is a deterministic process such as B on page 87 then Q Cpp P is equivalent
to P =pp @ and so P must be a complete description of intended functional be-
haviour — or can be somewhere in between. A good example of the latter is the
buffer specification which we will study in Section 5.1.

Divergence checking is a more complex activity than the rest of what FDR
does in its ‘checking’ phase, and therefore Cpp checks are slower. In practice we
often know that processes are divergence-free for independent reasons. The most
common use of failures checks is for proving full refinements P Cpp @ for processes
P and @ that are already known (or are assumed) to be divergence-free. Indeed,
at the time of writing, the author almost always structures a substantial failures/
divergences check this way. We will see some more sophisticated circumstances
where one has to check Cp rather than Cpp in later chapters.

EXERCISE 3.3.1  What failures/divergences refinements hold between the following
processes: div, Chaos(, .}, Chaosiay, DF (41, RUN {4y, RUN 4y, STOP, a — div and
a — STOP? Which of them are deterministic?

EXERCISE 3.3.2 Formulate a behavioural failures specification (using the variables tr
and ref as discussed above) which asserts that a process must always accept the event a
if the number of a’s in ¢r is less than that of b’s in ¢r. What is the characteristic process
(i) on the assumption that ¥ = {a, b} and (ii) on the assumption that it is larger?

3.4 Tools

The notation for hiding in machine-readable CSP is almost exactly the same as we
have used already: P\X, where X must be a set of events. While it is often convenient
to have X a single event or channel, or a set of channels, in written text, you must
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convert it to the proper type for running. This is made easier by the {la,bl}
notation, which corresponds to the notation {| a, b |} we have already defined.

There is only one way of writing renaming, which (apart from the precise
way it is written) is a simple extension of the ‘substitution’ style renaming we saw
at the end of the section: you create a relation by using variations on the notation

P[[b <- a, d <- c]]

This relation maps b to a, d to ¢ and leaves all other events alone. a,b,c,d can be
simple events or channel names. If you want to map one event to many (as in inverse
function renaming) this can be done by using the same event on the left-hand side
of <- more than once: P[[a <- a, a <- b]] ‘shadows’ each a with the alternative
of a b. More sophisticated forms of this notation exist, in which the renamed pairs
are generated rather than explicitly listed: see Appendix B.

Process naming in the a.P style is not defined in machine-readable CSP at
the time of writing. The reasons for this, which are connected with the type-theory
of channels, are discussed on page 114 (in connection with the main application of
process naming), together with how to get around this restriction.



Chapter 4

Piping and enslavement

In the previous chapter we pointed out that the most natural model of a real parallel
system is probably to have a collection of processes synchronizing pairwise on their
communications, and with these internal communications hidden. In this chapter
we see two operators which model common ways in which such systems are put
together. They are both derived operators, in the sense that they are both built
out of — and can thus be thought of as abbreviations for — other ones.

4.1 Piping

A common and simple form of parallel composition is pipelining: taking a sequence
of processes which input on one channel and output on another, and connecting
them in sequence, the outputs of the rth process being fed into the inputs of the
(r+1)th. We have already seen one example of this, namely the chain of COPY
processes.

If it has been decided to use this form of network and furthermore to hide
the internal communications, then the careful assignment of distinct labels to the
individual channels can be a little tiresome. The piping or chaining operator >>
provides a more convenient way of creating such systems. It assumes that the
processes have all been defined so that their input channels are all called left and
their output channels are all called right."! If we combine two or more of them
together then it is natural that the input and output channels of the whole should
retain these names. Thus, P >> @ connects the right channel of P to the left channel
of @ and hides these internal communications. This leaves the left channel of P

LOf course the choice of this pair of names is somewhat arbitrary. Sometimes one sees in and
out used instead.
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and the right channel of @ visible externally.

We can now write the sequence of COPY processes with hidden internal
communication as

COPY > COPY > ...> COPY

where the input and output channels are now left and right rather than ¢y and ¢,
of the previous example.

The piping operator can be expressed in terms of renaming, parallel and
hiding: P> Q =

(P[[Mght7 mid/mid’ T’ight]] {|left,m7ld|}H{\mid,righﬂ}

Q™mid: el fieft, mid]) \ {| mid |}

where it is assumed left, right and the new channel name mid all have the same
type T. The reason for swapping the pairs (left, mid) and (mid, right) rather than
simply using P[™¢/right] and Q™4 /left] is to guard against the possibility that
P or @ might already have been able to communicate on the mid chosen. It makes
absolutely sure that the renamings we are using in this definition are 1-1.

Though this definition is actually symmetrical between left and right, the
piping operator is always used so that left is an ‘input’ channel (in the sense that
it accepts any element of {| left |} whenever it accepts any) and right is an ‘out-
put’ channel. In other words, communications usually take the forms ‘left?x’ and
‘rightle’.

The piping operator is distributive in both its arguments (a fact that follows
from the distributivity of the operators used above to construct it) and associative.

(PQ)>R = (P>R)N(Q>R) (>>-dist-)
P>(QMNR)=(P>Q)N(P>R) (>>-dist-r)
(P> Q)>R = P>(Q > R) (>>-assoc)

This last fact, which is so intuitively obvious that we have already taken advantage
of it without thinking in the COPY -chain, is actually rather subtle mathematically.?
In the left-hand side of the law, the communications between P and () are hidden
before those between () and R, and vice-versa on the right-hand side. It is intimately

2A number of mathematical models have been discarded because they failed this test!

(4.1)

(4.2)

(4.3)
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tied up with the laws for interchanging parallel and hiding ((hide- |y -dist) (3.7)
and (hide- [|-dist) (3.8)).
X

There is also a range of laws for allowing us to compute the first-step be-
haviour of P >> () in common cases. These special forms are more easily applicable
than coding the entire set into a single law: in all of these it is assumed that z is
not free in @ nor y in P.

left?e — P>>left?y — Q = left?a — (P> left?y — Q) (>>-step 1)
right!'z — P >> rightly — Q = rightly — (right'z — P >> Q) (>>-step 2)
rightlc — P>>left?ly — Q = P> Qlz/y] (>>-step 3)

left?e — P>>rightly — Q = left?a — (P >> rightly — Q)

_step 4
O rightly — (left?s — P> Q) > SteP4)

The first two correspond to the situation where only the left- or right-hand sides
can move because the other is stuck waiting for it. The third is what happens when
each is willing to communicate across the hidden channel, and the final one shows
the choice that appears when both are able to talk externally.

We can see these in operation if we consider the process COPY >> COPY .
This equals

(left?x — right!ls — COPY)>>
(left?y — rightly — COPY')

= left?r — ((right!ls - COPY) >

(left?y — rightly — COPY)) ((>>-step 1))
= left?es — (COPY >>(right'lzx — COPY)) ((>>-step 3))
= left?s — (left?y — rightly — COPY >

(right!lzy — COPY))
= left?z — (right!lx — (COPY > COPY)

O left?y —
(right!ly — COPY >> rightls — COPY)) ((>>-step 4))
etc.

(By naming the various parallel terms, as we have done previously, this could have
been shown equivalent by this unfolding to a very similar mutual recursion that
essentially the same process was proved equivalent to in the previous chapter.)
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While the above laws deal with all the cases where the process at either end
of >> is able to communicate exactly one of input and output, and we have the
obvious cases of any input (left?z) and only one output (right!z) being possible,
it can of course happen that more complex situations arise. The following law
accounts for all of these cases: it is found by combining the step laws for parallel,
renaming and hiding (to the last of which it bears an obvious resemblance). If

P
Q

(left?z : A — P') O (right?z : B — P")
(left?y : C — Q') O (right?y : D — Q")

(where any of A, B, C', D can be empty and, if not, A, C are likely to be the whole
of T and B, D are probably singletons), and z, y are respectively not free in @, P,
then

P> Q = (left?z: A— (P'>Q)) O (right?y : D — (P> Q"))
BN C={}>

(left?z : A — (P'>> Q)) O (right?y : D — (P> Q"))
> [{P"[z/z]>> Q'[z/y] | € BN C}

(>>-step)

The traces of P >> @) are simple to compute: assuming, for a slight simplification,
P and @Q only communicate in the set {| left, right |} they are3

traces(P>> Q) =
{u € {] left, right |}* | 3s € traces(P), t € traces(Q).
Vu <u.3.s" <s, t' <t
uw | left =38 |left Ns' | right =t | left N¥' | right = u' | right}

Clearly this operator has its main uses modelling applications where infor-
mation is passed along a sequence of processes. For example,

ITER = left?(data, input) — right!(data, F(data, input)) — ITER

is a process for performing one step of an iteration on some data. So if data is a
number and

Fian = (++£)

then it carries one step of the Newton’s method approximation to a square root.
By piping N copies of ITER together we apply this number of iterations to each

3In the first edition of this book there was an error in this definition.

(4.8)
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data and starting value:
ITER > ITER > ...> ITER

Of course there is no reason why all the processes have to perform the same task.

The other primary application of the piping operator is in the study of com-
munications mechanisms and protocols. A typical application here might be dealing
with a faulty communication channel, or simply one which uses a different repre-
sentation of information than the one we wish to deal with (encrypted, perhaps).
Suppose, therefore, that we wish to create a transparent channel of four-byte words
W, allowing a certain amount of buffering between two processes, when what we
are supplied with is an unreliable channel M of bytes Byte which might lose or cor-
rupt some proportion of its throughput. A good way of modelling this is to design
processes T' and R (transmitter and receiver) such that

T>M>R

is a buffer of type W. A buffer is a process which, like COPY and B<°>° (page 19)
copies information from its input to its output, preserving order and without loss,
and such that it never refuses to output an item it contains and will not refuse to
input when empty. We will give a formal specification of this later (page 118).

The difficulty of defining T and R will depend on just how bad we allow
M to be. Our task might be made easier by splitting each of the processes into
two: T = T1> Ty and R = Rs>> Ry should be such that To>> M >> R is
a buffer of some type which it is easier to correct than W over the medium M
(probably Byte or bits {0,1}) and Ty >> B >> Ry a is a buffer of type W whenever
B is one of the intermediate type. This modularization could be taken further by
dividing the problem into yet more layers. See Exercises 4.1.3 and 4.1.4 for details
of what the processes we have been discussing might look like. The idea of dividing
communications protocols into layers like this is of great practical importance since
it allows a separation of concerns (e.g., dealing with security, error correction, and
message structuring separately).

There is a natural relationship between the piping operator and buffers. It
will generally be true, for example, that P >> @ is a buffer if P and @ are. This
will be discussed more in the next chapter.

By combining >> with recursions, we can define dynamically expanding
chains of processes. For example, we can define an infinite-capacity buffer with

the same behaviour as B<°>o without using infinite mutual recursion, just as ||| al-
lowed us to do this with COUNT.

Bt = left?z — (BT > right's — COPY')
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Since the definition of piping involves hiding, we are not trivially able to
assert that this recursion is constructive or guarded. In fact it is, and a formal
proof of this (for which we will need further mathematical machinery) follows the
pattern of the informal argument below.

A recursion P = F(P) is constructive if, in order to see n + 1 steps of the
behaviour of F(P), we need only explore n steps of the behaviour of P. In other
words, if P and P’ are indistinguishable up to and including n communications,
then F(P) and F(P’) are indistinguishable up to and including n + 1. Now the
initial input of the BT recursion clearly gives one step of behaviour without referring
at all to the recursive call, so it will be enough to show that the process

BT > right'sx — COPY

that follows it is mon-destructive: has always communicated as many actions as

it has used of BT. But this is actually rather obvious, since every communication
of BT is either visible (contributing to the length of the trace) or an output to
right!lt — COPY . But this latter process has always output at least as many things
as it has input, so every communication of BT that gets hidden is compensated for
by one of these outputs. For the mathematics underpinning this argument, see
Section 8.2.

EXERCISE 4.1.1  Show that if P and @ satisfy the trace specification of a buffer:
tr € {| left, right |}* A tr | right < tr | left, then so does P > Q.

EXERCISE 4.1.2 Newton’s method of approximating the square root of a positive num-
ber z is, starting with an arbitrary guess ro, to set ruq1 = (rn +2/m0)/2.

(i) Devise processes INIT and FINAL such that
INIT > ITER>> ITER...> ITER > FINAL

inputs a number and outputs the Nth iteration (there being N copies of the ITER
process defined earlier). Choose z/2 as the first guess at the square root.

(ii) Now, by using the pattern of recursion
P = left?(d,r) — ((right!r — P)<b*}(I(d,z)>> P))

where you should specify what b and I are, create a system which iterates as many
times as it has to so that | 72 — z |< € (e is a small positive constant). What
happens if the second number input to this dynamic network takes less, the same,
or more iterations than the first?
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EXERCISE 4.1.3  Devise processes Ty and R; that unpack a word of four bytes into its
individual 32 bits, and pack them up again. Thus, T} >> R; should be a buffer for words,
though the internal channel should be passing bits. (The best way to represent a word is
as a sequence of 32 bits.)

EXERCISE 4.1.4 M is to be a model of an unreliable medium which transmits values
in the set {0,1,2}. It sometimes loses data, but must transmit at least one out of every
N. Define the processes M; for i =0,1,..., N—1, where M; behaves like My except that
it may lose i values before being obliged to transmit one correctly. Which of these is the
appropriate definition of M?

Now define processes T and R such that T > M > R' is a buffer of type {0,1},
and explain informally why your definition works. Hint: use the value 2 as a punctuation
mark between transmitted values, using sufficient repetition to ensure one of each block
gets through.

Harder: do the same thing when the type of the medium is only {0, 1}.

4.2 Enslavement

It is useful to have an operator representing the situation where one process acts
as the slave of another. The slave is only allowed to communicate with its master,
and all communications between master and slave are hidden. The general case of
this operation is written

PlyQ

which means the same as (P ||y @) \ Y. It is usual to use it in the case where the
slave has some name, m say, and the master’s communications with the slave are
just those with the name m in the same sense we saw it applied in process naming
earlier. This special form is written

P/m:Q

which means the same as P//;,,;m.Q where M is the set of all elements of ¥ of the
form m.a.

As with >>, the laws and trace-set of P/, @ can be deduced from those
of the operators it is built from. Just as >> is associative, meaning that we can
introduce and hide the internal communications in either order, enslavement satisfies
the following law, which one might term a symmetry principle: if ¥ N Z = {} then

(Ply@)zR = (P)zR)[yQ (/-sym)

(4.9)
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S0, in particular, if m and n are distinct names then

(P/m:Q))/n:R = (PJ/n:R))m:Q

Enslavement is, of course, distributive in each argument and, like >>, it is best in
most cases to divide the step law into a number of commonly-occurring cases rather
than dealing with the most general one all the time. These are left as an exercise.

One common use of enslavement is to represent one process providing a
computational service to another, analogous to a (remote) procedure call. For
example, if we were modelling a microprocessor, it might well be appropriate to
represent the floating-point unit (FPU) as a slave to the CPU. The FPU might
then be abstractly modelled by the process

FPU = fpreq?(data, op) — fpout!fpu(data, op) — FPU

where fpu is a function defining the appropriate result for each floating-point cal-
culation. In the combination CPU// fp:FPU the CPU would then send requests
to the FPU by a communication such as fp.fpreq!((a, b),+), and could then carry
out some more operations before it required the result of this combination, which
it could get by inputting fp.fpout?z.

If the designer required a higher MFLOP rate (i.e., floating point speed) than
was obtainable from this simple server, there are at least two approaches he could
take to get greater performance. One would simply be to provide more FPUs, so
that with two of them the combination might look like

(CPU  fpl:FPU) | fp2: FPU

Rather than provide two entirely separate boxes, he might prefer to split one into
several phases by pipelining, so that it is able to handle more than one operation at
a time. If there were three of these (perhaps denormalizing and aligning in FPU1,
arithmetic in FPU2 and normalizing, error detection and handling in FPU3), the
FPU might then become something like

(FPU1>> FPU2>> FPU3)[/Pred, fpout /ieft right]

and able to deal with three computations at once. This approach has the advantage
that it probably requires less extra silicon than providing three independent units,
but the disadvantages that one must always take the results in the order in which
the data was entered and that unless the three phases are well-balanced in the time
they take (probably not true in this case) the performance would not be so good.

Another use of enslavement is to provide a CSP process with access to a state
which can be assigned to, read from, or have other similar operations applied to it.
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A slave process representing a simple variable might be written
VAR(z) = assign?y — VAR(y) O readlz — VAR(z)

The starting value of the variable could be dealt with by introducing a special error
value, or by making the initial state

[{VAR(z) |z € T}

We can take this idea further and provide more complex data structures with
different operations. These can, of course, be represented as a non-parallel CSP
process with appropriate internal state. In the case of some dynamic structures
there are interesting ways of modelling them via a combination of enslavement and
recursion.

EXAMPLE 4.2.1 (SETS VIA ENSLAVEMENT) If we want to model a finite set to
which we can add elements, remove them, and test for membership, then this can
be done with the recursive process defined

SET = add?x — (Cy/m:SET)
O del?z — SET
O isin?x — no — SET, where

C, = add?y — (Cyky =zPm.addly — Cy)
O del?y — (E<y = apm.delly — Cy)
O isin?y — (yes — Cp Ky = xb
m.isinly — m?a : {yes,no} — a — Cy)

E = add?y — m.delly — Cy
O del?y — m.delly — F
O isin?y — m.isinly — m?a : {yes,no} — a — E

This works by holding the first object entered and storing the rest of the set in a
recursively called slave set. C, represents one cell of the resultant network which
contains x, while E is one which is empty because the last thing it held has been
deleted. Notice that when E is refilled (which it is by the first new element to come
along) then the same element is deleted from E’s slave. This is necessary to get the
system to work correctly — see if you can work out why:.

The essential feature of this recursion is that it creates a network composed
of a lot of simple cells, each of which was generated by one recursive call and which
can in turn make similar recursive calls. In the case above the network is always
a chain (though rather different from the sort created by >> since it does all its
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external communication at one end), because each cell only has one potential slave.
If there are two then we get a binary tree, and so on.* (End of example)

Using a similar strategy we can create an interesting version of the much-
used example of a counter, in which each cell either knows that it and its slave are
set to zero (and communicating the event iszero) or that its slave is set to exactly
one less than itself.

Zeroy = up — (Succ)/m:Zero)
O iszero — Zeroy

Succ = down — (m.iszero — NoSucc)
O m.down — Succ)
O up — m.up — Succ

NoSuce = 1iszero — NoSucc
O up — Succ

This is well-defined and is equivalent to the obvious sequential counter process with
the iszero event added to the zero state. An interesting variant can be found in
Section 8.2, where we study how fixed points of recursions like this evolve and can be
regarded as constructive despite the presence of hiding in the enslavement operator.

EXAMPLE 4.2.2 (QUICKSORT) Many divide-and-conquer algorithms can be imple-
mented as parallel CSP ‘programs’ using recursive enslavement. For example, the
following gives a version of quicksort.

Qsort = last — end — Qsort
O in?z — ((IN 4 Jup: Qsort) J| down: Qsort)

IN, = in?y — ((up.inly — IN ;) Ky > z¥(down.inly — IN))
O last — up.last — down.last — OUTA,

OUTA, = wup.out?y — outly — OUTA,
O up.end — out!ls — OUTB

OUTB = down.out?y — outly — OUTB
O down.end — end — X

X = last > end - X
O in?z — IN,

4No network created using enslavement alone can be anything other than a tree — a connected
network with no cycles. We will find that trees play an important role in our discussion of deadlock
in Chapter 13.
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Qsort takes a sequence of values on channel in, the end of which is signalled by last.
It then sorts these into descending order and outputs them on out, indicating the
end of the output phase by end. The first element of the input list is used as the
pivot for quicksort, which is applied recursively to the elements of the remainder
of the input which are respectively greater than, or less-than-or-equal-to, the pivot.
The state X is present so that the network can be re-used: see if you can understand
what happens when this occurs. (End of example)

EXERCISE 4.2.1  Create case-by-case step laws for (?z : A — P’)/,,(?z : B — Q').
You should deal (at least) with the cases ANY = {}and A C Y A(YNANB) # {}.
What is the general step law (recalling (>>-step) (4.8))?

EXERCISE 4.2.2  Define a one-step tail recursion COUNT that behaves equivalently
to Zeroy and prove this equivalence using the UFP rule and the laws you defined in the
previous exercise. You can assume, if required, that the Zero, recursion is constructive.

Hint: the most elegant way to prove this equivalence is probably in two applications
of UFP. The first shows that a vector whose (n+1)th component is Succf/m : COUNTY,
(you should define the Oth component) is equivalent to COUNTT. The second uses this
to justify an application of UFP to the Zero, recursion. It can also be done directly but
you then have to be careful with the fact that Zero, has many states corresponding to each
n € N.

EXERCISE 4.2.3  Mergesort is another divide-and-conquer sorting algorithm. It works
by dividing the input list into two parts (as equal as possible in length), recursively sorting
these, and then merging the two sorted results into a single sorted list. Adapt the strategy
used above for quicksort, copying the recursive structure of a master and two slaves, to
give a CSP version of this.

Hints: split the input by sending odd- and even-numbered elements of the input,

respectively, to the two slaves. Be careful that your design does mot diverge for an input
list of length 1.

EXERCISE 4.2.4  Produce a modified version of the process SET which does all of the
following.

(a) The elements are stored in increasing order: if a cell receives an add.z with z less
than its current value y, then y is pushed on and z retained.

(b) The invariant preserved by (a) is exploited when deciding whether to send a del or
isin message to the slave.

(c¢) It is possible for the element held by a slave to drop down into its immediate master
if the master has become empty (via a del or by doing this new function with its
own master).

(d) The set can always communicate on one of two new channels: least.z outputs the
least element from the set (the one held in the lowest cell) and removes it from the
set, and isempty can be communicated whenever it is empty.
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In what ways is this new version more efficient than the original? How would you convert
it into a process (externally) equivalent to the original?

4.3 Tools

The piping and enslavement operators are not directly supported by machine-
readable CSP. The reasons for this are both related to the way this version of
the notation treats its channels.

The problem with the piping operator is the way it gives special importance
to the two channels left and right. There is nothing wrong with that in itself, but
many (perhaps most) large examples of pipes will involve a series of processes

Pir>Pyo>...>P,_ 1> P,

where the interfaces do not all have the same type. (Consider, for example, the
layered protocol idea described on page 107.) In order to make sense of such an
example it is necessary to be able to think of the channels left and right as having
different types at different points in the program: for obvious reasons this clashes
with the type discipline which says that each channel is declared with a single type.

There is no problem with the enslavement operator P/ @ itself: it does not
mention any specific channel and it is easy to define in terms of other constructs
which are supported. The problem comes because this operator is most often used
(as it was in this chapter) in its ‘named slave’ form P /a : Q. Machine-readable CSP
presently insists that each channel comprises an atomic name and a type. Adding
an extra name onto the beginning of an event does not preserve this discipline.
It is easy to achieve the same effect of a named version of a process by using
parameterization and adding the name as a component of the type of each channel,
thus

B(n) = in.n?x -> out.n!x -> B(n)
[ halt.n -> STOP

might replace n.B, where

B = in?r — outls — B
O halt — STOP

Since this is a significantly different style and it is easy to achieve the effect of
enslavement via other constructs, it was decided not to include it directly in the
machine-readable syntax.
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One should also bear in mind that many of the most interesting examples of
the use of enslavement are dynamic networks (i.e., recursions through enslavement).
In their most natural forms these, being infinite state, will not work on FDR, though
it can be entertaining to apply an animator such as ProBE to them.

It is, in fact, straightforward to re-create any network that comes out of
a pen-and-paper use of >> and /. This can either be done with the standard
parallel, renaming and hiding operators (in much the same way as these operators
were derived in the first place) or using a recently-added construct specific to the
machine-readable language. If (a1,b1), (a2,b2),..., (an,bn) are pairs of channels
where the two in each pair have the same type, then

P [al <-> bl, a2 <-> b2, ... , an <-> bn] Q

puts P and Q in parallel, joining the given pairs of channels together (with left-
and right-hand ones of each pair being treated as a channel of P and Q respec-
tively) and hides the resulting communications. Thus we can, if P and @ are two
processes that do not communicate outside {| left, right |}, implement P >> @ as
P [right <-> left] Q.

Unlike >>, this is not an associative operator and therefore must be fully
bracketed. The main cases where it fails to associate are where the different uses of
it mention different but overlapping sets of channels. We can, for example, achieve
a result very close to enslavement: suppose P is a process with arrays of channels
call.iand return.i (for i € {1,...,n}) and that Slave is a process with channels
call’ and return’ designed to perform some subroutine. One can enslave n copies
of Slave to P by the construct

(...(P [call.1 <-> call’, return.1l <-> return’] Slave)
[call.2 <-> call’, return.2 <-> return’] Slave)

[call.n <-> call’, return.n <-> return’] Slave)

Note how the same channels of the various copies of Slave are attached to different
channels of P. Other bracketings of this would mean very different (and generally
nonsensical in this context) things.

There are also extensions to allow the pairs of tied channels to be defined by
a comprehension (as for sets and renamings, for example) and for combining a list
of processes under a replicated version of the operator.

The example files on the web site that illustrate this chapter use this new
construct.
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Chapter 5

Buffers and communication

We have already met buffer processes on numerous occasions. They are ones which
input data on one channel and output it in the same order on another. While
this may seem to be an extremely simple thing to achieve, you should bear in mind
that we might have to do so between two nodes of a complex and perhaps unreliable
network. Communications protocols are an extremely important application of CSP,
and it is almost certain that the appropriate specification for such a protocol will
either simply be that it is a buffer, or be closely related to this. For that reason,
and also because they provide an excellent example of how to build and reason
about a CSP specification, we will look in detail in this chapter at buffers, their
relationship to the piping operator >>, and discuss some of the more elementary
communications protocol topics.

5.1 Pipes and buffers

The trace specification of a buffer is that its alphabet is left. T U right.T for some
type T, and that for any trace s, s | right < s | left.! This is as much as we can
usefully say with a trace specification. This does, like any trace specification, pass
some unlikely processes, such as

e STOP which never does anything

e up.left?r — p which accepts inputs, but never gives them back

Hnvariably T will be the type of left and right so that, for example {| left |} = left. T. We will
use whichever of these notations is most appropriate in future discussions of buffers, though the
one on the left is problematic in cases where left and right may be used with different types in the
internal and external channels of a buffer constructed as a chain.
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e up.left.0 — right.0 — p which transmits only 0’s
e STOP M COPY, which may behave perfectly, but may also deadlock.

All of these fall short, in one way or another, because they either may, or must,
refuse some communication we might reasonably expect a buffer to agree to. What
we need is to use a failures/divergences specification stating:

(i) All a buffer does is input on left and output on right. It correctly copies all
its inputs to its output channel, without loss or reordering.

(ii) Whenever it is empty (i.e., it has output everything it has input) then it
must accept any input.

(ili) Whenever it is non-empty, then it cannot refuse to output.

This can easily be translated into a specification in terms of failures and
divergences. Since a diverging process is not responding to its environment; whether
an input or output is expected of it, it is clear that we cannot allow a buffer to
diverge. We therefore stipulate that, for any buffer B, divergences(B) = {}. The
rest of the specification is then:

(i) s € traces(B) = s € (left. T U right. T)* Ns | right < s | left
(i) (s,X) € failures(B) A's | right = s | left = X Nleft. T = {}
(iii) (s, X) € failures(B) A s | right < s | left = right. T € X

These conditions simply translate the corresponding English clauses into mathemat-
ics. You should note, in particular, the statements that (ii) and (iii) make about the
refusal set X: (ii) asserts that X Nleft. T = {}, or in other words there is no element
of left. T that the process can refuse; (iii), on the other hand, states right. T Z X,
a much weaker statement simply saying that there is some output available (if we
give it the opportunity to choose any output, it cannot refuse). This reflects the
asymmetry between input and output, for we expect the environment to choose
what happens on left, but the process to choose what is output on right. In fact,
of course, we can predict exactly which output will appear from (i) — if any output
other than what we would expect then the trace specification would fail. It would
have been equivalent to have stated the following in place of (iii), which ‘looks up’
the next output:

(iil)" (s, X) € failures(B) A (s | right)*{a) < s | left = right.a ¢ X

Any behavioural specification based on failures will follow a pattern some-
what like the above, with a (possibly vacuous) condition on traces combined with
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various assertions about what the process may refuse after various classes of trace.
Newcomers to this field are frequently over-optimistic about how much one can de-
duce about the traces from what is stated about refusals. It is tempting to believe
that statements like (iii)’, which state that a particular thing must be offered, imply
that the next event will be that one. This is not so, and even if we were to state
that refusals(P/s) = {X | « ¢ X}, this would not imply that the next event is a —
for the process might be able to nondeterministically accept or refuse some other
b. The principle to follow here is that, if you want to limit what traces a process
can do, then you should do so with a trace specification like (i) above.

Examples of processes that satisfy the above specification are COPY and
B<°>°. Just as with behavioural trace specifications, any satisfiable behavioural fail-
ures or failures/divergences specification has a most nondeterministic process sat-
isfying it: [1S, where S is the set of all processes meeting the specification. In
most practical cases this process can be expressed elegantly in CSP in a way that
reflects the structure of the specification. We have already seen the specifications
for deadlock freedom (DF') and divergence freedom (Chaos) amongst many others.

The characteristic process of the buffer specification is BUFF , where

BUFFS“w) = ((left?z — BUFF(@“S“(@) N STOP)
O right'a — BUFF s

This, like B(C’>°7 keeps a record of its current contents. However, what it can refuse is
governed by the specification above: it cannot refuse to input when empty, but can
either accept or refuse an input when non-empty; it cannot refuse to output when
non-empty. In general, a process B is a buffer if, and only if, BUFFy Crp B.

Like B<°>°7 BUFF (y is infinite state and therefore its usefulness for automated
checking is limited (see Section 5.4 for more details). If you are trying to establish
that a process B is a buffer by proving BUFF , Erp B with FDR, then if this is
possible there is (as B must certainly be finite state itself for this to be a reasonable
proposition) some limit N on the buffering capacity of B. If using a tool where it
is either impossible or inefficient to deal with infinite-state specifications, in order
to prove B is a buffer you can make an estimate of N, and attempt to prove
BUFF?{ Crp B, where BUFF?{ is the most nondeterministic N-place buffer:

BUFFY = left?s — BUFF}),
BUFFY,., = (((left?s — BUFFY,. . .,) N STOP)

$#s < N—13STOP)
O right!la — BUFFY
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If the attempt to prove refinement fails this will be for one of two reasons: either
your estimate of N was too low, or B is not a buffer. You can tell which one of these
is the problem either by inspecting the counter-example behaviour provided by the
tool, or by checking against the following process, which we will call an N-place
weak buffer: it behaves like a buffer provided the environment does not over-fill it
(with more than N things) but breaks if this does happen

WBUFF| = left?s — WBUFF[,,
WBUFFY . = ((left?c — (WBUFF (., €#s < N=1%div))
N STOP)

O right'a — WBUFFY

If your process refines WBUFF é\; this does not mean it is a buffer, but does
mean that the reason why it failed BUFFY was because it could take in more than
N things at once. The strategy should then be repeated with a larger value of N.

If your process fails to refine WBUFF é\)f then it certainly is not a buffer. The
specifications WBUFF?{ and BUFF[‘; have a ‘sandwiching’ effect on BUFFy: for

(
any N

WBUFFg Crp WBUFF?;“ Crp ...
Erp BUFFy Cpp

...Crp BUFFg+1 Crp BUFFg

Furthermore, one can show that any finite-state process that refines BUFF'(y will
refine BUFF é\; for sufficiently large N, and a finite-state process that fails to refine

BUFF (y will fail to refine WBUFF?{ for sufficiently large N.2

The piping operator >> is intimately connected with the buffer specification,
as is shown by the following buffer laws.

BL1. If P and @ are buffers, then so is P >> (). Note that this statement is
equivalent to the fact that

since the (monotonic) properties of refinement mean that this single refine-
ment implies our law.

2This is in part because the process BUFF y is the least upper bound of {WB UFF?; | N € N}.
See Chapter 8 and Appendix A for more details.
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BL2.

BL3.

BLA4.

BL5.

BL5'.

If @ uses only the events left. TUright. T, and P and P >> @ are both buffers,
then @ is a buffer. This law represents a kind of quotient result compared
with the product in BL1. It is also true on the other side, as shown by the
next law.

If P uses only the events left. TUright. T, and @ and P >> @ are both buffers,
then P is a buffer.

If P>> @ is a buffer and z is not free in either P or @, then the following
process is also a buffer:

left?e — (P >> rightlz — Q)

This process makes an arbitrary input (as any buffer must as its first step),
and then behaves like the buffer P >> @) with the additional ability to output
what was input. While this result is a sometimes useful technical fact, the
next law, which is a kind of inverse to it, is the main analytic technique used
to prove that piped systems that are not entirely composed of smaller buffers,
are themselves buffers.

If z is free in neither P nor (), which are such that
P> Q dpp left?z — (P> right!lt — Q)

then P >> @ is a buffer. This is a sort of inductive principle which, very
loosely paraphrased, says: if what the process does at first is OK, and it
then refines an earlier view of itself, then everything it does is OK. Sometimes
when applying this law one finds that it is not general enough because P >> )
evaluates to left?z — (P’ >> right!lz — Q') for some other processes P’ and
Q' for which you suspect P’ >> Q' is also a buffer. By doing this repeatedly
one might find a set {Py>> @\ | A € A} of piped combinations and find
oneself using the following rather more complex generalization of BL5.

If z is free in neither Py nor @)y for any A in A, a non-empty indexing set,
and for each A € A

Py >> Qy dpp left?e — [H{(Py>> rightls — Q) | A € A}

then each P, >> (), is a buffer.

The applications of BL1 are many and obvious: for example, it shows that any
chaining-together of any finite number of buffers using >> is still a buffer. BL2
and BL3 are more subtle properties. They might well be used in combination with
BL5: if that rule can show P >> @ is a buffer and we already know that one of P



122 Buffers and communication

and @ is, then so is the other by BL2 or BL3 (see Exercise 5.1.3). We will see an
application of BL4 a little later. But our main examples for this section will be on
the use of BL5 and BL5’, for these are both the most complex of the laws and the
ones that can establish the strongest-seeming results.

The form of BL1-BL3 ensures that all the visible uses of the channels left
and right have the same type. However, in BL4-BL5’, there is nothing to prevent
the internal channel of the pipe having a different type to the external one, and
indeed these laws are frequently used when this is the case. See Exercise 5.1.2, for
example.

As an extremely simple example of BL5, suppose T' = N, the natural numbers
and that

P = left?sr — right!(2 x ) — P
Q = left?s — right!(z/2) — Q

then P >> @ is a buffer by BL5 because of the following simple calculation:

P> Q = lefttz — (right!(2x z) — P> Q) by (>>-step 1)
left?r — (P >>right!((2 x 2)/2) — Q) by (>>-step 3)
left?e — (P >> rightlz — Q)

EXAMPLE 5.1.1 (OVERCOMING MESSAGE CORRUPTION) For a larger example, sup-
pose we are faced with a communication medium E that corrupts occasional mes-
sages. We want to overcome these errors by constructing processes S and R such
that S>> F >> R is a buffer. To do this we have to make some sort of assumption
about how bad FE is: our task would be impossible if it could corrupt any or all mes-
sages. Let us assume it can store only one message at a time, can corrupt at most
one out of any three consecutive messages and, for simplicity, that the messages
being passed are simple bits (0 or 1). We can build a CSP process that represents
the medium: namely the most nondeterministic one that satisfies our assumptions
about its behaviour. E = Ey, where
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Ey = left?e — (right!ls — Ey M right!(1—z) — E»)

Env1 = left?x — rightls — E, forn=0,1

Here, E, is the process that is obliged to transmit n values correctly before being
allowed to corrupt another. Notice that though Ey can corrupt the first bit it
receives, it does not have to, and only becomes obliged to transmit two properly
when it does in fact corrupt one. A process that reliably corrupted every third bit
would be much easier to overcome than this one. Notice that (as PN Q T P)

Ey = left?x — (rightls — Ey M right!(1—z) — E»)
C  left?r — rightls — Ey = Fy

and hence
Ey = left?c — right!zs — Ey C left?z — right!ls — E1 = E»

In other words, Ey C Ey T FEs, which should not be very surprising given that the
only difference between these processes is how long they have to wait before being
allowed to corrupt a bit.

Notice how the fact that CSP can describe nondeterministic systems (having
the M operator) means we can describe system components over which we have no
control and which might be nondeterministic. While it would be a strange decision
to use operators like M in a process we are designing to build, having them is useful
in cases like this. What we are in fact doing is to use for FE the specification we are
assuming it meets. Of course if, in reality, E fails to satisfy this specification then
any results you may have proved are invalidated.

The obvious technique for overcoming the sort of error displayed by this E is
to transmit each message three times through E and to take a majority vote. The
process descriptions for the sender and receiver process are

Smaj = left?z — rightls — right!ls — right!s — Sy

Rpmaj = left?e — left?y — left?z — right!(z 4z = y> 2) — Ry

We can use BL5 to prove Spaj >> E >> Ry, is a buffer using the decom-
position (Smaj >> E) >> Ry, (ie., the ‘P’ of BL5 is Syq; >> E). Denote by R{

maj’
Rg{ﬁj and Rffz’gj’-c the process Ry,q; after inputting the values a, a and b, or a and

b and c respectively (in the given order). Sy,q; >> E >> Ry,,; equals the following
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series of processes, derived methodically using the step and distributive laws of >>.

left?e —
(((right!z — right!s — right!z — Sma;)
>> Fy) >> Ronaj) by (>>-step 1) twice
= left?x —
((right!s — right!s — Spmaj)
>>(right!z — Fo M right!(1—z) — E»)

>> Ringj) by (>>-step 3)
= left?z —

((right!z — right!s — Spa;)

> ((Eo > RE,,;) N (B> R)Y)) by (>>-step 3) and (>>-dist-|)
= left?z —

(((right!z — right!s — Spaj)
>>(Ey>> Ry,,.i))
M ((right!z — right!s — Spa;)
>>(Fo >> R}n_af))) by distributivity
This represents its ‘state’ after the first of the triple communications has taken

place. Similar derivations shows that after the second communication it is

left?r —

(((right!z — Spa;) >>(Eo > Ry0)

M ((right!s — Spaj) >>(E2 >> anij_x)))

M ((right!z — right!s — Spe;) >>(Ey >> R:,:afm)))

and that when all three communications are taken account of it is equivalent to

left?r —
((Smaj =>(Eo >> Ry757"))

maj

M (Spnaj >>(Ep >> REZITT))

maj

M (Simaj >>(Ey > REL-57))

maj

M (Smag > (Eo >> Ryt ™)))

: \ T, @, 1— -z, 1-z,z, ; : fed
Since Ry, Ryt ™", Ry 0% and R, 2%" all equal right!t — Ry, distribu-

tivity implies this equals
left?s — (Smaj >>(E0 M Es M Ey M Eo) >> rightlz — Rmaj)
which, since Fy C Ey C Es, equals

left?x — (Sma; => Eo > right!z — Rpaj)
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which is exactly what is required to prove our result using BL5. (End of example)

In the above example we took advantage of the properties of M and refinement
to convert what was rather a complex expression for the ‘final’ state — we were left
with the possibility of any one of Fy, E; and Fs in the middle — into what we
wanted for the basic form of BL5. The more complex second form BL5’ exists for
cases where we are not so lucky and where the states our system gets into after
transmitting the first communication cannot be reconciled into the original one. It
can be applied both in cases where the choice is nondeterministic, as above, or in
cases where the system simply goes through an evolutionary cycle. As an example
of the latter, consider the following.

EXAMPLE 5.1.2 (PARITY BITS) A pair of processes IP and CP, again transmitting
bits, insert an extra parity bit after each group of 8, and respectively check and
discard this bit. We might describe these processes as follows: IP = IP(0,0) and
CP = CP(0,0) where

IP(b,n) = left?’z — rightly - IP(b®z,n+1) forn<38
= right!b — IP(0,0) for n =8
CP(b,n) = left?s — rightlr — CP(b&z,n+1) forn <8
= left.b — CP(0,0) forn =8

Note that the combination will deadlock if CP is offered the wrong parity bit at
any stage.

To prove that IP >> CP is a buffer, it is necessary to consider all the pairs
{IP(b,n)>> CP(b,n) | be{0,1},n€{0,1,...,8}}
If n < 8, it is easy to show that

IP(b,n)>> CP(b,n) = left?le - (IP(bdz,n+1)>
rightls — CP(b @ z,n + 1))

while IP(b,8) >> CP(b,8) = IP(0,0) >> CP(0,0) which in turn equals
left?x — (IP(z,1) >> right!ls — CP(z,1))
It follows trivially that, for each b and n < 8,

IP(b,n)>> CP(b,n) 3 left?z —
[{IP(V', m)>> right!lx — CP(b',m) |
b €{0,1},m € {0,1,...,8}}
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which is what is needed to show that each of these combinations is a buffer by BL5' .
(End of example)

Applying BL5" has much in common with applying the UFP rule: you need
to identify the set of states the system under consideration can go through, and
show that each of them behaves properly. In the present case each state is a pair
of processes (P, Q) (corresponding to P >> @): the way the right-hand side of the
rule separates these makes this very important. You should note that it is possible
to have P, ), P’, Q' such that

P>Q = P >Q, but
left?e — (P >>rightls — Q) # left?x — (P’ >> rightls — Q')

Examples are P = Q = COPY, P’ = right!0 — COPY, Q' = left?’z — COPY .

Fixed-point induction

The following principle — which we will call fized-point induction — can be used to
prove that a recursive definition meets a specification. It has similarities both with
laws BL5 and BL5’ above, and also with the principle of unique fixed points. As
with both of these, we can state a simple version for a single process, and a more
involved one for vectors of processes defined by mutual recursion.

FIXED-POINT INDUCTION (SINGLE RECURSION)? If P = F(P) is any recursive def-
inition such that either it is guarded/constructive or it defines a divergence-free
process, and @ is such that Q@ Cpp F(Q), then we may conclude @) Crp P. In the
cases of Cp and Cp this principle holds without the need to assume the either/or
condition of the recursion.

Note that, since F is always monotone, @ = F(Q) is equivalent to the
statement

QC P = QL F(P)

“4f P satisfies (the specification) @, then so does F(P)’.

For example, if F(BUFFy) Drp BUFFy for a well-behaved function F(-),
then the process defined by P = F(P) is a buffer. Consider the process

Bt = left?x — (BT > right!ls — COPY')

defined in the previous chapter. If we accept the argument given there that this
recursion is constructive, then fixed-point induction and our buffer laws easily prove
it to be a buffer. Suppose P is a buffer, then

3For the proof that this and similar rules are valid, see Section 9.2.
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e P> COPY is a buffer by BL1, which implies
o left?s — (P > right!ly — COPY') is a buffer by BL4.

e This proves what is required for fixed-point induction; we can infer that B*
is a buffer.

FIXED-POINT INDUCTION (MUTUAL RECURSION) If P = F(P) is any recursive
definition of a vector of processes which, as above, is either guarded/constructive
or makes each component divergence-free, with indexing set A, and Q is such that
Qx Crp F(Q) for all X € A, then we may conclude that Qy Crp Py for all A € A.

Again, in the cases of Cr and C ¢ this principle holds without the need to assume
one of the definedness conditions of the recursion.

As an example of this rule in action, consider the mutual recursive process
B(°>° defined in Section 1.1.3. We asserted earlier that this is a buffer, a claim that
can now easily be justified. We prove that

B> 1 BUFF, for all finite sequences s.
To do this (since the B> recursion is guarded) it is sufficient to prove that

BUFF C F(BUFF)

where F' is the function of the B recursion. This is verified by examining the
definition of BUFF, copied here from page 119

BUFF{(a) = ((left?z — BUFF(@ASA((Z)) 1 STOP)
O right'a — BUFF s

Since removing nondeterministic options leads to a refinement, we can conclude
that taking away the underlined option above leads to the inference that

BUFF ¢y T (left?s — BUFF 3y (ay)
O right'a — BUFF,

which is precisely what was required (since the right-hand side is F(BUEF)).

It should be emphasized that fixed-point induction is a very general technique
and is certainly not just restricted to proving things are buffers.

EXERCISE 5.1.1  Re-formulate the buffer specification in terms of the variables tr and
ref (as used in Exercise 3.3.2).
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EXERCISE 5.1.2  Take your answer to Exercise 4.1.3 and prove that it works. This is
probably an application of BLS5.

EXERCISE 5.1.3  Show, using the buffer laws, that if
B> COPY = left?z — (B >> right!lsy — COPY)

then B is a buffer.

Now show that BT >> COPY satisfies the recursive definition of BT and deduce
that BY = B* >> COPY. Thus complete an alternative proof that BT is a buffer.

EXERCISE 5.1.4 A buffer works on the FIFO (first in, first out) principle. A stack, on
the other hand, is LIFO (last in, first out): when non-empty, it will output the object it
contains that was most recently input. Give a failures specification of a stack in the same
style as that of a buffer: like a buffer it should not be able to reject input when empty or
to refuse to output when non-empty. Hint: you might find it helpful to define the concept
of a stack trace recursively, based on the principle that whenever a stack outputs, the value
output was input as the first member of a final subsequence (suffiz) s of the trace containing
equal numbers of inputs and outputs, and where s without its first and last elements is itself
a stack trace.

Show that COPY is a stack as well as a buffer. Are there any other processes
satisfying both specifications?

EXERCISE 5.1.5  Implement an infinite stack using the enslavement-based recursive
scheme used for the SET recursion. It is easiest to do this using an isempty event in a
similar way. Since the stack specification does not allow such an event, it must be banned
at the outermost level of the recursion only by parallel composition with STOP. Thus,
your result should look like

STACK' || STOP where STACK' is recursively defined.

{isempty}

Do the same thing without the isempty event: you should end up with a program
that is no longer but perhaps a little more subtle. You might or might not find it helps here
to think about how one might eliminate the iszero event from the process Zero, defined
on page 112.

EXERCISE 5.1.6 A bag is a process that behaves in the same general way as buffers
and stacks, except that it can always output any object it contains (rather than being
restricted to FIFO or LIFO, for example). Give a failures specification of a bag, and show
it is refined by those for buffers and stacks. Hint: you will find it helpful to construct or
assume a function bag(t) that maps a sequence t € T™ to the bag or multiset of elements
wn it: the order of t is lost in bag(t) but the multiplicity of elements is retained. There are
obvious analogues of the usual set-theoretic operations over bags.
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EXERCISE 5.1.7 If P; and P, are (i) buffers, (ii) stacks and (iii) bags, which of the
following compositions must have the same property? (a) Pi ||| P2, (b) Pi>> P», and

(c) P1 I P,. Give brief reasons for your answers.
(left,right]}

EXERCISE 5.1.8  Suggest analogues of BL1-BL5 for bags using ||| rather than >>.
Which of them do you think is true?

EXERCISE 5.1.9  Suppose p p.F(p) is a constructive recursion and it is conjectured that
F(P) is deadlock-free whenever P is. What refinement check is necessary to establish this
fact? Why would this prove that the recursive process is deadlock-free?

EXERCISE 5.1.10  Consider the two different combinations of COPY with itself un-
der the generalized parallel operator considered in Exercise 2.4.2. These can be chained
together in two ways: prove that one is a buffer and show that the other is not.

5.2 Buffer tolerance

Consider the effect of placing a buffer on a channel connecting two CSP processes. It
makes sense to do this on any channel which is used for communicating information
one way, though it may very well alter the behaviour of the overall system even in
this case: for example a buffer placed on the internal channel in COPY > COPY
will still be a buffer (as is easily proved by BL1) but with increased capacity. This is
a relatively subtle effect which one probably would not mind in most circumstances,
but (i) clearly it should not be allowed in any context where we are relying on a
buffer capacity of two or less and (ii) there are other examples where inserting a
buffer in this way would have a much more significant effect.

The extent to which a given channel is buffer tolerant is a measure of whether,
and how much, it relies on the CSP model of handshaken communication. It is
frequently desirable to make any channel that has to operate over a long distance
buffer tolerant since implementing the flow-control necessary to avoid introducing
some buffering can be expensive.

A given channel may be buffer tolerant in an absolute sense, meaning that
the semantics of the overall process does not change at all, or more likely, relative to
some overall specification. Thus, COPY >> COPY is buffer tolerant relative to the
specification of being a buffer! Sometimes a channel may be tolerant of buffering
up to some given limit or of any finite buffer but not infinite capacity ones.

