
84

What You Needa Know about Yoneda
Profunctor Optics and the Yoneda Lemma (Functional Pearl)

GUILLAUME BOISSEAU, Department of Computer Science, University of Oxford, UK

JEREMY GIBBONS, Department of Computer Science, University of Oxford, UK

Profunctor optics are a neat and composable representation of bidirectional data accessors, including lenses,

and their dual, prisms. The profunctor representation exploits higher-order functions and higher-kinded type

constructor classes, but the relationship between this and the familiar representation in terms of ‘getter’ and

‘setter’ functions is not at all obvious.We derive the profunctor representation from the concrete representation,

making the relationship clear. It turns out to be a fairly direct application of the Yoneda Lemma, arguably

the most important result in category theory. We hope this derivation aids understanding of the profunctor

representation. Conversely, it might also serve to provide some insight into the Yoneda Lemma.

CCS Concepts: • Theory of computation→ Program constructs; Categorical semantics; Type theory;
• Software and its engineering→ Abstract data types; Data types and structures; Patterns; Polymor-
phism; Semantics;

Additional Key Words and Phrases: Lens, prism, optic, profunctors, composable references, Yoneda Lemma.

ACM Reference Format:
Guillaume Boisseau and Jeremy Gibbons. 2018. What You Needa Know about Yoneda: Profunctor Optics and

the Yoneda Lemma (Functional Pearl). Proc. ACM Program. Lang. 2, ICFP, Article 84 (September 2018), 27 pages.

https://doi.org/10.1145/3236779

1 INTRODUCTION
There is a saying in English that you can tell a lot about a person by the company they keep. Similarly,

the Dutch say zeg me wie uw vrienden zijn, dan zeg ik wie u bent—“tell me who your friends are,

and I will tell you who you are”; and the Japanese for ‘human being’ is ��, constructed from the

two kanji � (‘nin’, meaning ‘person’) and� (‘gen’, meaning ‘between’), conveying the idea that

“you as a human being only exist through your relations with others” [Matsumoto 2018].

The sentiment that we are defined by our relationships with others evidently transcends national

boundaries. Indeed, it transcends human interaction altogether: one might say that it is the essence

of the Yoneda Lemma, which has been called “arguably the most important result in category theory”

[Riehl 2016, p57]. The formal statement

Yoneda Lemma: For C a locally small category, [C,Set](C(A,−), F) ≃ F (A), naturally
in A ∈ C and F ∈ [C,Set].

of the result is quite formidably terse—we explain it gently in Section 2—but roughly speaking,

it says that a certain kind of object (on the right of the isomorphism) is fully determined its

relationships (on the left).

Authors’ addresses: Guillaume Boisseau, guillaume.boisseau@cs.ox.ac.uk, Department of Computer Science, University of

Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD, UK; Jeremy Gibbons, jeremy.gibbons@cs.ox.ac.uk, Department of

Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD, UK.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2018 Copyright held by the owner/author(s).

2475-1421/2018/9-ART84

https://doi.org/10.1145/3236779

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 84. Publication date: September 2018.

https://doi.org/10.1145/3236779
https://doi.org/10.1145/3236779

84:2 Guillaume Boisseau and Jeremy Gibbons

The high level of abstraction in the statement of the Yoneda Lemma means that it can be applied

in many contexts, some of which are actually quite familiar. For example, it explains Cayley’s

Theorem for monoids (which is the trick that enables the use of an accumulating parameter, which

can often turn a quadratic-time program into a linear-time one), proofs by ‘indirect equality’ (that

is, b ⩽ a if and only if ∀c . (a ⩽ c) ⇒ (b ⩽ c), an important technique in program calculation),

and the correctness of both closure conversion and translation to continuation-passing style. We

discuss these applications in detail in Section 3.

More broadly, one might see shadows of Yoneda in the Euclidean axiom that there is nothing

more to a geometrical point than the lines that meet there, and in the way that artificial intelligence

can attribute its successes to the position that there is nothing more to the ‘semantics’ of an entity

than syntactic references to other entities. Mazzola [2002, Chapter 9] identifies a whole Yoneda
Philosophy in the arts: understanding a thing through its relationships with other things. Mazzola

cites Paul Valéry’s dictum that “c’est l’exécution du poème qui est le poème” [Valéry 1937] (that

is, the essence of a poem is determined by its readings, public or private, and not just its text),

Theodor Adorno’s statement that “die Idee der Interpretation gehört zur Musik selber und ist ihr

nicht akzidentiell” [Adorno 1956] (that is, performance is an essential aspect of a composition’s

identity), and the common experience of walking around a sculpture to see it from all angles in

order fully to appreciate it.

Our goal in this paper is to use the Yoneda Lemma to derive profunctor optics, a surprisingly
flexible higher-order datatype-generic representation of data accessors such as lenses and prisms.We

define these notions properly in Section 2.3, but summarize briefly here for accessibility. Concretely,

a lens of type Lens S T AB provides access via a ‘getter’ and a ‘setter’ onto a component of type A
within a composite product structure of type S, allowing that component to be replaced by one of

type B, yielding a new composite of type T [Foster et al. 2005; Pickering et al. 2017]:

data Lens a b s t = Lens {view :: s → a, update :: s × b → t }

The Profunctor class

class Profunctor pwhere
dimap :: (c → a) → (b → d) → p a b → p c d

represents ‘transformer’ type constructors P , such that a transformer of type P AB ‘consumes’

A values and ‘produces’ B values. A cartesian (also called strong) profunctor is one that is in addition

coherent with products:

class Profunctor p ⇒ Cartesian pwhere
second :: p a b → p (c × a) (c × b)

Now, a profunctor lens of type LensP AB S T is a mechanism to lift a component-transformer of

type P AB to a composite-transformer of type P S T , for any cartesian profunctor P :

type LensP a b s t = ∀p .Cartesian p ⇒ p a b → p s t

The somewhat surprising fact is that Lens A B S T and LensP A B S T are naturally isomorphic types.

(To be precise, one usually imposes ‘well-behavedness’ or ‘round-tripping’ laws on lenses. These