In the COPY >> COPY example any buffer which is placed on the internal
channels can clearly become full however large it is. Other examples, however, only
use a fixed finite quantity of buffering no matter how much is provided. You can
characterize such behaviour by testing whether one of the weak buffer processes
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WBUFF Z‘> can safely be placed on the channel (the parameter n, of course, captur-
ing the maximum amount of buffering ever used). If more than n buffer places were
ever used, this experiment would produce a divergent process. For an example of
this type of behaviour, see Exercise 5.2.2.

It is easier to understand the concept of buffer tolerance than to provide
general criteria under which it is true. Usually it is possible, with experience, to
get a feel for whether a given system has this property: specific instances, at least
for small buffer sizes, can often be checked using tools like FDR.

The type of circumstances in which it does and does not tend to hold are
well illustrated by attempting to generalize the COPY >> COPY example to the
following general rule. It would be very convenient if the following plausible ‘buffer
law’ were true:

If P>> R and @ are both buffers, with the type of ) matching the ‘internal’
type of P>> R, then P >> () >> R is also a bulffer.

Unfortunately, this is not universally valid because of the possibility that R
might input selectively from P. As a simple example, suppose COPY 5 and COPY 3
are respectively defined over the types To = {0,1} and T5 = {0, 1,2}. Then setting

— COPY, O (right!2 — STOP)
COPY 5
= COPY,

P
Q
R

gives a counter-example to the above (the internal type being T3): R has the good
sense to reject the offer of 2 in the combination P >> R, which therefore behaves
exactly like COPY 3> COPY 5. Putting @ in the middle, however, allows P to
make its fatal output and deadlock. If we take away the possibility of R controlling
what P outputs to it, the law becomes true:

BL6. Suppose P >> R is a buffer, where the internal type is T (i.e., the type
communicated by right in P and left in R), and that

(a) @ is a buffer of type T,
(b) if s*(left.x) € traces(R) and y € T, then s™(left.y) € traces(R), and
(c) if (s, X) € failures(R) then {| right |} C X = left. TN X = {},

then P >> @) >> R is a buffer.
The side conditions (b) and (c) here avoid the possibility that we are relying on in-

fluence passing backwards (via handshaking) along the channel in question in order
to get the original system to work. They will automatically be satisfied provided
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R is deadlock-free and the only way it can communicate on left is by unrestricted
input. Influence of this sort more or less excludes the possibility of buffer tolerance
in any example. When looking to see whether there is such influence, you should
bear mind that it can be much more subtle than in the COPY 5/ COPY 5 example
above, especially when there are other communication routes between the processes
connected by the channel in question: see Exercise 5.2.1. (Needless to say, buffer
tolerance makes sense over a much wider range of ways of connecting channels than
just the >> operator.)

Notice how BL6 supports the concept of a layered protocol discussed on
page 107. If we have designed some pairs of processes (T;, R;) such that each
T;>> R; (i > 0) is a buffer, and it can be shown that Ty >> M >> Ry is a buffer for
some communication medium M, then BL6 and induction imply that

T, >T,1>..>T1>Ty>M>Ry>R >...>R, 1>R,

is one too, provided the R; satisfy the no-selective-input criteria of BL6 and the
types match up in the obvious way.

EXERCISE 5.2.1 (a) We can define a pair of processes that alternately use two chan-
nels to communicate as follows:

Divide = left?s — mid.llz — Divide’
Divide’ = left?z — mid.2!lz — Divide

Merge = mid?n?x — right!s — Merge
DandM = (Divide " H‘d‘} Merge) \ {| mid |}

Plainly DandM acts as a two-place buffer: you can prove this easily with BL5' if you
interpret mid as a single channel and note that the above combination is then equivalent
to

Divide["9h ) mid] > Merge['eft Jmid]

Do this and hence show that DandM is (relative to the buffer specification) tolerant of
buffer of type {| mid |}.

(b)  What would happen if we were to re-interpret mid as an array of two separate
channels and place buffers on each? Show clearly why the result need not be a buffer.

(¢) Replace Merge with another process with the same alphabet so that the new
system is still a two-place buffer but is tolerant of separate buffers on mid.1 and mid.2.
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EXERCISE 5.2.2 The following processes carry messages alternately between two users:

SwapL = leftin?x — tolr — SwapL’
Swapl! = fro?z — leftout!s — SwapL
SwapR = to?x — rightout!ts — SwapR’
SwapR' = rightin?x — frolz — SwapR
LandR = (SwapL ||  SwapR) \ {| to, fro |}
{Ito, frol}

Find a sequential process that LandR is equivalent to, and show that a copy of WBUFF b
can be inserted onto both the internal channels without changing this value.

By adapting this example, find a pair of processes connected by a pair of chan-
nels, one in each direction, that implement a buffer which is tolerant of the insertion of
WB UFFb onto both channels.

How does your answer to Exercise 5.2.1 (c) react to having this weak buffer inserted
onto either or both channels?

EXERCISE 5.2.3  Show that if a channel is tolerant of WBUFF?, then it is tolerant of
WB UFF?;rl (relative to any behavioural specification). Find an example of a system that
is tolerant of WBUFF?7, but not of WBUFF,.

5.3 The alternating bit protocol

Earlier in this chapter we saw how to overcome the corruption of at most one in
every three messages. It is similarly possible (though harder, particularly in the
case where the ‘messages’ are just bits: see Exercise 4.1.4) to overcome bounded
loss, duplication or even a combination of all three together. By ‘similarly’ here, we
mean that the overall system maintains the structure S >> F >> R.

In practical terms the sort of techniques used in these cases probably only
make sense in cases where very low level information (i.e., bits or little more) is
being transmitted, almost certainly between hardware components. Since there is
only a one-way passage of information there is no way R can let S know that a
particular message has got through, and so S must put as much redundancy into
the transmission of every message as is necessary to overcome the worst assumed
behaviour of the communication medium.

There are more advanced techniques that can be used in cases where larger
and more structured values can be passed as messages, and particularly where it is
possible to implement an acknowledgement channel (albeit faulty in the same sense
as the forward channel) back from R to S. When this channel cannot be imple-
mented (or is impractical because of time delay — for example with the transmission
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Ci
m out

c2

Figure 5.1: The process structure of the alternating bit protocol.

delay, due to the finite speed of light, back from a remote space probe) the appro-
priate technology is a branch of mathematics called error correcting codes which is
beyond the scope of this book but which allows one to get the same sort of error
correction under corruption as was illustrated earlier, only with much greater effi-
ciency. For various values of (n, k, d) (for example (23,12, 3)) one can find ways of
coding a k-bit message into n > k bits in such a way that the result can be decoded
even after up to e bits are corrupted. See [90] for a comprehensive introduction to
this subject.

When we can implement the acknowledgement channel there are a number of
protocols that can be used to exploit it. It is usual to restrict attention in that case to
a medium that can lose messages, or perhaps duplicate them, but cannot corrupt
them. This is, like so much else, an abstraction of what is really implemented:
it is likely that the protocols we are looking at are built on top of mechanisms
for inserting checksum-like information into messages and rejecting (i.e., ‘losing’)
messages which fail the corresponding tests when delivered.

We might want to implement a buffer between two distant points but only
have unreliable channels available. By this, we mean error-prone channels that can
lose or duplicate as many messages as they wish — though not an infinite consecutive
sequence — but preserve the value and order of those they do transmit. There are a
number of protocols available to overcome this sort of error, the simplest of which
is known as the alternating bit protocol (ABP). In fact, there are (as we will see in
this and later chapters, where we will frequently use it as an example to illustrate
new ideas) a number of variants of this protocol, but the basic idea is the same in
all of them. The structure of the network used is shown in Figure 5.1, where the
two error-prone channels are C'1 and C2.

The basic idea is to add an extra bit to each message sent along the leaky
channels which alternates between 0 and 1. The sending process sends multiple
copies of each message until it is acknowledged. As soon as the receiving process
gets a new message it sends repeated acknowledgements of it until the next message
arrives. The two ends can always spot a new message or acknowledgement because
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of the alternating bit.

This is usually described using real-time features such as time-outs (for de-
ciding when to re-send messages and acknowledgements; we will return to this in
Section 14.5), but in fact with a little care it is possible to construct a version whose
correctness is independent of timing details. Below we present sender (S) and re-
ceiver (R) processes which can readily be proved to work, in the sense that if C'1
and C'2 behave as described above, then the complete system behaves like a reliable
buffer.

Very general error-prone channel processes are described by the following,
where no limit is placed on the number of losses or duplications:

C(in,out) = n?z — C'(in,out, )
C'(in, out,x) = outlz — C(in, out) (correct transmission)
M out!ls — C’(in, out,z) (potential duplication)
N C(in, out) (loss of message)

With the channels implied by Figure 5.1, we get C1 = C(a,b) and C2 = C(c, d).

This sort of erroneous medium may lose as many messages as it likes, and
repeat any message as often as it wishes. While we can reasonably hope to create
a system using such media which works as long as they do not commit an infinite
unbroken series of errors (so that only finitely many messages actually get through
in an infinite time), any such system will inevitably be subject to divergence caused
by infinite message loss or repetition. One can easily change the definition so that
at least one correct action is performed every N as follows:

Cy(in,out,7) = in?zx — C'(in, out,z, 1)
Cy(in, out,z,0) = outls — Cy(in, out,N)
Cy(in,out,z,r) = outlsx — Cy(in, out, N) ifr>0

M outly — Cy(in, out,z, 7 — 1)
N Cn(in, out,r — 1)

While this definition looks (and is!) very similar to that of Ey in the previous
section, there is the significant difference that this time we are designing a protocol
that works independently of which N is chosen. The only function the limit N
actually performs should be to prevent divergences. In Chapters 10 and 12 we will
meet techniques that allow us to assume what we really want here, namely that
neither of the medium processes ever commits an infinite sequence of errors.

The sender and receiver processes are now defined as follows: S = §(0) and
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R=R(0) | Q,where for s € {0,1} and = in the set of messages:
{Ib,cl}
S(s) = in?x— S'(s,x)
S'(s,z) = a.s.x— S'(s,x)
Od.s — S(1—s)

0d.(1-s) — S'(s, z)

R(s) = b.s?z — outly — R(1—s)
0b.(1—s)?z — R(s)
Ocl(1—s) — R(s)

If we were simply to set R = R(0) then the system could diverge even when
C1 and C2 were error-free, because it could get stuck communicating over C'1 or
C2 exclusively. (For example, the transmission of some message might happen
infinitely without it ever getting acknowledged.) Therefore we have introduced
the extra process @), with alphabet {| b,c |}, in parallel with it to ensure it is
sufficiently well-behaved to avoid these types of divergence. Because of the way
the two processes are combined in parallel, its effect is to restrict R(0)’s possible
behaviours. @ is any process that is always either willing to perform any input
on b or any output on ¢ (or both) but which will not allow an infinite sequence of
communications on one channel to the exclusion of the other (a fairness condition).
The most obvious such @ is pq.b7z — c¢?z — ¢, which makes the two channels of
R alternate. This illustrates a use of the parallel operator to impose constraints,
and is related to the discussion in Section 2.5 about the use of parallel operators as
conjunction over trace specifications.

There is no implication that R would be implemented as a parallel process —
we would refine the parallel combination into a sequential one. (One satisfactory
sequential R, equivalent to the parallel composition of R(0) and the alternating
process above, is one that accepts messages on b and sends appropriate acknowl-
edgements on c in strict alternation.)

We will argue the correctness of this protocol informally but sufficiently rig-
orously that it should be clear how a formal proof would go. Let ABP denote the
composition of S, C1, C2 and R (with R being any version well-behaved in the
sense described above and C1 and C2 being of the form that avoids the simple
infinite-error divergences).

Livelock is impossible because of the introduction of ¢ and because neither
C'1 nor C2 commits an infinite series of errors. The latter means that each of C1
and C2 eventually transmits any message that is input to it repeatedly, and that
provided they are not blocked from outputting they will eventually accept any input
they are offered. In short, since any divergence clearly involves an infinite number
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of communications by either C1 or C2, infinitely many messages must (in the
divergence) be either getting through from S to R or vice-versa. But R can neither
receive infinitely many messages without transmitting one, nor send infinitely many
without receiving one. We can therefore conclude that R both sends and receives
infinitely many messages in the divergence and (by the properties of C'1 and C2)
so does S — all this in a sequence where neither S nor R communicates externally.
It easily follows from the definition of S that all the messages from S to R are
repetitions of s.z for some fixed bit s and packet x. The fact that R ignores these
(as it must, for it does not generate any external communication) means it must be
in state 1 — s and therefore that the acknowledgements it is sending back are all s.
But, of course, since these are received by S they would necessarily interrupt the
transmission of the s.z’s. Thus the system cannot diverge.

Nor can it deadlock. We will study deadlock in much more depth in Chapter
13 (and see Exercise 13.2.1), but the basic argument for this system rests on the fact
that, except when it can communicate externally (which certainly precludes dead-
lock), S will always both accept any incoming communication on d and be willing
to output on a. Hence neither C'1 nor C2 can be waiting for S in a deadlock state,
and it follows they are both waiting for R. But unless R is willing to communicate
externally it can always communicate with C'1 or C2, so one (at least) of the two
requests coming into it is accepted, meaning that the system is not deadlocked. Be-
cause it can neither deadlock nor diverge, it follows that, whatever state it reaches,
it always eventually comes into a stable state where all it can do is to communicate
externally (input on left, output on right or perhaps both).

In order to study the transmission of messages it is easiest to consider the
sequences of messages on a, b, ¢ and d in which any message following another
with the same tag bit is removed, as are any initial messages on ¢ and d with tag
bit 1. Call these stripped sequences @, b, € and d. The structures of the processes
involved then imply the following facts:

e (1 implies that #a > #b: the stripping process clearly removes any dupli-
cation.

e R implies that #b > #¢: R can only change the bit it outputs along c in
response to a change in the input bit on b. It only initiates the first member
of € in response to the first 0 in b.

e (2 implies that #¢ > #d.

e S implies that #d > #a — 1: S can only change the bit it outputs along a
in response to a change in the input bit on d.
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We can piece all of these together to get
#a > #b > #e > #d > #a -1

or, in other words, these four sequences are, in length, all within one of each other.
From this it is implied that C'1 must, at each moment, have transmitted at least
one of each equal-bit block of outputs sent by S except perhaps the current one (for
it to have completely lost one would imply that #b is at least two less than #a).
This, the structure of S, and the fact that R outputs a member of each block it
receives on right, imply that each trace s of the protocol satisfies

s | right <s |left and #(s | left) < (s | right) +1
or, in other words,

COPY Cr ABP

The facts that ABP is deadlock- and divergence-free, and clearly never se-
lects between its inputs, combine with this to imply that it is failures/divergences
equivalent to COPY .

It can be shown fairly easily by modifying the above arguments that ABP
is tolerant of any finite buffer on its internal channels. Placing an infinite buffer on
one or more of them could lead to divergence.

The alternating bit protocol is too simple and inefficient to be used much
in practice. The ideas it uses are, however, to be found in many that are. The
interested reader can find some more advanced protocols both in the example files
on the web site accompanying this book and in texts such as [25].

EXERCISE 5.3.1 Assume that R is the version of the receiver in which received messages
and acknowledgements alternate. Estimate the worst-case performance of the resulting
ABP when C1 and C2 are each obliged to commit no more than N consecutive errors
(in terms of internal communications per message transmitted). Can you improve this by
modifying R? Would the answer to this last question be changed if C'1 and C2 lost the
ability to duplicate messages (retaining the possibility of loss)?

EXERCISE 5.3.2  The version of the protocol in the text leaves S free to send and
receive messages arbitrarily, but restricts R to behave ‘fairly’. What would happen (i) if
these roles were reversed and (ii) if they were both restricted to be fair?



138 Buffers and communication
5.4 Tools

It is usually much easier to analyze and prove things about the sort of systems we
have seen in this chapter using a mechanical tool like FDR rather than by hand.
The examples we have dealt with here are extremely simple compared to those
that can be handled mechanically. Notice that laws like BL5 and BL5’ essentially
work by enumerating the states of a chained system, and it is certainly true that
computers do this sort of work better than humans.

As with the work in the previous chapter, the absence of direct support for >>
in the machine-readable version of CSP means that the ‘plumbing’ of such networks
has to be done in other ways such as the P[c <-> d]Q construct.

You should bear in mind, though, that current tools can only prove things
about specific processes, and then only ones that are finite state.* Thus, we cannot
use FDR to prove laws like BL1-BL6 and cannot directly prove that B* (an infinite-
state process) is a buffer. Nor can it prove general buffer tolerance except where
some WBUFF Z‘> works. Remember, however, that it may be required that the
specification be finite state also, implying the need to use some of the restricted or
approximate specifications discussed in the first section of this chapter.

An exception to the rule that one can only prove things about finite state
implementations arises from fixed-point induction. The point is that, even though
the process defined by a recursion P = F(P) (like that of B™) may be infinite state,
it is quite likely that F'(Q) will be finite state if @ is. Thus, if the characteristic
process of the specification @) we are trying to prove of P is finite state, the main
proof obligation of fixed-point induction, namely

QL F(Q)

is likely to be something one can verify automatically.

For example, one can prove for any chosen N (that is small enough to allow
FDR to deal with the resultant state spaces) that BT satisfies any of the weak
buffer specifications WBUFF é\; . You cannot ask the same question about the full
specification BUFF (y because the resulting right-hand side is infinite state. An
attempt to prove any of the finite buffer specifications BUFF é\; will fail because B
does not satisfy these (but it would nevertheless be interesting to reassure yourself
that this is so by attempting the checks).

4With the version of FDR available at the time of writing it is not possible to have an infinite-
state process like BUFF(y as a specification. It is likely that future versions will be able to deal
with these, by exploring only those parts of the specification that are necessary — employing lazy
exploration and normalization. It will therefore be possible to prove that a finite-state process is a
buffer without guessing its maximum size. However, this is likely to carry a performance penalty
so it will probably remain a good idea to keep most specifications finite state.
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It is an obvious limitation on this type of tool that they cannot take the step
from proving that B satisfies WBUFF é\; for any chosen N to proving it is true for
all N. (This comes under the category of ‘general results’ that are unobtainable as
discussed above.)

It is worth while pointing out one category of ‘general results’ that are ob-
tainable using finite-state checking which tends to be particularly relevant to com-
munications protocols. This relates to the notion of ‘data-independence’. Many
of the process definitions in this chapter were, or could have been, defined so that
they transmitted data values taken from a completely arbitrary type. These values
are input and passed around and manipulated uninspected within the program:
the nature of the underlying data type is completely irrelevant to the operation of
the program. It is frequently possible to infer results about how such a program
behaves for general types based on their behaviour for very small ones (often size
one or two). This concept is developed, together with two case studies, in Section
15.2.

5.5 Notes (2005)

Over the past year the author has worked a great deal on buffer tolerance and now
have far more results than are presented here. This work should appear on my
website during the first half of 2005.

Some interesting finitary methods for checking if a finite-state process P is
a buffer have recently come to light. One class of methods can be found in [112].

Say a process with one output and one input channel is output determinis-
tic if, after any trace s, it cannot both offer and refuse any output action o, and
furthermore it has at most one output event possible after s. A finitary characteri-
sation of being a buffer (taken from the work on buffer tolerance discussed above)
is that our P is a buffer if and only if both

e COPY >> P is output deterministic, and
e COPY = P || COPY*, where
b

COPY x = (left?z — right's — COPY™*) O right?c — STOP

In essence the first of these conditions checks that the output depends monotonically
on the stream of inputs; the second checks that the correct things, and only the
correct things, come out.
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Chapter 6

Termination and sequential
composition

6.1 What is termination?

In many programming languages there is a sequential composition operator: P; @
runs P until it terminates and then runs . In CSP we would expect to see all of
P’s communications until it terminates, and for it then to behave like Q). There
is no conceptual problem with this provided we understand just what termination
means.

So far we have come across two sorts of process which can communicate no
more: on the one hand, a deadlocked process such as STOP or a deadlocked parallel
network; on the other, the divergent process div. Neither of these can be said to
have terminated successfully, since both represent error states. Indeed, divergence is
in principle undetectable in a finite time in general, as a result of the unsolvability
of the halting problem. It is natural to want to associate P; @ with a form of
termination which happens positively rather than by default.

The process which terminates immediately will be written SKIP. We will
think of the act of terminating as producing the special event v' (usually pronounced
‘tick’). Thus, SKIP can be identified with the process v — STOP. You can think
of a process communicating v' as saying ‘I have terminated successfully’. The
identification of termination with an event is often convenient, but the analogy
should not be taken too far — for example, v is always the final event a process
performs. v’ is not (in this presentation of CSP) a member of ¥ — emphasizing that
it is very special. It is not permitted to introduce v* directly: SKIP is the only
way it arises; for example the syntax v — STOP used above is illegal because it
mentions v'. ¥¥ will denote the extended alphabet ¥ U {v'}

Thus SKIP; P = P for all P, since all SKIP does is terminate successfully
and pass control over to P. In contrast, STOP; P = STOP, since STOP does not
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terminate, merely come to an ungraceful halt. Similarly div; P = div. Notice that
the v of the SKIP in SKIP; P is hidden from the environment — this simply means
that we cannot see where the join occurs from the outside, and means that we do
not confuse the occurrence of the first v' with overall termination. Because of this
concealment parts of the theory of sequential composition bear some similarity to
that of hiding and, in particular, it turns the final v* of the first process into a 7
(invisible action).

A formal tabulation of the laws of these new constructs is delayed to a later
section. However, we would expect ; (sequential composition) to be associative and
distributive, and

(72:A—=P); Q@ = ?w:A—(P; Q)

amongst other laws (noting that v cannot, by the assumptions above, be an element
of A).

This ‘law’ brings up an interesting point in the interpretation of ‘state’ iden-
tifiers in CSP processes, the identifiers that represent objects input or used in pa-
rameterized recursions such as COUNT or B*°. For consider the ‘identity’

(?z: A — SKIP); x — STOP = ?z:A— (SKIP; (x — STOP))

In the right-hand side, it is quite clear that the second z must be the same event as
the first, while on the left-hand side this would require the value of £ communicated
first to be remembered outside the prefix choice construct that introduced it, and
across the sequential composition ; . This raises the important question of how the
values and scopes of identifiers are to be interpreted. The real question we need to
resolve in order to decide this is whether CSP is an imperative language, where the
value of an identifier can be modified (and the input ?z : A is taken to modify an
existing value), or a declarative language, where it cannot. We take the declarative
view that a construct like 7z : A — P creates a new identifier called x to hold the
input value in P and that this value is not remembered once P has terminated,
since we have left z’s scope. An identifier gets its value at the point where it is
declared and keeps the same value throughout that scope. If there are any other
identifiers called x created by input or otherwise within P, then these simply create
a hole in scope in the same way as in many programming languages. Thus, the final
z in the term

?¢: A— ((?z: A— SKIP); (x — STOP))

will always be the one created by the first input.

It is this decision which allows us to identify all terminations with the single
event v', and also allows us to avoid the question of how an assignable state is shared
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over a parallel construct. Note how this decision is consistent with the observation
made in the Introduction (Chapter 0) about process algebras discarding standard
programming language constructs such as assignment.

In conclusion, the law above is only valid if the term () does not contain
an unbound (i.e., free) reference to an identifier called z. If it does, then it would
simply be necessary to change the name of the bound identifier so that it no longer
clashes with any free in Q.

In examples, sequential composition can be used to improve the modularity
of descriptions — allowing one to separate out different phases of behaviour. It
also permits us to express some definitions finitely which normally require infinite
mutual recursion. Recall the infinite mutual recursion defining COUNT,, for n € N.
There is a very clear sense in which this describes an infinite-state system, for all
the different values that n can take lead to essentially different COUNT,,. We can
simulate this behaviour using sequential composition as follows:

ZERO = up — POS; ZERO, where

POS = up— POS; POS
O down — SKIP

The intuition here is that POS is a process that terminates as soon as it has com-
municated one more down’s than up’s. Thus ZERQO, which is intended to behave
like COUNT, initially only accepts an up, and returns to that state as soon as the
number of subsequent down’s has brought the overall tally into balance.

We will prove this equivalence when we are equipped with enough laws.

Iteration

Now that we have a sequential composition operator it is natural to want ways
of repeating a process. The simplest repetition operator is infinite iteration: P*
means the repetition of P for ever with no way of escaping. This is not a construct
that makes sense in many programming languages, since in a standard language an
infinitely repeated program would simply send one’s computer into a useless loop
(divergence). In CSP, of course, a process is measured by what it communicates as
it goes along, so that the definition

P* = p; p*

makes sense. For example, (a — SKIP)* is simply a process that communicates an
infinite sequence of a’s; it is indistinguishable from pp.a — p. We can similarly
write

COPY = (left?z — right!z — SKIP)*



144 Termination and sequential composition

However, the declarative semantics of identifiers means that no information can be
‘remembered’ from an input in one P to a later one in P*. Thus a two-place buffer
cannot be written as neatly: the best we can do is to create a two-place temporary
buffer that terminates when emptied:

TB = left?x — TB'(x)

TB'(z) = rightlsx — SKIP
O left?y — right!ls — TB’'(y)

IterBuffy, = TB*

Because of the way the values z and y are intertwined in this definition, there
is no hope of writing TB or TB’(z) as an iteration. To do so we would require an
external place to store values: see Exercise 6.1.2.

The declarative semantics also means that there can be no direct analogue
of a WHILE loop: this depends on being able to evaluate a boolean whose value
changes with the state of the process — something that makes no sense when an
identifier’s value does not change within its scope.

It would, however, be possible to define an analogue of a FOR loop: this
might be

FOR n=a,b DOP = SKIP<a > b}
Pla/n]; (FOR n=a+1,b DO P)

since the identifier of this type of loop is declared in the construct itself. Indeed
many of the traditional inelegancies of imperative programming with FOR loops
(such as assigning to the loop identifier or changing the values of the bounds within
the body) become impossible in a declarative semantics. The FOR loop is not,
however, part of usual CSP syntax.

EXERCISE 6.1.1  Define a process PHOLE representing a pigeon-hole: it can commu-
nicate empty when empty, when it will also accept in?z and become full. When full it
can only accept out.z for the appropriate x, which empties it. You should give both a
definition as an ordinary recursion and one as Q* where Q contains no recursion.

Show that the two processes you have defined are equivalent.
EXERCISE 6.1.2 Find a process P such that the two-place buffer equals
*
(P //{\z'n,out,empty\}PHOLE)

and P contains no form of recursion. [Hint: P should, on each of its cycles, communicate
first with its slave.)
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6.2 Distributed termination

Having introduced the concept of termination we have to understand how it relates
to the other CSP operators, and in particular the parallel operators. If we treated
v like any other event, then we would say that P ||,, @ has the following cases
for determining termination:

o If v € X UY then it can never terminate.

e If v € X\Y then it will terminate whenever P does.

e If v € Y\ X then it will terminate whenever @ does.

e If v € X NY then it terminates when both P and @ do.

The middle two of these are somewhat problematic, for they leave behind the ques-
tion of what to do with the process which has not terminated. We might assert
that it is closed down by some powerful mechanism which, if we are really expecting
a distributed parallel implementation, seems to have to act instantaneously over a
distance. On the other hand, the other process might continue, creating the em-
barrassment of a system which communicates after ‘terminating’. Realizing that
termination is really something that the environment observes rather than controls,
the first case (and the non-terminating halves of the second and third) cannot real-
istically prevent the arguments from terminating, but can only fail to report this to
the outer environment. Given this observation, there is really no sensible use of the
first item (v ¢ X U Y') above, since all that it can achieve is to turn what would
have been termination into deadlock.

The route we take is to assert that the final clause always holds implicitly:
there is no need to include v* in the alphabets X or Y, for after all v’ is not a
member of ¥, but the combination P ||, @ always behaves as though it were in
both. In other words, a parallel combination terminates when all of the combined
processes terminate. This is known as distributed termination. This reading makes
it sound as though the various processes have to synchronize on termination, as they
do on normal events in X N Y. In fact the best way of thinking about distributed
termination is that all of the processes are allowed to terminate when they want
to, and that the overall combination terminates when the last one does. The fact
that termination is the last thing a process does means that these two views are
consistent with each other: in P ||, @, neither process can communicate after it
has terminated but the other has not.

If A is a set of events which we wish to communicate in any order and then
terminate, then this can be expressed

|,cu(a = SKIP, {a})



146 Termination and sequential composition

We will see in Section 13.2.2 that this method of combining communications can be
useful in avoiding deadlock.

The principle of distributed termination is extended to all other parallel
operators.! The view that distributed termination means waiting for all processes
to terminate, rather than actively synchronizing v'’s fits far better with the notion
that ||| has distributed termination.

The fact that v is being interpreted differently from other events — mainly
in its finality — means that we must protect it from confusion with other events.
This is helped by our assumption that v € 3, but we should explicitly mention
that v may not be hidden by the usual hiding operator, and nor may it be affected
by renaming. Any renaming affects only members of ¥, and implicitly maps v" and
only v to v.

6.3 Laws

We will present two sections of laws: one which could be said to describe how SKIP
and sequential composition behave in themselves, while the other shows how they
interact with other (mainly parallel) operators.

Sequential composition is distributive and associative, and has unit SKIP.

(PMQ); R = (P; R)N(Q; R) (; -dist-1)
Py (QNR) = (P; Q)N (P; R) (; -dist-r)
P (Q; R) = (P; Q); R (; -assoc)
SKIP; P = P (; -unit-l)
P; SKIP = P (; -unit-r)

The last of the above laws, though intuitively obvious, requires a good deal of care in
modelling to make it true. A consequence of this care is the next law, which at first
sight is far less obvious. Normally one would not write a process like P O SKIP,?

IThere are good arguments for doing something different with enslavement. We might think
that, when P terminates, P/ @ should terminate irrespective of Q’s state. This would have
the disadvantage that enslavement would no longer be expressible in terms of other operators,
and would also (arguably) be an opportunity for untidy programming: insisting on distributed
termination of P/ y @ essentially means that P has to tidy up after itself before it terminates.

2Tt looks so unnatural that Hoare banned it, something I am reluctant to do because (i) even
if it is banned, it is impractical to ban more elaborate processes that happen to equal it such as
(a — SKIP) \ {a} O Q and (ii) it is hard to make the algebraic semantics work without it.
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since the concept of offering the environment the choice of the process terminating
or not is both strange in itself, and fits most uneasily with the principle that v is
something a process signals to say it has terminated. The best way to deal with
this process, given that we are forced to consider it, is

PO SKIP = P SKIP (O-SKIP resolve) ~ (6.6)

Remember that P > @ (equivalent to (P M STOP) O @Q and @ M (P O Q)) is the
process that can choose to act like () but can offer the initial choices of P. This
law says that any process that has the option to terminate may choose to do so and
there is nothing the environment can do to stop it: it is refined by SKIP.

It is not too hard to show the link between this law and (; -unit-r). If P =
(e — STOP) O SKIP meant one had the choice of a and v — so by offering
only a we could be sure that would be accepted and that the process would not
terminate — then P; SKIP would behave differently from P (invalidating the law).
For, in P; SKIP, the v from P is allowed to proceed without the agreement of the
environment, which cannot stop it happening. The effect of this composition would
be just like

((a — STOP) O (b — SKIP)) \ b

since the hidden b here is exactly like the v' from P that gets hidden by ; . While
this process might accept a it need not.

When a process cannot offer an initial v', the situation about how it acts
under sequential composition is simple, we just get the law already discussed: pro-
vided z is not free in @,

(z:A—P); Q =72:A— (P; Q) (; -step)  (6.7)

We need a law that extends this and (; -unit-l) to take account of processes
that can either terminate or offer other events. We can assume that such a process
has already had the law (O-SKIP resolve) applied to change this choice into the >
form. Thus the appropriate law is that, when z is not free in Q,

(?z:A— P)p SKIP); @ = (7z: A— (P; Q))> Q (SKIP-; -step)  (6.8)

Sequential composition has many left ‘zeros’: if P is any process that can
never terminate then P; ) = P for any Q.

Since we are not allowed to hide or rename v, SKIP is unchanged by any
hiding or renaming construct.

SKIP\ X = SKIP (SKIP-hide-ld) ~ (6.9)
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SKIP[R] = SKIP (SKIP-[R]-Id)

In order to deal with distributed termination, we need two extra laws for
each parallel construct: one to deal with the case when both operands are SKIP,
and one to deal with the case where one of them is. The first group are remarkably
similar.

SKIP ||, SKIP = SKIP (x|l y-termination)
SKIP )H( SKIP = SKIP <)||(—termination)
SKIP > SKIP = SKIP (>>-termination)
SKIP /) SKIP = SKIP (//-termination)

The other group reflect the differing modes of synchronization in the opera-
tors. Since the asymmetry of these operators makes the laws more numerous, and
in any case the required laws can be derived from the ones relating to the operators
out of which they are built, we omit the laws for ||, >> and / here.

SKIP || (?z: A — P) =?z: A\NX — (SKIP || P) (||-preterm)
X X X

SKIP ||| P = P (|||-unit)

Note the particularly simple law for interleaving — SKIP is the unit of |||.

As an application of the laws we will prove, by the principle of unique fixed
points, that the process ZERO defined earlier is equivalent to COUNT. To do this
we prove that the vector of processes (Z, | n € N), defined

ZQ = ZERO and Zn+1 = POS, Zn
(an inductive definition rather than a recursive one), has the property that 7, =

COUNT,, for all n. We will demonstrate that Z is a fixed point of the constructive
recursion defining COUNT, proving this claim. Trivially Zy = up — POS; Zy =

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

(6.15)

(6.16)
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up — Zp, and

Zpt1 = (up — POS; POS
O down — SKIP); Z,

= (up — POS; POS; Z,)
O (down — SKIP; Z,) by (; -step) etc.

= (up — POS; POS; Z,)
O (down — Z,) by (; -unit-)

= up — Znpyo
O down — Z,

EXERCISE 6.3.1 The recursive definition of POS and ZERO can be modified easily to
represent, instead, an unbounded stack process. The process S; behaves like a temporary
stack containing (only) the value z (i.e., it can have any value pushed onto it, or z popped
off it) and terminates when all its contents are removed; while Empty is an empty stack
which never terminates.

Define an unbounded, tail recursive, stack process Stack( as a parameterized re-
cursion very like BJ°, which behaves like Empty. Prove Empty = Stack,, modelling your
proof on the one that ZERO is equivalent to COUNT).

6.4 Effects on the traces model

The presence of the special object v' in traces, subtly different from other events,
means that some of the traces definitions given up to this point have to be extended
to deal with v'. In the traces model 7 we will now identify a process with a non-
empty, prefix-closed subset of

o= U {s(V) | s € X*}

simply reflecting our assumption that any v* in a trace is final.

The earlier definitions of the traces of STOP, prefixing and prefix choice,
internal and external choice, hiding and synchronous parallel remain unaltered.
Obviously we need definitions for the two new constructs:

traces(SKIP) {0, (V)}
traces(P; Q) = (traces(P)NX*)
U{st| s (V) € traces(P) At € traces(Q)}

Notice how the second of these conceals the v which terminates P and starts @,
leaving only any final v* of @ visible.
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The semantics of the various renaming operators only needs modifying to
make sure that v'’s are preserved. Since both the functions and relations used are
purely over X, we need to extend the ‘liftings’ of these to traces to deal with v"’s.
In each case this takes the obvious form, for example

f(<(11, <o O, ‘/>) = <f((11), R ,f((ln), ‘/>

Most of the parallel operators have to be changed to reflect distributed ter-
mination. In alphabetized parallel we simply ‘add’ v* to the alphabets of both
processes from the point of view of the definition:

traces(P ||y Q) = {s€(XUY)* |s|(XU{V}) € traces(P)
As | (YU{V}) € traces(Q)}

while in the other two we extend the definitions of the underlying operators on
traces: if s,¢ € ¥*, then s ||| t and s || ¢ are as before, and
X

slltv) = {}

sl = 0
sWHITE) = {u(V) Jues]l]t}
3A<\/))|(tA<\/> = {uA<\/>|u€s)||(t}

The definitions of the process-level parallel operators then remain as before (using
the modified trace-level ones).

EXERCISE 6.4.1  Calculate the traces of the process
(a — SKIP ||| a — b — SKIP)*

Use the laws to find a tail-recursive process equivalent to it.

6.5 Effects on the failures/divergences model

The introduction of v means that we have to look carefully at what a process can
refuse (immediately) before and after this special event, and similarly at its effect
on possible divergence.

The easy part of this is what goes on after v': nothing. In the last section
we made the assumption that a process communicates nothing after v (since its
traces are in ¥*¥). It therefore makes sense to assume it refuses everything (i.e.,
YY) after any trace of the form s'(v'), and cannot diverge. We will make these
assumptions, with the modification that we allow divergence traces of the form
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s*(v') provided they are implied by the assumption that all extensions of divergences
are divergences. What really matters, in fact, is that all processes look alike after
v/, rather than the precise value we put them all equal to. The essential thing is
that once a process has terminated by communicating v', we should be free to turn
our attention elsewhere.?

We certainly want to distinguish between the processes SKIP and SKIP 1
STOP, even though they have the same traces. The first one certainly terminates
successfully, the second one only might. If we put them in sequence with a second
process P, the first one gives P, while the second might deadlock immediately
whatever P is. The obvious way to make this distinction is to include v in refusal
sets: then the failure ((),{v'}) belongs to SKIP 1 STOP (because it belongs to
STOP) but not SKIP, which cannot refuse to terminate. Thus, when recording
a process’s failures we will take note of when it can refuse to terminate as well as
other events.

It turns out, however, that v" is not quite on a par with other potential mem-
bers of refusal sets (i.e., ones that are members of 3). This is because, as discussed
earlier in this chapter, v’ is not something a process expects its environment to
agree to, it is simply a signal to the environment that it is terminating. Thus no
process will ever offer its environment the choice of v or events in 3. In other
words, any process that can terminate must be able (on the appropriate trace) to
refuse every event other than v'; if a process has the trace s (v}, it has the failure
(s,%). This is discussed further in Chapters 7 and 8.

The unnatural process SKIP O @ — the subject of law (O-SKIP resolve)
(6.6) — apparently offers its environment the choice of v and the initial events of @,
in contravention of the above principle. In fact, since the environment’s co-operation
is not required for the event v/, this process can decide to terminate whatever the
environment. In other words, it can refuse all events other than v despite the way
it is built. For example, SKIP O a — STOP has failures

{0, X) | v & X}U{((a), X),((v), X) | X =¥}

You can view this as a consequence of (O-SKIP resolve), since this law proves the
above combination equivalent to

(SKIP O a — STOP) 1 SKIP

which can clearly refuse everything other than v'.

3In some ways the best approach would be not to bother to include any refusals after a v'.
The only problem with this (and the reason why we have not followed it) is that, since even a
divergence-free process’s traces would not then be the trace-components of its failures, a process
could not be represented by its failures and divergences: the termination traces (at least) would
have to be included as a separate component.



152 Termination and sequential composition

The precise way in which failures are extracted from a process’s transition
system, allowing for possible v" actions, is described in Section 7.4.1. See Section 8.3
for full details of the way the failures/divergences semantics of processes composes,
including taking account of the SKIP O @ issue.
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Chapter 7

Operational semantics

7.1 A survey of semantic approaches to CSP

There are at least three distinct ways of gaining a rigorous mathematical under-
standing of what a CSP program ‘means’. These are operational, denotational, and
algebraic semantics. We have already seen all of these in action:

e The operational semantics interprets programs as transition diagrams, with
visible and invisible actions for moving between various program states: we
have frequently used these to describe informally how processes (and oper-
ators over them) behave. Operational semantics, as the name suggests, are
relatively close to implementations: we might define an operational semantics
as a mathematical formalization of some implementation strategy.

e A denotational semantics maps a language into some abstract model in such a
way that the value (in the model) of any compound program is determinable
directly from the values of its immediate parts. Usually, denotational se-
mantics attempt to distance themselves from any specific implementation
strategy, describing the language at a level intended to capture the ‘inner
meaning’ of a program. There are several denotational semantics of CSP, all
based on things like traces, failures and divergences; the value of any program
just being some combination of its sets of these things.

e An algebraic semantics is defined by a set of algebraic laws like the ones
quoted for the various operators in this book. Instead of being derived theo-
rems (as they would be in a denotational semantics), the laws are the basic
axioms of an algebraic semantics, and process equivalence is defined in terms
of what equalities can be proved using them. In some ways it is reasonable
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to regard an algebraic semantics as the most abstract type (where ‘abstract’
is meant in its informal, rather than its formal, sense).

While any one of these flavours of semantics is enough to describe CSP, it is far
preferable to understand something of them all and how they complement each
other. This is why we have used all three, sometimes informally, to describe it in
the preceding chapters. For most people using CSP there is no need to delve deeply
into the sometimes difficult mathematics which underpins it, but for those who are
interested this chapter and the following four give formal expositions of the three
semantic styles, and show how they relate to each other.

Of these, the material in the rest of this chapter is probably the easiest for
a non-mathematician to follow and the most important for using existing tools.
Many of the ideas in it have already been seen in earlier chapters, at a lower level
of formality.

The main purpose of CSP is, of course, to describe communicating and in-
teracting processes. But in order to make it useful in practice we have added quite
a rich language of sub-process objects: anyone who has used FDR will realize that
CSP contains a functional programming language to describe and manipulate things
like events and process parameters. Of course, any complete semantics of the lan-
guage would have to take account of this other facet: in effect, we would need to give
this sublanguage a semantics too. But this would take a lot of extra space, taking
the focus off the main thing we want to do which is to understand the semantics of
communication, and is complex in its own right. Thus, just as in the rest of this
book we have focused on the main purpose of CSP, in this and the other chapters
on semantics we will deliberately ignore the details of how the calculation of sub-

process objects fits in.!

Therefore we will tend to ignore the detailed syntax and
evaluation of sub-process objects, just treating them as values. This ‘glossing-over’
is made a good deal less dangerous because we are assuming CSP has a declarative
(pure functional) semantics, meaning that values are never changed by assignment.
The only real problem occurs when the evaluation of a sub-process object fails to
terminate or produces some other sort of error. Error-handling is an important, if
occasionally irritating, part of the construction of any formal semantics, but in the
spirit of our simplified treatment of sub-process objects we will not deal with these

types of error in this book. These also are discussed in [126].

LOperational and denotational semantics taking these details into account can be found in
Scattergood’s thesis [126] and (in a more sophisticated form), in Lazi¢’s work [64, 68].
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7.2 Transition systems and state machines

In Part I we frequently referred to the transition system of a process: a graph
showing the states it can go through and actions from ¥¥7 that it takes to get
from one to another. The operational semantics presented in this chapter is just a
formal way of computing these graphs. In this section we investigate the behaviour
of transition systems, whether or not derived from a process.

Formally speaking, a labelled transition system (LTS) is a set of nodes and,
for each event a in some set, a relation — between nodes. It is a directed graph
with a label on each edge representing what happens when we take the action which
the edge represents. Most LTSs have a distinguished node ng which is the one we
are assumed to start from.

The operational interpretation of an LTS is that, starting from any node
such as ng, the process state is always one of the nodes, and we make progress by
performing one of the actions possible (on outward-pointing edges) for that node.
This set of the initial actions of node P will be denoted P°. The only things that
matter are the actions each node has: if the nodes do carry some annotation then
this cannot be observed during a run.

In interpreting CSP we usually take the set of possible labels to be £¥'7 =
Y U{v,7}. Actions in ¥ are visible to the external environment, and can only
happen with its co-operation. The special action 7 cannot be seen from the outside
and happens automatically. Thus, if the process is in a state with no actions outside
Y (a stable state) it might have to wait there for ever; when it is in an unstable state
(1 € PY) we assume that some action must occur within a short time. (The event
that occurs may be visible or 7.)

v, as discussed in Chapter 6, is a special signal representing the successful
termination. It is — as we saw in Chapter 6 — different from other events, not least
because it is presumably always the last event that happens. It is certainly visible
to the environment, but it is better to think of it as an event that does not require
the environment’s co-operation: it is in one way like 7 and in another like ordinary
members of ¥. A state P that has v € PP is not stable, because the environment
cannot prevent it from happening. (Note that the previous discussion of stable
states, in Section 3.3, was before we had met v'.) We will be careful to give v this
intermediate interpretation, unlike most earlier works (where it has been treated
like a member of %3).2

Where a state has a range of visible actions we assume, especially when the

2This means that a few of the operational semantic rules in this book are different from earlier
versions. Our more careful treatment of v” is designed to make the law (; -unit-r) (6.5) (P; SKIP =
P) true, which it is not if v" is assumed to be like any other event. The implications of this decision
for the structure of failure-sets were discussed in Section 6.5.
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Figure 7.1: Example of a labelled transition system.

state is stable, that the environment has a free choice of which (if any) of the events
(i.e., distinct labels) to choose. If there is more than one action with a given label
a, the environment has no control over which is followed if it chooses a. In other
words, this is a source of nondeterminism.

We assume that only finitely many actions (visible or invisible) can happen
in a finite time.

To explain these ideas we will consider two LTSs. The one shown in Figure
7.1 displays most of the possible types of behaviour without v'.

e In state A, the environment has the choice of either a or b, and since this
is a stable state, nothing can happen until one of these is selected. The
process then moves into state B or D, this being determined by which event
is chosen.

e The only action available to state B is an internal one. Therefore the process
takes this action and moves to state C.

e In state C, there is only one event available, a, and the process must wait
until the environment communicates it. There are two possible states that
can then arise, and the environment has no control over which one the process
moves to.

e In state D, internal and external actions are both possible. The environment
might be able to communicate the a action, but cannot rely on this. It
can, however rely on the process moving to either A or C if this ¢ does not
happen. As in the previous case, the environment has no control over which.
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Figure 7.2: A labelled transition system with v~ actions.

e State E has no actions: it is deadlocked. Once the process reaches this state
it is doomed to remain there for ever.

The one in Figure 7.2 enables us to see the effects of v'. This transition system
follows the obvious convention that v* is always the last event and leads to an end
state Q. (If forced to interpret a transition system where this was not true we would
just ignore anything that could happen after v.)

e The easiest state to understand is A: the only thing it can do is terminate.
It behaves like the process SKIP.

e B can either terminate or perform the event a. Since it does not need the
environment’s co-operation to terminate, this is certain to happen unless the
environment quickly offers a, in which case either can happen (nondetermin-
istically).

e ( either terminates or performs a 7, the choice being nondeterministic.

e D has a 7 action to A, which gives it the ability to terminate. Indeed a 7
action to a state that can only terminate like A is always equivalent, from
the point of view of externally observable behaviour, to its having a v" action
of its own. Either can be chosen, from any state that has it, independently
of the environment and leads to inevitable termination.

Even though the only visible action that can ever happen to a process in
state D is v/, its behaviour is different from A since it can follow the 7 action
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to E and become deadlocked. In other words, D can refuse to terminate
while A cannot.

An LTS can be finite or infinite (in terms of its set of nodes), and it is clearly
the case that only those parts reachable from a node n (via finite sequences of
actions) are relevant when we are describing the behaviour of n. In particular, we
will usually assume that all the nodes are reachable from the distinguished node ny.
A process is said to be finite state if it can be represented by a finite LTS.

An LTS is not — by itself — a very good way to describe a process if you
want to capture the essence of its behaviour, since there are many different ways
of representing what any reasonable person would agree is essentially the same
behaviour. For example, any LTS can be expanded into a special sort of LTS, a
synchronization tree, where there are no cycles and a unique route from the root to
every other node, in the manner illustrated in Figure 7.3. (The distinguished root
nodes are indicated by open circles.) But notice that even two synchronization trees
can easily represent the same behaviour, as all the original LTSs — and hence all
their different expansions — represent behaviours we might suspect are essentially
the same. If one does want to use operational semantics as a vehicle for deciding
process equivalence, some sort of theory is required which allows us to analyze which
process descriptions as an LTS represent the same behaviour.

In CSP, the main mode of deciding process equivalence is via failures, diver-
gences etc., which are not primarily based on transition systems, but some other
process algebras (most notably CCS) take the approach of defining the basic mean-
ing of a process to be an LTS and then deciding equivalence by developing a theory
of which LTSs are essentially the same. Thus, getting this analysis right can be
extremely important.

Many different equivalences over LTSs (and the nodes thereof) have been
proposed, most of which are specific to a given view, but the most fundamental
one is valid in them all (in the sense that if it defines two nodes to be equivalent
then so do the others). This is the notion of strong bisimulation, which takes the
view that the only thing we can detect about a given process state is what events
it can do, and that to be equivalent two processes must have the same set of events
available immediately, with these events leading to processes that are themselves
equivalent. Another way of looking at this is that no experiment which is based on
exploring the behaviour of two nodes by examining and performing available events
(including 7 and v on an equal basis to all the others) can tell them apart.

Since the notion of weak bisimulation (a weaker notion of equivalence used
for CCS) is less relevant to CSP,® we will usually drop the word ‘strong’.

3This is because weak bisimulation fails to make enough distinctions about divergent processes.
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Figure 7.3: Unfolding LTSs to synchronization trees.
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Figure 7.4: Bisimulation equivalence.

DEFINITION If § is an LTS, the relation R on the set of nodes S of S is said to be
a (strong) bisimulation if, and only if, both the following hold:

VY ny,ng, my € SVzex’r.
nmRny Ang — my = Ime € S.ny — mg A mi R mo

YV ny, ng, mg € SVzexr.
mRng A ng SN me = dm; € S.my = m1 N\ m1 Rmy

(Note that, though there is no requirement that a bisimulation is symmetric, the
above definition is symmetric so that R~! is a bisimulation if R is.) |

Two nodes in S are said to be bisimilar if there is any bisimulation which
relates them. It is a theorem (see Exercise 7.2.4) that the relation this defines on
the nodes of an LTS is itself a bisimulation: the maximal one. This is always an
equivalence relation: reflexive, symmetric and transitive — it partitions the nodes
into the sets whose members’ behaviours are indistinguishable from each other (see
Exercise 7.2.5).

Consider the systems in Figure 7.4, where for simplicity all the actions have
the same label (a, say). In the left-hand system, it should not come as a surprise
that F, F and G are all bisimilar, since none of them can perform any action at
all. All the others can perform the event a, and are therefore not bisimilar to these
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three. This means that A cannot be bisimilar to any of B, C, D, as all of these
can become one of E, F', G after a and A cannot: the definition of bisimulation
states that if A is bisimilar to B then it must be able to move under a to something
bisimilar to £. On the other hand, all of B, C' and D are bisimilar — each of them
can perform an a either to a member of the same set or to one of E, F, G. The
partition produced by the maximal bisimulation is shown in the figure.

It makes sense to say that two nodes in different LTSs (with the same under-
lying alphabet) are bisimilar, because we can embed the two systems in one larger
one (whose nodes are the union of disjoint copies of the nodes of the two we are
summing). In this sense all the nodes of both versions of systems (i) and (ii) of
Figure 7.3 are bisimilar. They are not, however, bisimilar to those in the right-hand
ones — since the latter can perform 7 actions. This shows the chief weakness of
(strong) bisimulation as a technique for analyzing process behaviour: its inability
to distinguish between the different effects of visible and invisible actions.

Having found the maximal bisimulation on an LTS, we can produce another
LTS with one node for each equivalence class, and an action a from class C; to class
Cy just when the nodes in C) have a actions to Cy (they all will if and only if one
does). This factoring process is shown in Figure 7.4, with the system on the right
being the one derived from the one we have already examined. It is always the case
that the nodes of the new system are bisimilar to the members of the classes they
represent, and that no pair of the new system’s nodes are bisimilar (see Exercise
7.2.6).

EXERCISE 7.2.1 No pair of nodes in the LTS of Figure 7.1 are bisimilar. Prove this.
EXERCISE 7.2.2 Which pairs of nodes are bisimilar in the LTS shown in Figure 7.57

EXERCISE 7.2.3  Draw an LTS describing a game of tennis between players A and
B, with the alphabet {point.A, point.B, game.A, game.B}. (The intention is that the
appropriate event game.X occurs when player X has won.) Recall that successive points
take either player through the scores (0, 15, 30, 40, game) except that the game is not won
if a player scores a point from 40-all (deuce), but rather goes to an ‘advantage’—‘deuce’
cycle until one player is two points ahead. Which scores are bisimilar?

EXERCISE 7.2.4 Let V be any LTS. We can define a function ¥ from P(V x V) (the
relations on the nodes of V) to itself as follows: (n, m) € U(R) if and only if

Vo' e S.Vzexv .
n—n=3ImecV.m-m AnRm and

Vm' e 8.V ex .
m-—m' =3In e V.n-n An'Rm’
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Figure 7.5: Which nodes are bisimilar (see Exercise 7.2.2)?
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Show that ¥ is monotonic and that its pre-fixed points (i.e., relations R such that R C
U(R)) are precisely the bisimulations. Deduce from Tarski’s theorem (see Appendix A)
that there is a maximal bisimulation on V (i.e., one that contains all others) and that it
is a fixed point of W.

EXERCISE 7.2.5  Show that the equality relation ‘=’ is a bisimulation, and that if R
and R’ are bisimulations then so is their relational composition Ro R’.

Deduce that the maximal bisimulation is an equivalence relation.

EXERCISE 7.2.6 Let S be any LTS, let = be the maximal bisimulation over it, and
let S/= be the factored version of S described on page 163 and illustrated in Figure 7.4.
Show that if we form an LTS S* consisting of separate copies of S and S/=, then the
equivalence relation on $+ in which each equivalence class of S (i.e., a node of S/=) is
deemed equivalent to each of its members and nothing else, is the maximal bisimulation
on ST.

7.3 Firing rules for CSP

The operational semantics of CSP treats the CSP language itself as a (large!) LTS.
It allows us to compute the initial events of any process, and what processes it
might become after each such event. By selecting one of these actions and repeating
the procedure, we can explore the state space of the process we started with. The
operational semantics gives a one-state-at-a-time recipe for computing the transition
system picture of any process.

It is now traditional to present operational semantics as a logical inference
system: we use this system to infer what the actions of a given process are. A
process has a given action if and only if that is deducible from the rules given.
There are separate rules for each CSP operator, to allow us to deduce what the
actions of a process are in terms of its top-level operator (often depending on the
actions of its syntactic parts).

The rules themselves are all simple, and correspond closely to our existing
intuition about the operators they relate to.

Because the process STOP has no actions, there are no inference rules for
it. It has no actions in the operational semantics because there is no possibility of
proving it has any.

SKIP, on the other hand, can perform the single action v', after which it
does nothing more.

SKIP - Q
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The fact that there is nothing above the horizontal bar here means that no as-
sumptions are required to infer the action described. The special process term 2
(which we are adding to the language/LTS for convenience) is intended to denote
any process that already has terminated. The result state after a v' action is never
important (its behaviour is never looked at) and it is sometimes helpful to have a
standardized way of representing the result of termination in the LTS of processes.

The main way communications are introduced into the operational semantics
is via the prefixing operation e — P. In general, e may be a complex object, perhaps
involving much computation to work out what it represents. There is a choice in
what to do about computations like this in an ‘operational’ semantics. Clearly a real
implementation would, in general, have to go through a procedure to work out this
and other types of sub-process objects. One could include these steps (as 7 actions
or perhaps some other sort of invisible action) in the operational semantics, but this
would make them much more complex both to define and to analyze. In the spirit
of the discussion at the start of this chapter, we will ignore these computation steps
(taking the values as given) and concentrate only on ‘actions’ which arise directly
from CSP rather than from lower-level behaviour.

The prefix e may represent a range of possible communications and bind one
or more identifiers in P, as in the examples

x: A— P c?tz?y — P ctzle —» P

This leads to one of the main decisions we have to make when constructing an
operational semantics for CSP (and many other languages): how do we deal with
the identifiers in programs that represent data values, other processes, etc.? For
it is clearly the case that the behaviour of a program with a free identifier (one
whose value is not created within the program itself) might depend on the value of
the identifier. The simple answer to this problem is to deal only with closed terms:
processes with no free identifiers. Using this it is possible to handle most of the
situations that can arise, making sure that each identifier has been substituted by
a concrete value by the time we need to know it. Because of its simplicity, this is
the approach we will take.

This simple approach does create some problems when handling some more
advanced aspects of CSP, which means that another style is preferable if one wishes
to give a complete operational semantics covering every nuance of the language.
This is to introduce the concept of an environment*: a mapping from identifiers to
the values (which might either be data or processes) they represent. Environments
are then added to the state space of the LTS we are defining with the operational

4This use of the word ‘environment’ has an entirely different meaning to the idea of an envi-
ronment that the process communicates with, discussed elsewhere.
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semantics: instead of transitions being between processes, we now have transitions
between process/environment pairs. This alternative style makes very few differ-
ences to the individual semantic clauses except where a value is being looked up in
the environment. Full details can be found in [126].

To implement the simpler approach we will assume the existence of functions
comms and subs.

e comms(e) is the set of communications described by e. For example, d.3
represents {d.3} and c?z:A?y represents {c.a.b | a.b € type(c),a € A}.

e For a € comms(e), subs(a, e, P) is the result of substituting the appropriate
part of a for each identifier in P bound by e. This equals P if there are no
identifiers bound (as when e is d.3). For example,

subs(c.1.2, c?z?y, dlz — P(z,y)) = d!1 — P(1,2)

The transition rule for prefix is then easy to state:

a € comms(e
e — P % subs(a, e, P) ( (e))

It says what we might expect: that the initial events of e — P are comms(e)
and that the process then moves into the state where the effects of any inputs in
the communication have been accounted for. Note the way the limitation on events
was introduced: via a side condition to the inference rule. A side condition simply
means that the deduction is only valid under the stated restriction.

This is the only transition rule for prefixing, which means that the only ac-
tions of the process e — P are those deducible from it. The initial actions of e — P
are thus independent of whatever P can or cannot do (in that initials(e — P) =
comms(e) and this process is always stable). There are only two other operators of
which this can be said. One of these is nondeterministic choice, which is modelled
by a choice of 7 actions, one to each process we are choosing between:

PNQ-->Pp PNQ-5Q

This easily translates to the generalized notion of choice over a non-empty set of
processes:

—— (P€Y9)

Ms--—p
It is important to remember the restriction that .S is non-empty since even though
the above rule makes sense, in itself, when S = {} the value of [{} it predicts
does not (no value makes sense in the failures/divergences model for this object,
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since it would have to (i) be a unit for M in the sense that P M X = P for all P,
and (ii) refine every process even though, as we will see in the next chapter, the
failures/divergences model does not have a greatest element).

The only other case where the initial actions are determined completely by
the operator itself is recursion. It is a good idea to introduce a 7 action to represent
the ‘effort’ of unfolding a recursive definition via the following rule®

pip-P == Plup.P/p]

This 7 action never causes any harm, since the externally visible behaviour of any
process P is unchanged by the addition of an extra starting state with a 7 action to
P. This process has no option but to take this invisible action and behave like P.
The 7 action in recursion is there to avoid the difficulties caused by under-defined
recursions such as pp.p and pp.(p O Q). The most natural symptom of this type
of process is divergence, and this is exactly what the introduction of the 7 achieves.
In fact, for well-constructed recursions, the 7 is not really needed, though it still

makes the mathematical analysis of the operational semantics good deal easier.°

All the other operators have rules that allow us to deduce what actions a
process of the given form has from the actions of the sub-processes. Imagine that
the operators have some of their arguments ‘switched on’ and some ‘switched off’.
The former are the ones whose actions are immediately relevant, the latter the
ones which are not needed to deduce the first actions of the combination. (All the
arguments of the operators seen above are initially switched off.) This idea comes
across most clearly in the construct P; @ (whose operational semantics can be
found below), where the first argument is switched on, but the second is not as its
actions do not become enabled until after the first has terminated.

Both the arguments of external choice (O) are switched on, since a visible
action of either must be allowed. Once an argument is switched on, it must be
allowed to perform any 7 or v' action it is capable of, since the argument’s envi-
ronment (in this case the operator) is, by assumption, incapable of stopping them.
There is, however, a difference between these two cases since a 7 action is invisible

5The pp.P style of recursion is the only one we will deal with in this operational semantics,
since a proper treatment of the more common style of using names in a script to represent (perhaps
parameterized, and perhaps mutual) recursive processes requires the introduction of environments.
The rule we are introducing here extends simply to that context: it is then the act of looking up
a process identifier that generates a 7.

SFDR does not introduce 7 actions of this sort because the only effect they have on well-
constructed definitions is to increase the size of the state space. If you are using a tool where such
actions are not used, the result is likely to be that an attempt to use a recursion like pp.p will
make the tool diverge. Thus, if you need to create a representation of div in such a tool where it
is not built in as primitive, it is necessary to use a term like (up.a — p) \ a or up.SKIP; p.
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to the operator, which means that there are always rules like the following

p-= p Q= Q'
POQ - POQ PoQ - PO

which simply allow the 7 to happen without otherwise affecting the process state.
(In some cases these rules are implied by more general ones.) These rules simply
promote the 7 action of the arguments to 7 actions of the whole process. On the
other hand, the v' event is visible, so (as with other visible actions) the operator
can take notice and, for example, resolve a choice. With O, there is no difference in
how v" and other visible events are handled:

P2 p Q- Q

m(a#ﬂ ,(G#T)

POQ -5 Q

Of course, the place where v is most important is in the sequential composi-
tion operator ; . Here, the first operand is necessarily switched on, while the second
is not. In P; @, P is allowed to perform any action at all, and unless that action
is v/ it has no effect on the overall configuration.

P P
5, @#Y)
P; Q — P Q
If P does perform v/, indicating it is terminating, this simply starts up @, with the
action itself being hidden from the outside — becoming 7.

Jp.p L p
P; Q- Q

It is semantically important that the second argument of ; and the process argument
of e — P are switched off, for if they were not, they would be allowed to perform any
T actions so that if they could diverge, so could the overall process. And the process
STOP; div could never get into a stable state even though it is supposed to be
equivalent to STOP. This shows that any argument which is switched on is always
one in which the operator is divergence-strict (i.e., maps immediately divergent
processes to immediately divergent processes). There is, of course, a considerable
interplay here between what is reasonable in the operational semantics and what is
possible in the denotational semantics.

The rules for hiding and renaming have much in common, since both simply
allow all the actions of the underlying process but change some of the names of the
events. Any event not being hidden retains its own name under \ B, but when this
event is v we need a separate rule to respect our convention that the result process
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is always then .

P p p-Lp
z (z¢BU{V}) ——F—
P\B-2 P'\B P\B-LQ
Events in B are, on the other hand, mapped to 7.
P p
— (a€B)
P\B— P'\ B
Renaming has no effect on either 7 or v* actions:
T / v /
P— P P— P
P[R] — P'[R] P[R] % 0
Other actions are simply acted on by the renaming:
P p
— (aRb)

P[R] - P'[R]

We have seen a wide range of parallel operators, but they could all be ex-
pressed in terms of the operator ||, which takes two processes and enforces synchro-
X

nization on the set X C X. Because of this we will only give operational semantics
for || — all the others being deducible. Since both the arguments are necessarily
X

switched on, we need rules to promote 7 actions:
P p Q= Q
PllQ5>=PllQ PlQ—=P|Q
X X X X

There are three rules for ordinary visible events: two symmetric ones for a ¢ X

a /
PTP (a €\ X)
PlQ—P|Q
X X
a /
©—0Q (a €XV\X)

PlQ-=Plq
X X
and one to show a € X requiring both participants to synchronize
PLpP Q%
PlQ—=pr| ¢
X X

(a € X)
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The handling of v events in the parallel operator” requires care, because of
the following two facts:

o We decided earlier that this operator must have distributed termination: the
combination P || @ terminates when both P and @ do.
X

e Since both arguments are switched on in P || @, the parallel operator can-
X

not prevent either P or () terminating if it wants to. Thus, the left-hand
argument of SKIP )||( @ can terminate even if () cannot.
The way to handle this is for the parallel operator to communicate v when both
its arguments have — the intuition we developed when introducing the idea of dis-
tributed termination. The terminations of the two arguments are turned into 7’s
much as in the first argument of P; Q.

p-L p Q-1 ¢
PllQ-5QlQ PllQ-=P|Q
X X X X

Once one of its arguments has terminated and become €, all the rules above for ||
X

still apply, bearing mind that € itself has no transitions (being basically equivalent

to STOP) so that P || Q can only do those of P’s actions not in X. After the
X

second argument has terminated the composition will have become || : it can

X
now terminate using the following rule.

olao-L0a
X

That completes the operational semantics of the main operators of CSP. All
the other operators we have seen can have their operational semantics derived from
the ways they can be written in terms of the operators above. The only case this
produces an unnatural answer to is the time-out operator P > @, defined as being
equivalent to (P M STOP) O Q. A better operational semantics is produced by
the following three rules, which more accurately refect our intuition about how this
operator works: allowing P to decide the choice with any visible action, but with the

7This is the only place where the operational semantics in this book differs significantly from
earlier operational semantics for CSP. Previous treatments have considered v to be an event that
the environment can refuse from a process, and therefore simply required synchronization on the
v event between the two processes. Some simply allowed the termination of one of either process
(especially under |||) to terminate the combination.
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@Cf

Figure 7.6: Operational semantics of P’ > @’ and (P’ 1 STOP) O Q.

certainty of a transition to @ if this does not happen. Since P is initially switched
on, we need to promote any 7 it performs. (Since it is natural to expect @ to be
initially off, there is no need to do this for the second argument.)

p-= P
PrQ - PoQ

Any visible action from P decides the choice in its favour

P p

pogp 77

while at any moment (as we have no way of modelling time directly in this semantics)
the combination can time out and become Q.

PrQ - Q

This definition always produces a process with the same traces, failures and diver-
gences as the derived definition but gives a much more natural transition diagram,
as is shown by Figure 7.6 which contrasts the operational semantics of P’ > Q' with
those of (P’ M STOP) O @', where P’ =a — P and Q' =b — Q.

ExaMPLE 7.3.1 To show the operational semantics in action we will see how to
derive the transitions of a simple process, namely

COPY > COPY =

(COPY[right,mid | miq right] || COPY[left:mid /mid. tef]) \ {| mid |}
{Imid|}

where

COPY = up.left?s — rightls — p
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and the type of the various channels is {0, 1}, meaning that we can assume
Y = {left.x, mid.x, right.x | € {0,1}}

e Consider first the initial state Py = COPY >> COPY . Since none of the
rules associated with the operators ||, \ B or renaming allows us to infer any
X

action not produced by an action of an argument process, the only initial
actions of Py are those associated with progress by the two COPY processes.
These, in turn, can each perform only a T action to become

COPY™ = left?z — right'lx — COPY

This T action is promoted by each of renaming, parallel (both arguments)
and hiding, so two T actions are possible for Py, to the processes

Py = COPY™ > COPY
Py, = COPY > COPY™

e In P;, the second argument has exactly the same T available as it did in P,
(because it was not used in the move to P ), so this can still be promoted to
a T action from P; to

Ps = COPY™ > COPYT™

COPYT has initial actions left.0 and left.1 leading respectively to the states

COPY(0) = right!'0 - COPY

COPY (1) = right!l - COPY
These are promoted unchanged by the renaming [[Mght7 mid /mid, right]. They
are allowed by the parallel operator ||  because they do not belong to

{Imid|}

{| mid |}, and by the hiding operator \ {| mid |}, so P; has actions left.0
and left.1 to

P4(0) = COPY(0)> COPY

Py(1) = COPY(1)> COPY

e In P, the first argument still has the same 7 available as it did in Py, so
this can be promoted to a T action from P, to P3. The actions available to
the right-hand argument are the same ones ({| left |}) as were available to
the left-hand one in Py. This time they are promoted to mid actions by the
renaming operator, and prevented by the parallel operator since actions on
mid require a synchronization (which is not possible). Thus Py only has the
single T action.
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e In Ps = COPY™ > COPYT, the actions of the two arguments are obviously

the same. As in P, the two left actions of the left-hand one are promoted
to actions with the same name leading to respectively

P5(0)
P5(1)

COPY (0) > COPYT™
COPY (1)> COPYT™

while the corresponding actions of the right-hand one are prevented as in Ps.

In Py(z), the right-hand argument only has a T action available, which is
promoted by the rules to a T action to Ps(z). The left-hand argument has
only the action right.x, which is renamed to mid.x and prevented by the
parallel operator since the right-hand process cannot synchronize.

The unique action of COPY (z) is promoted by renaming, in Ps(z), to mid.x.
The two left actions of the right-hand argument are also promoted to mid.

This time synchronization is possible (under | ) on the action mid.z,
{|mid|}
which becomes a T action of the overall process because of the hiding oper-

ator. The resulting process is
Ps(z) = COPY > COPY(x)

In Ps(z), the left-hand process has a T to COPY™, which can be promoted
to a T action to

P;(z) = COPY™ > COPY (x)

and the right-hand one has the action right.x to COPY , which promotes to
the same action leading back to Py.

In P7(z), the right-hand process can communicate right.z, which again pro-
motes to the same action, leading to COPY™ >> COPY , in other words, P;.
The left-hand process can communicate left.0 or left.1, which promote to the
same events and the overall state

Pg(y,z) = COPY(y)> COPY(x)

for the chosen y.

The final state we have to consider is Ps(y, z), where both components can
only output. The right-hand one’s right.x communication promotes to the
same action externally leading to P4(y). The reason why no more states
have to be considered is simply that all the states discovered during our
exploration have already been examined.
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S| |0 a0 | s|e
S
(=)
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Table 7.1: States of Figure 7.7.

Taking account of all the variation in x and y, there are 16 states altogether in
the resulting LTS, which is shown in Figure 7.7. The states that the labels a—p
in the figure denote are shown in Table 7.1. You should compare the LTS derived
carefully here with the one, for essentially the same system, described in Figure 2.3
on page 60. The only differences are hiding the intermediate communications, the
presence of the T actions produced by unfolding recursions, and the fact that we
have taken individual account of the values held in the buffer rather than showing
them symbolically. Evidently this creates considerably more complexity! (End of
example)

EXERCISE 7.3.1 Compute the LTSs resulting from evaluating the operational semantics
of the following processes:

(a) (a—b— STOP)O (¢ — d — STOP)
(b) ((a = b— STOP)O (¢ — d— STOP))\ {a,c}
(¢) (a—b— STOP)\ {a} O (¢ —d— STOP)\ {c}

Your answers to (b) and (c) should show rather different externally observed behaviour.
What is it about the rules for O that causes this?

EXERCISE 7.3.2 Draw the LTSs corresponding to the recursively defined processes

(a) (up.(a — SKIP) O (b — p)); (a — SKIP)
(b) wp.(a — STOP) > ((b — STOP) > p)
(¢) ZERO (see page 143)

EXERCISE 7.3.3  Give a set of rules for computing the operational semantics of P ||| @,

derived from those of ||. Describe the LTS resulting from the process
X

(a — b — SKIP) ||| (a — ¢ — SKIP)
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Figure 7.7: The full state space of COPY >> COPY .
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Give a set of rules for the operational semantics of P >> @) directly, rather than going
through the series of inferences through renaming, parallel and hiding illustrated in the
example above.

7.4 Relationships with abstract models

7.4.1 Extracting failures and divergences

It was already pointed out in Section 3.3 that there are two quite separate ways to
work out a process’s traces, failures and divergences: either by using the inductive
semantic rules for piecing these together (and which we will be studying in the next
chapter), or by examining the process’s transition system.

It is easy to formalize the extraction of these values from an LTS C.

We first define two multi-step versions of the transition relation. The first just
allows us to glue a series of actions together into a single sequence. If P, Q € C and
s=(z; | 0<i<n)ec (X7) wesay P+ Q if there exist Py = P, P1,..., P, = Q
such that P, =% Py, for k € {0,1,...,n—1}.

This first version includes 7 actions (invisible to environment) in the sequence
shown. The second ignores these 7’s: for s € * we write P == Q if there exists

s’ € (¥7)* such that P LR Q and s’ \ 7 = s. The following properties of == and
+—— are all obvious.

0 0

(a) P=LPAP-LP

b) P=QAQ=-R=P=2LR
) PQAQ-“R=P~ %R
d PER=3QP=QAQ=-R
) PELR=3QP-5QAQ--R

It is easy to extract the set of a node’s finite traces using the above relations:
traces(P) = {s € ¥* |3Q.P = Q}

Suppose C'is a transition system and P € C. We say P can diverge, written
P1}, if there exist Py = P, Py, Py, ... such that, for all n € N, P,, —— P, ;.

divergences(P) = {s't|s € Y* At € X" ANTJQ.P == Q A Q1}

Notice that we have said that s't is a divergence trace whenever s is. This is a
reflection of the decision, discussed in Section 3.3, not to try to distinguish what can
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happen after possible divergence. It would, of course, be easy to avoid this here, but
it is much harder to get things right in the denotational semantics without it. Notice
that minimal divergences (i.e., ones with no proper prefix that is a divergence) do
not contain v'. This is because we are not concerned with what a process does after
it terminates. Our inclusion of divergences of the form s*(v'), where s is one, is
simply a matter of taste.

In Section 3.3, we said that the only states that give rise to refusals are stable
ones, since a 7 action might lead to anything, in particular to a state that accepts
an action from whatever set is on offer. Since then the notion of a stable state has
been complicated a little by the intermediate nature of v/, and so, inevitably, are
the criteria for extracting refusals.

e A stable state (one without T or v' events) refuses any set of visible events
(perhaps including v') that does not intersect with the state’s initial actions.

e We are interpreting v* as an event that cannot be resisted by the environment.
Thus any state with this event amongst its initial actions can decide to
terminate, plainly refusing all events other than v. So any state with a v/
action (even such a state with 7 actions) can be held to be able to refuse any
subset of ¥. To help understand this, remember the discussion of Figure 7.2,
where we commented that any state with a v~ action is equivalent, so far as
external observation is concerned, to one with a 7 to state A (one with only
a v action). If we made this transformation, it would be this ‘A’ state that
introduces this refusal.

We can formally define P ref B (B C ¥Y) if and only if either P is stable and
BN P ={} orthere is Q with P - Q and B C 3.

We can then extract the failures by combining this with the traces, taking
account of the convention that a process refuses anything after v'.

failures(P) = {(s,X)]|3Q.P== QA Qref X}
W), X)[3Q.P = Q)

As we saw briefly in Chapter 3, and will study more in Section 8.3.1, it is
sometimes necessary to ignore details of what a process does after possible diver-
gence. Sets of traces and failures with post-divergence detail obscured are given by
the definitions

traces) (P) = traces(P) U divergences(P)
failures | (P) = failures(P)U{(s,X) | s € divergences(P)}
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7.4.2 Infinite traces and infinite branching

There is one further important type of process behaviour that can be extracted from
LTSs in much the same way that we have seen done for finite traces, divergences
and failures. This is the infinite traces, the infinite sequences of communications
a process can engage in — an obvious extension of the idea of finite traces. The
notations —— and == can be extended to infinite u, though they now become
unary rather than binary relations on the nodes in an LTS:

o If u={(x;|i€N) e (X7) (the set of infinite sequences of members of X.7),
we say that P 2 if there exist Py = P, Py, P,,... such that P; SN Py
for all .

e If u € X% then P =% if and only if there exists u’ € (7)“ such that P N
and u =u'\ 7.

v'’s, being final, play no part in infinite traces. Note that not all ' € (X7)% have
u’ \ 7 infinite — the others all have the form s°(7)¥ and give rise to divergences.

Infinite traces have more in common with divergences than with finite traces,
in the sense that both take an infinite amount of time to unfold and result from
the process performing infinitely many actions (in the case of divergence, all but
finitely many being 7’s). This means that, as with the set of divergences, there is
no reasonable way to model, in the denotational semantics, what goes on in the
infinite traces after potential divergence. The set of infinite traces we extract from
an LTS therefore closes up after potential divergence, rather than offering a choice
of two functions as with finite traces and failures.

infinites(P) = {u| P =2} U{s"u | s € divergences(P)NL* Au € X¢}

It makes a lot of sense, of course, to combine finite and infinite traces into a
single set

Traces(P) = traces) (P) U infinites(P)

This set is, naturally, always prefix closed like traces(P) and traces  (P). Thus,
every finite prefix of an infinite trace is also in this set. Studying infinite traces only
conveys extra information about a process if the reverse of this can fail: if there can
be u not in infinites(P) all of whose finite prefixes are in Traces(P), for otherwise

Traces(P) = traces, (P)

where A = AU{u € X¥ | {s|s < u} C A}. We will say that Traces(P) is closed
when this happens.
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There is a large and important class of LTSs where this identity always holds:
ones with the following property:

DEeFINITION The LTS C is said to be finitely branching if for all nodes P and each
z € £¥'7, the set

{QIP— Q)

is finite. ]

This says that there are only finitely many nodes we can reach from a given
one under a single action. This means that, if we know what action or sequence
of actions have occurred, there is only finite uncertainty, or nondeterminism, about
what state the process has reached. If ¥ is infinite, because the above condition
only restricts the size of the set that is reached after a single event, it is possible
that a node of a finitely-branching LTS might have infinitely many successors.

The proof that nodes in finitely-branching LTSs have closed Traces(P) is a
corollary of the following standard result, which we will want to use a number of
times in the mathematical analysis of CSP.

THEOREM 1 (KONIG’S LEMMA) Suppose X; is, for each i € N, a non-empty finite
set and that f; : X;11 — X, Is a (total) function. Then there is a sequence {(z; | i €
N) such that z; € X; and fi(x;11) = ;.

PROOF We can compose the individual functions together to get, for r > s, func-
tions fr s : Xp — Xi:

fr,s = fSO...OfT,1

Fix s in N. It is easy to see that f. s(X,) is a decreasing series of subsets of
X, for v > s (ie., fr s(Xy) 2 frg1,5(Xry1) for all 7), since

fr,s (fr (XTJrl))

f'rJrl,s(X'rJrl) -
C frs(Xr)

But any decreasing sequence of finite sets must be eventually constant, and since
the members of the sequence are all non-empty we have that

Xs* = ﬂr>s fr,S(Xr)

is non-empty and equals f. s(X,) for all sufficiently large r.
From this it follows that when we vary s, we have f,(X) ;) = X. The X},

S
and the functions f; restricted to these sets, thus satisfy the assumptions of the

lemma and have the additional property that the restricted f; are onto.



7.4 Relationships with abstract models 181

Figure 7.8: The proof of Konig’s lemma.

Now simply pick 29 € X, and for each s let z,y; be any member of X,
such that fs(zs+1) = zs. This must exist by what we observed above.

Figure 7.8 illustrates a simple example of this proof. A few of the decreasing
subsets f,1(X,) of X; are illustrated. The elements in black are those which, on
the evidence before us, are candidates for the X*. 1

Konig’s lemma is often stated in graph-theoretic terms: a finitely-branching
tree with nodes at every (natural number) depth below a root r has an infinite path
from r. The sets X; just become the nodes reachable in i steps from r, and the
functions f; map each node to the one from which it was reached.

We can now use this result to establish the result about finitely-branching
LTSs.

THEOREM 2 If C is a finitely-branching LTS, and P € C, then Traces(P) is closed.

PROOF Let u € ¥“ be such that {s € ¥* | s < u} C traces (P). We can assume
that none of these s’s is in divergences(P), for then u € infinites(P) by definition.
The proof works by applying Konig’s lemma to the nodes reachable from P on
traces that are prefixes of u. We can formally define sets and functions for the
lemma as follows:

e X, ={(Q,5)| Qe CAsec(Z)"AP—5 QAs\T<u}

e If (Q,5(z)) € X,11 then there must be R € C such that P — R and
R % Q. Necessarily (R, s) € X,,. Let f,(Q, s (x)) be any such (R, s) (R is
not necessarily unique, but this does not matter).
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Figure 7.9: The role of divergence in Theorem 2.

The sets X, are all finite by induction on n, using the assumption that C' is finitely
branching: if (@, s) € X,,, then the set of its successors in X,,11 is contained in the
finite set

{(R,s°(1) | Q — RYU{(R,5'(a)) | Q — R}

where a is the unique element of ¥ such that (s \ 7)°(a) < w. That the X,, are
all non-empty is an easy consequence of the assumption that s € traces  (P) for all
s < u.

Koénig’s lemma then gives a sequence (P;,s;) such that f;(Pit1,Si+1) =
(P;,s;). The structure of the X; and the f; imply that there is an infinite se-
quence v’ = (z; | i € N) € (X7)“ such that s; = (20,...,2z;—1) and P; 2 Pyt
The fact that s; \ 7 < u for all 7 implies ' \ 7 < w. In fact, v’ \ 7 = u since
otherwise (contrary to our assumption) a prefix of u is in divergences(P).

Figure 7.9 shows how a finitely nondeterministic system can (for the infinite
trace (a,a,a,...)) depend on the divergence-closure of infinites(P) to make this
result true. |

On the other hand, as soon as we allow infinite branching, the set of infinite
traces does convey important information. For example, consider the two systems
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Figure 7.10: Infinite branching makes infinite traces significant. (All actions are a.)

in Figure 7.10: they clearly have the same sets of failures, divergences and finite
traces, but the one on the left has the infinite trace (a)* while the other does not.
We will study the consequences of distinctions like this, and the extra power infinite
traces give us for specifications, in Chapter 10.

The above result makes it important that we understand which CSP terms
produce finitely-branching operational semantics. Every one of the operators, if
applied to a term that already has infinite branching, is capable of producing infinite
branching itself. But fortunately only three operators are capable of introducing
infinite branching, or unbounded nondeterminism as it is often called.

e The choice operator [ 1S clearly introduces infinite branching (of 7 actions)
when S is infinite.

e If the set X is infinite, then P \ X can branch infinitely (on 7) even if P does
not. For example, the process @ = (?n : N — P(n)) \ N is operationally
equivalent to [ [{P(n) \ N | n € N}.

e If the relation R is such that {z | z Ry} is infinite for any y, then the
renamed process P[R] can branch infinitely on y when P is finitely branching.

For example, the functional renaming f[@] where f(n) = 0 for all n € N
introduces infinite branching.

The last two of these can only happen when X is infinite, but there is no such
limitation on the first.

We could easily prove that avoiding these three things guarantees finite
branching. The proof comes in two parts:

e Show by structural induction® that the initial actions of any CSP term not

8 Structural induction is a technique for proving properties of objects in syntactically-defined
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involving one of these three constructs are finitely branching.

e Show that if P does not involve them, and P — @, then neither does Q.

EXERCISE 7.4.1  Use your answer to Exercise 7.3.2 and the functions defined in this
section to determine traces(P), failures(P) and divergences(P) for each of the processes
refered to in that earlier exercise. Is any of them infinitely nondeterministic?

EXERCISE 7.4.2  Can ([ {COUNT, | n € N}) \ down diverge? What are its failures?

7.5 Tools

The role of an animator like ProBE is to bring the operational semantics to life:
it will let you carry out the actions of a process as derived from the operational
semantics. It may well allow you to see how the rules of the operational semantics
have derived each action of a compound process from the actions of its parts.

You can use a tool like this both to help you understand the operational
semantics and to apply these semantics to allow you to experiment with complex
process definitions.

sets such as the set of all CSP terms CSP. It says that if you can prove a property R of each term
T of a syntax on the assumption that R holds of all the immediate subterms that 7' is built from
(e.g., assuming it holds of P and @ to prove it holds of P O Q) then it holds for all members of the
syntax. Over most programming languages one can justify this principle easily, because structural
induction is implied by ordinary mathematical induction over the size of programs. But a careful
examination of what we allow as CSP terms reveals this argument does not work here, since we
have infinite mutual recursion as well as the infinitary constructs [ | S and ?z : A — P, meaning
that there are terms with no finite ‘size’ in the ordinary sense. Structural induction can still be
justified provided we assume that the syntax is well-founded, meaning that there is no infinite
sequence of terms each of which is a subterm of its predecessor. This means we cannot have terms
like

a —a — ... — aq — ...

actually in the language, though there is nothing wrong with achieving the same effect using an
infinite mutual recursion P; = a; — P;41.

Well-foundedness corresponds to the natural assumption that the language generated by a syntax
is the smallest set of terms which is closed under all the constructs of the syntax. This leads to a
trivial proof of the principle of structural induction: the assumptions of that rule imply that the
set of terms in the language that satisfy R is itself closed under all the constructs, and therefore
contains the smallest set.

Readers with the necessary mathematical background might like to note that, in order to make
the infinitary syntax of CSP well defined, it is necessary to put some bound on the size of sets that
can have [ | applied to them. This can be any infinite cardinal number k, which can be chosen to
accommodate all the nondeterministic choices required for a given theory. (The necessity of this
bound is tied up with Russell’s paradox and the non-existence of a set of all sets.)
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FDR is heavily dependent on the operational semantics. This is discussed in
Appendix C.

7.6 Notes

Historically, the operational semantics of CSP was created to give an alternative
view to the already existing denotational models rather than providing the intuition
in the original design as it has with some other process algebras such as CCS.

The style of presenting an operational semantics as an inference system
evolved at about the same time as CSP, the main influence being Plotkin’s notes
[94] which set out the general style used here. The operational semantics of CSP
first appeared in something like their present form in Brookes’s thesis [15], though
essentially the same semantics in LTSs using different notations (more remote from
Plotkin’s) were present in [18, 101]. In providing CSP with an operational semantics
of this form we were certainly heavily influenced by the earlier work on CCS, the
standard treatment of which is now [82].

The version in [15] did not use the 7-expansion rule for recursion unfolding.
This first seems to have appeared in print in [87], though it had certainly been in
use for several years by then. This rule is interesting because it shows up one of the
major differences between CSP and those other process algebras which, like CCS,
give semantic significance to a single 7 action. If it were not the case that, for any
node P, another node  whose only action is Q — P is equivalent to P, then the
unwinding rule would be much more controversial.

The semantics presented in this book differ from the earlier versions in the
way v', and hence the distributed termination of parallel constructs, are interpreted.
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Chapter 8

Denotational semantics

8.1 Introduction

CSP has been given a number of denotational semantics, mainly based on sets of
behaviours such as traces, failures and divergences. It is not necessary to under-
stand a lot of difficult mathematics to use the behaviours as a tool for describing
or specifying processes, especially when equipped with automated tools for evalu-
ating which behaviours a process has. Indeed, the sets of behaviours of processes
can equally and equivalently (thanks to congruence theorems) be extracted from
operational semantics. However, it is possible to gain a much deeper insight into
the language by investigating these notions of equivalence and the properties of the
models they generate. In this chapter we set out the main ideas and methods of
denotational semantics, or at least the ones important to CSP, and show how three
models for CSP each give an interesting semantics.

In building a denotational semantics — a function! S[-] from a programming
language L into a mathematical model M — there are a number of things we must
always seek to do. The following paragraphs set out these aims.

Natural but abstract relationship between model and language

Ideally the construction of M should have a close relationship to a natural language
for describing the ‘essence’ of programs in £. This makes it easier to devise and

IThe special style of brackets [-] is commonly used in denotational semantics to separate pro-
gram syntax from abstract semantics. They have no formal significance, but give a useful visual
signal. In fact we will not generally use them when it comes to dealing with CSP except in places
where a clear distinction between syntax and semantics is vital.
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justify the semantic clauses for the different operators and to use the semantic value
of a program as a vehicle for specifying properties of it.

Natural notion of process equivalence

The equivalence over process terms induced by the semantics should be a natural
one, in the sense that for all terms P and @, S[P] = S[Q] if and only if P and @
behave equivalently in some clearly defined sense. Depending on the way the model
is built this may be obvious, or it may be rather more subtle. One of the best ways
of demonstrating this is to identify a very few (rarely more than one or two) sim-
ple tests based on simple specifications (such as ‘does not immediately deadlock’,
‘does not immediately diverge’ or ‘does not have the trace (fail)’) which are uncon-
troversial reasons for deciding two processes are different, and then showing that
S[P] = S[Q] if and only if, for all process contexts C[-], C[P] and C[Q] satisfy
the same selection of these tests. If one can prove a result like this we say that the
semantics S[-] is fully abstract with respect to the chosen selection of properties.
We will study this idea in depth in the next chapter.

Model must be a congruence

The semantics has to be a congruence, in that for each operator & in the language,
it is possible to compute S[P @ Q] in terms of S[P] and S[Q] (with obvious
modifications for non-binary operators). It is quite possible to propose what looks
like a good model for a language only to discover that this property fails for some
operator. For example, we might design a model for CSP in which a process was
modelled by (traces(P),deadlocks(P)), where deadlocks(P) is the set of traces on
which P can deadlock, as a simplification of the failures model. We would then find
it possible to give semantic clauses for deadlocks(P) for most CSP operators, for
example

deadlocks(STOP) = {()}
deadlocks(a — P) = {{(a)'s| s € deadlocks(P)}

deadlocks(P O Q) = ((deadlocks(P) U deadlocks(Q))N{s|s#(})
U (deadlocks(P) N deadlocks(Q))

deadlocks(P 1 Q) = deadlocks(P) U deadlocks(Q)

deadlocks(P; Q) = (deadlocks(P)NX*)
U{st| s(v) € traces(P) A t € deadlocks(Q)}
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But this breaks down for parallel operators involving synchronization, such as |.
X

If, for example

P = (a—=P)n(b—P)
R = (¢e—=R)O(b—R)

P and R have exactly the same sets of traces ({a, b}*) and deadlock traces ({}).

But, while R || R still cannot deadlock, the process P || P can (on any trace)
{a,b} {a,b}
because the left-hand P can opt only to accept a and the right-hand one can opt

only to accept b. Thus it is impossible, in general, to predict the semantics of S || T
X

from those of processes S and T, so our proposed semantics is not a congruence
and must be rejected.

Fixed-point theory

Just as we need to be able to combine semantic values accurately under all of the
basic operators of our language, we also need to be able to compute the values
of recursively defined processes. While you can think of recursion as just another
operator that is applied to process terms (turning P into p p.P), it is conceptually
a quite different thing to operators like ¢ —, O and )H( What pp.P represents is a

solution to the equation
A = P[A/p]

Since the denotational semantics is a congruence, the semantic value S[P[A/p]] is
a function of the value S[A], in the sense that if S[A] = S[B], then S[P[A/p]] =
S[P[B/p]]- Thus S[up.P] is a fized point of this function. You can think of the
term P as a context in which the identifier p represents the process argument.

Giving a denotational semantics to recursively defined processes thus reduces
to finding fixed points of the functions from M to itself that are generated by process
contexts. This means that every appropriate function over M must have a fixed
point — not something that is true for most mathematical structures. And, of course,
there may be more than one fixed point, in which case we have to make a rational
choice of which one to select.

Just as the semantics of recursion is stylistically very different from the se-
mantic clauses of more ordinary operators, so too are the methods available for
proving properties of recursively defined process. We need ways of proving proper-
ties of the objects extracted by whatever mechanism is chosen to pick fixed points.
Such proof methods, the main ones seen so far being the UFP rule and fixed-point
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induction, are inevitably intimately tied up with whatever mathematical theory is
used to prove the existence of the fixed points.

In the later sections of this chapter we formalize several denotational seman-
tics for CSP and show how they meet the aims set out above.

Two different theories, partial orders (with Tarski’s theorem) and metric
spaces (with the contraction mapping theorem) for proving the existence of fixed
points are commonly used in denotational semantics. Both of these are used in CSP
and we use them widely in this and subsequent chapters. A tutorial introduction
to both can be found in Appendix A, and readers not familiar with one or both
should study that before continuing with the present chapter.

8.2 The traces model

We have already defined the traces model and the semantics of each individual
operator over it. 7 is the set of non-empty, prefix-closed subsets of ¥*¥'. This,
as is shown in Section A.1.1, is a complete lattice under the refinement order C 7
(which equates to reverse containment). But, since any complete lattice is also a
complete lattice when turned upside down, we actually have three different choices
of theories to get us the fixed points required for recursions: the two senses of the
order, or metric spaces. In this section we discover which of these is the right answer
by looking carefully at the properties of the model and the CSP operators over it.

It is instructive to examine the ways that the various operators are defined
over 7. (Their definitions can be found in Section 1.3.1 and with later definitions
of operators.) In every case, it is possible to restructure them so that instead of
being functions from sets of traces to sets of traces, they are lifted in a natural
way from relations over traces. This is well illustrated by considering the sequential
composition operator P; ). We can derive its traces from two relations: one
(binary) between traces of P and output traces and one (ternary) between traces
of P, traces of () and output traces. These are described

s hu & seX*Au=s
($,0); hou < Fsp.s=s"(V)ANu=s"t

Thus, we get one relation describing the overall behaviours that the first argument
can produce without the help of the second, and one describing the behaviours in
which both arguments are active. There are two further relations we might need
for a binary operator @: [@]q for the second argument acting alone and [@®]e for the
set of behaviours that can be produced without either playing a part; but in the
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case of ‘;” these are both empty. In general we then get

traces(P @ Q) = {u|3s € traces(P),
U{u | 3s € traces(P
U{u |3t € traces(Q
U [®]e

€ traces(Q).(s,t, u) € [®]1,2}
(s,u) € [®1}
(t,u) € [B]2}

t
).
).

For a unary operator we similarly need two relations: one for behaviours involving
its argument and another for those that do not. The following give clauses for most
of the other main CSP operators. Where a relation is not specified it is empty.

(112 = {(s,t,u) | u € s || t} where s || ¢ is as defined in Section 2.4 and
X X X
extended to deal with v' on page 150.

N\ X ={(s;s\ X)|sex*}

(IR = {((ar,-..an), (b, ooy b)), ((ar, -y any V), (b b, V) |

It is interesting to note that the relations given above for M and O are different,
even though these operators are identical over trace sets. On one hand, this shows
that the choice of relations to achieve a given effect is not unique. On the other,
the precise forms chosen have been influenced by the very different operational
semantics of the two (see Section 7.3): in P M @ it is never the case that both P
and @ have ‘run’, while in P O @) they may both have executed internal actions
before the choice was resolved.

Perhaps the most important consequence of this relational representation is
that it automatically yields important structural results about the semantics.

THEOREM 1 Any operator @ over T definable as the lifting of a family of trace
relations is fully distributive in each of its arguments, in the sense that F([]S) =
[{F(P)| P e S} for each non-empty S (where F(-) represents any unary function
produced by fixing all arguments of @ other than the one we are studying).
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PROOF Suppose first that @ is unary. Then there are no other arguments to fix,
and so

FI18) = [®leU{u|IsclUS.(s,u) € [®]1}
= [@®le UU{{u]|Is € P.(s,u) € [®h1}| PeS}
= U{@®eU{u|Ise P.(s,u)€[®h}|PeS}

= T{F(P)|PeS)}

the equality between the second and third lines following because S is non-empty.

If ® were not unary then fixing all arguments but one means we can divide
the relations into those which involve the chosen one and those that do not, and
derive a unary and a binary relation to use in the above proof. For example, if we
are studying the first argument of a binary operator and fix the second argument
to be @ € T then the cross-section F(P) = P @ @ gives relations

[©Qls = [®leU{u|Tte Q.(t,u) € [B]2}
@@L = [Biu{(s,u) [Tt € Q.(s,t,u) € [B]12}
This completes the proof. |

This gives another view of the distributive laws that hold of CSP operators
and also proves (i) that they are all monotonic with respect to the refinement order
and (ii) that under the subset order (i.e., the reverse of refinement) they are all
continuous. The former is because we know P C () is equivalent to P M @ = P,
and so F(P) N F(Q) = F(P) for distributive F(-). The latter is because continuity
under that order is equivalent to distributivity over directed sets.

It is also informative to consider continuity in the other direction. Now, it
turns out, not all operators are continuous. An example that fails is hiding an
infinite set X = {a1, ag, ...}, since, if we pick b & X, the processes

P, = STOPN[Ha; — b— STOP |i>n}

form an increasing sequence under Cp with limit STOP. However, for every n,
P,\X = STOPMb— STOP

so that the limit of applying \ X to the sequence:
LKPn\ X [n €N}

equals this value, which of course is not equal to STOP \ X.

The key to which operators are continuous lies in the relations that represent
them. The crucial feature of \ X (whether or not X is infinite, though it may not
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be empty) is that for any trace u not including a member of X, the set {s € £*¥ |
(s,u) € [\ X]1} is infinite: if we are told that s € traces(P \ X), there are infinitely
many potential reasons for this and as we go through an infinite refining sequence
of processes these reasons can disappear just as in the example above until there
are none left in the limit.

Except for hiding, the only relation described above that can have this in-
finitary property is the one for renaming P[R] when the R used is infinite-to-one
(i.e., it relates an infinite set of before-renaming events to a single after-renaming
one).

Consider, for example, the case of ;. The fact that there are two? different
relations generating traces is irrelevant since if there were an infinity of different
reasons for a given trace, infinitely many of these would have to come from one

or other. [; ]i is obviously finitary since it is a subset of the identity relation —
each trace has at most one precursor here. [; |12 is more interesting since the trace
(a1,...,a,) has precursors

{((al,...,ak,\/>,<ak+1,...,an>)|k€{0,...,n}}

which, though always a finite set, grows in size with the length of trace.

Formally, we define an n-ary relation R to be finitary if, for all v in the
domain of its final component,

{(z1,...,Tn—1) | (21,...,2n—1,v) € R} is finite
The following result shows the importance of these ideas to continuity.

THEOREM 2 If@ is any operator of finite arity, which can be represented by a family
of relations all of which are finitary, then it is C p-continuous in each argument.

PROOF The reduction of this problem to the case where & is unary is essentially
the same as in the previous proof, its finite arity being needed simply so that the
number of representing relations is also finite. So we will restrict out attention to
that case, so that @ is generated by the relations [®]s and [@]; where the latter is
finitary (there being no question that a unary relation like [®]s can fail to be). We
are therefore considering the function

F(P) = [®leU{u|ds e P.(s,u) €D}

2In the case of there being infinitely many relations, as there would be for [ | $ with § infinite,
this would be of concern if the ranges of the relations overlap.
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To prove it is continuous it is sufficient (thanks to its known monotonicity) to show
FUA) Er L{F(P)| P €A}
or, equivalently,
F(NA) 2 ({F(P) | P e A}

for any directed A C 7. So suppose u is a trace belonging to the right-hand side.
We can dispose of it immediately if u € [@]e for it is then trivially in the left-hand
side; so we can assume u € [®lq. If © did not belong to the left-hand side, it follows
that each member of the finite set

preg(u) = {s|(s,u) € [@h}

is absent from [(A. For each such s we can choose Ps € A such that s ¢ Ps.
Finiteness and the fact that A is directed then implies that there is a P* € A such
that P; T P* for all such s. Necessarily then, P* N preg(u) = {} and hence
u & F(P*) contradicting what we assumed above. This completes the proof. |

This, of course, only proves continuity for each individual CSP operator. As
you will find in studying Appendix A, the composition of continuous (monotone)
operators is itself continuous (monotone), which means that the above result easily
yields the continuity of any expression built out of continuous operators. One
important point that is often forgotten about in this type of explanation is the
possibility of there being one recursion inside another, as in

pp-(a— (pgpOb—q)

The fact here is that, in order to define the meaning of the p p recursion, we have
to think of the inner recursion as a function of p (i.e., the fixed point varies with
p). Fortunately Lemma 8 (page 503) tells us that this causes no problems, but it is
important that you understand clearly why it is needed.

T can be given a metric structure based on the system of restriction functions
Pln={seP|#s<n}

which are closely analogous to, and satisfy the same collection of properties as, the
family introduced in Section A.2 for individual traces. Following the same approach
set out there gives the distance function

d(P,Q) = inf{27"|P|ln=Q | n}
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If the sequence
(Po, P1, Pa,...)

satisfies Pp41 | m = P, then it is easy to see that P* = | J{P, | n € N} satisfies
P* | n = P,. Thus 7 is (following the definitions in Section A.2) a complete
restriction space and so the metric is complete.

The restriction functions, and hence the complete metric structure, extend
easily to the product spaces used to reason about mutual recursions. If A is any
non-empty indexing set, we restrict a vector P € 7% componentwise:

(Pln)y = Pyxln

It is the metric/restriction structure which is at the heart of the theory
of guardedness/constructiveness that we first met in Chapter 1. For we can now
precisely define what it means for a function F' to be constructive with respect to
T for all processes P, Q and n € N

Pln=@Qln=FP)l(nt+1)=F(Q)]| (n+1)

As discussed in Section A.2, it is useful to define a corresponding concept of non-
destructive function:

Pln=@Qln = FP)ln=F@Q)ln

As shown in there, a function is constructive if and only if it is a contraction
mapping with respect to the associated metric and is non-destructive when it is
non-expanding in the metric space.

This immediately means that a constructive function has a unique fixed point
(thus justifying the UFP rule for analyzing recursions that we have used frequently
through this book).

In Section 1.3.1 we declared that a recursion was ‘guarded’ if every recursive
call was directly or indirectly guarded by a communication, but when we met the
hiding operator in Section 3.1 we had to exclude recursions in which hiding was
used. Both of these steps are easily explained when we examine how the individ-
ual operators behave with respect to the restriction functions. The following result
summarizes the position and is easy to establish; combining it with the composi-
tional rules for constructive/non-destructive functions justifies the earlier claims.

LEMMA 3 Each of the operators, O, ||, renaming and ; is non-destructive over T
X

in each argument. The prefix operators a — and 7z : A — are constructive.
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We could prove most of these in terms of the relational representations of
the operators: if an operator can be represented by relations that are all non-
destructive in the sense that the result trace of each tuple is never shorter than any
of the others, then it is easily shown to be non-destructive, and if the other traces
are always strictly shorter then it is constructive. The only relations amongst those
defined above that are not non-destructive are [\ X]; (as one might expect) and
[; ]1,2 which contains tuples like ({a, v}, (), (a)). That ; is non-destructive despite
this observation follows because any trace that results from such a ‘destructive’
triple also results from [; |1 as the contribution of the second process to [; ]1,2 must
be () in such a case.

There are, as we saw in Chapter 4, useful classes of recursion that do in-
volve hiding because of the way they create dynamic networks using piping and
enslavement. It is possible to find ones that actually behave properly despite not
being constructive at all, but most can be shown constructive using careful analysis.
Recall the recursive definition of an infinite buffer:

Bt = left?z — (B > right's — COPY')

When we introduced this on page 108 we saw an informal argument for the com-
position (P >> right!x — COPY’) being non-destructive as a function of P because
the process on the right of the >> is built so that it compensates for all the events
that get hidden. We now have the mathematics to analyze this situation, in clause
(a) of the following lemma, whose proof is left as an exercise.

LEMMA 4 (a) If Q satisfies

s € traces(Q) = #(s | left) < #(s | right)

then the function F(P) = P >> @ is non-destructive.
(b) If Q satisfies

s € traces(Q) = #(s | right) < #(s | left)

then the function F(P) = ) >> P is non-destructive.
(c) If, for each s € traces(Q) and i € {1,...,k}, we have

#(s \ Al ma, . me [}) = #(s | ma)

then the function F(Py,...,Py) = Q//mi:P1// ... /mg: Py is non-destructive in each
of its arguments.
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Where the metric fixed point theory works it is, by virtue of the uniqueness of
the fixed points it produces, certain to agree with those produced by both directions
of the partial order (which, of course, then agree with each other). Virtually all
well-behaved recursions fit within it, and in Section 9.2 we will see evidence that
all other well-behaved ones (ones not introducing divergence) force there to be a
unique fixed point. Nevertheless it is preferable to be in a position to interpret
badly-behaved ones too, such as the three set out below.

OZ():Z()
« Zi=a—(Z\{a})
o /5=

AZ = down —

O up —
AZ" = iszero —
Oup —

(up — (AZ Ju:Z)) O (iszero — Z3), where

(u.iszero — AZ’
O u.down — u.down — AZ)
w.up — u.up — AZ

A7’
AZ

Z5 is an interesting recursion closely modelled on the enslavement version of
the counter process, seen on page 112, but which increments and decrements
its slave by two rather than one. This violates Lemma 4 (c) since it frequently
requires its slave to have communicated a longer trace than it has, and though
the well-behaved counter is a fixed point, it is not the only one. Others are
BCOUNT and PCOUNT, where

BCOUNT

iszero — BCOUNT

O up — (down — BCOUNT

PCOUNT

O up — (up — STOP O down — STOP))

iszero — PCOUNT

O up — (down — PCOUNT

O up — MANY)

MANY = down — MANY
O up — MANY

Both of these get confused when they reach the number 2 (which is the
point where the slave counter gets raised to the same level as the overall one,
leading to ill-definedness). BCOUNT reacts by deadlocking soon after, while
PCOUNT loses track and accepts any number of down events.
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And we are in a position to interpret arbitrary CSP-defined recursions, for
we have both the C 1 and C orders. The only problem is to decide which, if either,
is the right one to use.

o If we identify a recursion with the least fixed point with respect to C 1 then
we have to accept that the simple formula

L= F7 (L)

for the least fixed point does not always hold because F' is not always contin-
uous. In this order, L is ¥*¥'. The fixed point produced will always be the
one with as many traces as possible, consistent with its being a fixed point.
Essentially, with this choice, we start out with the assumption that all be-
haviours are possible for a recursively defined process, and the construction
of the fixed point is the determination of which of these traces are impossible
based solely on the information that it is a fixed point.

e If we identify a recursion with the C-least fixed point then the above formula
(with L now being STOP = {()}) will always hold and we will always get
the process with as few traces as possible. With this choice, the construction
of the fixed point establishes which traces are certainly in any fixed point.

Now, in fact, the operational semantics given in Chapter 7 gives precisely
the traces corresponding to the second choice (we will examine this fact further in
Section 9.4). The only reasons to pick the first option would be (i) if one were
proposing an alternative operational semantics in which some under-defined recur-
sion could produce some other trace and (ii) somehow to express our disapproval of
under-defined recursions by cluttering up their semantics with traces that may well
make the process fail some safety specification. The first of these seems unlikely to
the author, and the second really represents muddled thinking: in the traces model
we can only expect to reason about safety properties and it is not possible accu-
rately to model divergence (the natural way in which an under-defined recursion
such as any of the above manifests itself at the point where the under-definedness
‘bites’) without expressly including it in the model.

Therefore the correct choice for 7 is to identify every recursion u p.F(p) with
its C-least fixed point which, because of the continuity of all operators with respect
to this order, is just the set of all traces which some F™(STOP) can perform. For
the examples Zy, Z; and Z; above these are respectively {()}, {(),{(a)} and the
traces of BCOUNT.

The identification of a diverging process like Z; (or, indeed, a straightforward
example like (1 g.a — ¢) \ {a}, about which there is no ambiguity in the calculation
of the fixed point) with the most refined process of 7 is simply a reflection of the
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deficiencies of this model for reasoning about anything other than safety properties.
This is similar to the phenomenon that identifies the deadlocked process STOP
with the same value. As we will see in the next section, as soon as we model both
safety and liveness in the same model, there is no most refined process.

EXERCISE 8.2.1 Find sequences of processes of the form Py Ty Py Ty Py Cp ...
illustrating failures of C r-continuity of (i) hiding a single event \ {a} and (ii) infinite-to-
one renaming.

EXERCISE 8.2.2  Prove that the relation [||]1,2 is finitary.
X

EXERCISE 8.2.3  Show that if a unary operator @ satisfies (s,t) € [®]1 = #t > #s,
then & is constructive.

EXERCISE 8.2.4  Prove Lemma 4 (c), and hence show that the Zero, recursion given
on page 112 is constructive.

EXERCISE 8.2.5 Suppose X is infinite. Use renaming to find a CSP-definable function
that is constructive but not continuous with respect to C .

8.3 The failures/divergences model

8.3.1 Building the model

As we have already specified in Section 3.3, in the failures/divergences model each
process is modelled by the pair (failures  (P), divergences(P)), where, as formally
set out in Section 7.4.1,

e divergences(P) is the (extension-closed) set of traces s on which P can di-
verge, in the sense that an infinite unbroken sequence of 7 actions can occur
after some s’ < s.

e failures | (P) consists of all stable failures (s, X') (where s is a trace of P and
X is a set of actions P can refuse in some stable (unable to perform a 7 or
V') state after s, or results from a state after s which can perform v' and
X C %), together with all pairs of the form (s, X) for s € divergences(P).

This model has long been taken as the ‘standard’ equivalence for CSP, and with
good reason. It allows us to describe safety properties (via traces) and to assert
that a process must eventually accept some event from a set that is offered to it
(since stable refusal and divergence are the two ways it could avoid doing this, and
we can specify in this model that neither of these can happen). Although, as we will



200 Denotational semantics

see in Sections 8.4 and 10.1, it is possible to reason about either (stable) failures or
divergences in the absence of the other, neither alone provides a sufficiently complete
picture of how processes behave.

It is important to notice that if s is a trace that process P can perform then
certainly either P diverges after s or reaches a stable state or one that can perform
v'. Thus, the failure (s, {}) always belongs to failures, (P), either because of the
closure under divergence or because any stable (or v') state obviously refuses the
empty set of events. It is, therefore, in general true that traces; (P) = {s | (s,{}) €
failures | (P)}, and we will use this identity without comment in what follows.

Recall that in the traces model we identified processes with non-empty, prefix-
closed sets of traces in ¥*¥. Similarly, in the failures/divergences model we need
a number of ‘healthiness’ conditions to identify which pairs of the form (F, D)
(F C ¥ xP(X¥) and D C ¥*¥) can reasonably be regarded as processes. We
formally define the model NV to be the pairs P = (F, D) of this form satisfying the
following (where s, t range over ¥*¥ and X, Y over P(X¥)):

F1. traces, (P) ={t| (t,X) € F} is non-empty and prefix closed.

F2. (5,X)e FANYCX=(s,Y)€eF
This simply says that if a process can refuse the set X, then it can also refuse
any subset.

F3. (s,X) e FAVa€ Y.s'(a) & traces | (P) = (s, XU Y) e F
This says that if P can refuse the set X of events in some state then that
same state must also refuse any set of events Y that the process can never
perform after s.

F4. s°(V') € traces | (P) = (s,X) € F
This reflects the special role of the termination event/signal v (see Section
7.2) and says that if a process can terminate then it can refuse to do anything
but terminate.

DIl. se DNY*AteX™Y —= s'te D
This ensures the extension-closure of divergences as discussed briefly above.

D2. se D= (s,X)€F
This adds all divergence-related failures to F.

D3. s{(vye D= seD
The effect of this axiom is to ensure that we do not distinguish between
how processes behave after successful termination. Already obliged not to
communicate again (as v" is always final) and therefore to refuse all events
(by F3), D3 states that the only way a trace s*(v') can get into D is via
the implication in D1. Since v is a signal indicating termination, after that
event there is no possibility of the process carrying on and diverging.
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Our earlier assertion that the set of traces of any process is just the set
{s € X" | (5,{}) € F} is justified for any pair (F, D) satisfying the above, because
of F2.

It is fairly easy to see that the abstraction functions defined in Section 7.4.1
for deducing (failures | (P), divergences(P)) for a member P of an LTS give a pair
satisfying the above. That these conditions cannot be strengthened any further is
demonstrated

(a) by the fact that, as demonstrated in Exercise 9.4.3, there is a member of an
LTS mapping to any pair (F, D) that satisfies them, and

(b) by the facts that, under various sets of assumptions, it can be shown that
every member of A is the image of a CSP process: see Sections 9.3 and 10.2.

Recall that refinement is defined over this model by reverse containment:
(F,D)Cpp (F/,DY=F2F ADDD

Any immediately divergent process such as div is identified with the bottom
element of \:

L = (2 x B(EY),2)

for notice that, thanks to conditions D1 and D2, () € divergences(P) implies that
all of these behaviours are present.

The greatest lower bound for any non-empty subset of N is just given by
componentwise union:

M8 = (W{F | (F,D) e S} UD | (F,D) € 5})

which is naturally identified with the nondeterministic choice over S and easily
shown to be a member of N (see Exercise 8.3.3).

If s is a trace of P = (F, D), then P/s (P after s) is the pair
(@& X) [ (s°t, X) e F},{t]| st € D})

which simply represents the possible behaviour of P after s has been observed.
Conditions D1 and D2 ensure that if s € DNY* then P/s = L. We can similarly
extract the initials and refusals of P from its failures/divergence representation:

initials(P) = {a € XY | {a) € traces, (P)}
refusals(P) = {X C¥Y |((),X)€ F}
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Clearly Ly Cpp P for all P, so this process is the least refined under
failures/divergences refinement. There is no single most refined process, unlike 7°
where STOP was most refined. It would have been worrying if there had been one,
since P Cpp @ can be interpreted as saying that ) is more deterministic than P,
and it is implausible for there to be a single most refined process in a model that
claims to provide a complete description of processes. If there were we could put
programmers out of a job and use it every time! The maximal processes of N are
those that cannot diverge and can only refuse those sets implied by condition F3.
These, satisfying the following

divergences(P) = {} A
Vs, a.m(s"(a) € traces) (P) A (s,{a}) € failures(P))

are the deterministic processes we met in Section 3.3. Let D denote the set of
deterministic processes. We will discuss these in Section 9.1, including showing
that they are, indeed, the maximal elements of N.

When ¥ is finite, A/ is significantly easier to analyze and better-behaved.
The following result illustrates this.

THEOREM 5 If ¥ is finite then N is a complete partial order (cpo) under the
refinement order and the least upper bound of any directed set A of processes is
simply the componentwise intersection

Pt = (F',DY) = (N{F | (F,D) € AL,({D | (F,D) € A})

PrOOF To prove this we have to show that (FT, D) satisfies all of F1-D3. All of
these other than F3, which is the only one actually requiring the directedness of A,
are straightforward, so we will concentrate on that one.

If (s, X) and Y meet the conditions of F3 for the failure-set F', we have to
show that (s, X U Y) € F for every (F,D) € A as that would imply it is in the
intersection FT. Let us fix on a specific Py = (Fo, Dp). As P varies over A, the set

initials(P/s) = {a| s(a) € traces, (P)}
varies in such a way that
P Cpp P’ = initials(P/s) D initials(P'/s)

As we are assuming X (and hence P(X¥')) to be finite, it follows that the above sets
form a finite directed set under reverse containment, which means that there is a
Pt = (F* D%) € A such that it is minimum in the sense that (P*/s)? C (P/s) for
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all P € A. Directedness of A also lets us assume that P¥ 3 P, for if the one we pick
first does not satisfy this we may pick one which refines both the original and Py.
It follows easily that initials(PT/s) = initials(P*/s) and so (s, X U Y) € F* C F,
as required.

The use of directed finite sets in this proof is essentially a re-working in rather
different language of the argument in Theorem 1 (Konig’s lemma). It is interesting
to compare them. ]

This proof depends crucially on the finiteness of X, for the result does not
hold when X is infinite. We should not be too surprised at this, since moving from
a finite to an infinite alphabet means that A contains processes that are funda-
mentally infinitely, or unboundedly, nondeterministic in the sense that they cannot
be represented by a finitely nondeterministic LTS or by CSP syntax without one
of the constructs (['1.5 for infinite S, infinite hiding and infinite-to-one renaming —
note that the last two of these can only exist in the context of infinite ) known
to introduce it. Since refinement is equated with the restriction of nondeterminis-
tic choice, if we start off (at some point in a process) with a finite range of options
then — as shown in the proof above — any directed set of refinements must eventually
settle down to a fixed non-empty subrange of these options, for a directed (under
reverse inclusion) set of non-empty finite sets always has non-empty intersection.
On the other hand, a similar directed set of infinite non-empty sets may have empty
intersection, the simplest example being, perhaps,

({0,1,2,...1,{1,2,3,.. 1. {2,3,4,..},... . {non+ 1.}, ..}

This example can be translated directly to one showing that A is not a cpo
when X is infinite; assume we have identified a distinct element a; € ¥ for each
i € N. Now let

P, = [a; = STOP | i > n}
Clearly P, Cpp Pnyq1 for all n and ((),%) & failures, (P,) for any n. If this

increasing sequence were to have an upper bound PT, it would have to have the
following properties:

o ((),%) & failures | (P') because P! must refine the P;, and

e traces(PT) = {()} since every trace other than () is absent from P, for
sufficiently large n.

But these two properties are inconsistent because of condition F3.
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This, of course, means that it is easier to justify the existence of fixed points
for recursive definitions when ¥ is finite. A number of techniques® have been de-
veloped for establishing their existence over the type of incomplete order caused
by considering unbounded nondeterminism. These can be used to show that any
CSP-definable function over A always has a least fixed point whether ¥ is finite or
not.

Thus, the incompleteness arising from infinite alphabets is more a mathe-
matical inconvenience than a real problem. Nevertheless, the possibility of infinite
nondeterminism (whatever the size of ¥) does create a real difficulty with the ac-
curacy of A as we will see in the next section.

In order to extend the notions of constructiveness and non-destructiveness
to N we need to define restrictions P | n with the same properties as those already
studied over 7. Various definitions would work, but the following one is perhaps
the best since it identifies P | n with the C pp-minimal process in the subset of A/
we would wish to identify with P based on n-step behaviour. (F, D) | n = (F',D’),
where

D' = DU{st|(s,{})eFAseX"}
F' = FU{(s,X)|se D'}

In other words, P | n behaves exactly like P until exactly n events have occurred,
at which point it diverges unless it has already terminated.

LEMMA 6 These functions form a restriction sequence satisfying the conditions laid
out on page 506, and furthermore

(i) For each P e N, P = |{P | n|n € N}

(ii) If P, is a sequence of processes such that P,y1 | n = P, for all n, then
Pt = | |{P, | n € N} exists and is such that Pt | n = P,.

Hence the metric generated by these functions is complete.

3In this case it is possible to find a different and stronger partial order which is complete and
with respect to which the operators of CSP are all monotonic. This order asserts that P < @
only when divergences(Q) C divergences(P) and whenever s € traces(P)\ divergences(P) then
refusals(P/s) = refusals(Q/s) and initials(P/s) = initials(Q/s). Thus, non-divergent behaviour
of P cannot be ‘refined’ any further and the divergence-free processes are all maximal in the order.
For details of this order, the reader should consult [104]. We will see further applications of this
order in Section 9.2. Other techniques for proving the existence of fixed points, with more general
applicability, include comparison with the operational semantics [105] and the identification and
manipulation of a complete sub-order [5, 7]. We will discuss these further in Chapter 10.
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EXERCISE 8.3.1  List all the members of A/ whose traces are {(), (a), (b)}, and find a
CSP process corresponding to each.

EXERCISE 8.3.2  Axiom D3 states that any divergence must appear before successful
termination. Reformulate the model so that divergence-sets are now subsets of X* (i.e.,
do not contain v'), in such a way that the new version is order-isomorphic to the original.
It is a somewhat arbitrary decision which version to choose. We have chosen the version
in which v'’s can appear in divergences because it simplifies some operator definitions in
the next section slightly.

EXERCISE 8.3.3  Show that componentwise union of any non-empty subset S of N is
a member of N.

Find an example to show that the intersection of two members of N need not be
in the model. What can you say about the intersection of two processes with the same
traces?

EXERCISE 8.3.4  Prove Lemma 6 above (establishing that A/ is a complete restriction
space).

8.3.2 Calculating the semantics of processes

Throughout Part I we generally gave the trace semantics of each operator as we
introduced it. In this section we show how to calculate the failures/divergences se-
mantics in the same way, thereby giving the building blocks of another denotational
semantics.

The following clauses show how to calculate the failures and divergences of
combinations under a number of operators where the definitions are all fairly obvious
extensions of the corresponding traces definitions.

failures | (STOP) = {({), X) | X C ¥V}

divergences(STOP) = {}

failures | (SKIP) = {({), X) | X CX}U{((v),X) | X C ¥V}
divergences(SKIP) = {}

failures; (a — P) = {((),X)|ag X}
U{({a)"s,X) | (s,X) € failures, (P)}

divergences(a — P) = {(a)"s | s € divergences(P)}

failures | (Pz: A—P) = {((),X)| XNnA={}}
U{((a)'s,X)|aec AN
(s, X) € failures (Pla/x])}
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divergences(?x : A — P) ={(a)’s | a € A A\ s € divergences(Pla/z])}
failures; (P M Q) = failures (P) U failures 1 (Q)

divergences(P M Q) = divergences(P) U divergences(Q)

failures . (I'1S) = U{failures | (P) | P € S} for any non-empty set S C N

divergences(['15) = |J{divergences(P) | P € S}

failures | (P) if b evaluates to true
failures | (Q) if b evaluates to false

failures | (P} Q) = {

divergences(P) if b evaluates to true

divergences(P€b® Q) = { divergences(Q) if b evaluates to false

As one would expect, in this model we can distinguish P M @ from P O Q.

The difference is, that on (), P O @ cannot refuse a set of events just because P or
Q@ does, they both have to. The obvious definitions are

divergences(P O Q)
X failures (P O Q)

divergences(P) U divergences(Q)
{(0,X) | ((), X) € failures | (P) N failures | (Q)}
U{(s,X) | (s,X) € failures  (P)

U failures | (Q) Ns # ()}

The divergences clause is correct, but the failures one potentially breaches conditions
D2 and F4. D2 fails, for example, on div O ¢ — STOP, since the above definitions
tell us that this process can diverge immediately but cannot refuse {a} after the
empty trace. Of course this process does not have the stable refusal {a}, but we have
to remember that failures) (P) does not just contain the stable failures. F4 fails
because in compositions like SKIP O a — P the definition does not take account
of the special status of v': we decided in Section 6.3 that SKIP O P had to be
specially interpreted, and this must be reflected in the semantics. We can correct
these two flaws by fairly obvious additions to the above definition

divergences(P O Q) = divergences(P) U divergences(Q)

failures 1 (PO Q) = {((),X) | ((),X) € failures (P) N failures ; (Q)}
U{(s,X) | (s,X) € failures (P)
U failures 1 (Q) A's # ()}
U{((),X) | () € divergences(P) U divergences(Q)}
U{((),X) | X CEA(V) € traces (P) U traces 1 (Q)}

Several later definitions will need similar additions to preserve the divergence con-
ditions D1 and/or D2, but this is the only place the special treatment of F4 is
required.
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Since the parallel operators can all be defined in terms of the interface parallel
operator ||, we only have a formal need to give the definition for that one. P || @ can
X X

refuse an event in X when either P or ) can because they both have to participate
in it. On the other hand, since they can independently perform events outside X,
these can only be refused when both P and @ do, much as on the empty trace in
P O Q. v is, for the purposes of calculating refusals, treated as though it were
in X because of distributed termination (Section 6.2; recall that this is built into
the definition of the trace-level parallel operator s )H( t which produces the set of all

traces that could arise if P and @ respectively communicate s and t).

divergences(P || Q) {uwv|3Js € traces (P),t € traces) (Q).
X

u € (s )||< t)ynx*
A (s € divergences(P) V t € divergences(Q))}
failuresl(Py( Q) = {(v, YUZ)| Y\(XU{V})=2\(XU{V})

A Js,t.(s,Y) € failures (P)
A (t,Z) € failures  (Q)
Au€s |t}

X

U{(u, Y) | u € divergences(P || Q)}
X

The hiding operator is the most subtle and difficult one to deal with in
the failures/divergences model; this is because it turns visible actions into 7’s and
thus (i) removes stable states and (ii) potentially introduces divergences. It is
straightforward to deal with the first of these difficulties once we observe that the
stable states of P\ X correspond precisely to stable states of P that cannot perform
any element of X, which is equivalent to saying that they can refuse the whole of
X. In general,

failures; (P\ X) = {(s\ X,Y)| (s, YUX) € failures, (P)}
U{(s,Y) | s € divergences(P \ X)}

It is the second problem that presents the greater difficulty and which will
ultimately impose a bound on the accuracy of the semantics. Hiding introduces a
divergence in P \ X when P can perform an infinite consecutive sequence of events
in X. The difficulty we have is that our model only tells us about finite traces of P,
not about infinite ones. Our only option is to try to infer what the infinite traces
are in terms of the information to hand. As we saw in Section 7.4.2, thanks to
Konig’s lemma, if P has a finitely-branching LTS as its operational semantics then
Traces(P) (P’s finite and infinite traces traces | (P)Uinfinites(P)) equals traces (P)
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(the closure which includes those infinite traces whose finite prefixes are all there).
In that case we therefore know that

divergences(P\ X) = {(s\ X)t|s € divergences(P)}
U{(u\ X)t|ueXZA (u\ X)finite
AVs < u.s € traces | (P)}

If P’s LTS is not finitely branching then it simply is not possible to be sure
what the infinite traces are when we are told the finite ones, and therefore what the
divergences of P\ X are. The simplest example is provided by the two processes

A* = TH{A,|neN} and
A>* = ASTITHA4,|neN}

where Ag = STOP, Apy1 = a — A, and AS = a — AS. A* and A*> have
identical representations in N, but clearly only one of them can actually perform
an infinite sequence of a’s and hence diverge when we hide {a}.

We must therefore conclude that it is not, in general, possible to determine
the correct value in A/ of P\ X from that of P when P is unboundedly nondeter-
ministic. In other words, N unfortunately fails to be a congruence for the full CSP
language, though it is when we forbid the operators that can introduce unbounded
nondeterminism. All we can do in the general case is to assert

divergences(P\ X) C {(s\ X)t| s € divergences(P)}
U{(u\ X)t|ueZA (u\ X) finite
AYs < u.s € traces (P)}

so that a denotational semantics that uses the right-hand side as its definition of
divergences(P \ X ) will give a conservative approximation of the true value, in the
sense that the true value always refines it.

As we will see in Chapter 10, there is a straightforward solution to the prob-
lems we have just encountered, namely to include infinite traces explicitly in the
representation of a process. Given this, the author recommends the adoption of the
following principle:

N should be regarded as the standard model for giving semantics
to finitely nondeterministic CSP (that is, for processes not involving
infinite hiding, infinite-to-one renaming or infinite nondeterministic
choices). It should not be used for giving denotational semantics to
processes that do use these constructs.
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Before leaving this topic, it is worth considering briefly an example which
illustrates one of the arguments for including axioms D1 and D2 (the ones that
say that we do not attempt to distinguish behaviour after potential divergence).
Consider the process Py, where

P, = b_)PnJ,-l
Oc— A4,

and the A, are as above. Plainly Py \ {b} (a process that uses no infinitely
nondeterministic construction) can diverge and so D1 and D2 force us to identify
it with L. If, however, we were tempted to use a version of the model without
D1 then the only divergence of Py \ {b} would presumably be (). It would have, as
finite traces,

{0Yu{{e) (@)™ | n e N}

in other words, all finite prefixes of (c, a, a, a, a,...), so that applying the above
definition of hiding would predict that (Py \ {b}) \ {a} could diverge after (¢). In
fact, it cannot, since Py plainly cannot perform an infinite consecutive sequence of
a’s. Thus, discarding axiom D1 would lead us to a position where the semantics of
hiding is not even accurate for finitely nondeterministic CSP. What is, if anything,
more disturbing about this example is that the semantics would (correctly) not
predict that (Py \ {a}) \ {b} could diverge after (c); this means that the standard
and obvious laws (hide-sym) (3.2) and (hide-combine) (3.3):

(PANX)\Y =(P\Y)\X =P\ (XUY)

would fail. The real problem we are encountering here is that even finitely-branching
LTSs can exhibit unbounded nondeterminism after potential divergence when we
take into account the invisibility of 7 actions. As Py \ {b} diverges it gives the
infinite choice of how many a’s follow any ¢. In Theorem 2, we did not prove that
an infinite trace was possible in a finitely branching LTS where every finite prefix
was possible, rather that either it was possible or a finite prefix was a divergence.
Note the similarity between the present example and Figure 7.9.

There are still two operators waiting to be given their failures/divergences
semantics. The first of these is renaming. This creates few problems, though we do
have to close up under D1 and D2 since not all traces may be in the image of the
renaming relation.

divergences(P[R])
failures | (P[R])

{s"t | Is € divergences(P)NX*.sRs'}

{(s/,X)|3s.s Rs'" A (s, R"YX)) € failures, (P)}
U{(s,X) | s € divergences(P[R])}
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Here, R"1(X) = {a | 3d’ € X.(a,a’) € X} is the set of all events that map to X
under R. In the above we use R extended to traces and so that v'R v/, as previously
discussed.

If and when P terminates in P; @, the v signalled by P is hidden from the
environment since the overall process has not yet terminated. This means that it is
treated in essentially the same way for the calculation of failures as an event hidden
in P\ X. We do not get into the same trouble with divergence because there is
never more than one hidden v in any run of P; Q.

divergences(P; Q) = divergences(P) U
{s"t | (V') € traces (P) N t € divergences(Q)}
failures 1 (P; Q) = {(s,X)|seX*A(s, X U{Vv}) € failures, (P)}

U{(st,X) | s(vV) € traces 1 (P) A (t, X) € failures | (Q)}
U{(s,X) | s € divergences(P; Q)}

The properties of these operators over the refinement order are, as over 7,
largely viewable as consequences of the fact that they can be reformulated as rela-
tions over behaviours. Actually defining the relations is rather dull, since we now
have to worry about the interplay between two different types of behaviour as well
as the combinations of different arguments. For example, consider renaming P[R],
where we get a relation from failures to failures

{((s, R1(X)), (s, X)) | s R s"}
one from divergences to divergences
{(s,8"t) | s€e X*AsRs'}
and one from divergences to failures

{(5,(s"t, X)) | sRs'AN(seX*Vi=()}

In every case except one this is possible, simply because each behaviour that
results from applying an operator is inferred from at most one behaviour from each
of the arguments. The exception is, of course, hiding because we had to infer the
presence of a hiding-induced divergence from an infinite set of traces. Thus, we
generally have to use a different type of argument when reasoning about hiding.

LEMMA 7 Each of the operators other than \ X is fully distributive (and hence
monotonic) over N in every argument. \ X is not fully distributive but does satisfy
(PN )\ X =(P\X)N(Q\ X) (which also implies monotonicity).
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PROOF In every case except hiding, the distributivity follows from the existence
of a relational representation, as it did over 7.

We should not be surprised at the failure of full (i.e., infinite) distributiv-
ity for \ X, because we have already noted that A loses accuracy for infinitely
nondeterministic processes. That it does fail can be seen from

(M{An [n e NP\ {a} #TH{An \ {a} | n € N}

where the A,, are as on page 208.

It is finitely distributive because if each finite prefix of the infinite trace u
is a trace of P M @, then either infinitely many come from P or infinitely many
come from . Whichever of these happens, it then follows by prefix closure of
trace-sets that they all come from the chosen argument (though this does not, of
course, preclude the possibility that some or all of them might also come from the
other one). 1

We again have to decide on the semantics of recursion, in other words how
to extract fixed points. The status of the metric theory (of constructive recursions)
is exactly the same as over 7, namely that it works for at least 99% of well-behaved
recursions one typically meets, and, when it does, it says that there was not really
a choice at all. Again, the only issue is what value to give to badly constructed
recursions such as those on page 197. Whether or not ¥ is finite meaning that
N is complete, it can, as we discussed earlier, be shown that every CSP-definable
function has a least fixed point in the refinement order Czp.

It is, at first sight, by no means obvious that this will give the right answer
since we ended up choosing the opposite order in 7 — a choice we no longer have
since there is no least element of N' under the subset or anti-refinement order. In
particular, it will definitely give us a different set of traces for most under-defined
recursions like g p.p (mapped to {()} in 7 and to L over A/ which has all traces).
The crucial point is the distinction between traces(P) (the value computed over 7))
and traces | (P) (the traces of P’s representation in A), since the latter includes
all extensions of divergent traces. Now the only thing (the operational semantics
of) pp.p does is diverge, which accounts precisely for the difference here, and in
general, you can characterize an ill-defined recursion as being one where, after some
specified trace, the next step behaviour is not resolved no matter how often the
recursion is unwound. In other words, an ill-defined recursion is one where the
unwinding of the recursion creates a divergence, which means that the right value
for it (after the given trace) is L.

Recall that on page 198 we characterized the two possible choices of order
to use for computing least fixed points in terms of the existence of a proof that
a given behaviour was not in any fixed point (C) or had to be in any fixed point
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(C). The latter works for 7 because all the behaviours recorded in the model occur
in a finite time, so some finite number of unwindings of a recursion are bound to
demonstrate their presence (if a given behaviour over the operational semantics
of a recursive process contains n actions, then its derivation never requires more
than n unwindings simply because each unwinding introduces a 7 action). It would
not work for a behaviour that, like a divergence, takes an infinite amount of time
to appear. The proof-of-absence idea still makes sense, however. Consider the
recursion g p.a — p: after unfolding this recursion n times we have a proof that
divergence can never begin before the trace (a)™, so that for any finite trace there
is a proof of absence of divergence. A trace of pp.F(p) will thus be considered a
divergence if there is no proof that it cannot be one. This always gives the right
answer because an infinitely unfolding recursion results in divergence (see Section
9.4 where these arguments are explored in more detail).

We might therefore suspect that a CSP model in which all behaviours reveal
themselves finitely will have a positive (C) fixed-point theory, whereas a model
which has some infinite observations like divergences will require the negative (C)
theory. Perhaps the most persuasive argument for the principle of ignoring post-
divergent behaviour (axioms D1 and D2) is that it makes this negative fixed-point
theory work.

The least fixed point of the under-defined counter recursion Z; on page 197
is

Jo = iszero — Zo
Oup — Zj

Zy = down — Zy
Oup — Lar

which is exactly what you might expect operationally. After (up, up) the recursion
unfolds infinitely since as soon as one of the cells AZ reaches this point it promptly
drives its slave to exactly the same one, creating a divergence as this cascades down
the infinite master/slave chain. All three of the processes identified earlier as trace
fixed points of this recursion are actually failures/divergences fixed points as well.
All are maximal since they are deterministic; and, as we would expect, they all
refine the value Z5 defined above.

Since we are using the C order for fixed points over NV, it makes the question
of which operators are continuous with respect to that order more important* than
over 7. Since N is not even a cpo when ¥ is infinite, we will only consider the case

4Except for making the fixed-point formula simpler and perhaps more believable, the difference
between monotonic and continuous has surprisingly little impact, given the importance that is
usually placed on continuity.
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when it is finite.

For operators represented as relations over behaviours, the continuity anal-
ysis closely parallels that over the refinement order over 7, namely any operator
represented by finitary relations is automatically continuous thanks to essentially
the same proof as that seen on page 193. Our assumption that ¥ is finite greatly
simplifies this analysis, since it means that the number of possible refusal sets at-
taching to a given trace is also finite. Thus any relational representation of an
operator that is finitary on traces is automatically finitary on failures.

Using this fact, and the observation that the relations which introduce di-

vergences/failures based on a divergent prefix are finitary because each trace only
has finitely many prefixes, it is straightforward to derive the following result.

LEMMA 8 IfY is finite, then each of the operators a — -, 0, M, ||, ; and renaming
X

is continuous.

In fact, hiding (necessarily finite because of the restriction on X)) is also
continuous under this assumption, though the proof is rather different. This is
interesting because it did not hold over 7 for the C order; the difference lies in our
treatment of divergence. Close examination of the following proof, as well as the
behaviour over A of any example which demonstrates the lack of continuity over
T, reveals that any failure of continuity over 7 is masked by axioms D1 and D2.

LEMMA 9 If X is finite, then the hiding operator \ X is continuous over N.

PROOF The main components of the proof are as follows. Firstly, whenever P
is such that the set pre\x(P,t) = {s € traces  (P) | s \ X < t} is infinite, then
t € divergences(P \ X) since by an application of Ko6nig’s lemma very like that on
page 182 this set of traces must contain all the prefixes of some infinite trace.

Secondly, if A is a directed set of processes and t € ({divergences(P \ X) |
P € A}, then t € divergences(| |A \ X), because if this were not so then (by the
last observation) we would have that

M = pre\x (LA, 1)
is finite, and clearly contains no element of divergences(| |A). Let
M = {sa)|se MAs{(a)\ X <t}]\M

the set of all extensions of elements of M by either an element of X, or the next
member of ¢, that are not themselves in M. For each s € M there is certainly
Ps; € A such that s & divergences(Ps), and for each s € M’ there is P, € A such
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that s & traces (P.). But M and M’ are both finite sets, so following the usual
directed set argument yields a Crp upper bound P' € A for all the P, and P..
This must satisfy

pre\x (P, t) = M

for if not there would be a prefix-minimal element s in pre, <(PT, )\ M. But
then s € M’, contradicting the construction of PT. Since plainly, then, we have
t & divergences(P' \ X), this contradicts our original assumptions. We can thus
conclude that ¢ € divergences(| A\ X).

Thirdly and finally, when ¢ ¢ divergences(| JA \ X), the arguments in the
previous paragraphs show that sufficiently far through A the behaviour of the hiding
operator is effectively finitary. The proof that it preserves the limit of this A (for
trace t) then follows more-or-less the same pattern as those for operators with
finitary relational representations. |

Thus every® function definable in finitely nondeterministic CSP is continuous
over N for finite 3.

The lists of operators that are constructive and non-destructive over A/ are
identical to those that applied over 7.

LEMMA 10 Each of the operators M, O, ||, renaming and ; is non-destructive over
X

N in each argument. The prefix operators a — and 7z : A — are constructive.

Again these facts are usually elementary consequences of relational represen-
tations, and the only one to be interesting is the left-hand side of sequencing (;)
because of the effective hiding of v'. For this, the precise form of the restriction
operator P | n is moderately important. If s is a trace of length n, then whether
s € traces, (P) can be established by looking at P | n, but the further details about
s, namely whether a pair (s, X) € failures (P) or whether s € divergences(P), can
only be established by looking at P | (n + 1). This means that all failures and
divergences of P; () that can be created by P performing the trace s*(v') have
depth, in this sense, of at least n + 1 (the length of s™(v')).

EXERCISE 8.3.5 (a) Prove carefully that A is closed under (i) the prefix operator
a — P and (ii) external choice P O Q. (For the model to be closed under an operation
means that, if the arguments to the operator belong to the model then so does the result.
Another way of stating this is to say that the operator is well-defined over the model.

5The properties of continuous operators detailed in Appendix A are needed to combine the
results about the basic operations into this general statement, in particular their closure under
composition.
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While it is plainly tedious to have to prove such results for all operators, they are clearly
a basic well-formedness check that has to be done either by someone or some theorem
prover!)

(b) Give direct proofs, for the same operators, that they are distributive (over M)
and continuous.

EXERCISE 8.3.6  Prove that the following laws are valid over N:
(a) (M-DO-dist) (1.13)
(b) (lll-step) (2.6)
(c) (; -step) (6.7)

EXERCISE 8.3.7  Give relational representations of the following operators over N:

(a) Prefixing a — P.
(b) Nondeterministic choice P M @
(¢) External choice P O Q

In each case you will need relations to generate both failures and divergences; in the last
case the set of relations generating failures have to take account of divergences.

EXERCISE 8.3.8  Find expressions, in the style of those on page 205, for the failures
and divergences of P >> @ for any P and @ all of whose non-divergent traces lie in the set
{| left, right |}. (You can find an expression for the traces on page 106.)

Use this to prove BL1 (if P and Q are buffers, so is P >> Q). (All of the buffer laws
except BL5 and BL5' can be proved fairly straightforwardly from the failures/divergences
semantics of >>. These other two require rather sophisticated versions of the recursion
induction rule.)

8.4 The stable failures model

The failures/divergences model gives us perhaps the most satisfactory representa-
tion of a process for deciding questions of liveness, since by excluding both diver-
gence and the stable refusal of a set of events we can guarantee that a member of the
set will eventually be accepted. It is possible to devise models which combine traces
either only with divergences or only with stable refusals, but it must be emphasized
that, in using either, one must appreciate the important information one is leaving
out. There is not much to say about the finite traces/divergences model, except
the obvious fact that the representation of any process can be found by dropping
the refusal components in the failures from its representation in N. The semantic
clauses for the CSP operators are similarly derived from those over A/, noting that
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since refusal (as opposed to trace and divergence) information never influences the
traces or divergences of any of the operators over N, there is no problem in comput-
ing the values accurately. This model, like A, uses the refinement order to compute
the values of recursions, and needs to adopt axioms like D1 and D2. It has the same
restriction to finitely nondeterministic CSP to make the semantics accurate.

The model in which we record traces and stable refusals (where ‘stable’ re-
fusals include the ones generated by states that can perform v/, or, in other words,
the ones postulated by axiom F4) is more interesting for three reasons.

e Firstly, some authors have long considered the imposition of axioms D1 and
D2 on N unfortunate because they have an obscuring effect. It turns out
that by ignoring divergences completely one can, to some extent, satisfy their
desires.

e Secondly, the calculations required to determine if a process diverges are
significantly more costly than those for deciding other aspects of refinement.
Therefore it is advantageous if tools like FDR have a model they can use

that does not force the calculation of divergences.%

e Thirdly, it is sometimes advantageous to analyze a divergence-free process P
by placing it in a context C[P] in which it may diverge as the result of hiding
some set of actions. This only works when the traces and stable failures that
result are not obscured by D1 and D2.

The first thing to appreciate about only recording stable failures is that it
is by no means inevitable that every trace of a process has one: it may never
stop performing 7T actions. Therefore, unlike the case with A/, it is necessary
to record the traces separately, and so each process is represented as the pair
(traces(P), failures(P)) rather than just failures(P). The stable failures model, F,
thus consists of those pairs (T, F) (T C £*¥ and F C £*¥ x P(X¥)) satisfying the
following healthiness conditions

T1. T is non-empty and prefix closed.
T2. (s,X) e F=s5€T

plus conditions F2, F3, and F4 (with T replacing traces | (P)) as for N. We need a
further condition which, like D3, serves to standardize how processes look after v:

T3. s(v)e T=(s{(V),X)eF

6In most cases one will combine such a check with a proof of divergence freedom, from which
one can infer that refinement holds over N.
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All of these are obvious, given our previous discussions. The fact that they
are sufficient to characterize what processes look like will be shown in Section 9.3.
F has both top and bottom elements with respect to the refinement order

PCr Q = traces(P) D traces(Q) A failures(P) D failures(Q)

The minimal, or least-defined process, is Lz = (X*¥,%* x P(X¥)): as one would
expect, the process that can perform any behaviour within the domain under con-
sideration. The maximal process is a more surprising object, Tz = ({{)},{}), which
satisfies all the axioms above. A little thought reveals that this represents the pro-
cess div which simply diverges immediately without the possibility to do anything
else. What has happened is that by omitting to model divergence, we have pushed
processes that do diverge (as opposed to other things) upwards under the refine-
ment order. Rather like the case with 7 (and the traces/divergences model, which
also has STOP as its maximal element), you should regard the existence of a top
element under refinement as a strong indication that the model only presents a
partial picture of processes.

As with 7 and N, any non-empty subset of F has a greatest lower bound
under Cp given by componentwise union: [ 18 = (T, FT), where

T+ H{T|(T,F)e S}
Pt o= U{F|(T.F) €5}

Since T £ is the greatest lower bound of the empty set, this means that every subset
has one, and hence (thanks to Lemma 1) we immediately get the following.

THEOREM 11 F is a complete lattice under both the refinement order and the
subset order.

This is a much stronger result than with A, particularly since it applies
whether or not ¥ is finite. The least upper bounds generated under the refinement
order are not always particularly intuitive, since this new model can and does create
its upper bounds for sets of processes that are inconsistent over N by introducing
behaviour like the top element T . Thus, the least upper bound of

{a - a — STOP,a — STOP}

isa— Tr={0,(a)},{((),X) | a € X}); the inconsistent behaviour after (a)
being resolved to T .

Noticing that the first component of a process’s representation in F is its
representation in 7, it follows:
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e that the clauses for calculating that component of each operator are identical
to the corresponding clauses in 7, and

e that to get the right value for recursively defined processes we should take
fixed points with respect to C rather than C. Note that the existence of the
C 7 top, which is the bottom under C, supports this, as does the simple form
of least upper bounds under C.

The latter may seem surprising since it is the opposite to A/, but the crucial distinc-
tion between F and N is that the former, like 7, only records finitely observable
behaviours so (bearing in mind our discussions about the calculation of fixed points
over N') we neither need reverse-inclusion to allow infinite behaviours into fixed
points, nor have the special properties of divergence to make the reverse-inclusion
fixed point accurate.

As one might expect, the clauses for calculating the failures component are
essentially the same as those over A/ except that there is no need to close under
axioms D1 and D2.

failures(STOP) = {({),X)| X C XV}
failures(SKIP) = {((),X)| X C S} U{({(v),X)| S C 2"}
foitures(a — P) = {((,X)|ag X}

U{({a)'s,X) | (s,X) € failures(P)}
failures(?z : A— P) = {((),X)| XNnA={}}

U{((a)s,X) [ac A

A (s, X) € failures(Pla/z])}
failures(P 1 Q) = failures(P) U failures(Q)
)

failures([18) = U{failures(P) | P € S} for S a non-empty set of processes

failures(P) if b evaluates to true

. B )
failures(P<b» Q) = { failures(Q) if b evaluates to false

failures(P O Q) = {((),X) | (), X) € failures(P) N failures(Q)}
U{(s, X) | (s,X) € failures(P) U failures(Q) Ns # ()}
U{((),X) | X CEA(V) € traces(P) U traces(Q)}
failures(P )||( Q) = {(v,, YUZ)| Y\(XU{V})=2\(XU{v}

A Js,t.(s,Y) € failures(P)
A (t,Z) € failures(Q)
Au€s ||t}

be

failures(P\ X) = {(s\ X, Y) | (s, Y UX) € failures(P)}
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failures(P[R]) = {(s’,X)|3s.s Rs' A (s, R"Y(X)) € failures(P)}

failures(P; Q) = {(s,X)]|seX*A(s, X U{V}) € failures(P)}
U{(s't,X) | s(v') € traces(P) A (t,X) € failures(Q)}

We have lost the clause that caused difficulty over N' (namely the inference of
divergence under hiding), and all the operators thus have relational representations
that are simplifications of those for A/. The arguments in Section 8.2 thus apply to
yield the following result.

THEOREM 12 All CSP operators are monotonic and continuous over J with respect
to the subset order, and are fully distributive.

In some ways F is better thought of as a refinement of 7 than as an approx-
imation to N: equivalence of processes over F implies equivalence over 7, whereas
no such relationship exists between N and F. It is, however, vital that we un-
derstand how a process’s representations in A/ and F are related. The following
paragraphs attempt to set this out.

e It is important to realize that, while you can sometimes tell from the shape of
a member of F that it must diverge after a trace (specifically, when there are
no failures associated with the trace), you can never infer that it must not.
In particular, any simply divergent process like div, pp.p or up.SKIP; p is
identified with Tz, and P M Tz = P for all P.

e This same example shows the type of process for which F gives more distinc-
tions than NV: since P MM div can diverge immediately it is identified with Lz
over N. In other words, F lets us see the details of behaviour after possible
divergence, whereas axioms D1 and D2 force us to obscure this in N.

e We previously noted that the denotational semantics for CSP over A is only
accurate for finitely nondeterministic processes. Since the problem which
caused that restriction does not arise over F, neither does the restriction.

e Since, for divergence-free processes, failures(P) = failures, (P), it follows
that the representations of such processes in the two models are congruent in
the obvious sense. It is this fact that leads to the most common use of F with
FDR, namely that if the processes Spec and Imp are known, or postulated,
to be divergence-free, then the refinement check Spec Cp Imp is equivalent
to the less efficient Spec Crp Imp.

It is the fact that F lets us see past potential divergence that gives it some
uses which are more interesting than as a way of speeding up certain checks over N.
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The first is in situations where divergence is difficult to exclude, and it is natural
to build a system which is correct in other respects before addressing it. Here it
may be natural to formulate and establish correctness conditions over F (dealing
with safety properties and stable refusals), before making some final refinement to
exclude divergence. (This is another application of the idea of stepwise refinement:
see page 47.) A good example of this is in dealing with communications protocols
which, like the Alternating Bit Protocol (Section 5.3), are designed to deal with
arbitrary message loss, and perhaps duplication. In our earlier presentation of that
protocol we built a model of the lossy communication medium which placed a fixed
bound on how many consecutive messages can be lost and how many times one
can be duplicated, using the processes Cy (in, out) to model the channels. Even
though the protocol is designed to work for arbitrary but finite loss or duplication.
For any N, the above medium is obviously a refinement of the process C(in, out)
as defined on page 134 which can misbehave as much as it likes. An alternative and
equivalent definition of this is:

C(in,out) = in?z — C'(in, out, )

C'(in, out,x) = outlz — C’'(in, out, x)
Min?y — C'(in, out, y)

If you replace the Cy medium processes by C in the system, which we
can term ABP y, defined in Section 5.3 (constrained, as described there, to avoid
divergence in the absence of error), the result is a process ABP ., that can diverge,
but which satisfies the specification COPY (i.e., a one-place buffer) over F:

COPY Cp ABP

If checked on FDR, this will have substantially fewer states than does ABPy for
even small values of N.

This proves very cleanly that unless ABP ., diverges, it does what we want.
The monotonic and transitive properties of refinement imply that this remains true
whenever the Cy processes are replaced by refinements such as Cy. So

(i) all that remains to be proved for such a refinement is divergence freedom,
and
(ii) it demonstrates that the only reason any limit is needed on the misbehaviour

of the medium processes in the ABP is to avoid divergence.

The steps we have gone through in the above argument are summarized
below, hopefully showing how it should be reworked for other examples.
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e First build a system ABP ., such that
COPY Cr ABP
e Then find a divergence-free ABP’ such that
ABP., Cr ABP'

(established in this case by properties of refinement)

e This allows us to infer that
COPY Crp ABP’

The second distinctive use of F arises when we want to establish a property
of a divergence-free process P by analyzing not the process itself, but some context
C[P] which involves hiding and can therefore potentially introduce divergence. As
long as you are well aware of the existence of such divergences and what they
mean, they frequently do not represent an undesirable behaviour of the underlying
process P. Usually the context and hiding represent some mechanism whereby
events irrelevant to the specification can be abstracted away. Abstraction is a very
important subject, and Chapter 12 is devoted to it, including some uses of the idea
we are now investigating. We will therefore content ourselves with a simple but
important one here.

In Section 13.1.1 it is stated that a process P is deadlock-free if and only
if P\ X is, though the hiding can introduce divergence. Operationally, this is
clearly true since all we care about there for deadlock freedom is that each reachable
state has an action available: it does not matter what the name of the action is.
Nevertheless this result is not one of N, since in that model the introduction of
divergence results in the assumption of deadlock via D2. It is, however, true in F
and should therefore be regarded as a statement in that model. The most interesting
X to try in the above statement is 3. No matter what P is, there are four possible
values for P\ X:

e T, indicating that P \ ¥ must diverge, or in other words P can neither
deadlock nor terminate;

e {O1{(0),X) | X € 2Y}) (equivalent in F to STOP) indicating that P
cannot terminate, but can reach a deadlock state;

e SKIP, indicating that P can terminate and cannot deadlock before it has
done so (though since P \ ¥ might diverge, this does not imply that it must
eventually terminate); and
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e SKIP M STOP, meaning that P can deadlock and can terminate.

The statement ‘P is deadlock-free’ is thus equivalent to the assertion SKIP Cp P\
3. In the majority of cases where there is no possibility of P terminating, this can
be replaced by T Cpr P\ 3. Of course, this is curious since what we are in effect
doing here is stipulating that a process (P \ X) must diverge, so we have moved
a long way from the treatment of divergence over A/. It is also of great practical
importance since in FDR one usually gets much better compression of processes
when events are hidden than without the hiding (see Section C.2).

The definition and theory of restriction operators over F are similar to those
over N: (T,F) | n=(T',F'), where

T = {seT|#s<n}
F'o= {(s,X)eF|#s<nV(s=s(V)N#s=n)}

P | n thus contains all the traces of length < n and, like with A/, only identifies the
refusals of strictly shorter traces except for the special case dealing with condition
T3.

EXERCISE 8.4.1 Find an example of a process such that {s | (s, X) € failures(P)} is
not prefix closed.

EXERCISE 8.4.2  Find a single CSP process which is mapped to the bottoms (under
C) of 7, N and F by the respective semantics.

EXERCISE 8.4.3  Find the least upper bound in F of the processes
(a — STOP) O (b — STOP) and a — STOP

Find its representation in the model and a CSP expression with the given value.

EXERCISE 8.4.4  Suppose P is any process whose traces are contained in ¥* (i.e., it is
v'-free). What can you say about the traces and failures of the process P ||| div?

Harder: Achieve the same effect for a process P that can terminate (though, if it helps,
you can assume there is a given a € ¥ that P never communicates).

8.5 Notes

The central role given to semantic models such as those seen in this chapter is the
thing that most characterizes the theoretical treatment of CSP in relation to those
of other process algebras. In a sense that will be made formal in the next chapter,
the CSP semantic models each define a congruence which is the coarsest possible
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subject to some natural criterion. Other process algebras have found their own way
to capture failures-style equivalences, most notably the testing equivalences for CCS
described by Hennessy and de Nicola [32, 51].

The traces model of CSP was introduced by Hoare in [55]. This was refined
into the failures model developed by Hoare, the author and Brookes in [18]. That
model was basically A/ without the divergence component, and used the refinement
(reverse containment) order to compute fixed points: it identified p p.p with Chaos.
That model failed to give a consistent model of divergent processes, leading, for
example, to the failure of a few of the basic laws. This was corrected with the
introduction of the divergences component in [101], [15] and [19].

The formulation of the model in this book is different in two ways from that
in these papers (the latter also being essentially the same one that Hoare used in
his text [56]). The first is that the early version either specified that all refusal
sets are finite (even over infinite ) or specified that an infinite refusal set was
present whenever all its finite subsets were (which was, of course, effectively the
same assumption). This was necessary to make the model a cpo under the refine-
ment order (corresponding to the observation we made on page 203 that N over
infinite ¥ is incomplete). It meant that the model could not handle unboundedly
nondeterministic operators like infinite hiding at all. This assumption has been
dropped in this book because (i) the later development [104] of the strong order
referred to on page 204 means that we do not need N to be complete under C
to get fixed points and (ii) the development of the infinite traces extension of A
that we will meet in Chapter 10 means that we can now unequivocally deal with
unbounded nondeterminism and it is nice to have the projection function from the
richer model cleanly defined. (Neither of the two equivalently powered restrictions
on refusal sets mentioned above makes any sense over the infinite traces model. So
to use them over AV would leave us with a real problem when it came to deciding
which member of A/ was the image of a general member of the other model.)

The second change is in the handling of termination v'. The early models
and CSP semantics did not special-case this nearly so much as we have done. The
consequences of this were that sequential composition did not have some desirable
properties such as P; SKIP = P and that some semantics did not make all v"’s
final. So axioms F4 and D3 are new here. It has long been recognized that the
treatment of termination in CSP was something of a compromise: the recent paper
[129] points out one problem with the old approach (as well as providing a most
interesting study of the automated proof of many theorems about CSP models and
semantics). See [1] for an alternative approach to representing termination in a
another process algebra.

The effects on the semantics and models of a move to an imperative (i.e., non-
declarative) view of process state can be seen in [102] (where 0CCAM is considered).
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The primary effect is on the representation of termination, since a process now has
to be able to pass its state to its successors upon terminating.

The stable failures model F is a much more recent development. The author
has seen a number of attempts (generally unsuccessful) over the years at eliminating
the divergence-strictness of N. Characteristically this involved interpreting a diver-
gence as equivalent to a refusal of the whole alphabet, but discarding the axiom D1
which enforces extension-closure of divergence sets. That approach does not work
because it is hard to compute fixed points accurately and various standard laws are
invalidated. The idea of simply ignoring divergence was suggested to the author
in 1992 by Lalita Jategoankar and Albert Meyer, and the model F as described in
this book is a result of that conversation and subsequent collaboration between the
author and these two people. A very similar model was described by Valmari in
[132].

2005: Qver the past few years there has been interest in a wider range of CSP
models. Christie Bolton showed how mon-standard CSP-like equivalences could be
used for capturing notions such Z refinement. There has been more interest in the
refusal testing model of CSP [86] (based on [91]). New and interesting equivalences
[116] have just come to light (based on work by Rehof and Rajamant) in which a
process is modelled by its deadlock traces, its revivals (namely triples (s, X, a) where
(s, X) is a stable failure and a is an event that can be performed from the same state
where X is refused, and either traces or (strict) divergences.



Chapter 9

Analyzing the denotational models

In this chapter we look in a bit more detail at the structure of the denotational
models we saw in the previous chapter, especially that of N. The aim is to convey
somewhat deeper understanding of the models and how they represent CSP.

9.1 Deterministic processes

The deterministic processes D, (as a subset of /) are important both for practical
and theoretical reasons. The most obvious practical benefit from having a deter-
ministic process is that it is, in some sense, testable because its behaviours, when
used over and over again, do not vary unless it is given different external stimuli.
We will see in Section 12.4 that the concept can be applied in characterizing such
properties as information flow.

The full expressive power of N is required to judge whether or not a process
is deterministic. Practically no useful information can be obtained from the traces
model 7, and the stable failures model F is inadequate because it does not model
divergence and will equate P I T with P whether P is deterministic or not. Of
course, for processes known to be divergence-free, one can' test for determinism
in F since the representation is then effectively the same as the one in N. More
generally, we can define a process to be F-deterministic if its representation in F
satisfies the obvious condition:

t"(a) € traces(P) = (t,{a}) & failures(P))

This set of processes is closed under refinement and includes T £. Since it does allow

Mn practice it is usually better to test a process for divergence freedom and then (assuming
this works) for determinism over F.
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some usually undesirable processes, this condition is mainly of technical interest,
but it does have at least one practical use — see page 334.

We have already seen that members of D play a special role in N/ because, as
stated in Section 8.3.1, they are the maximal elements under the refinement order.
In this section we establish this and other important properties of D. We first show
that every member of D is maximal; the proof that they are the only maximal
elements will follow later.

LEMMA 1 Every member of D is maximal (under C) in N.

PROOF Suppose F are the failures of one member of D, and F’ C F are the failures
of another process (we do not have to worry about divergences since deterministic
processes do not have any). We have to show that F = F; first we show traces(F) =
traces(F’). If not, there is s°(a) of minimal length in ¢races(F)\traces(F’) (noting
that thanks to condition F1 the empty trace does not have this property); by this
minimality we have (s, {}) € F’, so by condition F3 of F’ we then have (s,{a}) € F’;
but since F’ C F we also have (s,{a}) € F, contradicting determinism of F'. Thus
the trace-sets are equal; it follows by F2 that if F' # F’ there is (s, X) with X # {}
such that (s,X) € F\F'. We know (s,{}) € F'; if a € X then (s,{a}) € F
by F2 and hence s(a) ¢ traces(F) by determinism. It follows that X C {a |
s"(a) & traces(F')} which together with condition F3 yields a contradiction to our
assumption that (s, X) & F”. 1

A deterministic process is completely characterized by its traces, because
once we know initials(P/s) we know refusals(P/s). Not quite all members of 7 give
rise to a deterministic process, because of the special treatment of v': a deterministic
process that can decide to terminate immediately must do so, and so cannot offer
any other choices of event.

LEMMA 2 The deterministic processes are in 1—1 correspondence with the subset
T¢ of T consisting of those members satisfying

s(V)ye P=-3aeXs(a)e P

in the sense that traces | (P) € T¢ for every P € D, and there is exactly one such
P for every member of T?.

PROOF The fact that traces, (P) € T ¢ is an immediate consequence of the axioms
of N: if s’(v') and s"(a) were both members of traces  (P) (for s € ¥* and a € %)
then (s, {a}) € failures | (P) by axioms F4 and F2, in contradiction to determinacy
of P.
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If Q € T2, we have to find a member of D with this as its set of traces. This
is det(Q) = (F,{}), where

F={(sX)]secQAXCE\{a]|s(a) € Q}}

It is easy to show that this has the required property. Since the failures in det(Q)
are precisely the ones implied by axiom F3 for the given set of traces, it follows that
any other process P’ with the same set of traces satisfies P’ C det(Q). Since we
know that deterministic processes are maximal, it follows that P’ & D, establishing
that det(Q) is the only one with the given set of traces. |

Now, if P is any member of N, it is not hard to see that
P C det({s € traces | (P) | (&' < s N s" (V) € traces | (P)) = s = s (V)})

The set of traces on the right above are those of P which do not result as con-
tinuations of traces on which P could also terminate. Thus every process has a
deterministic refinement, and in particular we can easily deduce the following.

LEMMA 3 If P is a C-maximal element of N, then P € D.

When we introduced CSP operators in earlier chapters we often said either
that they could, or could not, introduce nondeterminism. This idea can now be
given a precise meaning: an operator can introduce nondeterminism just when it
can produce nondeterministic results when applied to member(s) of D. In each
case the result corresponds to the intuition we developed earlier: prefixing (a — -)
and prefix choice (72 : A — -) both preserve determinism, as do 1-1 renaming,
alphabetized parallel (P |, @) and sequential composition (P; ). The last
of these holds because a deterministic P never has any alternative to the event
v" when the latter is possible. The rest of the standard operators can introduce
nondeterminism:

e (¢ — STOP) O (a — a — STOP) is nondeterministic because the initials of
the two deterministic arguments are not disjoint. In general, if P and @ are
deterministic, v & initials(P)Uinitials(Q) and initials(P)Ninitials(Q) = {},
then P O () is deterministic.

e The nondeterministic choice operator M obviously introduces nondetermin-
ism!

e A non-injective renaming can introduce nondeterminism when it identifies
two visible actions from some state: for example, if f(a) = f(b) = a then

f((a — STOP)O (b — b — STOP))
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is nondeterministic.

e A parallel operator that, for any event a, allows either argument to perform
a independently of the other, can introduce nondeterminism because when
we see a we cannot be sure which side it came from. Thus, for example,

(a = STOP) ||| (a = b — STOP)
is nondeterministic because, after the trace (a), the event b may be either

accepted or refused.

e Hiding introduces nondeterminism because it turns visible choices into inter-
nal actions, and can thus, amongst other things, emulate the behaviour of
[

(a = ¢ — STOP) \ {a,b} = ¢ — STOP
O(b—d— STOP) " nd— STOP

D is a closed subset of the metric space N, because whenever a process P
fails to be deterministic, there is some trace s which is either a divergence or, after
which, P has the choice of accepting or refusing some action a. Thus if n = #s+1
then

Qln=P|ln = (@ isnondeterministic

The rule of metric fized-point induction, which we will meet shortly (page 233) can
then be applied to deduce the following result.

LEMMA 4 If pp.F(p) is a constructive recursion such that, whenever @ is deter-
ministic then so is F(Q), then the unique fixed point of F' is also deterministic.

Furthermore, any constructive mutual recursion P = F(P) such that each
component of F(Q) is deterministic when all components of Q are, has all compo-
nents of its fixed point deterministic.

What this basically shows is that guarded recursion does not introduce non-
determinism. Thus, any process definition using only
o deterministic constant processes (such as STOP and SKIP),
e operators that preserve determinism,
e other operators in cases that do not introduce nondeterminism, and

e constructive recursions



9.1 Deterministic processes 229

Figure 9.1: Two examples of ‘nondeterministic’ LTSs whose behaviour is determin-
istic.

is guaranteed to create a deterministic process.

The definition of determinism over N takes a broad view of a process, in the
sense that it looks at its set of observable behaviours rather than the way it evolves
operationally. It is easy to devise rules which ensure that a labelled transition
system behaves deterministically, and one such set follows. Except for the last
condition you can determine their truth or falsity by examining the transitions of
individual nodes.

e No node has multiple branching on any action (visible or invisible); thus
P -5 Qand P Q' implies Q = Q'.

e If anode P has a 7 or v’ action, then it is the only action of P.

e There is no infinite sequence P; of nodes such that P; = Py

The result of mapping any node of such a system to N is certain to be deterministic,
but the reverse is far from the truth. In other words, there are LTSs whose local
structure looks nondeterministic but which actually create processes that behave
deterministically. Trivial examples are shown in Figure 9.1. A much more complex
one is provided by communication protocols such as the Alternating Bit Protocol
(Section 5.3) in which the effects of a nondeterministic communication medium are
factored out by the way it is used, creating an overall deterministic effect. An
important application of this possibility will be found in Section 12.4.

So it is not possible to decide whether a process is deterministic or not just
by looking at the individual nodes of an LTS. There is an interesting algorithm
for deciding this question, however, which takes advantage of the maximality of
deterministic processes under refinement. This is set out below, both for its intrinsic
importance and because it helps to illustrate some of the other ideas in this section.
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Suppose we have a process P, presented as a finite-state LTS (V, —, Py), and
we want to know whether or not it is deterministic. By (perhaps partially) exploring
the LTS we attempt to select a subsystem (V’/,—', Py) (with the same root node)
representing a process P’ which refines P and which meets the conditions quoted
above for being a deterministic LTS. This is done as follows:

e Initially we place Py in V' and begin the search there.

e If we have to explore the node @, then if it is stable (has no 7 or v action)
we select for each action a € initials(Q) a single node Q' such that Q@ -
Q’, add this transition to the subsystem and add Q' to the search if it is
not already in V’. This choice means that the initial actions of @ in the
subsystem are the same as they were in the original, but that all possibility
of nondeterminism arising from ambiguity has been removed.

e If a node Q is not stable then select a single 7 or v' action Q — Q' and
make this action the only action of @ in the subsystem. This @’ is added to
the search if not already in V.

e If a loop of 7 actions is thus encountered, we have discovered a divergence
and so can abandon the search since P is not deterministic.

This search will either eventually be abandoned because the last case arises, or
terminate because all the nodes added to V'’ have been explored. If it does terminate
then the subsystem it produces is deterministic by construction and the process
represented by each node refines the corresponding node in (V, —, Py).

The algorithm above sometimes leaves a great many choices open about how
to resolve a process’s nondeterminism, meaning that from a given system (V, —, Py)
it might choose many different subsystems, perhaps with large differences in size
and shape. This is illustrated in Figure 9.2, where two different selections (B and
C) are made from a process (A) that is, in fact, deterministic. Thus the existence
of these choices does not indicate that the original process P was nondeterministic.
What we can guarantee, in any case, is that we have a deterministic process P’ such
that P EFD P’.

If P is deterministic then P = P’ (even though the transition systems repre-
senting these members of A/ may be very different) because deterministic processes
are maximal. If P is not deterministic then P # P’ and hence P’ Zpp P. Thus P is
deterministic if, and only if, P’ Crp P, something we can decide with a refinement
checker like FDR. Indeed, this is the method FDR uses to decide whether a process
is deterministic.
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Figure 9.2: Two different ‘deterministic’ LTSs extracted from a ‘nondeterministic’
one.
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9.2 Analyzing fixed points

In this section we see how understanding the structure of semantic models allows
us to justify existing rules for proving properties of recursions and derive new rules.

At various points we have found it useful to be able to apply rules such
as fixed-point induction and UFP for inferring properties of processes. We have
already seen how UFP is justified using metric spaces, but have not proved the
fixed point induction rule set introduced in Section 5.1.

FIXED-POINT INDUCTION If P = F(P) is any recursive definition of a vector of

processes which is either constructive or makes each component divergence-free,
with indexing set A and Q € N is such that Q\ Cpp F(Q), for all X € A, then
we may conclude that Qs Cpp Py for all A\ € A. In the cases of Cp and Cp
this principle holds without the need to assume the constructiveness or divergence-

freedom of the recursion.

The above is a good starting point for our discussion, since it is really a
combination of several results requiring quite different proofs. We will look at three
different approaches to fixed point analysis.

Order-theoretic analysis

Sometimes one can simply use the fact that a recursive process is identified with
the least fixed point of a monotonic function f in some cpo (M, <). The following
is a list of a few simple arguments which can often be applied. See Appendix A for
more discussion and their proofs.

o If £ > f(x) then pf < z.

e If z < f(x) then f has some fixed point y (not necessarily the least) such
that z < y.

e If u f is maximal in M, then it is the unique fixed point.

An immediate application of the first of these is the proof of the fixed-point
induction rule for 7 and F. For there the refinement order is the reverse of the
one used to compute fixed points, so @ £ F(Q) is equivalent to @ > F(Q). This
implies p F' < @, which is equivalent to u F' 3 @Q, justifying the rule for these
models.

Metric methods

The Banach fixed point theorem, with its ability to force convergence to the unique
fixed point from any point in the underlying space, often makes it possible to achieve
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more powerful results about constructive recursions than about general ones. In the
case of fixed-point induction, it allows us to formulate a rule which applies to a much
wider class of properties than that specified in the definition of the rule above.

Let X be any space with a family of restriction operators defined over it that
give a complete metric (a complete restriction space). In general, a predicate R(-)
on X (i.e., a function from X to {true, false}) can be thought of as a subset ¥ of X
(the members of X satisfying it). If ¥ is both closed (in the metric space) and non-
empty, then it is a complete metric subspace of X. If f : X — X is constructive,
and f(Y) C Y, then we can regard f as being a contraction map from Y to itself,
which implies that f has a fixed point in Y. But since f only has one fixed point
in the whole of X, it must be the same one. (See Exercises A.2.1 and A.2.2 for

another view of this.)

The subset Y is closed (see the Appendix) if and only if any = € Y can be
seen not to be a member by some finite depth of the restriction process. This can
be paraphrased as follows:

DEFINITION The predicate R(-) on the complete restriction space X is continuous
if, whenever = R(z), there exists n € N such that, forally € X, y [ n=2 | n
implies ~R(y). 1

The demonstration that the fixed point of f, under suitable assumptions,
belongs to Y then immediately implies the truth of the following rule:

METRIC FIXED-POINT INDUCTION Suppose R is a continuous, satisfiable (i.e., {z |
R(z)} is non-empty) predicate on the complete restriction space X. Then if the
constructive function f is inductive in the sense that, for all z € X,

R(z) = R(f(z))

then R(y), where y is the unique fixed point of f.

This justifies the ‘constructive’ case of the original fixed point rule, since, for
any Q € N* the predicate

R(P) = QCErp P’

is continuous. To see this, notice that if Q Zrp P’ there must be a A € A and a
behaviour of P} not belonging to @y; you can choose any n larger than the length of
this behaviour. Note that the predicate above is always satisfiable (being satisfied
by @) and inductive by the assumptions of the rule and monotonicity.

Whereas the standard fixed-point induction rule only allows us to prove be-
havioural properties, the metric rule allows us to address properties that do not
have a characteristic process. This generalization is frequently unnecessary since
most properties one typically wants to prove are behavioural, but it does allow us
to deal with abstract specifications such as ‘deterministic’, as we saw on page 228.



234 Analyzing the denotational models

EXERCISE 9.2.1 Suppose R and f satisfy the conditions of the metric fixed-point
induction rule and that @ is the fixed point of f. Let P be any process satisfying R.
Prove by induction that f"(P) | n = @ | n, and hence use the definition of a continuous
predicate to show that R(Q) holds. (This gives a more direct proof of the validity of the
rule than the one which explicitly uses the properties of metric spaces.)

EXERCISE 9.2.2  Fixed-point induction, stated informally, might be ‘if a recursive pro-
cess meets some specification R on the assumptions that all recursive calls do, then it meets
the specification unconditionally’. There are, however, three conditions that are required
of the recursion/specification pair to make this valid: the specification must be satisfiable,
the specification must satisfy some continuity condition, and the recursion must satisfy
some well-formedness condition (such as being constructive).

The first of these is trivially necessary: without it, the rule would prove the pred-

icate ‘false’ true of any recursion! Find examples to show that the other two are needed
as well.

EXERCISE 9.2.3  Show that, over A/, the predicates R1(P) = P 3 Q, Ra2(P)
and R3(P) = P = @ are all continuous when @ is any process. Show that R4(P)
is only continuous if @ = @ | n for some n.

P
J2

cQ
#Q

EXERCISE 9.2.4

(a) Suppose that R is a continuous predicate and that G and G’ are non-destructive
functions (all over one of the models 7, A or F). Show that the predicates R(G(P))
and G(P) C G'(P) are continuous.

(b) Hence show that if F' is a constructive function, and H a subset of X, such that
P||| RUNg € D= F(P)||| RUNy € D

(remembering that D is the set of deterministic processes) then Q ||| RUNy € D,
where @ is the fixed point of F. An important application of this result will become
apparent in Sections 12.4 and 12.6: we will find that the predicate being used here
can be read ‘P is secure’.

(¢) Similarly show that the predicate on P

(P || STOP) ||| RUNg C P ||| RUN&
E

is continuous. In Chapter 12 this predicate will be interpreted as ‘P is fault tolerant’:
see Sections 12.8 and 12.6.

The specifications quoted in parts (b) and (c) share with pure determinism the property
of not being behavioural specifications. You may like to convince yourself of this now, or
wait until studying them properly in Chapter 12.
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The strong order on A

When we discovered in Section 8.3.1 that N over an infinite ¥ is not a complete
partial order, it was stated in a footnote that you could use an alternative and
stronger order, which was complete, to calculate the fixed points. Given (i) that N
cannot model infinite nondeterminism properly, (i) that infinite nondeterminism
is unnatural to avoid with infinite ¥ (because of hiding) and (iii) that there is
no problem modelling these things in the infinite traces model that we will see in
Chapter 10, it can be argued that this application of the strong order is mainly of
academic interest. However, the existence of the order is worthy of note, particularly
since it both reveals much about how recursions converge to their fixed points in A/
and allows us to prove, inter alia, the final part of the fixed-point induction rule.
Much more detail on the strong order, as well as proofs of results quoted in this
section, can be found in [104].

The strong order on A asserts that P < @ only when divergences(Q) C
divergences(P) and whenever s € traces(P)\ divergences(P) then refusals(P/s) =
refusals(Q/s) and initials(P/s) = initials(Q/s). Plainly P < @ implies P Cpp Q,
because the only traces on which the two processes can differ are ones where P can
diverge and thus has all behaviours, though there are many cases where the reverse
does not hold. In a sense, this order takes the principles enshrined in axioms D1
and D2 to the extreme and says that not only is divergent behaviour undefined but
that it is the only behaviour that can be ‘refined’ in moving up the order. One
can replace any divergence with non-divergent behaviour, but cannot subsequently
alter the result. The following summarizes some results about <.

LEMMA 5 (a) < is a partial order on N which is stronger than Cpp in the sense
that P < @ = P Cpp Q.

(b) L is the least element of N under <.

(c) If A isa <-directed set, then | | A exists; in this case | |- A also exists
and the two are equal.

(d) The maximal elements of N under < are precisely the divergence-free
processes.

The most curious feature of < is that it turns out to be interchangeable with
C pp for the purpose of calculating fixed points: all CSP operators are monotone, the
finitely nondeterministic ones are continuous, and each CSP-definable function has
identical least fixed points in the two orders. For details, see [104]. An immediate
consequence of this (using (d) above) is the following result:

LEMMA 6 If P = F(P) is a CSP-defined recursion with indexing set A, and each
component of the least fixed point P is divergence-free, then it is the unique fixed
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point.

This extends the class of recursions where you can use the UFP rule to
essentially all well-behaved ones.

This lemma easily disposes of the last part of the fixed-point induction rule
in the case where ¥ is finite, since if Q Crp F(Q) then F must have a fixed point
P’ such that QCrp P’. Obviously it must be the unique fixed point.

The case where ¥ is infinite is more difficult since we cannot argue that since
the set

{P' e N*| QCrp P’}

is a cpo under Cpp, and F preserves this set, there must be a fixed point in it —
for it is no longer complete.

It can still be justified, but (so far as the author is aware) only using argu-
ments based on topology. The predicate R(B') = Q Crp P’ represents a closed
set with respect to the d-topology defined in [104, 107]. Results in those papers es-
tablish the rule. These same two papers, especially the second, give a rather fuller
exposition of the mathematics and methods of fixed-point induction.

9.3 Full abstraction

The concept of full abstraction addresses the question of how good a semantics is
for a programming language. The definition is frequently divided into two aspects.

e The semantics S[-] should distinguish two programs P and @ if, and only
if, they are distinguished by some natural criterion. Usually this criterion is
the existence of some context such that one of C[P] and C[Q] passes, and
the other fails, some simple test.

e The model M being used should not contain large classes of elements that
are not in the image of S. Specifically, the aim is usually to show that the
expressible elements of the model are dense, in the sense that every element
is the limit of a directed set of expressible ones.

While the second of these is clearly a desirable aim in itself — the existence of
identifiable classes of inexpressible elements in a semantic model would seem to
imply a mis-match with the language — the main reason for incorporating it under
the heading of full abstraction is that it is frequently important in establishing the
first. For having classes of elements of M that are distinct from all expressible ones
can result in problems for program terms with free process identifiers because they
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might create functions only different on inexpressible values. We will study the two
aspects below.

Of necessity the constructions used in this section often get rather detailed.
The author hopes that even though some readers may not want to study all the
intricacies involved, they will try to understand what full abstraction is and what
the roles of the various constructions are.

Expressibility

Provided we take a reasonably liberal view of what the CSP language contains,
demonstrating the expressibility of the members of our semantic models usually
presents no problem.

The liberality referred to is in using rather non-constructive mathematical
objects to do things like index mutual recursions and use as input sets. Thus the
CSP we create here falls well outside the domain of ‘effective computability’. We
are thinking here of CSP as a mathematical language for describing communicating
processes rather than a programming language.

Proving an expressibility result like those that follow establishes that the
axioms (such as F1-F4 and D1-D3, in the case of ') used to define the model are
strong enough, because they do not allow anything to be considered a process which
should not be. Let us deal with each of our models in turn.

Traces model

If s is any trace in ¥*Y, it is straightforward to define a CSP process T which has
trace s and as few others as possible:

traces(Ts) = {t € ¥*V |t < s}
This is done by giving T one of the forms
a — ag — ... — a — STOP and a — ag — ... — ag_1 — SKIP

depending on whether s has last member v".

It follows that if S € 7, then S = traces(l' {Ts | s € S}) which means
that every member of 7 is represented by a CSP process, albeit one using a rather
artificial and infinitary nondeterministic choice construct.

We will term the process constructed above Intg7 because in some sense it
interprets the process S.
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Stable failures model

Suppose (T, F) € F. A similar, though slightly more involved, construction creates
a CSP process with this value.

The trace component T can be dealt with in much the same way as in 7,
except that we cannot use the simple T processes used above since they give rise
to stable failures that will not, in most cases, be appropriate. They need to be
adapted so that failures(Ts) contains nothing that is not implied by the presence
of s. In other words, we need to create processes T? that are maximal under Cp
subject to containing s. These are as below, bearing in mind that we can express
the value Tz as any simply divergent process.

Tr
SKIP
TrBa— T, (a#V)

!
Ty
T/

(a)'s —

The situation with the failures component is slightly trickier, since there is
usually no maximal process containing a failure (s, X'). For example, consider the
failure ((a),{}) in the context of the processes a — STOP and a — a — STOP
discussed on page 217. They both have this failure, but they have no common
refinement that does.

It is necessary to concentrate on the failures which are complete in the sense
that axiom F3 does not add anything (i.e., (s, X) such that {a € ¥ | s'(a) & T} C
X). The structure of the processes Tt,“( /) created above mean that we can assume
that s € ¥* and that v- € X. (All other complete members of F' are failures of
T;(”.) For such (s, X) we can define processes F, x) inductively as follows:

70 : 35\ X - TFr
TF0O a—>F(5’X)

Fy,x)
F(ays,x)

Notice that the only failures of F(, x) occur on trace s and are of subsets of X,
and that its traces are all in T'.

It is then always true that (T, F) = (traces(['1 S(r,ry), failures(['1 S(r,r)),
where S(r ) is the following set of processes (noting that the first component is
always non-empty because T is):

{TI|s€ TYU{Fux)| (s X) e FA{a€S |5 (a) ¢ T} C X
NsEX AV € X}

We will term this nondeterministic choice Int(f T.F)"

So, again, every element of F is expressible as the nondeterministic choice of
a rather artificially created set of processes.
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Standing back from the constructions used for 7 and F, and looking at just
how the processes we have constructed to model arbitrary elements of them actually
behave, is an excellent way of understanding the limitations of these models. After
all, these processes must be considered useless for any practical purpose! This will
be illustrated shortly.

The failures/divergences model

With 7 and F we were able to deal with each constituent behaviour very nearly
on an individual basis and form a process as a nondeterministic choice at the end.
This was possible largely because of judicious use of the C-top processes in the
two models (STOP and T x), something that is not possible over N'. The use of
an infinite nondeterministic choice operator would, in any case, be of questionable
taste over N since we have already seen that this model does not treat unbounded
nondeterminism accurately.

It turns out that, without [ ] and the other infinitely nondeterministic opera-
tors, it is impossible to model every member of N in CSP when ¥ is infinite. There
are some patterns of refusal behaviour which are allowed by the model axioms that
cannot be created without infinite nondeterminism. In fact the only ones that can
be created with finite nondeterminism are ones where, for every trace s,

refusals(P/s) = {X |3 Y e RX C Y}

for some non-empty finite subset? R of P(X¥') (which can vary with s).

Therefore we will only deal with the case of finite 3 here. What we can then
do is to define a mutual recursion over the whole of N: in other words, we define
one process for each (F,D) € N.

L if () € D, and otherwise

v M{?2: X = It /0 |
Intip py = X maximal in refusals(F,D) Av € X}
U{(SKIPX((v'),{}) € F»STOP)

0% : initials(F, D)V} = It /iy })

20bviously this condition has to be satisfied when ¥ is finite, since then P(X¥') is also finite.
We could, of course, have included the above property as an additional axiom for A'. This would
have made it a cleaner model for finitely nondeterministic CSP at the expense of losing the ability
to model unboundedly nondeterministic CSP at all and making A’s links with other models a
little more obscure.

The special properties of v' and axiom F4 mean that not all such R produce an allowable set
of refusal sets.
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where ‘maximal’ means maximal under C (noting that any such refusal set is
complete in the sense described earlier that it includes all impossible events, and
that maximal refusals must be present because of our assumption that 3 is finite).
In the interest of brevity, the above definition uses the general nondeterministic
choice operator [ ], but only over finite sets of processes where it could have been
replaced by the binary M.

You can think of this curious recursion as an ‘interpreter’ of members of N/
into CSP: at any stage the process’s state is (F, D)/s, where (F, D) is the initial
value of the process and s is the current trace. The recursion is constructive, which
leads to the following remarkable argument for its correctness. We can form a vector
Id x of processes, indexed by N itself (i.e., a member of NV), in which each member
is mapped to itself. This vector is easily seen to be a fixed point of the recursion
and hence, by the UFP rule, equals (Intj(\lfﬂp) | (F,D) € N}, and so

(failuresl(lnt/(\gp)), divergences([ntf\ém)) = (F,D)

In contrast to the two models dealt with earlier, the processes Intj(\}/,’ p) are
usually a reasonable reflection of how one would expect a process with the given
value to behave. As a simple example, consider the process P = a — P. If this
were interpreted in the three models and we then applied the three constructions
to the results, the processes obtained would behave as follows.

. Int? gives a process which performs any number of a’s and then stops. It is
the same as the process A* seen on page 208.

. Int(f T.F) gives a process which makes a choice, over all n, of offering n a’s
unstably in turn and then offering a again, stably, before finally simply di-
verging, and additionally has the option of offering any finite number of a’s
and never becoming stable (again, diverging after the last).

. [ntj(\ffy’ D) behaves identically to the original P, simply offering a’s stably for
ever.

Distinguishing processes

The second thing we have to do is find what criteria for distinguishing processes best
characterize each of our models. It is certainly reasonable to argue that the simple
construction of the models from process behaviours makes this unnecessary®: the

3The concept of full abstraction is more vital on semantics using models which have a more
sophisticated structure than simple sets of behaviours, frequently being applied to ones recursively
defined using domain theory. There are some languages, such as the typed A-calculus, for which
it is famously difficult to find a fully abstract semantics.
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sets of behaviours are easy to understand and processes are identified if and only if
they have the same ones. But these criteria can be simplified yet further if we use
the full power of how full abstraction is formulated: P must equal @ if and only
if C[P] and C[Q] always (i.e., for all contexts C[]) either both satisfy or both fail
the tests.

Hopefully the following arguments will help the reader to understand the
concept of full abstraction, as well as further exploring the expressive power of
CSP.

Traces model

Select any member of . It is convenient to give it a suggestive name such as fail.
We can then formulate a simple test on processes: they fail it when they have the
trace (fail) and pass it otherwise. Call this test T}.

Since T is formulated in terms of traces, and the traces model calculates
the traces of any CSP process accurately, it is obvious that if traces(P) = traces(Q)
then C[P] and C[@Q)] either both pass or both fail it. In order to establish that the
test is strong enough to distinguish all pairs of processes, we need to show that
whenever traces(P) # traces(Q) there is a context C]-] such that one of C[P] and
C1Q] passes, and the other fails, it. We can achieve this by finding, for any trace
s, a context CTs[-] such that CTs[P] fails Ty precisely when s € traces(P). There
are various ways to do this; one is set out below.

e When s = s'"(v'), a simple context that does what we want is

CT.[V] = (V] T\ %: (fail — STOP)

where T is the same process used on page 237 in exploring expressibil-
ity. The point is that the process on the left-hand side of the sequential
composition can only terminate when V has completed the trace s.

e For s € ¥*, we can use the context

CTs[V] = ((VQ To)la/z |z €¥] {||} FAIL(#s)) \ {a}

a

where again T is as used for expressibility, a is any member of ¥ distinct
from fail, and FAIL(m) is defined

FAIL(m) = (fail —» STOP)4m = 0¥(a — FAIL(m — 1))

This context, much as with the more obvious first case, works by only allowing
the trace s to occur in V and, like the first one, communicating fail only
when it is complete and its contents hidden.
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This establishes that the traces model is, indeed, fully abstract with respect
to the simple test chosen.

Stable failures model

One might expect the tests used for F to be a refinement of the method used above,
and in order to distinguish processes on the basis of refusals it is clearly necessary
that some aspect of the tests involves more than observing traces. We have two
types of behaviour to handle: traces and failures. It is possible to combine two
separate forms of test, one for each type, into one by disjoining them: let us define
test T to fail if a process either can communicate fail as its first action or deadlocks
immediately (i.e., stably refuses the whole of ¥¥).

Clearly the semantics of CSP in F can accurately calculate whether any
process fails T9, and so all we have to do to establish full abstraction is to show
that if (T, F) # (T, F') are the representations of processes P and @ then there
is a context that distinguishes them (with respect to Taq).

Suppose first that T' # T’. Then the context we use is a slightly modified
version of the one used for 7. For any trace s € ¥*¥, let

CTI[V] = CT[V] ||| T+

This has identical traces but, since it is never stable, will never fail T because
of deadlock. Thus CT:[Q] fails Tq exactly when CTs[Q] fails T1, which is when
s € traces(Q). This form of context thus allows us to distinguish two processes
with unequal trace sets.

We can thus assume that T'= T and F # F’. So let s be a trace such that
refusals(P/s) # refusals(Q/s). It is easy to show that s is not of the form s (v').

Without loss of generality we can assert there is a refusal set X such that
o (s,X) € F\F
e {aeX|s(a)¢ T} CX

e v € X, because if s°(v') € T, then by F4 the sets of refusals of P and Q not
containing v~ are identical.

Consider the context

CFx)[V] = (V5 TE) | Flopevx)) \
>

where F(; y) is the process used when investigating expressibility that has the
failures (¢, Y') for Y/ C Y and no other. Since we are hiding the entire alphabet in
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a process that cannot terminate, there are only two possible values for CF(, x)[V]:
T or STOP, the latter being one that can deadlock and hence fail Ty. CF(, x)[P]
can fail Ty because P has the failure (s, X), hence so does P; Tz (using v € X),
and so the parallel combination has the failure (s, ¥). If CF(s,x)[Q] could fail it
then you can argue in reverse to show @ must have a failure (s, X’) for X’ O X, but
it cannot by our assumptions and axiom F2. Thus contexts of the form CF, x)[V]
allow T to detect differences between failure-sets.

It is reasonable to hope that Ty might be simplified further to just testing
for immediate deadlock, but unfortunately the standard CSP language does not
allow us to construct contexts that are strong enough to tell differences between
trace-sets by this means. The problem is that if P and Q are two members of N/,
neither of which can either terminate or become stable (i.e., they both have the
form (T, {}) for T C ¥*) then there is no context that can distinguish them on the
basis of deadlock. There is no way for P to make a significant contribution to the
behaviour of C[P], and for the context subsequently to become stable, for none of
the standard operators of CSP can ‘switch off’ P

It is easy to add an operator to CSP which rectifies this situation: an in-
terrupt operator which allows one process @) to take over from another P. This is
easiest to understand for a specified event i being the signal for @ to start: P A\; Q.
The semantics of this operator over F are:

traces(P \; Q) traces(P)

U{s™ (i)t | s € traces(P)NE* At € traces(Q)}
{(s,X) € failures(P) | s€e X* Ni & X'}
U{(s,X) | s(vV) € traces(P) NV & X}
UL(s7(v), X) | s°(v) € traces(P)}
U{(s"(3)'t, X) | s € traces(P) N &*

A (t, X) € failures(Q)}

failures(P 1\; Q)

Given this operator, it is not too hard to devise a context that will allow
C[P] to deadlock immediately, precisely when P has a specified trace s € ¥*, and
to deal with traces of the form s*(v') using sequential composition in a similar way.
This then leads quickly to the aimed-for full abstraction result. The details are left
as an exercise. See Exercise 9.3.2 for an investigation of a related result.

We can learn an important lesson from this: adding or removing constructs
from a language, even when the semantic model is unchanged, can greatly affect
full abstraction properties.
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Failures/divergences model

With N there seems to be no option but to use a disjunctive test in the same
spirit as To. This is T3, which a process fails if it either immediately diverges or
immediately deadlocks. Following in the footsteps of the earlier models, to show
that T3 is strong enough we need to find a context to distinguish any pair P, P’ of
different elements of \V.

Let a be any member of 3. For s € ¥*, then the context

CTI'|V] = (VQ T\ X ||| (a — STOP)

can diverge immediately if and only if s € traces, (V'), where

T, = 1w

0
Ty = b— TV

The role of the event a in this definition is to prevent the process deadlocking
immediately and thereby failing T3 in an unexpected way.

Thus, if P and P’ differ in whether they have this trace, they can be distin-
guished. Traces of the form s""(v) can be dealt with similarly (see Exercise 9.3.1).
We can thus use T3 to distinguish P and P’ if their trace-sets differ.

If s is a divergence of one process and not the other, then by D3 we can
assume s € ¥*. After replacing the process L by STOP in the definition of TV,
we can use the same context as for traces, since the divergence that trips the test
then comes from V rather than 7.

So we can assume that our two processes have identical trace and divergence
sets, and (without loss of generality) (s, X) € failures (P)\ failures  (P"). Clearly
no prefix of s is a divergence, and exactly as over F we can assume v € X and that
X includes all impossible events. We use a context similar to that used for failures
over F, the important difference being that we have to use a different method to
avoid it deadlocking until the chosen failure is reached. It is built in two stages.

We have to deal separately with the cases X = {v'} and X # {v'}. In the
first case let

Cis,x)[V] = (V|| Tovy); (a — STOP)

where again a is any member of X.

In the second case let a € X \{v'} and define AS = a — AS. The following
is a simplified version of the F(, x) seen earlier:

F(,().X) = 7z:3\X — STOP

/ _ /
Flysxy = b= F x
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Now define

Cle.x)[V] = (V3 AS)!:F(IS,Z\X)

In either case C(, x)[V] behaves as follows:
e Until it has completed s (or diverged in the process, something which will
not happen when s is not a divergence of V) its trace is always a prefix of s.
e It may or may not be able to deadlock on proper prefixes of s.
e On the complete trace s it can deadlock if, and only if, V has the refusal

(s, X).

What we have to do is place this process in a context which generates an immediate
deadlock from any deadlock of the above after s, but not from any other trace, and
does not introduce a divergence. One way of doing this is

CFD x)[V] = (Co,x)[V[a, b/, z | z € 5]) . I } W (#s)) \ {a}

a,b
where
W) = b—CS
Wn) = (ea— W(n-1)0CS (n>0)
cCS = ¢— CS

and a, b, ¢ are arbitrary members of X..

The process W(#s) keeps track of how many events C, x)[V] has per-
formed, and only allows it to deadlock the combination when this number is exactly
#s, meaning that C(, x)[V] has actually performed s. (The double renaming of
events to both ¢ and b, coupled with the structure of W(n), means that only events
from the trace s get hidden. Thus the behaviour of V up to trace s is brought for-
ward to the empty trace of the combination, but anything beyond is not. This use
of one-to-many renaming appears to be essential.*) It follows that CFD, x)[V]
fails T3 if and only if (s, X) € failures, (V).

CFD,, x)[V] can then be used to distinguish P and P’, as desired.

We can summarize the results of this section in the following result:

4The construction given here is a correction from that in the first edition, which did not use
the double renaming and which was wrong because it hid the events of a process accepting an
event from ¥\ X as well as the ones in the trace leading up to it. The author is grateful to Antti
Valmari for pointing out this error.
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THEOREM 7 (i) The traces (T) semantics of CSP is fully abstract with respect
to Ty (failed on the immediate occurrence of a chosen event).

(ii) The stable failures (F) semantics is fully abstract with respect to T,
(failed on immediate occurrence of a chosen event or immediate deadlock), and
with the addition of an interrupt operator this test can be weakened to immediate
deadlock.

(iii) The failures/divergences (N') semantics of finitely nondeterministic
CSP is fully abstract with respect to T3 (failed on the process immediately dead-
locking or diverging) provided ¥ is finite.

Another consequence of full abstraction properties like these is that each
model generates the weakest congruence (i.e., identifies most processes) which allows
us to tell whether a process satisfies the relevant test. Thus 7 gives the weakest
congruence on CSP allowing us to tell whether a process has the trace (fail), and
SO on.

EXERCISE 9.3.1  Recall that the context CT.'[-] is used to distinguish processes in N
on the basis of traces. The version defined on page 244 was only for s € ¥*. Find a
definition that works for traces of the form s™(v').

EXERCISE 9.3.2 Notice that axiom T3 implies that all traces of the form s*(v) are
traces of failures. The only semantic clause for standard CSP operators over F in which
the failures component depends on the input traces is P; @, in which only traces of this
form are used. Show that this means it is possible to give a semantics for CSP in a pure
stable failures model in which a process is represented only by failures(P) rather than
(traces(P), failures(P)).

(a) Show that axioms F2, F4 and a much weakened F3 (dealing only with two cases
that can occur in connection with v') suffice to create a model whose members
are exactly the failure-sets that arise in F. We no longer get the full version of
F3 because it relates refusal sets to successor traces, and by leaving out the trace
component it thus becomes impossible to include this particular ‘sanity check’.

(b) Prove that this model is fully abstract for the standard CSP language with respect
to the test for immediate deadlock.

(¢) Find two processes that are identified over this new model but distinguished over
both 7 and F. What are the advantages of using F rather than the pure version?
Are there any disadvantages?

9.4 Relations with operational semantics

We have two methods of working out the representations of CSP processes in our
abstract models: either following the route of Chapter 7 and calculating the op-
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erational semantics and then extracting behaviours via abstraction functions, or
that of Chapter 8 and doing it by directly using denotational semantics. There is a
claim implicit in this, namely that both ways calculate the same value. We are, in
other words, claiming that the operational semantics is congruent with each of the
denotational ones. This is something that needs to be proved, and in this section
we outline some of the methods that can be used to do this.

Firstly, one must remark that in order to keep the discussion clear we will
have to be a little more formal than hitherto about the distinctions between the
syntax of CSP and functions defined over it. The language of terms in CSP (i.e., the
set of well-formed terms in the language that may contain free process identifiers)
will be denoted CSP, and the closed terms (ones with no free identifiers) will be
denoted CSP. Naturally, when referring to a function like failures  (P) we will
have to make it clear which of the two supposedly equal values this is.

The operationally-based versions of these functions defined in Section 7.4.1
provide us with functions to the models from any LTS V: for each node o of V

Or(0) = traces(o)
= (traces(o), failures(o))
(failures | (o), divergences(c))

o
.1
22

ol

These can, of course, be used to compute one set of interpretations of CSP
from the LTS generated by the operational semantics. The second set are produced
by the denotational semantics given in Chapter 8: let us call these S7[-], Sx[-] and
Snl]-

A variety of techniques have been used over the years to establish the equiv-
alence of pairs of these interpretations. Invariably the proofs have been by some
sort of structural induction over the syntax of a CSP program and come in three
parts: a series of lemmas dealing with basic operators other than recursion, a more
difficult argument to handle the recursive case, and overall ‘glue’ to put all these
pieces together. Presenting detailed arguments for each of the models here would
be much too long and complex, so we will concentrate on the simplest model, 7,
and indicate briefly at the end how things change for the others.

A CSP term can, in general, have free process identifiers. Even if we start
with a closed term (one with none), if we want to establish results about it by
structural induction we may well have to consider sub-terms which are not closed.
In proving congruence between an operational and a denotational semantics it is
therefore necessary to use notation capable of interpreting general terms® and to

5 As remarked previously (for example in Chapter 7), we have avoided doing this formally up to
now. This was because the gain in terms of completeness and making the semantics of recursion
tidier would have been outweighed by the notational and conceptual clutter.
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formulate our inductive congruence results accordingly.

It is mathematically superior to formulate each of the denotational semantics
with environments giving a binding of each free process identifier to an element of
the underlying semantic model. (This type of environment was previously discussed
on page 166.) Thus, we can define

Envy = Ide — T
to be the set of 7-environments, so that the type of the semantic function becomes
Sr:CSP — Envy — T

and, for a process term P and environment p € Envy, St[P]p is the value of P
when its free identifiers have the trace sets assigned to them by p. The reason why
it is superior is because, when we are faced with a recursive term such as pp.P,
we can present the function that P represents cleanly: in a given environment p it
maps « € 7 to Sr[P]pla/p].

The natural operational semantic analogue of an environment is a substitu-
tion £ that maps each identifier to a closed CSP term:

& € Subst : Ide — CSP

¢ then converts any CSP term P into a closed one subst(P, ) by replacing each free
identifier p by £(p). The full statement of the congruence result is now that, for all
& € Subst and all terms P € CSP,

O (subst(P,€)) = Sr[PJE

where ZT is the member of EFnvs produced by applying ®7 to each component of
&:

—T

£ (p) = 27(&(p))
It is this result we prove by structural induction over P (for all £ simultaneously).

The claim is trivially true for all ‘base’ cases of the induction: P being either
a process identifier p or one of the constant processes STOP and SKIP.

The proof then follows the same pattern for each non-recursive operator.
Consider, for example, 0. We can assume P and @ are two terms both satisfying
the claim for all £. We have

subst(P O Q,&) = (subst(P,&)) O (subst(Q,§)), and

Sr[Po Qe = Sr[PIE o7 SrIQIE
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where O is the representation of this operator over 7, in this case U (union). Thus,
by induction, it is sufficient to prove that for any closed CSP terms R and S,

®7(ROS) = &7(R) O7 ®7(S)

This result, and corresponding ones for all the other operators, can be proved
by analyzing how the operational semantics behaves. Specifically, in this case, it is
easy to show that, for any R and S,

e 1 R=L R and § =% & then RO S =L R O 9",
e If s # () and either R== T or § == T then RO S == T.

e The above are the only pairs (s, V) such that R O § == V.

This, of course, establishes what we want.

Now consider the case of a recursion p p.P. What we have to show is that,
for any &, @7 (subst(up.P,&)) is the least fixed point of the function T mapping
a €T to Sr[P] (ET [a/p]). The inductive assumption makes it easy to show that it
is a fixed point. Let P’ be the term in which all free identifiers of P other than p
have been substituted by &, so that subst(up.P,&) = up.P’. Then

7 (subst(pp.P,§)) = @7(up.P’)

Q7 (P'[up.P'/p])

= O (subst(P,&[up.P'/p]))
[
[

= Sr P]]f[/;p.P’/p]T
Sr[P)(E (@1 (up.P')/p])
T(@7 (subst(up-P,§)))

(a) follows because of the operational semantics of recursion:
pp.P' == P'lup.P'[p]

and because if A is a node of an LTS whose only action is A — B then ®7(A) =
®7(B). (b) follows by definition of P’, (¢) comes by induction on the term P which
is simpler than pp.P, and (d) by definition of ET.

Recall that, for 7, we chose to identify recursions with the subset-least fixed
points of the associated functions, arguing that this was natural because all the
behaviours recorded in this model always appear finitely. To show that this was the

right decision, given the above argument, it is sufficient to show that every trace
of &7 (subst(pup.P,§)) belongs to T™({()}) for some n. (Containment in the other
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direction comes from the fact that &7 (subst(pup.P,§)) is a fixed point of T, and so
is greater than the least one.)

If s is such a trace then there must be some s’ € (¥7)* and @ such that
s'\ 7 = s and subst(up.P,&) = Q. If N = #s’, then during the derivation of
the behaviour s’, the recursion cannot possibly be unfolded more than N times,

since every time it is unfolded a 7 action is generated which must be present in s’.
Consider the following two mutual recursions defining the processes pg and g¢p.

Pn = P,[anrl/p] n €N
qn = P,[QnJrl/p] nE{O,...,N—l}
aqgN = STOP

where P’ is as above. The first of these clearly has exactly the same behaviour as
subst(pp.P, &), in the sense that the operational semantics are exactly alike except
that the multiple names of the identifiers in the mutual version keeps track of how
many times the recursion has been unfolded. The process gy behaves exactly like pg
until after the Nth unfolding, which means that it has the behaviour s’; this means
that s € ®7(qo)-

On the other hand, ®7(gn) = {(}, Pr(qn-1) = T{()}) etc., until D7 (qp) =

TN({()}), because ®(subst(P,£[Q/p])) = ST[[P]]ZT[(I)T(Q)/])] for every closed
term Q. Hence s € TN ({()}), which is what we wanted to show.

This completes our sketch of the proof of congruence between the operational
semantics and the trace semantics. The proof for F goes through exactly the same
steps, except that one obviously has to keep track of failures as well as traces and
it is necessary to allow the ¢g recursion to unfold N + 1 times rather than N.

With A there is little difference with the overall structure of the proof or
the cases for non-recursive operators. The recursive case is different because we
have to handle infinite behaviours (divergences) and use what is really the opposite
fixed point. We have to show that the effects of divergence lead to the operational
semantics mapping under ® s to the Car-least fixed point, bearing in mind that
the same basic argument applied over 7 (page 249) shows that any recursive term
maps to a fixed point of the associated function.

Perhaps the easiest way of proving minimality uses Kénig’s lemma (applicable
since we are in any case restricted to finitely nondeterministic CSP). For any trace
s € ¥*¥ one shows that either the tree of states reachable from a process such as
R = subst(up.P,&) on prefixes of s is finite, or there is a divergence in the tree.
In the second case, axioms D1 and D2 mean that every behaviour on s gets into
@ (R), while in the first case you can limit the number N of times the recursion
has to be unfolded to be the depth of the finite tree, and then a similar argument
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to that applied over 7 can be used to show that the operational and denotational
semantics must agree on behaviours that are prefixes of s.

EXERCISE 9.4.1  Prove that, for any closed term P, &7 (P \ X) = &7 (P) \7 X.

EXERCISE 9.4.2  Repeat the previous exercise for (i) the stable failures model F and
(ii) the failures/divergences model N, the latter under the assumptions that the term P
is finitely nondeterministic and X is finite.

EXERCISE 9.4.3  The results on expressibility in Section 9.3 imply that, in each of the
cases considered, the function ®aq is surjective as a function from the closed CSP terms
CSP to the model M. Show that there is a transition system V on which the function ®
is surjective when ¥ is infinite (i.e., the one case not dealt with by the previous remark).

9.5 Notes

The main properties of deterministic processes have been well known since failures-
type models were first developed [15, 18, 19, 101].

The results of Section 9.2 are derived mainly from [101, 104, 107]. The last
two of these contain the details omitted here of the purely topological approach to
CSP fixed-point induction.

The notion of full abstraction evolved in the 1970s and early 1980s: see
[79, 92] for example. The full abstraction result for A/ has been known for many
years: it is implicitly present in [51], for example (which also contains mush other
material on full abstraction). The full abstraction results for F, like the other results
about this model, arose from the collaboration between the author, Jategoankar and
Meyer, and are closely related to independent results of Valmari [132].

The first congruence proof between operational and denotational semantics
of CSP appears (rather briefly) in Olderog’s important paper [87] with Hoare. A
more complete presentation of a proof appears in [135] and [22]. The difficulty in
such proofs comes mainly from the radically different ways in which denotational
and operational semantics handle recursions. The above two references handle this
in different ways; the author later developed a further way of handling this (en-
compassing unbounded nondeterminism and discontinuous functions) in [105] — the
later is the style of proof he presently prefers.

2005: Some interesting results have been proved about the properties which
can be expressed by CSP refinement in its most general form:

F(P) E G(P)

for F and G being CSP contexts [115, 112]. It turns out that the ones which can be
expressed by a natural class of contexts are exactly the properties which are closed
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in the usual metric space on the failures/divergences model provided the alphabet ¥
is finite. This can be viewed as a sort of higher-order full abstraction result.



Chapter 10

Infinite traces

We have seen (Section 8.3.2) that the failures/divergences model is deficient in the
way it models infinitely nondeterministic processes. The solution is to include the
set of a process’s infinite traces in the model. An infinite trace is a member of X%,
the sequences of the form (a; | i € N). It represents a complete (i.e., throughout all
time) communication history of a process that neither pauses indefinitely without
communicating nor terminates.

In this chapter we see how this is done and get an idea of the extra expressive
power it gives us.

10.1 Calculating infinite traces

Our aim is to represent each process by the triple
(failures | (P), divergences(P), infinites(P))

recalling that infinites(P) already, by definition, contains all extensions of diver-
gences.

Bear in mind that we know (thanks to the argument in the proof of Theorem
2 on page 181) that for any finitely nondeterministic process

infinites(P) = traces) (P)\traces) (P)

where S = SU{u € ¥¥ |Vt < u.t € S}. Thus, the extra component will only
convey extra information outside this category of process.

If we are to follow the route taken in Chapter 8 we should now axioma-
tize which triples (F, D, I) are allowable, investigate the model’s properties (order-
theoretic and otherwise) and then use it to give the semantics. It is entirely possible
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to build such a model, and indeed we will do so later in this chapter, but it turns out
that the relationship in it between failures and infinite traces is remarkably subtle
and creates problems which there is no overriding need for us to meet yet.

One can, at least temporarily, avoid these difficulties thanks to the following
observations:

e The stable failures failures(P) are accurately calculated, even for infinitely
nondeterministic CSP, by the semantics over the stable failures model F.

e If one examines the way that CSP operators generate behaviours, it turns
out that the stable failures of component processes never influence any of
finite or infinite traces or divergences.

It therefore makes sense to introduce infinite traces via a simpler model in which a
process is modelled as

(traces ) (P), divergences(P), infinites(P))

We can still work out failures (P) from a combination of the second components
of this representation and the semantics over F.

7, the infinite traces/divergences model, consists of the triples (T, D,I),
where T, D C >* and I C >*  meeting the following conditions:
T1. T is non-empty and prefix closed.
DIl. se DNY*AteX™Y = steD
D2. DCT
D3. s(v)eD=seD
D4. seDN¥*ANue¥¥=suel
" velAhs<u=seT
7 is a complete lattice under both Cz (defined, of course, to mean reverse
inclusion on all three components) and its reverse, the subset order. For Tz =
{0}, {}.{}) (the representation of STOP) is the greatest Cz-lower bound of the

empty set, and the greatest lower bound of any non-empty set is given, as usual, by
componentwise union: [ 1S = (T*, D* I*), where

" = WTI|(T,D,I) € S}
Dr UKD [(T,D,I) e S}
- = UL (T,D,1) € 5}
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The least refined element is L7 = (¥*Y,£*Y ¥%), representing any process that
can diverge immediately.

It is easy to give clauses for calculating infinites(P) for all the standard CSP
operators.

infinites(STOP
infinites(SKIP

) = {}

) = {}

infinites(a — P) = {(a)u | v € infinites(P)}

infinites(?x : A — P) = {(a)'u|a€ AAu € infinites(Pla/z])}
infinites(P O Q) = infinites(P) U infinites(Q)

infinites(P M Q) = infinites(P) U infinites(Q)

infinites(P || Q) = {u€X¥|3Is € Traces(P),

: t € Traces(Q).u € s || t}

U{s™u | s € divergences(P )||< Q))(ﬂ S Au e X}

infinites(P; Q) = infinites(P)
U{s"u | s(V') € traces (P) A u € infinites(Q)}
infinites(P[R]) = {u'|3u € infinites(P).u Ru'}
U{s"u | s € divergences(P[R]) N X* A u € X¢}
infinites(P\ X) = {u' €X¥|3u € infinites(P).u\ X = u'}

U{s™u | s € divergences(P \ X)N¥X* Au € 3¢}

Recall that Traces(P) is an abbreviation for traces) (P) U infinites(P). The trace
constructs ||, \ X and renaming have been extended in the natural ways to encom-
X

pass infinite traces. Of course, to give a denotational semantics to CSP you need
clauses for the other components, traces) (P) and divergences(P), of the represen-
tation. In all but one case, the clauses for divergences(P) are the same as they were
over N because knowledge of a process’s infinite traces does not affect what the
divergences are when applying the respective operators. The exception is hiding,
since we no longer have to attempt to infer what the infinite traces are from the
finite ones and can directly define:

divergences(P\ X) = {(u\ X)'t| u € infinites(P)A
teX* Au\ X is finite}
U{(s\ X)t|s € divergences(P)NE* At € £*V}

The definitions for the finite traces component traces) (P) are identical to
the mappings on traces that can be extracted from the failures clauses for . These
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differ from the clauses for the finite traces model 7 only in the cases where it is
necessary to close up to preserve axiom D2/D2’, so for example

traces; (P\ X) = {s\ X |s € traces (P)}
U {st | s € divergences(P \ X)NY* At € ¥*}

All the resulting semantic clauses are both universally accurate and repre-
sentable as relations over behaviours: we have eliminated the problem which caused
the semantics over N to break down for infinitely nondeterministic CSP. It is now
possible to prove the lemmas of an operational/denotational congruence proof (like
that for O and 7 on page 248) for every one of the operators. For example, the
processes A* and A* defined on page 208 are now clearly distinguished by the
semantics, which correctly predict that A \ {a} can diverge and that A* \ {a}
cannot.

The fact that they are representable by relations implies (as in Section 8.2)
that they are all monotonic, fully distributive, and continuous in the C order. Let us
consider the question of continuity in the C order. The argument for the continuity
of hiding over A no longer applies because of the different way we are calculating
divergence. One would not expect the argument to apply when we reason about
infinitely nondeterministic CSP, since it relied on Konig’s lemma, which in turn
requires finite branching. And, in fact, hiding is not continuous over Z. When ¥ is
infinite, the same example as used on page 192 works. An example for finite X is
provided by the processes @, defined below (hiding {a, b} makes each @, diverge,
but not their limit A*). Indeed, the incorporation of infinite traces, which each
contain an infinite amount of information, leads to several other relations becoming
infinitary and the corresponding operators discontinuous. This applies to sequential
composition, parallel and finitary renaming.

For example, let R be a renaming that maps events a and b to b, and let P,
be the process that performs n a’s and then an infinite sequence of b’s:

P, = a—...—a— BS
BS = b— BS

Obviously P,[R] = BS for all n. If we define @, = [{Py, | m > n} then these
form an increasing sequence under Tz whose limit is actually A* (it can perform
any finite sequence of a’s, but has no infinite trace). But we then have

L{@n[R] [ n € N} = BS # (L{@n | n € N})[E]

demonstrating the failure of continuity.

In Chapter 8 we established a rule of thumb that one should identify a re-
cursion with either the C or C least fixed point depending on whether or not one’s
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model incorporates infinite behaviours. On this principle we must expect the right
answer for Z to be C, and indeed it is, despite the fact that it means a large-scale
abandonment of continuity and the resulting simple formula for fixed points. The
need to use C rather than C can now be demonstrated not only from under-defined
recursions such as p p.p, (which diverges and so must be mapped to L7 rather than
to Tz), but also from very ordinary ones such as up.a — p.

For ({(a)™ | n € N}, {},{}) (which is the value in Z of the process A*), is
the C-least fixed point of the function F'() derived from the recursion pp.a — p.
This is plainly not the right value, since it does not contain the infinite trace that
the process self-evidently has. The problem is that F(P) can never have an infinite
trace when P does not, so starting an iteration from Tz (which itself has no infinite
traces) will never yield one. On the other hand, the C-least fixed point (and greatest
C one) is ({{a)" | n € N}, {}, {(a)“}), the correct answer.

In the case of up.a — p, there are only the two fixed points quoted above,
but in only slightly more complex cases, such as g p.(ea — p) M (b — p), there can
be infinitely many. In this second example also it is clear that the correct answer
is the C-least one, which contains all infinite traces made up of a’s and b’s.

Even ‘constructive’ recursions can fail to reach their least fixed points via
the simple formula

pf = Uzozof"(l)

This is illustrated by the recursion
pg.((a—q) |l A%)
{a}

where A* is as above. For this recursion, F™(Lz) has the infinite trace (a)* for all
n (because (a)™ is a divergence), and hence so does | |-, F"(Lz) which equals

({{a)" [ n € N}, {}, {(a)*})

However, this value is neither a fixed point of this recursion, nor does the operational
semantics of the recursion have the infinite trace (a). The least fixed point, which
is also the operationally correct value, is A*. It is clear, both from this and the
multiplicity of fixed points we saw above, that the proof that you always get the
operationally right answer is more critical than over previous models.

The argument we saw for 7 in Section 9.4 still applies when it comes to
proving that the operational semantics of any recursion maps to some fixed point of
the associated function. But the proof that it is always the least one seems to require
subtlety and mathematical machinery well beyond what we can present here. The
interested reader can consult [105].
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But the important thing is that the result, and hence the congruence theorem
with the operational semantics, can be proved and so is true. This establishes that
the denotational semantics for CSP, derived from the above operator definitions and
C least fixed points for recursions, does give the correct value for every process.

The demise of metrics

The major gain we have made from the move to incorporate infinite traces in our
model is the ability to calculate a satisfactory semantics for general CSP (i.e.,
incorporating unbounded nondeterminism) denotationally. The attentive reader
may already have noticed what is the greatest practical loss, and one of the best
reasons for not using infinite traces all the time. The recursions pp.a — p and
wp.(a— p) N (b — p) are certainly constructive in every reasonable sense, and yet
we have seen that they do not have unique fixed points. This is because no family of
restriction functions based (as all those for other models have been) on describing
what a process does up to some finite length of trace, can discriminate between a
pair P, P’ which only differ in infinite traces.

Thus the UFP rule, and the fixed-point induction principles relying on con-
structiveness as defined in Section A.2, are not in general valid over Z or other
models using infinite traces. We will be able to repair the damage somewhat, but it
is better to do this after we have studied the incorporation of failures information
into our model as this can significantly affect the situation.

EXERCISE 10.1.1  Suppose ¥ is infinite (containing, say, {a; | ¢ € N}). Find finitely
nondeterministic processes Pi, P2, 1 and @2, a set X and a renaming relation R such
that

e traces | (P1\ X) = traces 1 (P2 \ X) but infinites(P1 \ X) # infinites(P2 \ X).
o traces (1 [R]) = traces 1 (Q2[R]) but infinites(Q1[R]) # infinites(Q2[R]).
The existence of such examples demonstrates that infinite hiding and infinitary renaming

can introduce unbounded nondeterminism.

EXERCISE 10.1.2  Find the relations which generate infinites(P; Q) in the relational
representation of this operator. Show by means of example that they are not all finitary.

Find a process @ and a directed subset A of Z (with respect to C) such that

(LA); Q#LHP; QI PeA}

This shows ; to be discontinuous in its first argument; is it also discontinuous in its second
argument?
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10.2 Adding failures

We now know that, for any CSP process, we can calculate its divergences, traces
both finite and infinite, and (stable) failures. In fact, we know how to do these
things two ways since we can either get them from the operational semantics or
by using a combination of two denotational models. It is nevertheless interesting
to try to combine all of these types of behaviour into a single model, because only
by doing this can we understand what ‘the space of all processes’ looks like, and
establish results like full abstraction. We want to build the failures/divergences/
infinite traces model U consisting of sets of triples (F, D, I).

The main issue in understanding which (F, D, I) can represent the
(failures ) (P), divergences(P), infinites(P))

of some process P is the way in which failures and infinite traces interact, for the
other relationships have all been established in studying Z and N.

Their relationship is analogous to axiom F3, which can be read as stating
that when an event a is not refusable after trace s, then s(a) is a finite trace.
Carrying on this argument to infinity will lead to infinite traces; we will investigate
this by studying the two recursions used as examples in the previous section:

R, = a— R,
Rap (a — Rap) M (b — Rap)

It is easy to see that

F, = failures;(R,) = {({(a)",X)|a¢g X}
Foy = failures) (Rqp) {(s,X)|se{a,b}* AN{a,b} L X}

In the model Z, both of the recursions have solutions with no infinite traces,
but that would be inconsistent with the failure information since, if we always offer
either process the set {a, b}, then it is certain to perform an infinite trace. A process
with no infinite trace is certain, if we always offer it the whole of ¥, eventually to
deadlock or terminate; neither of these processes can do either.

So in fact the R, recursion does have a unique fixed point when we take into
account the additional information from failures, since the set of infinite traces from
the ‘wrong’ one of the pair seen on page 257 can now be discounted.

We can be sure that any set of infinite traces to be paired with F, has
the trace (a)“ because this infinite trace can be forced from a known finite one.
Specifically, if s is a finite trace of the process P, and v > s is in X“, and
whenever s < t(a) < u we have (t,{a}) & failures, (P), then u must belong
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to infinites(P). This implies that whenever F' is the failure-set of a deterministic
process in A then there is only one set of infinite traces consistent with F', namely
traces (F)\traces  (F).

As infinite traces tell us nothing interesting about processes in U whose
projection into N (the first two components) appear deterministic, we can take
exactly the same definition for ‘deterministic’ over U as over N.

Unfortunately the story is not quite as simple with R, for there are still
infinitely many sets of infinite traces consistent with the failures. Furthermore,
there is no specific infinite trace you can be sure is there. If I is any subset of
{a, b}* with the property that for all s € {a, b}* there is u € I with s < u, it turns
out that we can create a CSP process with value (Fap, {}, I).

If v is any infinite trace, let T, be the process that simply communicates the
members of v in turn (akin to the processes T for finite traces used on page 237).
Then

Ny =TT, |vel}

is the process we want: it obviously has the correct infinite traces, and our assump-
tion implies it has the right failures since if s € {a, b}* then there are v, and v,
in I with s"(a) < v, and s°(b) < v. The processes T, and T,, give to Ny all the
failures of Fy; for this s.

These are precisely the sets of infinite traces consistent with F,,. For we
know that every finite trace is possible, and if after the trace you offer a process
with failures Fy; the set {a, b} for ever, you are bound to get an infinite extension of
s. Not all I of this form give rise to fixed points of our recursion, though infinitely
many of them do (see Exercise 10.2.3), but that is not relevant to the issue of
determining what it means for a set of infinite traces to be consistent with a set of
failures.

Whatever formula captures the general relationship between infinite traces
and failures is inevitably going to be more complex than previous axioms such
as F1-F4 since it evidently relates the entire sets of these behaviours rather than
individual ones. A variety of formulations of an axiom relating F' and I have been
discovered, but all of them rest ultimately on something very like the following
ideas.

Imagine that you are about to experiment on a process. Now there may well
be some nondeterminism in the implementation, and on any run it will then have
to make decisions to resolve this. From the experimenter’s point of view there is no
way of telling whether the decisions are being made in ‘real time’ as the experiment
proceeds, or have all been pre-ordained. If all the decisions have been made in
advance, then the process you are actually dealing with is a refinement P’ of P that
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is at least nearly deterministic.! The reasons why the procedure in the footnote
may not deliver a deterministic result are divergence and the events that are left as

alternatives to an internal action. It is certainly closed in the sense that
Traces(P') = traces  (P’)

Since every recordable behaviour of P is present in one of these P’ it follows
that

P =TKP |PC P AP is closed}

This identity is the key to deciding when sets of failures and infinite traces
are consistent. For there can be no doubt that if (F, D) is a member of N then its
closure

(F,D) = (F,D,traces(F)\traces(F))

must be included in the failures/divergences/infinite traces model . A construction
identical to that for A/ on page 239 (which now requires unbounded choice since 2
may be infinite) creates a process with these behaviours. And it is clear that for any
(F,D,I) €U, (F,D) is a member of N/, so that the closed processes are precisely

N, the set of closures of members of N.

Thus the model U equals

{T1S1{y #5C{(F, D) | (F, D) e N}}

and the way we have derived this fact equips U with the expressibility half of a full
abstraction result.

There is no reason, of course, why you should not take the above as the
definition of U. But one can get back to the earlier, directly axiomatized, style by
extracting what this says about infinite traces into a suitable formula.

We can thus define U to consist of those triples (F, D, I) satisfying F1-F4,
D1-D4, the following property slightly reformulated from 11" of 7

1You can imagine this choice procedure as being applied to an LTS which has been unrolled
into a tree, as in Figure 7.3 on page 161, so that no node is visited more than once, recognizing that
different decisions may be made each time a node is visited. There is then an ‘implementation’
of it that is produced by a method like the algorithm for extracting a deterministic refinement
described on page 229, except that you should select one representative for each label leading from
a node irrespective of whether it is stable or not. This is because we have to recognize that the
process is allowed to accept visible alternatives to internal actions and that if such alternatives
were always ignored then there would be legitimate behaviours of the LTS which would not appear
in any of the ‘implementations’.
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II. ue INs <u (for s € £*) implies s € traces(F)

and one more property, I12. A wide range of formulations, as well as some plausible
alternatives that fail, can be found in [105] and especially in [12]. The axiom can
be stated in terms of game theory and via logical formulae with infinitely deeply
nested quantifications, but the most understandable are probably those closer in
spirit to the discussion above. The following version simply states that from any
point a process can reach, we can pre-resolve the nondeterministic choices it will
make thereafter so that it acts deterministically:

12. s€traces(F) = 3T €T (F,D)/sCrp det(T)
AMsulueTrCI

The more refusal sets a process has (relative to a fixed set of finite traces),
the less infinite traces it need have. This is because, in the above, the sets T can
be smaller when F is able to refuse more. Thus, for the failure-set X*¥ x P(X¥)
and divergence-set {}, any set of infinite traces is permissible. In particular, you
can have the empty set of infinite traces, creating the interesting process FINITE;
which can be written

M{T,|sex}

with T, as before, being the process which simply communicates the trace s.

The semantic clauses for computing how CSP operators behave over U can
easily be put together from those of earlier models. Those for divergences and
infinite traces are identical to those over Z, while those for failures are identical? to
those over A. Every one has a relational representation and so is monotonic and
fully distributive. Just as over Z, many fail to be continuous.

You should always remember that if P is a finitely nondeterministic term
(or, indeed, a node in a finitely nondeterministic LTS) then its value in U is always
simply the closure of its value in N.

Full abstraction

Our first expression for U as a set of nondeterministic compositions equips it with
the expressibility half of its full abstraction result.

The second half serves to emphasize that U is the natural extension to un-
boundedly nondeterministic CSP of the failures/divergences model N, since except

2Those, especially \ X, that refer to divergence-sets, of course now mean the ones derived from
Z.
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for the larger language the testing criterion is identical. U is fully abstract with
respect to the test for immediate deadlock or divergence (T3, see page 244). Ex-
actly the same contexts as over N distinguish processes on the bases of finite traces,
failures and divergences, so all we need is to find contexts that distinguish them on
the basis of infinite traces. If T, is, as above, the process that simply performs the
trace u then

CulV] = ((V!: T)\2) ||| a = STOP

can diverge if and only if u € infinites(V'). As with finite traces, the last part of the
context is included to avoid any possibility of immediate deadlock and so ‘diverge’
can be replaced by ‘fail T3’ here.

Partial order properties
The refinement order on U is exactly what we would expect:

(F,D,I)Cy (F',D',I'Y=F2F ADDD' NI DT

This order has a bottom element, the one representing any process that can
diverge immediately:

Ly = (B x P(T¥), 5, 1)

Like N, it has no top element but many maximal elements which are exactly the
deterministic processes

(det(T)| T € T

The nondeterministic choice operator, as over other models, corresponds to
the greatest lower bound operator over arbitrary non-empty subsets of &/ and to
componentwise union.

It should not come as a great surprise that the refinement order fails to be
complete over U, since we have seen there is a close correspondence between finite
nondeterminism and the attractive properties of completeness and continuity. If A*
is, as before, the process that can perform any finite number of a’s but not infinitely
many, then the following series of refinements hold:

A*Cya—A*Cya—a— A" Cy ...

since prefixing A* with a simply removes its ability to perform no a’s. However,
this sequence has no upper bound since any such bound could never refuse a but
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would be unable (as all the members of the sequence are) to perform the forceable
trace (a)®.

Whereas over N for infinite ¥ the incompleteness of C could be got round by
introducing the strong order <, no such remedy exists® here since one can actually
prove (see [105]) that any order which makes CSP operators monotone and which
finds the same fixed points for them as T, is incomplete.

Nevertheless, it turns out that every CSP definable function does have a
least fixed point, and that fixed point is the correct (judged by congruence with
operational semantics) value for it. There are two known ways of proving this
result, the outlines of which are sketched below.

It is this difficulty in finding fixed points, added to the subtlety needed to
build and understand the model in the first place, that led us to look at the in-
finite traces/divergences model Z before Y. We observed there that a failures/
divergences/infinite traces representation for every process could be computed from
its values in Z and F (see page 254). There is no guarantee, just because we have
pieced together a member of Z and one of F that the result will be one of U, since
in general the failures and infinite sets produced need not satisfy 12. However, the
congruence theorems of the two models with the operational semantics do imply
it is in U, since the combined value is guaranteed by these to be the abstraction
into U of (the operational semantics of) the process in question. A little analysis
then shows it is a fixed point, and indeed the least fixed point, of the corresponding
operator over U.

This is a simple proof given the earlier congruence theorems, and indeed it
establishes the extremely important congruence theorem for U as a bonus. It is,
however, worth bearing in mind (i) that the results on which it rests, especially the
congruence for Z, are highly non-trivial and (ii) that it has the curious property of
being a proof entirely stated in one domain (the denotational semantics in /) which
rests on detailed analysis of another one (the operational semantics).

There is an elegant proof, discovered by Geoff Barrett [5, 7], whose overall
difficulty is considerably less and which does not rely on analyzing the operational
model. The following is an outline of his work.

Say a process (F, D, I) € U is pre-deterministic if it behaves deterministically
whenever it does not diverge. In other words,

s € traces(F)\D A s"(a) € traces(F) = (s,{a}) ¢ F

The combination of axioms D1, D2, I1 and I2 ensures that each pre-deterministic

3The strong order can be defined on U: (F, D, I) < (F', D', I') if and only if (F, D) < (F', D")
in N and I D I’. All CSP operators are monotone with respect to this order, but it fails to be
complete.
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process is closed. In fact, the pre-deterministic processes P form a complete partial
order under Ty, and have the property that every member of U is refined by one
of them. The maximal members of P are, of course, the deterministic processes D.

Now it is easy to show that if a monotonic function f over I has a ‘post-fixed’
point (one such that f(z) Ty «) then it has a least fixed point. For we can use the
proof of Tarski’s theorem for complete lattices on page 490: the crucial point here
is that the set of post-fixed points (upon which the proof is based) has a greatest
lower bound as it is non-empty and every non-empty subset of ¢ has one.

Barrett proved that every CSP definable function f has a pre-deterministic
post-fixed point by finding a monotonic function f’ from P to itself such that
f(P) Ty f'(P) for all P € P. This has the desired consequence because then
/' (being a monotonic function from a cpo to itself) has a fixed point p f’, and

fnf) Cu f'(uf) =nf

He built the f’ by replacing each CSP operator by a refinement that preserves
determinism in a systematic way. Essentially, he modified the operators so that
each way described on page 227 for them to introduce nondeterminism was avoided.
For example, P ™' Q = P and P O’ Q always behaves like P where an ambiguous
first event is chosen.

EXERCISE 10.2.1  Show that any process P € N such that Traces(P) consists only of
finite traces can either deadlock or terminate. Hence prove from 12 that if s € traces  (Q)
for @ € U, then either there is u € infinites(Q) with s < u, or @ can either deadlock or
terminate on some s’ > s.

EXERCISE 10.2.2  Recall the R, recursion on page 259. Find a set of infinite traces I
that is consistent with Fg; but such that (Fas, {}, I) is not a fixed point of the recursion.

EXERCISE 10.2.3 If u is any infinite trace in {a, b}*, let A(u) be the subset of {a, b}*
consisting of those sequences obtainable by a finite sequence of additions and deletions
from u: {s'v|s € {a,b}* ATt € {a,b}".u=t"v}. Even though there are infinitely many
members of each A(u) and v € A(s) < u € A(v), there are infinitely! many different
A(u) and each satisfies the identity A(u) = {{a)™v, (b)"v | v € A(u)}.

Show that, for any u, Na(,) (as defined on page 260) is a solution to the R
recursion.

Find a sequence I, of subsets of {a,b}* such that (Ra,{},I») € U for all n,
I D Iny1, but (\{In | » € N} = {}. This leads to a Cy increasing sequence of members

4There are, in fact, uncountably many since {a, b}* is uncountable and each A(u) is countable.
Since any union of countable sets is countable, there must be uncountably many different such
sets.
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of U which differ only in their infinite traces, but which has no upper bound. This shows
that the strong order < (defined in a footnote on page 264) is incomplete.

EXERCISE 10.2.4 Prove that the deterministic processes are precisely the C;; maximal
elements of U. Hint: use the characterization of U as the nondeterministic compositions
of closed processes, and the corresponding result over N .

10.3 Using infinite traces

It is controversial whether an infinitely nondeterministic system could really be
(fully) implemented. Any implementation would have to include a mechanism which
guaranteed to select between an infinity of choices in a finite time. You cannot do
this by repeatedly performing a finitely nondeterministic activity such as tossing a
coin or throwing dice, since Konig’s lemma implies that any such procedure that
has infinitely many outcomes can go on for ever. For example, if you toss a coin
and count how many successive heads are seen before the first tail, there remains
the possibility that the series of heads will go on for ever. On the other hand, if
a system made a choice dependent on the value of some infinitely varying physical
quantity such as time ...

Whatever you believe about this, the ability to model infinite nondetermin-
ism has a number of practical applications. Many of these occur when we want
either to specify or to assume some property, which requires infinite nondetermin-
ism to express it, of a process even though the process may well only be finitely
nondeterministic. This can quite legitimately lead to us reasoning about infinitely
nondeterministic processes, even if you take a conservative position in the debate
above. This having been said, you should always bear in mind that there is no need
to use U when you are dealing with a finitely nondeterministic CSP term and want
to prove a property of it that can be expressed in one of the weaker models.

10.3.1 Infinitary specifications and fairness
Recall the specification of a buffer B from Section 5.1: divergences(B) = {} and

(1) s € traces(B) = s € {| left, right |}* N s | right <s | left
(i) (s,X) € failures(B) A s | right = s | left = X n{| left |} = {}
(iii) (s, X) € failures(B) A s | right < s | left = {| right |} £ X
This allows a buffer to input infinitely without ever outputting. We might wish to
insist that our buffer is always finite, in the sense that it never accepts an infinite

sequence of inputs without outputting. To express this naturally requires an infinite
trace specification:
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(iv) u € infinites(B) = u \ {| left |} is infinite

Clearly each of the explicitly bounded buffer processes BUFF é\)f meets this
specification, but the infinite buffer BX° does not. It remains true, of course, that
any satisfiable behavioural specification can be identified with the most nondeter-
ministic process satisfying it (its characteristic process, the nondeterministic choice
of all processes satisfying it). Naturally, BUFF ', the characteristic process of the
basic buffer specification, does not satisfy the stronger finite buffer specification.
It is interesting to construct an explicit CSP representation FinBUFF (y of this
process: see Exercise 10.3.6.

Even if you believe it is impossible actually to build an infinitely nondeter-
ministic system, it can still be sensible to include an infinitely nondeterministic
component in a model of an implementation. For there may be a component pro-
cess which is either outside your control or which you may wish to vary: in either
case it is appropriate to replace the component by a specification it is assumed to
meet, and this specification may well be infinitely nondeterministic.

A good example of this can be found in the Alternating Bit Protocol as
discussed in Sections 5.3 and 8.4. Recall that this protocol is designed to work
(i.e., transmit successive pieces of data correctly) provided that neither of the two
error-prone channels used either loses an infinite sequence of consecutive messages
or duplicates any message infinitely. In the first discussion (Section 5.3) we had to
choose some fixed bound on the number of consecutive errors, while in the second
we saw that the protocol could be proved correct for arbitrary loss/duplication
conditional on any refinement that removes the divergence. The channel processes
we really want (which are, indeed, refinements of those C(in, out) used in Section
8.4) can only be modelled accurately in models incorporating infinite traces.

What we want to assert about the channels is that they cannot output in-
finitely without inputting (for that would constitute infinite duplication), nor input
infinitely without outputting (which would be infinite loss). We call such a condition
a fairness assumption. A fair arbiter between two non-empty and usually disjoint
sets A and B of events is a process which repeatedly chooses between allowing A
and B, but which never chooses either side infinitely without the other. The most
general fair arbiter between A and B is

A,B) = LFair(A, B) N RFair(A, B), where
A;B) = [WNLeft(n,A,B)|ne{l,2,...}}
RFair(A,B) = [1{NRight(n,A,B)|ne{l,2,...}}
A,B) = RFair(A, B)4n = 0%z : A — NLeft(n —1,A,B)
A,B) = LFair(A,B)<n = 0%?z: B — NRight(n — 1, A, B)
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since this repeatedly chooses one of A and B a non-zero finite number of times, and
then goes back and starts on the other. Fuair(A, B) is divergence-free, has as its
finite traces (AU B)* and for each trace has (when A N B = {}) maximal refusals
Y\ A and XY\ B. What makes it special is its set of infinite traces, which can be
written, in a natural extension of existing notation,

A*(B B* A A*)¥

The asymmetry in this expression is immaterial, since switching all A’s and B’s
leaves the set unchanged.

You can use processes like Fair(A, B) to add fairness into systems by mak-
ing them replace existing (unfair) choice mechanisms like those in C(in, out).
The definition of Ci(in, out) below simply replaces the nondeterministic choices
of C(in,out) by external choices, thus leaving them to be made by the parallel
composition with the arbiter.

C.(in,out) = n?zx — Cl(in, out, )
Cl(in,out,z) = outle — CL(in,out,x)
O in?y — Cl(in, out, y)
Chn(in,out) = Ci(in, out) !; LFair({] in |}, {] out |})

Notice that we use the version of the arbiter that guarantees that its first choice
will go to the left, because Cy needs to input first.

Cfin (in, out) has identical failures to C(in, out), but has just the restriction
on its infinite traces we want. Using it to model the channels in the alternating
bit protocol eliminates the divergences that occur when you use C(in, out), though
of course you need the power of U to express this formally. The mathematical
argument would just paraphrase the informal one for lack of divergence in Section
5.3. One could then either prove directly in ¢/ that the resulting system is equivalent
to COPY, or deduce it from the analysis done in Section 8.4 over F.

What we have managed to capture over U are the ‘real’ assumptions on the
communication medium that are required to make the protocol work. Of course,
having done this, any medium that refines the Cf, model is also guaranteed to
work.

Fairness is a difficult subject, both because it is inextricably linked with
unbounded nondeterminism and because interpretations of what it means for a
system to be ‘fair’ vary widely depending on just how one has chosen to model
systems and on authors’ opinions. See, for example, [16, 40, 77, 89]. Different
notions of fairness are couched in terms:
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e of one or more specific internal decisions inside the program, as was the one
above;

e of the complete pattern of internal decisions, one example being ‘angelic
nondeterminism’: if, whatever decisions are made, it always remains possible
to attain some desirable state, then eventually that state must be reached;

e of the pattern of ‘enabled actions’ — if an action is enabled infinitely then it
will occur; or

e of ‘fair parallel’: ensuring that each side of a parallel composition is treated
fairly in terms of being allowed to make progress.

In CSP one has to be careful about how to define fairness because of the basic model
of communication: no action can occur unless the environment is willing to perform
it. Thus a process like up.(a — p) O (b — p) cannot enforce fairness between a
and b, even though each is always enabled, and nor does it make sense to say that
the equivalent process pp.a — p ||| 4 p.b — p necessarily behaves as a fair parallel
construct, since in either case the environment can insist on an unfair trace such as
(a,a,a,...).

For clarity, and because it corresponds directly to perhaps the most widely
used notion of fairness in the literature, the only form we will consider directly is
the first. The most natural way to introduce this into CSP would seem to be a fair
nondeterministic choice operator Mg that behaves like M except that it guarantees
to make its choices fairly. There is no reason why you should not use this as a
shorthand, but it cannot be treated as a CSP operator like all others. One problem
is that, as a binary operator over CSP models, M and Mg are indistinguishable, and
yet in a recursive context they mean very different things.

Where there are multiple fair choices in a program, these have to be treated
as separately fair, in the sense that if any one of the choices is made infinitely
often it is made fairly, but there is no linking property between the ways in which
combinations of choice are made. This creates curious programs like

(np(a—p)NFp (b—p)) { IIb} (np.(a—p)Mp (b—p))

Obviously this can deadlock, for the two sides can immediately, or after any finite
trace, pick different actions. The interesting question is whether it must eventually
deadlock. On a global view of fairness (perhaps along the lines of angelic fairness)
one is tempted to say ‘yes’ (it being too much of a coincidence if they always pick
the same event), but actually the two sides of the parallel are allowed to make
exactly the same fair decisions (behaving, perhaps, like yp.a — b — p) since there
is no link between the fairness conditions. Indeed it is quite likely that if we take
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a fair choice mechanism off the shelf it will, in fact, always follow the same pattern
such as strict alternation. Thus the answer under our model of fairness is ‘no’.

A very similar phenomenon creates a second problem in trying to view Mg
as an ordinary operator. Consider the ‘identity’

(PN Q); (RMpS) = (P; (RNFr 8))M(Q; (RME S5))

which should be provable by the left distributive law of ; . But the right-hand
side has two Mg operators while the left-hand side has one, and this makes a big
difference to how the two sides behave when put in a context such as the infinite
iteration P* that forces infinitely many choices to be made.

e If the ordinary nondeterministic choice on the left-hand side alternates be-
tween P and (), there is nothing to stop the fair choice alternating between
R and S, so that R always follows P and S always follows Q.

e On the other hand, the different pattern of Mg’s on the right-hand side means
that each of P and @, if picked infinitely often, must be followed by a fair
choice between R and S. The alternating pattern (P; R, @; S)“ is thus not
allowed.

Fair choices are thus much more context sensitive than other CSP constructs.
As said above, Mg should really be thought of as shorthand rather than as an
operator in its own right. To implement processes involving this ‘operator’ we
simply delegate the choices to separate fair arbiters for each occurrence of Mg,
rather like the modelling of Cg,, above. This can be done by transforming the CSP
definition of your process. Invent two new events for each occurrence of Mg (a.i
and b.i for the ith, say) and replace the ith P Mg @ by a.i — P O b.i — Q.
The new events should not be synchronized, hidden or renamed in the transformed
definition. Then take the final transformed process T and place it in parallel with
fair arbiters for each choice:

(7 | (Fair({a.1},{o.1}) || ... ||| Fair({a.n}, {b.n})) \ {| a, b [}

{la,b[}

This transformation is incorrect if there is any possibility of the original process
terminating (v'), since the fair arbiter(s) prevent the transformed one terminating.
A more elaborate transformation is then required (see Exercise 10.3.3).

We might well want fair choices between more than two options. When
there are finitely many (the only case we consider here) it can accurately be done
by composing the binary version: executing a program with the construct

P Mg (PQ Mg ---(Pn—l Mg Pn))
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(M) R0

(1,1) (N,1)

Figure 10.1: A counter moving across an N X M board.

implemented as above, allows just those behaviours in which all of the P; are chosen
infinitely often if any is. Obviously one could define a more than two-way fair arbiter
and use it to implement a multi-way fair choice more directly. For example,

Fair(A, B) | Fair(B, C)
B

has (for A and C disjoint) exactly the behaviour we want of Fair(A, B, C'). Make
sure you understand why the asymmetry of this definition does not matter.

ExAMPLE 10.3.1 (FAIR COUNTER) Fairness is generally used to ensure progress of
some sort in a system. For example, imagine a counter sitting on a rectangular
board as in Figure 10.1. The counter ¢, when sitting at co-ordinates (i,j), can do
one of three things:

e [t can choose not to move, and communicate the event procrastinate.c.
e It can try to move up (to (i,j+1)) by communicating with the target square.
e It can try to move right (to (i + 1,7)) by communicating with the target

square.

Let’s assume that after requesting permission to move to a square it receives either
an ok or ref signal, indicating that it can move or not, and that we ensure that if
it asks to leave the board (off the top or right edges) then it always gets the refusal
(ref ) response.



272 Infinite traces

CTR(c,i,j) = procrastinate.c — CTR(c,1,7)
M (req.i.j +1l.c —
(ref.i.j + 1.c — CTR(c,1,7)
O ok.i.j + 1.c — enter.i.j + 1.c —
leave.i.j.c — CTR(c,i,5 +1)))
M (req.i + 1.j.c —
(ref.i+1.j.c = CTR(c,1,7)
O ok.i +1.j.c — enter.i + 1.5.c —
leave.i.j.c — CTR(c,i+1,j)))

Clearly if no fairness is assumed in the way it makes these choices, then it
need never move, no matter where it starts, since it can always take the first option.
If the board is programmed in the obvious way so that a square, when empty, will
allow a counter to move onto it, etc., then if these choices are made fairly a system
consisting of a single counter on an N x M board will eventually have the counter
reach the top right-hand corner (N, M) no matter where it starts.

This naturally leads to the question of how one specifies the concept of ‘even-
tually’ in CSP. To specify that a system P must eventually (unless deadlocked by
the environment) communicate a specific event a, all you have to specify is

a—divE P\ (2\{a})

over either N' or U as appropriate to the constructs used. For this says that the
process P can neither diverge nor engage in an infinite sequence of non-a actions
before communicating a, and neither can it deadlock or terminate before doing so.
This has much in common with the timing consistency check described on page 399.
One can obviously compose variations on this theme.

In this case you can either show that eventually our counter seeks to move to
(N+1,M) or (N, M +1) (since it has to be on (N, M) to do so), or, better, to look
for the event the counter communicates when entering (N, M). In other examples
you might well have to add a ‘success’ event explicitly into the program, and look
for that.

It is interesting to consider the case where there are two or more tokens on
the board. At first sight you would probably expect that the fair counter definition
will inevitably result in the counters becoming huddled together at and around
(N, M). But this is not so, since no fairness is imposed regarding the speed of
different counters. If there are, initially, counters at (1, M) and (2, M) then there is
nothing to say that the left-hand one cannot perform infinitely many actions while
the right-hand one does nothing. This, of course, would lead to no counter moving
since the left-hand one is blocked by the top edge and the right-hand one. What
is required is essentially the fair parallel composition discussed briefly earlier. This
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only makes sense if we remove from the environment the ability to choose which
counter communicates next. The appropriate way to do this is to place the system
in parallel with a fair arbiter whose job it is to choose which counter acts. If

choices(c) = {procrastinate.c,req.i.j.c | i,j € N}

then for counters ¢; and cz, you can use the arbiter Fair(choices(cy), choices(cz)).
(End of example)

EXERCISE 10.3.1  Complete the programming of the system in the example above by
defining a Square(i,j) process, any others you need, and putting the complete network
together.

EXERCISE 10.3.2  If instead of moving just up and right, the counter chooses fairly
between trying to move up, down, left and right, need it ever leave the board?

EXERCISE 10.3.3  The implementation of Mg given in the text does not work for po-
tentially terminating processes. Put this right as follows:

(a) Revise the definition of Fair(A, B) to produce a process TFair(A, B, tk) (for tk €
Y \(A U B)) whose behaviour is identical except that it is always willing to com-
municate tk (as an alternative to its current choice of A or B), upon which it
terminates.

(b) In transforming a program with Mp’s in, as on page 270, sequentially compose the
previous result with tk — SKIP for some new event tk.

(c) Put together the resulting process with TFair processes, synchronizing appropri-
ately, and explain why the result behaves as you would wish.

EXERCISE 10.3.4  The process Cpn(in, out) can both lose and duplicate messages.
Define (in CSP) the most general process Egp,(in, out) that acts like a one-place buffer
except that it can lose any message as long as it does not lose an infinite consecutive
sequence of them (i.e., it behaves like Cpy,(in, out) except that it never duplicates). What
refinement relation, if any, holds between the Cpy, (in, out) and Egy(in, out)? Hint: define
the process using Mr and then use the transformation implementing this.

EXERCISE 10.3.5 The process
SemiFair(A, B) = RUN 4 ||| Fair(A, B)

always allows any event in A and need never allow B, but specifically does not permit
an infinite trace unless it contains infinitely many events from A. Compute its sets of
failures and infinite traces and find a direct definition of this process in the style of that
of Fair(A, B) on page 267.

Construct the process which, for three disjoint sets A, B and C, may at any time
select between them, and which does not allow infinitely many of either A or B without
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the other, and which does not allow infinitely many C' without infinitely many each of A
and B.

EXERCISE 10.3.6  Use a fair arbiter (using the Mg to introduce it, if you wish) to
construct the most general finite buffer FinBUFF() discussed on page 267.

10.3.2 Fixed-point induction over U/

As we saw on page 258, it is not possible to use restriction functions to generate
complete metrics over models incorporating infinite traces, and indeed constructive
functions often have multiple fixed points. These facts are as true over U as over
Z. This is a great pity since the UFP rule and fixed-point induction (whose proofs
in Section 9.2 depend on constructiveness and the uniqueness of fixed points) are
very important tools for establishing facts about recursively defined processes.

It is possible to establish weak versions of fixed-point induction and the
‘unique’ fixed point rule over & and Z. To do this we have to define what a con-
structive function is via a family of restriction functions: over U these are defined
(F,D,I) | n = (F,D) | n where the restriction on the right-hand side is that
defined over N, with a similar definition over Z. Though these do not generate
a metric (there are pairs of distinct processes they cannot separate), we can still
define ‘constructive’ and ‘non-destructive’ functions exactly as before, and exactly
the same collections of the standard operators are respectively one or the other (see,
for example, Lemma 3).

While a constructive function over & may not have a unique fixed point, it is
easy to show that all fixed points have identical projections into N'. This is because
you can inductively prove that if P and @) are two fixed points then P [ n=Q | n
for all n. This argument leads to the following result.

LEMMA 1 Suppose F : U — U is constructive, monotonic and has a least fixed
point uF, and P € N (a closed member of U) is such that P Ty F(P). Then
PCypF

PrROOF By induction on n it is easy to prove that
PCy F*"(P) and F"(P)|n=(uF)|n

Suppose b is a finite-length behaviour of i F (i.e., a failure or divergence). Choosing
n to be any number greater than its length we thus have that b is a behaviour of
F™(P) and hence of P. Hence
failures) (u F) C failures | (P) (+)
divergences(u F') C divergences(P)
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We thus have

infinites(u F) C  traces) (u F) (1)
C  traces ) (P) (2)
= Traces(P) (3)

Here, (1) is a consequence of axiom I1, (2) is by (+), and (3) is because of our
assumption that P € A/. This implies that

infinites(u F) C infinites(P)

completing the proof that P Ty u F'. ]

This result means that the rule of fixed-point induction (Sections 5.1 and 9.2)
is valid over U provided the property you are proving is finitely nondeterministic
and the function is constructive.

Of course, both the above lemma and the conclusion regarding fixed-point
induction extend easily to mutual recursions (i.e., functions in 4* — U*). It also
leads to the following weak analogue of the UFP rule since under the assumptions
of the following rule we have P Ty p F by the lemma, but p F' is the least fixed
point.

UNIQUE CLOSED FIXED POINT RULE Suppose F : U — U™ is a constructive, CSP

definable function, and that P € (N')* is such that F(P) = P. Then P = u F.

Thus, if a finitely nondeterministic process satisfies a constructive recursion,
it is always the value of the recursion. There are, of course, recursions that do not

have a closed solution like this, an example is p q.(a — ¢q) || A* which we studied
{a}

earlier.

10.4 Notes

The role of infinite traces in modelling unboundedly nondeterministic constructs
such as fairness was well understood before CSP was invented. They were not
incorporated into the semantic models for some years, however, because of technical
difficulties they introduce such as incompleteness and discontinuity.

U was introduced in [105], which also is the main reference for the basic
properties of this model. It proves the existence of fixed points of recursions via
operational congruence. Barrett’s alternative proof can be found in [5, 7], and is
analyzed further in [84]. Some finer properties of the model can be found in [6, 12].
Our understanding of the axioms of U (especially 12) owes much to the work of
Stephen Blamey.



276 Infinite traces

2005: The author has now shown [114] that it is possible to build an infinite
traces which is not divergence-strict. A wvestige of this strictness remains in that
infinite traces which are the limits of divergent finite traces are always included.
Otherwise it only includes real traces, failures, divergences and infinite traces. The
penalty for this is an elaborate fixed-point theory.



Chapter 11

Algebraic semantics

11.1 Introduction

Throughout the introductory chapters we used algebraic laws to help explain the
meanings of the various operators of CSP. Laws of this type have historically played
an important role in the field of process algebra (the very name of which suggests
this).

An algebraic semantics for a programming language is one where the notion
of process equivalence is derived from a set of laws. Some authors proposing pro-
cess algebras have regarded algebraic semantics as the most basic means of defining
process equality, in that they propose a given set of laws and set about investi-
gating what equivalence they produce. The theory most closely associated with
this approach is ACP (see, for example, [9, 10]). This gives a remarkable degree of
freedom, since essentially any set of laws will create an equivalence on the set of
process terms. There is no constraint on one’s choices that is nearly as sharp as the
requirement that a denotational model induce a congruence.

Simply quoting a set of laws does bring the dangers of not identifying pro-
cesses that you had intended should be equal, or, more worryingly, identifying far too
many. See Exercises 11.1.1, 11.4.5 and 11.5.3 for examples of the latter. Therefore
the equivalence induced by a proposed set of laws must be thoroughly investigated
to make sure it has the intended effect.

Since we already have a well-established concept of equivalence between CSP
processes, our approach will be to attempt to characterize that. In other words, we
will attempt to capture the equivalences induced by the various denotational models
for CSP described in Chapter 8. Obviously all laws used must be theorems of the
equivalence under consideration: if the semantics we are attempting to duplicate is
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written S[-], this just involves proving a series of simple lemmas such as
SPoQ] = S[QOP]
S[SKIP; P] = S[P]
SPl QI el = SIelle) il Bl

(in each case for all processes P, @ and R). It is usually not hard to find a large
number of true laws with respect to a sensible notion of equivalence. Provided
all your laws satisfy this basic ‘sanity’ stipulation, and all rules which you use in
conjunction with them are valid also, it is plain that they can never prove a pair of
inequivalent processes equal. In the usual logical sense of the word, such a theory
is sound.

The real challenge is in finding, and being able to show you have found,
enough laws to be able to prove any pair of equivalent processes equal; in other
words, creating a complete algebraic theory. This chapter shows how you can do
this. We will deal only with the semantics of finitely nondeterministic CSP with
3 finite. We will also, for now, deal only with the fragment of the CSP language
without SKIP or sequential composition since these require special cases that would
unnecessarily complicate an introductory view of the way algebraic methods work.
Most attention is given to the equivalence induced by N, since that is the main
denotational model for finitely nondeterministic CSP.

All the laws given names (e.g., ‘(hide-dist) (3.1)’) in earlier chapters are true
under all the equivalences generated by the models described in Chapters 8 and 10.
Since each of our models equates some pairs of processes that are discriminated in
at least one of the others, a set of laws true in all three models cannot be sufficient
to capture any one of the model-based equivalences completely, but, as we will see,
they require very few additions.

Examples of such pairs of processes are

P = div

P’ = div ||| a— STOP (equivalent to P in N but not in 7))

Q = STOP

Q' = STOPNdiv (equivalent to @ in 7 and F but not in N)

Our existing laws thus cannot prove the equivalences
P=yP and Q=7 Q'
since any such proofs would contradict the inequivalences

Q#n Q' and P #7 P’
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EXERCISE 11.1.1 A certain text ([53]') proposes the following laws for CSP (amongst
many others)

(1) PIL = 1
(2) P STOP = STOP
(3) PlQ = QP
(4) 1AQ = 1
(5) STOPAQ = Q

Which of these are true, and which false, over A/ on the assumption that L is identified
with div? Show that these laws alone (and hence any superset) are sufficient to prove
that P = @ for all processes P and Q.

EXERCISE 11.1.2  Prove that the following laws are all valid in the semantics of CSP
over N:

(a) (; -assoc) (6.3), (b) (hide-step) (3.6), (c) (hide-combine) (3.3).

11.2 Operational semantics via algebra

An operational semantics does not have to follow the pattern set out in Chapter
7: all we require is a formally-based method of implementing a language. You can
do this via systematic algebraic transformations: a reduction strategy very much
like those used for functional programming. A way of implementing CSP in this
fashion is to calculate the selections of initial actions a process can communicate by
transformation to a process of the form?

N
|_|4 1?$1Ai—>Pi

where, of course, the P; are terms that can depend on the identifier z. By anal-
ogy with functional programming, an appropriate name for this is head normal
form (hnf)3. To execute a process, you thus transform it into this form and make

LAn amazing proportion of the ‘laws’ stated in [53] are false, and it is possible to find many
distinct combinations which prove all processes equal. Three disjoint such sets can be found in
this exercise and Exercises 11.4.5 and 11.5.3 in this chapter. Some of the laws given in that book
make even less sense than simply being false: for example ‘P ||| Q A Q ||| R = P ||| R’ which is
trivially ill-typed since processes are not truth values.

2Here, |_|N Qi is an abbreviation for @1 M (Q2 M ...(Qn—1 M Qn)...), though in what
follows we w;ﬁlnot go explicitly through the transformations required to turn more arbitrarily
constructed nondeterministic compositions into this precise, right-associated, form. This can, of
course, be done with the laws (M-assoc) (1.6), (M-sym) (1.4) and (I-idem) (1.2) in such a way as
to guarantee that all the Q; are different.

3The formal definition of hnf will appear on page 284 and be a little more general than this.
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an arbitrary selection from the nondeterministic choice of initial selections A; of
actions which are thereby displayed. If the environment picks one of these, it is
communicated and we can repeat the procedure on the result process, and so on.

There are four types of laws required to do this:

e the distributive laws, for removing nondeterministic choices to the outside;

e the step laws, which calculate the first-step actions of constructs like P & @
in terms of those of P and @;

e the unwinding law of recursion; and

e manipulations of the expressions within processes.

Just as in earlier chapters we have avoided going into details about the syntax
and semantic details of sub-process expressions, here we will generally assume that
one of these can always be replaced by an equivalent expression without comment.
The only law as such we will need is one to change the names of input identifiers:

w:A— P = 7y: A— Ply/x]

ot o
if y is not free in P (input a-cnv)

While this is frequently needed to perform the transformations below, in describing
them we will simply assume it has been used to unify the names of inputs where
necessary without further comment.

The strategy for reducing an arbitrary process P into hnf is quite simple,
and is as follows:

e If P has the form ?z : A — P’, it is already in the required form so we need
do nothing.

e If P has the form P’ M P”, then reduce each of P’ and P”. The resulting
process (P; M Py, say) is in the required form.

e If P is STOP, then apply the law (STOP-step) (1.15).

e If P has the form P’ @ P”, where @ is any other standard binary operator
(ie., O, |I, ||| or |ly), then first reduce each of P’ and P”, to PT and P*,
X

say. Next, use the left and right distributive laws of @ (in each case the right
distributive law is proved using the left distributive law and the symmetry
law) to move all the top-level nondeterminism from P and P* to the outside.
The result then has the form

N
M_ (7e: A — Phe (2z: B, — P}

i= g

(11.1)
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In each case the respective step law ((O-step) (1.14), {||-step) (2.10), {|||-step)
X
(2.6) or (|l -step) (2.2)) transforms this into the required form.

e If P has the form P’[R], then very much the same procedure (using ([ R]-dist)
(3.13) and ([R]-step) (3.15)) is followed.

e If P has the form P’ \ X, then applying the same procedure (using (hide-dist)

N
(3.1) and (hide-step) (3.6)) will result in a process of the form I—]l_=1 Q; where
the @; either have the form 7z : A; — (@} \ X), which is what we want, or

(2w Ay — (QI\ X))o TP\ X [ €{1,..., M;}}

which is not. The second case occurs, evidently, when some of the initial
actions of P’ are hidden and so do not create initial wvisible actions of P (in
the operational semantics of Chapter 7 they would have become 7’s).

The strategy in the second case is to reduce the processes Pz” f \ X, and then
use the definition of P> @ = (P O Q) M Q and (O-step) (1.14) to organize
the result into the correct shape. (*)

e If P is recursively defined, simply apply (u-unwind) (1.23) and reduce the
result. (**)

There is a significant problem with this strategy, namely it need not termi-
nate. The problem is that the clauses for reducing P \ X and pp.P can both result
in infinite regression: the reduction-based operational semantics diverges rather
than produces a term of the required form. In fact, this is just as well, because
of course there are CSP terms in the language we are considering that are not
equivalent in A to any process in head normal form: the ones that can diverge
immediately.

The reduction strategy must therefore certainly fail on any term mapped by
the semantics to 1 ar. This can easily be demonstrated on divergent terms such as

(up.a —p)\{a}  ppp  wup.STOPMNp

The converse (i.e., the strategy succeeds on any other term) is also true, because it
is easy to show that any infinite regression contains an infinite number of uses of (*)
and (**), the application of either of which generates a 7 in the original operational
semantics.

EXAMPLE 11.2.1 Consider the process (COPY ||| COPY) \ {| left |}. To trans-
form this to hnf we first expand the two recursions: this immediately brings each
of them into the hnf

left?r — rightly — COPY
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The law (|||-step) (2.6) then brings the interleaving to the hnf

left?e — ( (right!ls — COPY) |||
(left?x — right's — COPY))
N left?e — ( (left?s — right'ls — COPY) |||
(right!zx — COPY))

which (thanks to {|||-sym) (2.7) and ([-idem) (1.2) and re-folding the recursion)
can be simplified to the hnf

left?z — ((right's — COPY) ||| COPY')

(Such simplifications are not a necessary part of the procedure, but help.)

We then apply (hide-step) to this to transform the complete process (incor-
porating the external hiding) to

[ ((right!lz — COPY) ||| COPY )\ {| left |} |z € T}

This, of course, is not in hnf since the hiding takes away the visible guard. We
therefore have to re-apply our strategy to the processes

((right'z — COPY) ||| COPY )\ {| left |} (8)
which yields

right!z — (COPY ||| COPY)
O left?y — ((right'x — COPY) ||| (rightly — COPY))

for the process inside the hiding. (Bear in mind that in practice it is a lot clearer
to use an appropriate mixture of prefix choices such as left?y and external choices
of these to represent a given initial set of actions of a given branch of an hnf, rather
than using the pure prefix-choice form used in the definition, though the latter could
easily be recovered using (O-step) (1.14).) Thus (via (hide-step) again) the process
(§) becomes

right!ls — (COPY ||| COPY) \ {] left |}
> [ ((right'z — COPY) ||| (rightly — COPY)) \ {|left |} |y € T}

This is still not hnf, since we have once again lost some of the guards to the
hiding. We now have to re-apply our strategy once more to

((rightlz — COPY) ||| (rightly — COPY )\ {| left |}
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which fortunately does now yield an hnf:

right!ls — (COPY ||| (rightly — COPY)) \ {| left |}
O right!y — ((right!z — COPY) ||| COPY) \ {] left |}

(It would really be purer to separate the cases of x = y and x # y as would be done
by (O-dist), but it would be even more complex!) We can now collect together an
hnf for (§): after a little manipulation it is

[ {right!ls — (COPY ||| COPY )\ {| left |}
M (COPY ||| right!ly — COPY)) \ {| left |}
O right!ly — (right!s — COPY ||| COPY)) \ {| left |}
lye T}

and the hnf for the original process is then just the nondeterministic choice over
this as x varies.

Obviously if we had hidden {| left |} in a buffer with no initial bound on how
many inputs it can take, such as BUFF y, then the strategy would not terminate.
(End of example)

EXERCISE 11.2.1  Reduce the following processes to hnf:
(a) COPY \ {| right |}
(b) ((@— Pa) M (b — Py)) (Il (b= @) T (¢ — Qc))
(¢) COPY \ {left.0} where the type T of the channels is {0, 1}

11.3 The laws of L/

Our attempts to reduce divergent processes to hnf failed in the previous section
because the divergence translated itself into non-termination of the reduction algo-
rithm. It is a good idea to include an explicit representation of a divergent process
in the language we reason about algebraically: let div represent this as it did in
Section 3.1. We can then see how a term that is equivalent to a diverging process
behaves algebraically.

As one might expect from the discussions in Chapter 8, it is in the handling of
div that A differs from the models without an explicit representation of divergence
(F and 7). The laws for div (equalling 1) over N are thus often not valid
over these other models: with the exception of prefixing and the right-hand side of
sequencing, all operators are strict (in the sense defined on page 490). Notice that
the names of these laws reflect their selective validity. They are called zero laws
because of their similarity to the arithmetic equivalence 0 x x = 0.

divn P = div (M-zerot) (11.2)
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divO P = div (O-zero™)
div | P = div (||-zero™)
X X

div .||, P = div (x|l y-zero™)
div ||| P = div (|||-zero™)
div\ X = div (hide-zero)
div[R] = div ([R]-zero)
div; P = div (; -zero-l)

These laws mean it makes sense to add the term div as an alternative head
normal form: we can now formally define a process to be in hnf if

e it is div, or
e it has the form 7z : A — P, or

. . N .
e it is I—]Z__1 Q; for processes @; in hnf.

The laws mean that if either div appears explicitly in a program or you
can recognize and replace* some divergent term by it, then you can extend the
reduction strategy to deal with this. Essentially, if div is encountered at any level
in reducing a process P to calculate its initial behaviour, then these laws (together
with symmetry laws to derive the right-zero laws for binary operators other than ;)
will reduce the process itself to div.

The definition of hnf above makes it optional whether to reduce a process in
which div appears as a choice, such as

(?z: A— P)ndiv

to div using (M-zero*). For simplicity, let us assume that we always do make this
reduction.

4If the replacement is going to form part of our algebraic semantics, then it is clear that
the means of performing it would have to be formalized, justified, and incorporated within the
semantics.

(11.3)

(11.4)

(11.5)

(11.6)

(11.7)

(11.8)

(11.9)
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The possible outcomes of the reduction strategy are then (i) the original
type of hnf, (ii) the term div and (iii) non-termination of the strategy. There is
no complete algorithm for telling if a given CSP term diverges® or not, and so no
effective procedure which will tell us which terms our strategy will fail to terminate
on.

There is a simple and powerful® algebraically-based method for detecting
divergence, namely:

Loop” If, during an attempt to reduce a process P to head normal form the (syn-
tactic) process P is encountered other than at the root of the reduction,
then P is divergent and may be replaced by div.

This is not, of course, a law in the conventional sense of the word, rather a
rule. To implement this rule it is necessary to keep a record of the tree structure
that results from the attempt to reduce a process, and look for loops (nodes identical
to predecessors). The notation Loop” indicates that this is a valid rule over N,
but not over 7 or F.

11.4 Normalizing

It is our objective to be able to prove any pair of equivalent processes equal using
an algebraic theory. An obvious approach to this is to identify a normal form: a
highly restricted syntax for processes meeting the following requirements.

e A pair of normal form programs are only semantically equal if they are either
syntactically identical, or perhaps differ in a well-defined and trivial way such
as the name of a bound variable or the order of terms composed under a
symmetric and associative operator.

e Every program is equivalent to one in normal form.
e This equivalence can be demonstrated by the algebraic theory.
Let us restrict ourselves, for the time being, to processes that are finitely
transformable to hnf, as are all successors reached when executing their algebraic

operational semantics. (In other words, processes in which all divergences are either
syntactically explicit, div, or detectable using a rule such as Loop?’ 2

5This would solve the halting problem.

6Inevitably, given the previous discussion, it is not complete in the sense of detecting all di-
vergence. It is, however, complete provided the process is finite state. It then corresponds to a
depth-first search for loops in the graph of nodes reachable from the chosen root.
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Our approach will be to refine the concept of head normal form into a full
normal form, and to show how a program in head normal form can be transformed
using the laws of O and M into this restricted form.

Given that ¥ is finite, the first-step behaviour P | 1 of any process P is
completely characterized by the following information:

e Does P diverge immediately? If not,
e what is P’s set of initial actions initials(P), and

e what are P’s maximal refusals?

The divergent case of head normal form evidently captures the first of these precisely,
but the non-divergent one is too loose in that there are typically many different sets
{A1,..., An} of initial actions that would give rise, in

N
|_|’L_:1Z‘ : A,/—>Pl

to exactly the same sets of initial actions and maximal refusals, bearing in mind
that the complements of the A; are the refusals. For example,

{{a, b, ¢}, {a}, {b}}

{{b, ¢}, {a}, {0}}

{{a, b, ¢}, {a, b}, {a}, {b}}

{{a, b, ¢}, {a, 0}, {a, c}, {b, c}, {a}, {b}}

all give the same result, and are by no means the only sets that give this particular
one. We need to decide on a unique representation of any given collection of accep-
tance sets” A; and provide a way of transforming any non-div head normal form
to this. There are various sensible choices one could make, but the one we opt for
here is to specify that the set {Aq,..., An}

"The concept of an acceptance set is obviously very closely related to that of a refusal set. If we
define an acceptance set just to be the complement of a refusal set (in £¥') then clearly we could
have replaced all uses of refusal sets in our models with them, subject to systematic changes in
definitions. This would, however, imply that acceptance sets were superset-closed (as an analogy
to axiom F2), implying there were members of ‘acceptance sets’ that a process could never accept.
Thus an acceptance is arguably better defined to be a set of events which is (a) the complement of
some refusal and (b) contained in initials(P). This modification means that the translation from
refusal sets to acceptance sets is not so direct and means that model, operator, etc. definitions
work better with failures rather than with their acceptance-set analogues. So it seems that in
order to create acceptance-based analogues of the models A" and F one either has to compromise
on naturalness or on ease of manipulation. Perhaps the most natural acceptance-set model is that
proposed in [87], which has no superset closure condition at all: modulo divergence, an acceptance
set is the set of all events offered by some stable state. This gives a subtly different (and less
abstract) congruence which fails the law (M-O-dist) (1.13).
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e has the property that A; D A; for all j > 1 (i.e., A; is the union of all 4;
and represents initials(P)), and

o if 4,5 > 1 are distinct then A; € A; (i.e., all these A; represent minimal
acceptances, and hence their complements, the maximal refusals).

Note that in the case where initials(P) is a (necessarily the only) minimal accep-
tance, N = 1 and A; plays a double role.

A simple procedure, which is described below, transforms an arbitrary non-
div head normal form to this format. It rests almost entirely on the laws of O, M,
prefixing and conditionals.

You can ensure that each set A; only appears once in the result by applying
the law (input-dist) (1.11) repeatedly till all pairs of identical ones are eliminated.

If there is only one A; remaining after this, there is nothing further to do. If
there are more than one, we have to ensure the collection contains the union and
that all the rest are minimal. Observe that, for any processes P and @,

PNQ = (PNQ)O(PNQ)
by (O-idem) (1.1)

- (POQ)NPNQ
by (O-dist) (1.7), (M-idem) (1.2), etc.

This argument can (see Exercise 11.4.1) be extended, by induction, to show that
for any N and processes @),

N =@, Qnm_ Q)

In the case where @Q; =7z : A; — P;, the extra process 1 O ... O Qx can be
transformed using (O-step) (1.14) to the form

72: At = R
where AT = Uivzl A; and such that, for any a € A;, we have

Pjla/z] N Rla/z] = Rla/z]

Any a € A" may appear in several different A;, and the processes P;[a/z],
which are the possible results of performing it, may all be different from each other
and R[a/z]. What the above does ensure is that R[a/z] is the most nondeterministic
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of these choices. Consider the transformation:

(?z : AT — R)
|_|(?$IAZ'—>PZ')

(7x: ATWA; - RO?1: A, — R)
N?z: A — P;)
by (O-step) and (4 - }-idem) (1.17)

(?7z: ATNA; - RN%: Ay — P)
Ofz:A;, — R MN%: A, — P)
by (M-O-dist) (1.13)

(72 : ATNA;, = RnN?%: A — P;)
by (input-dist) (1.11)

(7 : ANNA; - RN?%: A — P;)
O(Pz: 4, — R)
by what we established about R above

(77 : ATA;, - R O%:A; —» R)
N(?z:A;, — P, O%:4;, - R)
by (O-dist)

(?z: A" = R)M (?z: A; — P, R)
by (O-step), etc.

(7zx: AT - R)N(?7z: A; —» R)
by what we established about R above

What this does is to show we can replace all the old result processes P; by R in the
process we are transforming, making all the possible results of performing a given a
identical. This is both a vital part of the normalization process itself and is helpful
for the next and final part of transforming it to our target shape of hnf, which is the
removal of any non-minimal A4; (other than AT). This makes use of the following
identity, which is essentially that proved in the last part of Exercise 3.1.5.

(POQOS)NMP = (POQOSYN(POQ)NP

since we can then, for any A; C A;, set

P 7c:A; — R
Q = Tr:ANA; — R
S = ?$:AT\Aj—>R

and apply the identity from right to left.
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What we have managed to do is transform our process P into a one-step
normal form: a hnf which is either div or satisfies the restrictions on its acceptance-
set pattern set out above and furthermore has a unique successor process for each
initial action. This gives a complete characterization of the first-step behaviour
of the original process P, and has the property that (provided P does not equal
div) for each a € initials(P) we have P/{a) = R[a/z]. If P’ were another process
equivalent to P in A/ then it would reduce to a one-step normal form with exactly
the same shape (pattern of A;, except that the A; for ¢ > 1 may be re-ordered)
and such that its successor process R’ is equivalent to R in N (in the sense that
Rla/z] = R'[a/z] for all a in the initials set AT).

This notion of a one-step normal form extends naturally to a full normal
form: the definition is exactly the same except that, in addition, we insist that each
of the result processes R[a/z] is also in normal form. (It is in doing these lower-
level normalizations of the leaf processes of a one-step normal form that we need the
assumption that all successor processes can be reduced to hnf.) The argument in
the previous paragraph can easily be extended by induction to show that any pair
of normal form programs which are equivalent in A" have equivalent normal form
structures and can trivially be inter-transformed by laws. The only things that can
differ are things like the order of A;’s and the names of input variables.

It would seem that we have attained our goal of completely capturing the
denotational equivalence via algebra. Essentially we have, but not as simply as
it appears on the surface. The problem is how to handle processes that can go
on communicating for ever and which therefore fail to have a finite-depth normal
form. It is evident that we can attempt fully to normalize a process P by first
transforming it to one-step normal form and then normalizing each of the result
processes R[a/z], but this transformation will only terminate and produce a finite-
depth normal form program if the set traces) (P)\ divergences(P) is finite (which,
under our assumptions, is equivalent to there being a bound on the length of its
members). There are several ways around this difficulty, but all mean we have to
abandon any hope that all pairs of equivalent CSP processes are inter-transformable
by a finite sequence of law applications.

The first approach we can take is to incorporate into our theory the fact that
processes P and @ are equivalent in N if, and only if, P | n = Q | n for all n € N,
where the restriction functions | n are as defined on page 204. We can express
P | n directly in CSP8, it is P Q Rest(n) where

Rest(0) = div
Rest(n) = ?z:% — Rest(n—1) forn >0

8The expression given here is dependent on our assumption that P never terminates. For how
to extend this idea to processes that can communicate v, see Exercise 11.5.4.
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Since each P | n always has a finite normal form, the rule

EquivV If P and Q are any processes in finitely nondeterministic CSP, defined
without SKIP or sequential composition, then they are equivalent in N
if and only if, for all n € N|

P || Rest(n) = Q || Rest(n)
b b

leads directly to a decision procedure for equivalence which involves converting
infinitely many processes into finite normal form and seeing if you get the same
results for each pair. It is complete on processes satisfying our assumptions about
reducibility to hnf.

Another approach is to transform the program into a potentially infinite
normal form tree. It is perhaps easiest to understand this in terms of deriving,
from a process P, a recursive definition of a vector of processes which turns out
to be indexed by T, the set of members of traces) (P) other than non-minimal
divergences. If s is such a trace, we can compute R, the result process (equivalent
to P/s) derived from applying the one-step normal form transformation down s as
follows.

Ryoy = Q[a/z], where applying the one-step normal form trans-
formation to R yields something of the form

M 2r:4,—Q

Along with this derivation you have produced an expression for each R in terms
of the R (4): the one-step normal form of Rs. If you now replace the processes
R, by the corresponding components of a vector N of process variables, the result
is a constructive one-step tail recursion whose unique fixed point in N7 is clearly
(Rs|s€ T)=(P/s|seT). If P'is a process equivalent to P then the recursion
produced will be exactly the same, since the one-step normal form of P’/s has the
same shape as that of P/s for all s. So we have managed to transform P and P’ to
the same process definition, albeit using in many cases an infinite number of steps.

When deriving this ‘tree’ expression for the normal form, it may very well
be the case that the number of distinct values of P/s visited is actually finite. This
is always so if P is finite state and even sometimes when it is not, for example

pp.a— (pl|| p) (equivalent to pp.a — p)

If you can recognize these equivalences (by transformation, for example), then you
can produce a more compact representation of the normal form tree as a finite graph
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or as a recursion with a finite indexing set. Thus you can represent the process
Py = pp.(a— a—p)N(a— STOP)

as the two-state recursion

Ny = a—=Ng
Nwy = a— Ny
N STOP

rather than having a component for each member of {a}*.

The problem with this is that it re-introduces an element of flexibility into
the way normal form processes are structured: flexibility is just what you do not
want of a normal form. The main source of flexibility is the fact that one may or
may not spot an equivalence between a pair of processes. Consider, for example,
the process

Pi=po | (upo—a=((@=p)8 (b= STOP))

This is, in fact, equivalent to Py, but the finite-state normal form you would be
most likely to derive for it is

/ _ /
Ny = a= Ny,

Ny = a—= Ny,

nSTOP

N/ = a— N/

(a,a,a)

N/ = a— N{a,a,a,a)

nSTOP

Nasaa = = Noaoaa

NMaoaam = ¢ N

nSTOP

because the structures of, for example, Py /() and P;/(a, a) are sufficiently different
that it is unlikely one would spot or easily prove their equality while transforming
to normal form.

If the above were computed for Py, then one can no longer establish its equiv-
alence with Py by the identity of their normal forms. The way around this, though it
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is not in any obvious sense an algebraic operation, is to factor each normal form you
compute by the maximal bisimulation computed over it (see Section 7.2). In the
case above this identifies {N/,, N/, .\, N(, , o oo} and {N(y, N{i o v Ny o000}
resulting in a structure identical to the normal form of Py (which has no interesting
equivalences between its nodes).

These bisimulated normal forms are in some ways less attractive from a
purely algebraic standpoint than the ones with separate components for all traces,
but they are a lot more practical since they are so often finite. Though they are
derived via direct manipulation of the underlying LTS rather than by algebraic
transformations, the normal forms which play a crucial part in FDR’s operations
are essentially the same objects. See Appendix C for more details.

The reader might have noticed the great similarity between the normal forms
described in this section and the recursion defined on page 239 to demonstrate the
coverage of N by the CSP notation. This should not come as a surprise, since in
each case our task was to find a standard way of representing a given semantic
value, even if we did have to approach this problem from opposite ends. Except
for the fact that we have, in this chapter, yet to deal with SKIP and sequencing,
the only difference between the recursions Ny defined above and Intf\g D) defined
on page 239 is the indexing sets used. In the second case this is, for a given value

(F,D)eN,
{(F,D)/s|seT}

where T is, again, the set of traces other than non-minimal divergences. Naturally,
in comparing this with the normal form of a process P such that

(F,D) = (failures (P), divergences(P)) = Sy’[P]
it is not hard to prove that the relation over T defined
s=s < Sy[P]/s=S~[P]/s

corresponds precisely to the maximal bisimulation over the processes N, derived
from P. This demonstrates nicely that the result of quotienting the maximal bisim-

9This bisimulation can be computed in two ways. The first is to use the ordinary bisimulation
relation over the LTS you get from the standard operational semantics of the normal form recursion.
Before bisimulating you would then start with distinct nodes for all the normal form states, and
also extra states (reachable under 7 actions from this first sort) for the initials sets and maximal
refusals. The second, and much more elegant, way is to consider only the normal form states as
nodes of the transition system. The nodes are marked with divergence or with maximal refusal
information which is taken into account when computing the maximal bisimulation: no two nodes
with different markings are ever identified. See Section C.2 for more discussion of this idea.
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ulation into any ‘normal form’ of the sort represented by the N! above gives a true
normal form. In other words, it demonstrates the ‘completeness’ of the method.

To summarize, we have shown that the algebraic laws completely characterize
the semantics of CSP over NV, though the procedures we have provided for deciding
equivalence are infinitary. The only remaining issue is our assumption that we can
detect all divergent terms and replace them with div. The procedure for reducing a
process to hnf does, of course, provide an infinitary complete method for this, and we
could argue reasonably that if we are to accept an infinitary procedure for one thing
then it will do for this too! The unfortunate feature is that it leads to one infinitary
procedure (divergence detection) being a frequently-used subroutine in another.
You can get round this (i.e., back to a single level of infinity) by several methods,
perhaps the most frequently used of which is the concept of syntactic approzimation
where, instead of comparing the desired pair of processes algebraically, you compare
pairs of recursion-free approximations (where recursions have been unwound a finite
number of times, and those that remain are replaced by div). For more details of
this, see [45], for example.

It is well worth commenting that the normalization procedure uses a sur-
prisingly small proportion of the laws set out in earlier chapters. The laws of
prefixing and choice have been used extensively in normalization, but the only laws
used for other operators have been unwinding and their distributive, step and zero
(strictness) laws (with the exception that some symmetry laws are needed to derive
symmetric versions, such as right distributive laws from left ones). The only possible
conclusion is that the rest of the laws must be implied by the ones we used, ex-
amples being (|||-assoc) (2.8), (|| -assoc) (2.5), (hide-)||(-dist> (3.8), (hide-combine)

(3.3) and (f[-]-||-dist) (3.9). None of these is a trivial consequence of the ones we
X

used in the same sense that (hide-sym) follows from (hide-combine). It is usually
possible to prove them from the algebraic theory, but the proofs are generally much
harder than those directly using the underlying models. The proofs often make use
of the rule Equiv? and inductions such as

(P EB) Ln = (PI(QIll B) Ln

in which, for the inductive step, the two sides are reduced to hnf. See Exercise
11.4.2.

Algebraic semantics also give us (as discussed earlier) the freedom to ask the
question of what equivalence is induced if we drop one or more of the laws that
actually were necessary to characterize failures/divergences equivalence. The most
interesting ones to consider dropping are (M-O-dist) (1.13), which plays a crucial role
in normalization and which is, as discussed at the point of its definition on page
32, somewhat hard to justify on intuitive grounds, and the step laws of parallel
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operators. But all of this is beyond the scope of this text, and in any case the
occupation of experimenting with sets of laws for its own sake is a great deal more
fascinating theoretically than it is practically useful.

EXERCISE 11.4.1 Prove, using the laws and induction on N, that for any Pi,..., Py

EXERCISE 11.4.2  Using the expression for P | n given in the statement of the rule
EquivN , show by induction on n that for any processes P, ) and R

(PR Ln = (PI(QIIR) Ln

by computing the hnf’s of the right- and left-hand sides in terms of hnf’s of P, @ and R. Do
you think this form of induction would work as easily for proving the law (hide-combine)?

EXERCISE 11.4.3  Compute finitely mutual recursive normal forms for (COPY |||
COPY) \ {| left |}, dealt with in Example 11.2.1 and the process of Exercise 11.2.1

part (c).

EXERCISE 11.4.4  Recall the interrupt operator described on page 243. P A, Q
behaves like P except that at any time a may occur and the process subsequently behave
like Q. Give the failures/divergences semantics of P A, Q. Is it strict in P? and in Q7

Now give a step law that allows the reduction strategy to hnf to be extended
to processes involving A, constructs together with the strictness properties above and
distributive laws.

Notice that these laws completely determine the semantics of this new operator.
Do you think a similar principle applies to any new operator?

EXERCISE 11.4.5 Repeat Exercise 11.1.1 for the following ‘laws’ (also taken from [53]),
though this time only showing all divergence-free processes equal.

(1) P|RUN = P

(2) POSTOP = P

(3) POQ = QOP

(4 PJ||STOP = P

(5) PJ||RUN = RUN & divergences(P)={}
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11.5 Sequential composition and SKIP

We have not dealt with SKIP, and hence sequential composition, so far because
it necessarily adds cases to the reduction/normalization strategies and to the def-
initions of the normal forms. This is not only because we are not permitted to
include v in choice sets A; but also because v' is, as seen in earlier chapters, not
treated like other actions. The law (O-SKIP resolve) (6.6) was crucial in explaining
the difference earlier, and it has a large impact on how the algebraic semantics are
affected by v'.

The crux of the problem is that we now have processes like (¢ — STOP) O
SKIP which can offer an event in ¥ transiently before they terminate. In many
ways the behaviour of this process is similar to

((a — STOP) O (b — ¢ — STOP)) \ {b}

in that both can independently make the decision to remove the choice of doing a
in favour of something else. This latter process has hnf (indeed, normal form)

(?z :{a,c} - STOP)N ¢ — STOP

In other words, the process with the transient event a has been replaced by a process
definition without transients which has identical observed behaviour. This is not
possible with the first process, because it involves the trick of offering the external
choice of the transient a and the result of the internal choice, and we do not permit
process definitions like

(?z : {a,v'} — STOP) N SKIP

which would be the translation.

There are two reasonable ways to incorporate termination into hnf. In some
ways the more pleasing is to bring the sliding choice/timeout operator P > @ into
the syntax of hnf, thinking of it as a primitive operator implemented as in the direct
operational semantics for it on page 172 rather than as (P O Q) M @ (though
the equality over denotational models with this representation would still hold).
However, because some people might find this ‘doublethink’ about > confusing,
and because it is probably simpler overall, we will add termination by allowing
(?z: A — P) O SKIP to be considered an hnf.

The definition of hnf now becomes:

e div is in hnf;

e SKIP is in hnf;
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e 7z : A — P isin hnf;

e (72 :A— P)OSKIP is in hnf;
N
e if each Q; is a hnf, then I_Il_=1 Q; is;

When we want to distinguish this extended form we will refer to it as v'-hnf.

The idea that reducing to hnf provides an operational semantics easily ex-
tends to this larger class. Obviously SKIP terminates, whereas (2 : A — P) O SKIP
may offer the choice of A for a short time before terminating.

Imagine you are reducing a construct like P® @ (® being any binary operator
other than MM or, with the obvious modifications, renaming or hiding) to v'-hnf. The
recipe given earlier calls for us first to reduce P and (). Clearly you need to deal
with the extra cases that arise when one or both of the results, P’ and Q’, are
of the form SKIP or (7z : A — R) O SKIP. The laws of SKIP given in Section
6.3 easily deal with all combinations of SKIP with itself and prefix choices. And
SKIP; Q" and ((?z : A — P) O SKIP); Q' reduce, for any Q’, via (; -unit-) (6.4)
and (; -step) (6.7).

The remaining cases for O can be dealt with using existing laws, and the case
of (?z : A — P) O SKIP)[R] by ([R]-O-dist) (3.14) and (SKIP-[R]-Id) (6.10).
The corresponding case for \ X requires a new law which is closely based on its
existing step law:

((7z:A— P)OSKIP)\ X =
(7z: A— (P\ X)) O SKIP
AN X ={}* (hide-SKIP-step) (11.10)
((?z: ANX — (P \ X)) O SKIP
NI {Pla/z]\ X |a€ ANX}

Parallel operators require three new laws each: one each for an input/SKIP com-
bination in parallel with a different type of v'-hnf. (There is no need to introduce
a law to deal with the cases where the other process is a nondeterministic choice or
div since these are reducible by distributive and zero laws respectively.) Because
of this multiplicity we only give those for )||(7 since each of ||| and |, are express-

ible in terms of it. The second and third of these are better and more succinctly
expressed as general principles involving the > construction (bearing in mind the
law (O-SKIP resolve)). These laws make it straightforward to extend the strat-
egy so that it can reduce CSP processes possibly involving SKIP and sequential
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composition to v'-hnf.

(?z: A — P) 0O SKIP) || SKIP =

X -
(?¢: ANX — (P || SKIP)) O SKIP (||-5 sK1P) (11.11)
X

(P Q)| (ReS8) =

X PIR>(Q I (R>S)HM((P>Q) I S) <)H<-I>-Sp|it> (11.12)
X X X

(PDQ)J{(?:E:AHR)) =
72: A\X — (P> Q) || R)
be

O((P |72 A= R)>(Q |[72: A — R)) ([|--input) (11.13)
X X

if z is not free in P or @)

Given its similarity to the normal form in the SKIP-free case, it is natural
to look to the full abstraction recursion on page 239 for guidance about how to
extend the definitions of one-step and full normal forms. The first-step behaviour
of any non-divergent process is now characterized by its initial actions (which may
now include v') and the minimal acceptance sets which are subsets of X. Minor
extensions to the strategy given in the previous section can transform any v'-hnf to
one of the following forms:

(a) div

(b) 7z2:A— R

(¢) (?z: A— R)O SKIP
)

(d (Pz:A—R)N (I_IN 1?:10 : A; — R) where the A; are incomparable proper

subsets of A

(e) ((?z:A— R)O SKIP) N (I_Iivzl?ac : A; — R) where the A; are incompara-
ble subsets (not necessarily proper subsets) of A.

Here, (a) is the representation of a divergent process, (b) of a process which cannot
terminate or behave nondeterministically on its first step and (c) of a process which
can terminate immediately and must do so if no member of A is accepted quickly
enough. (d) and (e) add the possibilities of nondeterministic offers of proper subsets
of the initials to the cases in (b) and (c).
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The most important new transformation required to bring the manipulation
of an arbitrary v'-hnf to one of these forms is developed in Exercise 11.5.1 below.

The above is the extended definition of one-step normal form, and the methods
and problems associated with converting this to a full normal form are exactly as
for the smaller language in the previous section.

EXERCISE 11.5.1 Show algebraically that for any P and @,
(POSKIP)N(Q O SKIP) = (PO QO SKIP)

Why is this useful for transforming a v'-hnf process to one-step normal form?

EXERCISE 11.5.2  Our dealings with the combinations involving P O SKIP and parallel
operators would have been simplified if the distributive law

(Pe@) IR = (PIR)>(QI| R)
X X X
were true. Give an example to show that it is not.

EXERCISE 11.5.3 Repeat Exercises 11.1.1 and 11.4.5 for the following ‘laws’ (also taken
from [53]), proving all processes equal.

(1) STOP; P = STOP

(2) P; STOP = P

(3) SKIP; P = P

4) P(@R) = (P;Q);R

It can be done with, or without, the associative law (4), which is, of course, true.

EXERCISE 11.5.4  Recall that on page 289 we showed how to define restriction over
N for v-free processes via a process context. Assuming that there is some event a €
that P never communicates on a non-divergent trace, find a corresponding way of defining
P | n when P can terminate.

Hint: consider P; (a — SKIP) in parallel with a well-chosen process.

11.6 Other models

We will not deal with the algebraic characterization of the other models for finitely
nondeterministic CSP in as much detail, since many of the basic principles are the
same and, as we will see, in some ways the algebraic approach does not work quite
as cleanly for 7 and F as for N.
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Over both F and 7 we have the law
Pndiv =P (M-unit*) (11.14)

which is, of course, radically different from the corresponding law over N (namely
(M-zerot)). The characteristic law of 7 is

POQ =PnNQ (trace-equiv?) (11.15)

which, together with (M-unit*), (O-unit) (1.16) and symmetry, can establish that
div =7 STOP. The fact that div can be replaced by STOP means that the lack
of all the div-strictness laws true over A is no handicap over 7 when it comes to
transforming processes involving div to hnf.

The situation over F is more complex because the processes div, P and
P O div are all, in general, different. This leads to the need for a variety of new
laws in much the same way we needed laws to deal with processes of the form
P O SKIP in the previous section. We do not enumerate them here.

An essential ingredient of demonstrating that you have captured one of the
other models is, as with A/, the creation of normal forms which capture all possible
semantic values in exactly one way. This is always done by creating what is essen-
tially a picture in syntax of the semantic model, but we are still left with choices,
which generally increase in weaker models like 7.

Given the close correspondence between the normal form for A/ and the
construction used for full abstraction in Section 9.3, you might expect the same to
be true for 7 and F. While their representations in Section 9.3 are perhaps the
starkest imaginable syntactic pictures of the representations of processes, they do
have disadvantages as normal forms. One is the fact that finitely nondeterministic
processes over finite ¥ would often require a [ 1S construct, with infinite S, in their
normal forms. Another is the fact that the highest-level syntactic structure now
depends not on the first-step behaviour of the target process (as it did for A/) but
on all levels. The crucial difference is in the place where nondeterministic choices
are made: in the A normal form (and its construction in Section 9.3) all choices
are left as late as possible, whereas in the Section 9.3 constructions for 7 and F a
choice is made immediately which effectively determines what the process will do
through all time.

There is no need for any nondeterministic choices in a normal form for 7: a
process is in one-step normal form if it is either

?7t:A— P or (?z:A— P)OSKIP

since all we have to specify of a process is what its initial actions are, and how it
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behaves after each. You can build full normal forms from this one-step form in just
the same way as over N.

The normal form for F is like that for A/, though heavily influenced by the
radically different role of div: see Exercise 11.6.1.

When we were reducing a process to hnf over N, we could be sure that
either we would succeed or the process was equivalent to div (with this frequently
detectable via the rule Loop? ). How helpful this is can be seen when we look at
the contrasting situation in models such as 7 which are not divergence-strict.

In 7, the fact that a process can diverge does not mean it is identified with
div. For example, even though you can immediately deduce that it diverges, the
process

pp.(a — Q)M p[R]

needs its recursion unwound potentially many times (infinitely if ¥ is infinite) just
to reveal its first-step behaviour (its initial actions being the smallest set which
contains a¢ and is closed under the renaming relation R). The real problem is that
the procedure for reducing this process to hnf diverges without the simple answer
this inevitably leads to over NV.

This means that reduction to hnf (at least, the same hnf) cannot be at the
core of a reduction-based operational semantics which faithfully reflects all possible
behaviours predicted by 7 and F beyond points of possible divergence. In essence,
the strategy is certain to diverge on processes like the above which these models
suggest have alternative behaviours. The operational semantics described in Section
11.2 would, if the behaviours they predicted for processes were abstracted into these
other models, yield sometimes proper refinements of the denotational semantics of
the processes.

The possibility of divergence on reducing a process to hnf also creates prob-
lems in reducing an arbitrary process to one-step normal form, since we previously
relied on conversion to hnf first. Since these problems do not arise for recursion-free
processes, probably the best way of completing the algebraic characterizations of 7°
and F is via the concept of syntactic approximations discussed on page 293.

EXERCISE 11.6.1 Show that every member of F can be expressed in one, and only
one, of the following four ways

(i) (?z: A— P)Odiv

(ii) (?z: A— P)0O SKIP
(i) ((?2:A—P)Odiv) (T 7a: A — P)
(iv) ((?z: A — P) 0 SKIP) 1 (mil?x LA, — P)
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where in (iii) and (iv) the A; are all incomparable subsets of A.
Hence define a normal form for F.

Calculate the normal form of the process

(div O (SKIP N a — SKIP)); STOP

11.7 Notes

Algebraic laws have played an important part in the definition of CSP from its
earliest beginnings, and many of those presented here can be found in [18].

The algebraic semantics for the language was first given in Brookes’s thesis
[15]. The version presented here deals with a wider range of operators (consequently
requiring more laws) and deals with recursion differently, but is in most important
respects the same.

A closely related algebraic semantics is that of occam [121], which deals
with parallel language based on CSP with the added complexity of assignable state.
Algebraic approaches to other process calculi may be found in [1, 9, 10, 51, 81]
(amongst many other works).

The concept of algebraic reduction as an operational semantics has its origins
in the A-calculus and similar. Hoare and He have advocated their use on more
general languages, see [47, 48].

2005: At the time of writing the author is engaged in some work to show how
the laws and normal forms of the algebraic semantics vary with the model we seek
to characterise. This encompasses both models described here and more elaborate
ones. A limited part of it can be found in [116].
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Chapter 12

Abstraction

One view of systems is said to be more abstract than another if it hides more detail,
thereby identifying more processes. Greater or lesser abstraction can result from
the choice of model used, where, for example, the traces model 7 is more abstract
than the stable failures model F. What we will be studying in this chapter are ways
in which one can deliberately abstract detail away from a process by applying CSP
constructs. We will then apply these ideas to formulating a variety of specifications,
including fault tolerance. Perhaps the most important of these is characterizing
information flow across processes and hence security.

What we will be doing, in other words, is learning both how to build carefully
designed fuzzy spectacles which let us see just that aspect of process behaviour that
may seem relevant and, equally importantly, why this activity can be useful.

One such abstraction mechanism is many-to-one renaming, which allows us
to ignore distinctions between events which may be irrelevant for some purpose. A
typical example of such a renaming might be to ignore the data that passes along a
channel by mapping all communications over the channel to a single value. Though
we will be using renaming occasionally in the rest of this chapter, the effects of
renaming, in itself, as an abstraction are covered in Sections 3.2.2 and 13.6.1 (see
Deadlock Rule 15 on page 388 in particular) and we will study the concept of
data-independence, which in some respects is similar, in Section 15.2.2.

It is worth remarking that many-to-one renaming often introduces nonde-
terminism, as is well shown by the routeing node example on page 388. In this
it has something in common with just about all imaginable abstraction mecha-
nisms: in forming an abstraction you deliberately obscure some detail about how
a process behaves and therefore risk losing information about how some choice is
made, though the effects of the choice remain visible. Any example of many-to-one
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renaming introducing nondeterminism illustrates this, such as

((a — ¢ — STOP) O (b — d — STOP))[Y/a]
—a— ((c — STOP) M (d — STOP))

The rest of this chapter is devoted to abstraction mechanisms with one spe-
cific aim: taking a process P and a set of events X C 3 and working out what P
looks like to a user who can only see the events X (though there may be other users
interacting with P in the complement of X).

12.1 Modes of abstraction

Throughout this section we will assume that P is a divergence-free, finitely nonde-
terministic process with two users, Hugh and Lois, who respectively communicate
with P in the disjoint sets of events H and L which contain between them all the
events P ever uses, with each user only being able to see his or her own events. If
P could ever terminate (v') we would have to worry about which of our two users
could see this; to avoid special cases of limited practical use we will assume that
P never does terminate. (This does not, of course, exclude the possibility that the
definition of P might internally use SKIP and sequential composition.)

12.1.1 Lazy and eager abstraction

Given a process P and set of events L, it is tempting to believe that the abstracted
view of P in L is given by P \ (X\L). In the traces model 7 this is the right answer,
but over the richer models the situation is more complex since this definition does
not necessarily deal with refusal sets and divergences appropriately. The problem is
that the hiding operator P \ X assumes that X has passed out of sight and control
of the entire environment and hence that events from H become 7 actions and thus
‘eager’. We will thus identify hiding with eager abstraction':

Eq(P) = P\ H

though we will find that, outside 7, this is of rather limited use as a means of
abstraction.

If, on the other hand, we believe that the events H are under the control
of some other part of P’s environment (the other user Hugh) but happen to be

IWhen choosing the notation for abstraction there is an important choice we have to make,
namely whether to make the set parameter either the events we are abstracting from, as done here,
or to, which would have led us to replace the subscript H here by L. Obviously this is arbitrary.
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invisible to us (looking at P through Lois’s eyes), then when an event in H becomes
available it may be either accepted or refused by Hugh. Thus Hugh, from Lois’s
perspective, gets to introduce nondeterminism into the system both by the choice
of which action to communicate and also by whether to communicate at all. If, for
example, Hugh decides to refuse absolutely all communications offered to him, P
will appear to act like P E STOP.

The most general behaviour of the abstracted environment (Hugh) is Chaos g,
accepting or refusing any event available to him. This suggests that the right way
to form the abstraction is

(P || Chaosy) \ H
H

and indeed this has a lot to recommend it. However, in the failures/divergences
model A, this construction will introduce a divergence whenever P can perform
an infinite sequence of events in H even though P is not itself diverging. While
you can imagine that this corresponds to the real possibility of Hugh continuously
offering events to the process which are accepted, thereby excluding Lois from doing
anything, it is, particularly in conjunction with the severe way N treats divergence,
too strong an abstraction for most practical purposes: the divergences typically
mask much L behaviour we should really want to see. It is usually better to assume
either that Hugh is always sufficiently lazy not completely to use up the process,
or equivalently that the implementation is sufficiently fair between Hugh and Lois
that neither is infinitely excluded simply because of the eagerness of the other.
There are three, largely equivalent but stylistically different, ways of constructing
a lazy abstraction £y (P) which behaves like the above except for not introducing
the divergences.

Our assumptions about P mean that its representations in the three models
N, U and F are essentially the same (entirely characterized in each case by the
set of stable failures failures(P)). The following versions of the abstraction exist,
respectively, in these models.

The N version is best defined by direct manipulation of the failures of P.
As P is a divergence-free process, the projection of P into the alphabet L is the
divergence-free process PQL with failure-set

{(s\ H,X) | (s, XN L)€ failures, (P)}

The main difference between this and the definition of the hiding operator P \ H
(see page 207) is that it does not insist that the whole of H is refused before
generating a failure. This is because Hugh can always refuse all the events in H\ X.
LY (P) is defined to be PQL.
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For example, if L = {l1,(2} and H = {h}, we might define P by

P = l1—-P
Ool2—h—P
Oh— P

LY (P) is then equivalent to Q where

Q = 11-Q
012 — (STOP M Q)

Notice that the (finite) traces of £ (P) are precisely {s \ H | s € traces(P)},
which is what we might have expected and coincides with the abstraction mechanism
for 7, namely hiding.

The second version, using the infinite traces/failures/divergences model i,
can be expressed directly using CSP operators, since in that model we can express
fairness properties, as seen in Section 10.3.1. As discussed in Exercise 10.3.5,

SemiFair(A,B) = RUN 4 ||| Fair(A, B)

is a process which never refuses events in A, allows any finite combination of A’s
and B’s, but only allows infinitely many B events to occur if infinitely many A’s do
as well.

LY(P) = (P !; SemiFair(L, H)) \ H

cannot diverge unless P can, as the structure of the infinite traces of SemiFair(L, H)
prevents new divergences being introduced by the hiding here. The failures of
LY (P) are exactly the same as those of PQL. The infinite traces are precisely
those infinite traces of P with infinitely many L events, with all H events hidden.
(Obviously the other infinite traces of P cannot be mapped sensibly onto infinite
traces in L“, since u \ H is then finite. Naturally, it is then a finite trace of
LY (P). This is because u will have a finite prefix s such that u \ H = s \ H and
SemiFair(L, H) does not prevent P performing s.)

It should be remarked that abstraction in ¢/ distinguishes more processes than
abstraction in A/, since the infinite traces component of the model can vary when
the abstraction construct (which is, itself, infinitely nondeterministic) is applied to
finitely nondeterministic processes whose llj}[/ abstractions are identical. Examples
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are @1 and (Q2; STOP), where

Q1 = 11— Q1
Mh— Q1

Q2 = h—(Q2 Il — SKIP)
M SKIP

Each of £¥%(Q1) and £%(Q2; STOP) can perform any number of [1’s before refus-
ing this event, but only the abstraction of 1 can perform an infinite trace of I1’s,
since the only infinite trace of @2; STOP is (h,h,h,...). This is a very reasonable
distinction to make, but it is one which is only possible over U.

The above discussion shows that lazy abstraction should be added to the list
of operators which can have the effect of introducing infinite nondeterminism, and
therefore require U as opposed to N for full precision. In fact the extra distinctions
only become an issue if either we need to place lazy abstractions into contexts in
which they affect the divergence-set via hiding as discussed in Section 8.3.2, or if we
want to prove that they meet specifications which constrain infinite traces. None
of the examples we will see in the rest of this chapter does either of these things, so
the extra precision of L% (P) is not something we will need.

As we will see later in this chapter, the case where Ly (P) is deterministic is
very important. If the failures of £% (P) show it to be deterministic then we know
(see page 260) that only one set of infinite traces (all those that are limits of finite
ones) is possible. Thus, if E% (P1) = LY (P2) and this value is deterministic, then
also £Y%(P1) = L% (P2).

The third, and for practical purposes the best, way of computing the lazy
abstraction is the one over the stable failures model F where divergence is not a
concern for the simple reason that it is not recorded in the model: the value of

L5 (P) = (P || Chaosy) \ H
H
in this model is precisely
(traces(P) \ H, failures(PQL))

because (s, X N L) € failures(P) implies that (s, X U H) € failures(P || Chaosy)
H

and hence

(s \ H,X) € failures((P IUI Chaosp) \ H)

Since, under our basic assumptions, the traces of £ (P) are exactly those of its
failures, this form of abstraction is identical in strength to £ (P): these two values



308 Abstraction

being trivially inter-translatable. In fact, it is best to think of £ (P) as an alter-
native way of computing EJ}\I/ (P). Under our assumptions about P,

e the determinism of £%(P) is equivalent to that of the other two versions,
and

e if S is a divergence-free and finitely nondeterministic (specification) process,
then the three refinements

SCTr LE(P) 8 Crp LY(P) S Cu L4 (P)
are all equivalent.

L% (P) is the best form of lazy abstraction in practice simply because it is
directly computable by FDR for finite-state P, and the above equivalences mean
that in most cases we are free to choose whichever we want. Together with its
application to the specification and automated analysis of deadlock discussed around
page 221 it provides the main ways of applying F to tell us things about divergence-
free processes P by putting them in contexts C[P] which could introduce divergence
if analyzed over .

Throughout the rest of this chapter we will only use lazy abstraction in
circumstances where all three are equivalent, and therefore cease to distinguish be-
tween them in our notation: henceforth we will normally simply refer to Lp(P).
Equally, the refinement relation C will denote any one of the three generally equiv-
alent versions referred to above (i.e., not Cp).

The following results are both easy to prove and show the extent to which
lazy abstraction really does capture an accurate one-sided view of a process.

LEMMA 1 If ¥ is partitioned by {H, L} and P = Py, ||| Py where Py, and Py are
processes satisfying the assumptions of this section whose finite traces are respec-
tively contained in L* and H*, then Ly (P) and L1 (P) respectively equal P, and
Py.

A process that can be factored into two components with disjoint alphabets
like this is called separable. Invariably, separability will be considered relative to a
specific pair of alphabets.

The proof of this lemma is left as an exercise.

THEOREM 2 IfY is partitioned by {H, L} and P is any process satisfying the basic
assumptions of this section, then

P2 Ly(P) || Lu(P)
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in any of the three models over which lazy abstraction is defined. Additionally, over
the traces model 7 we have the analogous result:

Pdp P\H|[P\L

PrOOF We deal with the result over N, which is equivalent to that over F and
implies that over 7. Suppose (s, X) € failures) (P). Then, by definition of PQA
(see page 305), (s \ H, X) € failures | (LY (P)) and (s \ L, X) € failures | (LY (P)).
Since plainly s € (s \ H) ||| (s \ L) for any s € ¥* (where ||| is the trace version of
the operator defined on pages 68 and 150), it follows from the definition of ||| over
N (see page 207) that

(s, X) € failures L (L3 (P) ||| £ (P))

which establishes our result.

The result for U follows because if u is any infinite trace of P, then u \ H
and u \ L are respectively traces (which may be either finite or infinite) of LY (P)
and LY (P). u is then an interleaving of these two. 1

The above theorem cannot be extended to equivalence: the refinement is
often proper, as it is if

P = |—-h—P

when L3y (P) = | — Chaosyyy and Ly (P) = Chaos g,y so that the interleaving of
the two abstractions contains all traces in {I, h}* rather than the highly restricted
set of P. This is hardly surprising, since we would rather expect the behaviour of P
visible to Lois to depend on what Hugh does, and vice-versa, and the interleaving
into two abstractions removes all such influences and hence all linkage between what
they see. The lemma above shows that the refinement turns into equality when there
demonstrably is no linkage because P is separable. The following result gives an
interesting partial converse to this, allowing us to determine when deterministic
processes are separable.

COROLLARY 3 P is deterministic and separable (over {H, L}) if and only if the
processes L (P) and L(P) are both deterministic.

PrROOF The ‘=" half of this result follows from the lemma and properties of
determinism. For the ‘<=’ half, suppose both the abstractions are deterministic.
Then, as the alphabetized parallel operator ,||; preserves determinism (see page
227), so is

La(P) g £o(P) = Lu(P) || LL(P)
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But we know that P refines this process, so the two must be equal by maximality
of deterministic processes under refinement. |

For example, this shows that the deterministic process P =1 — h — P con-
sidered above is not separable, since its two abstractions are both nondeterministic.
On the other hand, the process Q(n) defined

Q(n) = h—Q(n)
O ((I = Q(n—1))<n > 0»STOP)

is separable, since its abstractions are respectively

n

—_——~
l—...—>1—STOP and up.h—p

The above series of results, and especially the last, hints at one of the most
important uses of abstraction: characterizing when one user of P can influence what
another user sees. We will return to this in Section 12.4.

12.1.2 Mixed abstraction

While lazy abstraction is the one truest to the underlying philosophy of CSP, it is
sometimes necessary to weaken the assumption that the abstracted user Hugh can
delay all events he sees. One quite often builds models of systems in CSP whose
alphabets contain some events that the environment really can delay — typically in-
puts to the system — and some, perhaps outputs, that it would be more comfortable
to picture as not really delayable. If Hugh is sitting at a workstation, his keystrokes
would naturally be thought of as delayable actions, but outputs displayed on the
VDU would not. In many respects, undelayable signal events have much in common
with the way the termination signal v is thought of (see Chapter 6).2 As long as
such events remain visible, this is not much of a concern since we can take account
of the differences between events in specifying and animating the process. But, if
they are to be abstracted, one can get undesirable results if the signal events are
abstracted lazily.

21t would be possible to take this analogy further and develop models in which ¥ was partitioned
into delayable events and signals; the semantic treatment of signals would then be very like that
we have developed for v'. We have not done so in this book in the interests of purity (sticking
close to Hoare’s original concept of CSP) and simplicity. Without this special modelling, signals
only really make sense at the external interface of a process with its environment unless one is
extremely careful to make sure that whatever process context they are placed in does not delay
them. There are close connections between these ideas and some of those we will meet when we
model timed processes in Chapter 14.
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The right abstraction to use is then a mized one, with delayable events treated
lazily and signal events abstracted eagerly (i.e., by ordinary hiding). If S are P’s
signal events then we define

MG (P) = Lu(P\ (HNS))

Essentially, this treats the events in HN S exactly as though they are internal
actions of the abstracted process. This is reasonable since they are invisible to Lois
and cannot be delayed by anyone. There is a potential problem in this definition,
namely that the hiding P \ (H N S) might either introduce divergence or (if the
hidden set is infinite) unbounded nondeterminism; either of these take it outside the
domain over which we have defined lazy abstraction. While one should be aware
of the second problem, it will rarely occur in practice since in practical examples
process alphabets are usually finite, and all it would mean in any case is that we
would be forced to compute the two abstractions over U.

Divergence of P \ (H N S) corresponds to an infinite unbroken sequence of
signal events from P to Hugh. We might well think that this sort of behaviour, which
gives Hugh no opportunity to be lazy and gives Lois a slice of P’s attention, is more
compellingly identified with divergence, from her perspective, than the type we so
carefully avoided when defining lazy abstraction. Whatever one thinks, the process
produced by this hiding is not one to which lazy abstraction can be applied, and
so we have to stipulate that mixed abstraction is only used for processes where the
inner hiding does not introduce divergence. In any case where this is a danger, you
should, if using FDR, establish this divergence freedom separately before computing
the abstracted process M?%, (P) which, as with £ (P), is then evaluated over F.
Over this model it equals

(P || Chaosg\s)\ H
H\S
ExaMPLE 12.1.1 This form of abstraction is often the appropriate one for processes
in which each transaction with a user comprises an input from the user followed
by some finite sequence of responses. Consider, for example, a memory device with
the following specification:

Mem(s) = write?user?a?v —
(ok.user — Mem(update(s, a, v))
La € WriteAddresses(user)}
(reject.user — Mem(s)))
O read?user?a —

(value.user!fetch(s, a) — Mem(s)
{a € ReadAddresses(user)
(reject.user — Mem(s)))
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The functions update and fetch respectively modify the state s to execute a write,
and look up the value for a read.

Here, we would expect the events in {| write, read |} to be delayable, and
S = {| ok, reject, value |} to be the signals. We will, naturally, assume that the set
of users is {Hugh, Lois}. If you use lazy abstraction on this, then the abstracted
views can both deadlock immediately because it is assumed that the hidden user
might initiate a read or write and then refuse the response it gets.

Mixed abstraction does not predict these deadlocks. The only way (it says)
that either user can affect the other is by writing to variables readable by the other:
if L is the set of Lois’s events, then M#,(Mem(s)) is equivalent to the process My,(s),
where

My (s) = write.Lois?a?v —

(ok.Lois — M (update(s, a,v))

fa € WriteAddresses(Lois)$

(reject.Lois — M ,(s)))

O read.Lois?a —

((value. Lois!fetch(s, a) — M (s)
fa & WriteAddresses(Hugh)}
[{value.Loislv — M (s) | v e T})

La € ReadAddresses(Lois)¥

(reject.Lois — M 1(s)))

Here, T is the (finite, to avoid difficulties with unbounded nondeterminism) type of
the values stored in the memory. The nondeterminism in this abstraction relates to
the fact that Lois has no way of knowing, when she reads a value that is writeable-to
by Hugh, what the value will be. On the assumption that T has more than one
member, this process will be deterministic if, and only if,

ReadAddresses(Lois) N WriteAddresses(Hugh) = {}

It might have been preferable, in formulating the above, to have restricted
the range of memory locations held in the parameter s of My (s) relative to the
original (i.e., only retaining those accessible by Lois). The semantics of the result
would not, however, differ from the version where the full range is retained, provided
of course that everything was done appropriately. (End of example)

EXERCISE 12.1.1 Find as simple as possible representations, as CSP processes, of the
following lazy abstractions.

(i) L{down}(COUNT0) (see page 16)
(ii) E{up}(COUNTo)
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(iil) Lyfup,down} (Counter(0,0)) (see page 26)
(iv) Lo(COPY), where A = {left.a,right.a | a € V} for {} # V C T, T being the
type of left and right.

Which of these processes is separable (in each case relative to the partition of its alphabet
implied by the abstraction quoted above)?

EXERCISE 12.1.2  Show that Lx(P) = STOP and L{}(P) = P for every P satisfying
the assumptions quoted at the start of this section.

Show that £} (L% (P)) = L4 5 (P) for any A, B and P.

EXERCISE 12.1.3  Let V and A be as in Exercise 12.1.1 (iv) above. Describe the
behaviour, respectively, of the mixed abstractions

(i) Ml (copry)

(i) M"Y copry > copy)
Which of these is deterministic? How would you expect the same abstraction to behave

applied to an N-fold chaining of COPY (i.e., an N-place deterministic buffer)?

EXERCISE 12.1.4  Suppose we were to replace the formulation of £%(P) on page 306
by the following:

LY%(P) = (P || FINITEx)\ H
H
where FINITE i is the process (defined as on page 262) which can communicate any finite
trace of events from H, but no infinite trace. Show that this always has exactly the same

set of failures as the other lazy abstractions, but can differ from £%(P) in its set of infinite
traces. Find a process P which demonstrates this difference.

Does any refinement relation hold between the two versions (for all allowable P)?
Find a reason why L% (P) is the better of the two.

EXERCISE 12.1.5 Prove Lemma 1 for the failures/divergences model AV.

EXERCISE 12.1.6 Show that, for any P, @ and X, the equivalence

(P 1l Q) Il Chaosr = (P || Chaosu) |l (Q Il Chaosw)
X H H X H

holds in F. Deduce that, if H N X = {}, then
Lu(P |l Q) = Lu(P) |l Lu(Q)
X X
and hence that

Lu(P Q) = Lu(P) || Lr(Q)
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12.2 Reducing specifications

It is very common to want to prove that a process P meets a specification S which
refers only to a subset of its events. It makes no sense to ask the direct question
‘S E P7, since we know it will fail. We have either to extend S so that it allows
the extra events of P, without specifying anything about them, or to abstract the
extra events away from P.

With traces specifications, there is little difficulty about achieving this either
way. If X are the events of P that we want to ignore, then we should establish
either

S| RUNx Cr P or SCp P\X

For example, to prove that a pair ¢ and b of actions alternate, irrespective of any
other events P might do, we could establish the refinement

pp.a—b—p Cpr P\ (X\a,b})

On the whole it is better to take the latter, hiding approach rather than the
former in which we ‘boost’ the specification. It is arguably clearer, especially when
examining any failure of the specification, but the main argument is in terms of
efficiency when running FDR. If the set X is large, the process S ||| RUN x may be
slow to normalize, whereas the act of hiding X in P frequently enables the result
to be compressed (as described in Section C.2), thereby substantially speeding up
the check.

When the specification S involves failures, we have to worry not only about
how to abstract away from events that P may perform outside the alphabet of S,
but also how to deal with its refusals. Perhaps the most spectacular example of
a failures specification abstracted has already been seen in Section 8.4, where we
found that, over F, P is deadlock-free if and only if P \ ¥ is. Thus, apparently, we
can reduce deadlock freedom to a specification with an empty alphabet! What turns
out to be important here is the way the (many) irrelevant events are abstracted: by
doing so eagerly, we have said that the only relevant refusal sets are those where all
the abstracted events are refused.

To generalize this, over F, with X being the ‘extra’ events as before,
SCrP\X

means that, in addition to S 7 P \ X, whenever (s, Y U X) € failures(P) then
(s \ X,Y) € failures(S). But this says nothing whatsoever about P’s refusals in
any state where it does not reject the whole of X. This may or may not be what we
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want. For example, it does not allow us to make the specification ‘P always offers
either a or b’, since in fact

pp(a—p)(b—p) Cp P\ (E\a,b})

is (for v'-free P) another equivalent of ‘P is deadlock-free’.

The obvious alternative is to replace eager abstraction by lazy abstraction
and, indeed,

pp(a—p)N(b—p) E Ls\ap}(P)

says exactly what we wanted, namely that every stable state of P can perform either
a or b. Thus,

e we should eagerly abstract X if, as with the deadlock specification, we are
only interested in those refusals which occur when every member of X is
impossible, and

e we should lazily abstract X if, as is more likely in other situations, we are
concerned about P’s refusals in the alphabet of S at other times as well.

Given our discussion in the previous section, one would expect that L5\ x (P)
will normally give the right abstraction into the alphabet of S and therefore be the
correct process to test. Of course, if some of the events in X were signals and
therefore not delayable by the environment, it would be appropriate to use mixed
abstraction instead. We will see some important examples of this in Chapter 14.
Perhaps the right way of looking at the deadlock specification is as an extreme
example of this: it is not that we are assuming that the environment cannot delay
any event, only that if it is testing for deadlock then it is reasonable to assume that
it chooses not to.

As discussed in Section 8.4, one of the main advantages of the abstracted
proof of deadlock freedom is the compression it often makes possible when perform-
ing a check using FDR. This is brought about by pushing the hiding as far into a
parallel system as possible. The formulation of £7;(P) on page 307 does not directly
show how to extend these manipulations of lazy abstraction: (hide-)||(—dist> (3.8) is

no longer directly applicable since the entire hidden set P is synchronized (with

Chaos ) immediately below the hiding. Fortunately, however, it is possible to

combine (hide- ||-dist) with properties of Chaos to establish rules for pushing lazy
X

abstraction down through a process: see Exercise 12.2.1.

EXAMPLE 12.2.1 A token ring is a parallel network organized as a ring. It is
designed so that there are a fixed number of tokens that exist in the ring, each
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conveying some privilege on the node containing it. For example, if there is only one,
ownership of the token might permit the node to perform some critical operation
which must not be simultaneously executed in more than one place at once. (This
is another view of the mutual exclusion problem, discussed briefly on page 4.)

A very simple implementation of this might be

Empty(i) = ring.i — Full(7)

Full(i) = ring.i®1 — Empty(i)
O start-cr.i — end-cr.i — Full(i)

Ring = H Full )i = 0 Empty (i), 4;)
Where A, = {rmg.z, ring.i ® 1, start-cr.i, end-cr.i}

and the events start-cr.i and end-cr.i respectively represent the start and end of
i executing a critical region. The intention is that at all times exactly one process
has the token.

We might want to specify this in the alphabet CR = {| start-cr, end-cr |} as
follows:

Spec = [1{start-cr.i — end-cr.i — Spec | i € {0,...,N —1}}

Interpreted as a failures specification, this says that the ring is always able to
perform some event in CR, and furthermore the events in this set that do occur
comprise the sequencing of a number of disjoint critical regions. Of course, exactly
which process is allowed to perform start-cr.i will depend on where the token is.

We can test this specification of the ring by the abstracted check

Spec T ‘C{\mng|}(R7”N’g)

This is true, and essentially says that however the passing of tokens round
the ring is managed, Spec holds.

There will be further discussion of token rings in Exercise 13.3.3 and else-
where. (End of example)

EXERCISE 12.2.1  Use the results of Exercises 12.1.2 and 12.1.6 to prove that

Eﬁ(P AHB Q) = E(fAmBmH)(ﬁ(meA)\B(P) AHB E(meB)\A(Q))

Secondly, prove algebraically that

L (P\X) = (Lh x(P)\ X
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Combine these two principles to produce a rule for pushing £% into processes of
the form (P ,||; @)\ AN B.

This question is formulated in terms of F because L has the easiest CSP formulation
over this model.

EXERCISE 12.2.2  Let S be a divergence-free, finitely nondeterministic and v'-free
process communicating only in H.

(a) Show that S C Ly (P) if, and only if,
S ||| Chaosy T P

Hint: use the series of results beginning on page 308 and monotonicity properties.

(b) Show that S C Ly (P) if, and only if,
S||| RUNgy C P ||| RUNu

Hint: use a similar argument to part (a), plus the result of Exercise 12.1.6.

12.3 Abstracting errors: specifying fault tolerance

CSP is often used for modelling systems with unreliable or potentially faulty com-
ponents, the intention being to overcome these errors and preserve all, or a defined
subset, of their functionality. The main examples we have seen so far have been
unreliable communication media in Chapter 5, as well as subsequent further inves-
tigations of the alternating bit protocol in Sections 8.4 and 10.3.1.

The approach to error modelling used so far has been the most obvious one:
namely to make the occurrence of each error a nondeterministic choice introduced
by M: see, for example, the definitions of Ey on page 123 and C(in, out) on page
134. In systems with potential faults it is usually the case that, if errors happen in a
totally unrestricted way, then at least some of the intended behaviour is lost. This
is certainly true of the example designed to overcome message corruption on page
123, where we built our model of the medium so that it commits at most one error
for every three transmissions: if we had allowed the corruption of any message, then
neither the transmitter and receiver defined there nor any others could overcome
this. Even the alternating bit protocol relies on there not being so many errors as
to create an infinite sequence of consecutive losses or duplications. A fault-tolerant
system created (as is common) by replicating functionality (such as processors) and
using a voting mechanism will only be immune to some finite limit of errors which
disable individual elements: plainly it will not function if all the processors are
disabled.



318 Abstraction

It is often easier to understand the relationship between the pattern of errors
that occur and the behaviour of the entire system if the errors appear in traces. In
other words, each fault, when it occurs, is signposted by some event. It is usually
simple to adapt CSP models of faults to reflect this: instead of being selected by a
nondeterministic choice, errors are triggered by special events placed in the alphabet
specially and not confused with the ‘ordinary’ events of the processes concerned.
Thus the loss/duplication medium C(in, out) for the alternating bit protocol would

become:
Cg(in,out) = nlz — (outls — Cg(in,out, )
O loss — Cg(in, out))
Cg(in,out,z) = dup — outlx — Cp(in, out, )

O Cg(in, out)

Each time a message is input it can be lost if loss occurs, and once it has been
output once it can be duplicated arbitrarily often if dup is communicated.

You should imagine that the events E = {loss, dup} are under the control
of some deemon that can choose whether or not to introduce errors. We could get
back to the original medium by abstracting away these events:

Lg(Cg(in, out)) = C(in, out)

When building a model of a faulty process where the errors are controlled by ex-
tra events, you should aim to create one where the lazy abstraction, as above,
is equivalent to the version in which the errors occur nondeterministically. Con-
versely, if you prevent the errors from occurring by synchronizing with STOP, as

in Cg(in, out) || STOP, you should get a process equivalent to perfect behaviour of
E
the component in question. In this case it is a suitably renamed version of COPY .

When the components with these visible errors are put into the entire net-
work, we can fulfil our wish to see directly how the occurrence of faults affects runs
of the system. One simply places the erroneous processes into the system and leaves
the error events unsynchronized. In cases like the alternating bit protocol, where
there are several erroneous components, it is a good idea to ensure that the error
events of each are distinct. This is so that the errors in the different components
can be distinguished when analyzing the behaviour later. Thus the alternating bit
protocol might become

ABPg = (8 I (Clpll| C25)) I R)\{labc.dl}
{la,dl} {lb.cl}
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where S and R are as previously and

Clg = Cg(a,b)
C2g = CE(C,d)[[lossl’duP//loss,dup]]

We thus extend FE to be {loss, loss’, dup, dup'}.

Having constructed a system with visible errors like this, we can either ab-
stract them immediately or put bounds on the circumstances in which they occur
before doing so. It turns out that the first of these options is what is required for
the alternating bit protocol. The lazy abstraction £g(ABPg) is the natural one to
look at: it is well-defined since ABPg is finitely nondeterministic and is, provided
R and S are correctly defined as in Section 5.3, divergence-free. This form of ab-
straction correctly reflects our expectations of this protocol, namely that an error
can happen at any time but we should never rely on one happening. The fairness
assumptions built into lazy abstraction also correspond closely to the fact that the
protocol works provided the channels are not permitted to commit an infinite series
of errors. If S and R are as defined in Section 5.3, it is true that

COPY T Lyz(ABPg)

What this establishes precisely is that the alternating bit protocol refines this speci-
fication provided only finitely many errors of any sort occur between each pair of
visible actions. Another way of saying the same thing is that, whatever errors have
occurred in the past, if whatever deemon is selecting them stops doing so for long
enough, the protocol will come into a state where it can make the progress required
by the specification.

This lazy abstraction into non-error events gives what is probably the best
general-purpose picture of the way a system with potential errors can behave under
the assumption that errors do not exclude everything else. However, what we have
shown in this case is not precisely the same as was proved in Section 10.3.1 where we
looked directly at how infinite traces can analyze the protocol. There the infinitary
relation was directly over the two internal channels, whereas here it is between the
errors and the external communications of the entire protocol. While the difference
does not appear to be of great importance in this example, this is not always so:
see Exercise 12.3.3. It teaches us one general lesson, namely that if you want to
relate the errors that occur to some internal events of your system, then you must
delay hiding the latter until after the comparison has been made.

The best way to assume a stronger bound on error behaviour than that
expressed implicitly by lazy abstraction is by putting a constraining process in
parallel with either the whole system or an appropriate part of it. Such a bound
is likely to take one of two forms: either a limit on the total number of errors
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that can occur through all time (perhaps with separate limits for different types of
errors) or a limit on how many errors can occur relative to some other behaviour, in
which case, of course, the limitation must be imposed before any of the comparative
actions have been hidden.

Imagine, for example, a supposedly fault-tolerant processor built out of four
identical units enclosed in a context which feeds them all identical inputs and gathers
all their results.®> There are at least two different modes of failure of one of the
processors: they might simply die in such a way that they never communicate
again (i.e., behave like STOP) or might become corrupted so that they can be
relied on for nothing, not even not communicating (the most appropriate model
then being Chaos 4 where A is the failing processor’s alphabet). In this latter case
we are assuming that a corrupted processor might, either through luck or, in some
applications, malice, do whatever it can to make the surrounding hardware’s job
as difficult as possible. A fault of this second sort is usually termed a Byzantine
failure.

If Proc is a process modelling the correct (and deterministic) behaviour of a
processor without faults, then

(PT’OC Ahalt STOP) Abyzantine Chaos,q

gives a natural way of adding the potential for faulty behaviour. (P A, @ is the
interrupt operator defined on page 243.)

Suppose that the result of composing the entire system, together with these
faulty components and the harness used to manage the distribution and collection
of data to and from the four processors, is FTP (fault-tolerant processor).* The
important thing from our point of view is that the four sets of fault events are
permitted to occur freely (i.e., they do not synchronize with each other or anything
else). We will assume that the error events have become

E = {halt.i, byzantine.i | 1 € {0,1,2,3}}

You would not expect FTP to work once all four processors have been
brought down by faults. And Byzantine faults are likely to be harder to over-

3In any application like this it is vital that the programs running on the processors are de-
terministic, since otherwise there might be several valid answers that the various copies could
produce, almost certainly leading to confusion in the surrounding voting hardware!

4The mechanisms used to do this in the general case are really quite complex and would take
too long to describe for this book. One of the major issues is the extent to which the harness itself
has to be fault tolerant, since the advantages of running multiple copies of a processor are clearly
reduced significantly if you are dependent on some unreplicated piece of hardware to achieve ‘fault
tolerance’. The mechanisms for achieving fault tolerance frequently use the timed dialect of CSP
described in Chapter 14. Some references can be found at the end of this chapter.
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come than halting faults. It is, for example, reasonable to expect it to continue
working when all but one processor has halted, but it could not work when even
two chaotic faults have appeared since the pair of faulty processors might agree on
a different answer to a problem than the pair of correct ones; plainly there is no way
for a voting system to distinguish which is right. If we wanted to prove that FTP
was tolerant of one Byzantine, or three halting, faults, the way to do this would be
to prove that

Lr(FTP || Halt(3)) and Lg(FTP || Byzantine(1))
E E

both meet an appropriate specification (see later), where, for example

Halt(n) = halt?i — Halt(n — 1)
£n > 0FSTOP

One of the major applications of the style of error modelling where the num-
ber of faults is limited relative to some other set of events is in timed modelling,
which we will meet in Chapter 14 and where you can express a bound on how many
errors occur in a given interval. For example, you could state that no more than 3
errors occur in any 13 time units. See page 422 for more on this.

In general, if you are imposing limits on how many errors occur, it will almost
never be appropriate to make an implicit assumption that errors definitely occur.
This means that if the limit is expressed via the parallel composition

Systemp || Limiter
AUE

where A is part of the alphabet of System g, then the process Limiter should never
restrict which members of A occur. In other words,

EZ\A(Limiter) = RUN 4

A process which satisfies this condition is said to be a monitor for A: its E behaviour
can depend on what it sees in A, but it will never refuse any communication in A.

If, for example, you want Limiter to express the condition that no more than
N errors occur for every M events in A, an appropriate process to use would be

Limit(E,A,N,M) = Bound(E,A,N) | ... || Bound(E, A, N) (M copies)
E E

where

Bound(E,A,n) = ?a:A— Bound(E,A,N)
O ((?e: E— Bound(E,A,n—1))<n > 0% STOP)
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is the process which prevents more than N error events happening for every A
event. This subtle parallel composition expresses exactly the right condition on
traces via the way it synchronizes only on FE: it acts as a monitor on A because
each Bound(N) does. See Exercise 12.3.4.

The most extreme limitation on errors is to ban them outright. If E is the set
of error events in a process Systemp modelled with visible errors (perhaps limited
in a less severe way), then

NoFaults = Systempg || STOP
E

represents its behaviour under the assumption that no error ever occurs. There
is no need to abstract error events in this process since they never occur. The
refinement check

NoFaults T Lg(Systemg)

has a very interesting interpretation: it says that the system, with error events
permitted to the extent allowed by the definition of Systemp, behaves no worse
than the error-free version. In other words, it asserts that Systemg is fault tolerant
to the extent that it assumes faults can occur. The definition of lazy abstraction
implies that the reverse refinement relation holds for any process Systempg at all,
so proving the above relation actually implies equivalence.

This gives a very clean definition of what it means for a process to be fault
tolerant, and it is invaluable when faced with a system for which it is difficult to
give a complete functional specification in a more abstract way. In using it you
should, however, realize that simply proving a system is fault tolerant does not
mean it does what you intended. All it means is that any misbehaviour which is
present in the version with faults is also there without. For example, the process
Chaos aug (which is, of course, refined by any divergence-free process with this
alphabet) is fault tolerant because it behaves no worse when faults are allowed than
without. Thus it is not, in general, the case that if P is fault tolerant and P C @
then @ is fault tolerant: fault tolerance is not a behavioural specification. (Unlike
determinism it does satisfy a distributive law — see Exercise 12.3.5.)

Thus, if faced with the problem of developing a system which combines com-
plex external behaviour with the need for fault tolerance, you should combine the
above refinement check with tests of whatever basic functional specifications (such
as freedom from deadlock and safety checks) seem appropriate. Of course, it would
only be necessary to prove these of the NoFaults version.

In conclusion to this section, it is the author’s opinion that the approach
to modelling faults as controlled by visible actions, subsequently regulated and
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?rror.o

?errorz

—L =

Figure 12.1: Replicating data over multiple lanes (see Exercise 12.3.1).

abstracted, gives a more flexible and usually superior method than simply using
nondeterministic choices. The exceptions to its superiority are cases, such as over-
coming a specified level of message corruption by replicating messages on page 123,
where (i) there is no need to specify patterns of errors above a very low level, (ii) the
occurrence of errors is sufficiently bounded to avoid problems with divergence and
(iii) the overall system behaviour is sufficiently simple so as to make the abstract
specification of fault tolerance above unnecessary.

By their nature, interesting complete examples of fault tolerance are moder-
ately complex. Thus it was not possible to give as many examples in this section
as we might have wished. The interested reader can, however, find various analy-
ses based on the methods described in this section at the associated web site (see
Preface for details).

EXERCISE 12.3.1 Define a buffer of bits ({0, 1}) which uses three error-prone channels
as shown in Figure 12.1. Channel i, after communicating the event error.i, may corrupt
(but, for simplicity, does not lose) any bit it subsequently receives. Each bit is sent
separately through the channels and voted on at the other end.

Describe such a system and formulate a refinement check that asserts it is tolerant
of one such error.

EXERCISE 12.3.2 Let P be any deterministic process with alphabet A. We can define
a process

reboot(P) = P Aerror reboot(P)
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which reboots itself (back to initial state) each time the event error (¢ A) occurs. Define
a context rebuild(-) which, though allowing all error events to occur, is such that

P = L{crrory(rebuild(reboot(P)))

Hint: rebuild(Q) should record the external trace. Whenever an error event occurs
it should communicate that trace to QQ so as to bring it back from its rebooted state to the
one it was in before the error. Be careful to take account of any errors that occur during
this rebuilding. It is helpful to use 1 — 2 renaming on the argument @ so that some of the
events it communicates are visible, but a second copy of them is available to be used while
resetting, and hidden. Specifically, you do not want to hide the ‘normal’ actions of Q, but
need to hide the rebuilding actions.

Why is it important that P is deterministic?

EXERCISE 12.3.3 Define a process Alt which alternately outputs 0 and 1 on channel c,
and another Switch which inputs values on channel d and communicates the event switch
each time it inputs a consecutive pair of values that are different. Show that, as defined
in this section, with Cg as defined on page 318, the process

(At || Cg(e,d)) |l Switch) \ {| ¢,d |}
{lel} {ldI}

is fault tolerant.

Show that this behaviour is not preserved when Cg/(c, d) is replaced by the medium
process Cn(c, d) defined on page 134 used in the original version of the alternating bit
protocol which guarantees to transmit at least one of each N messages and to duplicate
each no more than N times. How does the misbehaviour manifest itself?

This is an illustration of the effect mentioned in the text by which a system is
considered fault tolerant, using the lazy abstraction definition, if it works provided there
are no more than finitely many faults between consecutive visible actions.

EXERCISE 12.3.4  Prove that the traces of Limit(E, A, N, M) (page 321) are precisely
those members s of (AU E)* satisfying

s = sI"s2s3AH#(s2 | E)> N=#(s2[ A) > M
EXERCISE 12.3.5 Suppose P and @ are both fault tolerant (in the sense defined using

NoFaults) with respect to the same set E of error events. Show that P 1 @ is also fault
tolerant.

12.4 Independence and security

In the first section of this chapter we imagined the existence of two users, and formed
views of how some process P looks to one of them with the other abstracted away.
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Suppose they are working in a security conscious environment, and that Hugh has
a higher security classification than Lois. It is a problem of considerable practical
importance to understand when information about what Hugh is doing can get to
Lois via their joint use of P. You can imagine the following scenarios:

(a) Lois, a spy, attempts to find out about Hugh’s interactions with P, the
assumption here being that Hugh is unaware of Lois’s presence.

(b) Hugh is a ‘mole’, namely an agent working in the high security levels of his
enemies. He is trying to set up a ‘covert channel’ with Lois, who is his friend
on the outside, so that the information he has learned can be relayed back to
their spy-masters. Therefore they try to use P to get information from one
to the other, and may well have agreed some code in advance.

Though the second of these is, on the face of it, the more challenging problem
for the process designer from the point of view of counter-espionage, in an absolute
sense they are the same. If no information about what Hugh does ever leaks through
to Lois (i.e., P is secure in the sense (a)) then automatically no covert channel
can exist since anything a malicious Hugh does under (b) to pass information, an
innocent one under (a) might have done ‘by accident’. It is only when considering
imperfect systems that the two modes should perhaps be differentiated.

Clearly what is important is Lois’s abstracted view of P. She can only see
what Hugh is doing if what he does affects what she sees. What we are trying to
specify is what one can either view non-interference (i.e., what Hugh does does not
interfere with what Lois sees) or independence (i.e., what Lois sees is independent
of Hugh). The latter of these two terms is more appropriate for the applications we
now have in mind. A very clear specification of this is simply that Lois’s view is
deterministic: you can think of Hugh as a nondeterminism resolving deemon within
an abstraction such as Ly (P), so if the abstraction is actually deterministic then
none of his choices is reflected in what she sees. You should use either lazy or mixed
abstraction depending on the nature of the interface between Hugh and P.

For a finitely nondeterministic, divergence and v'-free process P we can thus

define
e P is lazily independent from H (written LIND g (P)) if and only if Ly (P) is
deterministic, and

e P is mized, or transaction® independent from H, with respect to the set of
signals S (written MIND?% (P)) if and only if M%, (P) is deterministic.

5The term transaction independence (used by Wulf [138]) derives from the most common use
of mixed abstraction: interpreting the output phases of transactions such as those seen in the
memory example on page 311 correctly.
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There is a clear connection between this definition and Corollary 3, since
it is evident that the condition of separability is closely related to security. After
all, a process which is built as the parallel composition of two processes which do
not synchronize and respectively serve only Hugh and only Lois is self-evidently
secure. Indeed, some authors have used it as one definition of non-interference/
independence. It has two disadvantages: the easier to understand is that it is
clearly symmetric whereas independence is not. We do not mind Hugh being able
to see what Lois can do, since we have not banned information flowing that way.
We will discuss the second disadvantage later.

The best way to understand our definitions is to see some examples. Let
L ={1,11,12,1s1,1s2}, H = {h,h1,h2, hsl, hs2} and S = {Is1,[s2, hsl, hs2} (the
set of signal events). The following simple processes show the main ways security
and insecurity manifest themselves.

1. Let P1 =h — [ — P1. This is insecure because Ly (P1) = Chaosy, which
is nondeterministic. Intuitively, this process is insecure because Lois can see
exactly how many events Hugh has performed.

2. On the other hand, P2 = (h — | — P2) O (I — P2) is secure, since
Ly (P2) = pp.l— p. It is not, however, separable since the abstraction into
H is nondeterministic. The fact that [ can always occur means that Lois can
no longer count A’s by counting [’s.

3. Define
P3 = 11— P3
O hl — P3
P3 = 12— P3
O h2 — P3/

P3 is secure since Ly (P3) = pp.l1 — (2 — p. It is not secure in the reverse
direction since

Lr(P3) = pgq.(hl — q) 1 (h2 — q)

The point is that only Lois controls which state (P3 or P3') it is in, but
Hugh can detect the state by looking which of A1 and h2 is permitted. Thus
information can pass from Lois to Hugh but not back.
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4. The following process, unlike those seen so far, uses signal events:

P4 = 11 —1Is1— P4
012 —ls2 — P4
O hl — hsl — P4
0O h2 — hs2 — P4

You can think of this process as one that both Hugh and Lois can ask ques-
tions of by inputting values, and it gives them the appropriate answer back
as a signal. The lazy abstraction of this process is nondeterministic, since if
Hugh could delay the events hsl and hs2 then Lois could tell he was doing
so (and had input some value). The mixed abstraction M3, (P4) is, however,
deterministic and so this process satisfies MINDE(-). This is appropriate,
since its behaviour towards Lois does not depend on what Hugh has done.

5. If Hugh is certain to receive a signal at some point then the fact that he does
does not convey information to Lois. Thus the following process satisfies
MINDE(-), since to Lois it looks exactly like pup.l — p.

P5 = hsl - 1 — P5

6. On the other hand, if Lois can tell something about which signal Hugh re-
ceived, then we get an insecure process, and indeed

P6 = hsl—1[11— P6
Mhs2 — 12— P6

fails the mixed condition. This only applies when, as in this example, the
value Hugh gets is not predictable on the basis of what Lois legitimately
knows.

Now look back to the memory example on page 311. The work we did there
shows that this is secure, for | T |> 1, if and only if there is no location that Hugh
can write to and Lois can read. This is, of course, exactly what one might expect.
This is perhaps the simplest of a wide range of situations where our two users are
both reading and writing to some system. Some extensions that can lead to further
security difficulties are listed below.

e They might be reading and writing to files, which have to be created using
some name. It is possible for information to flow by Lois testing, by trying
to create a file with a given name, whether Hugh has one of the same name
open. (This assumes that either user will have a request to create a file
refused if the other has one with the chosen name.)



328 Abstraction

e There might be contention for resources: if what Hugh does affects whether
there is room (in memory, on disk etc.) f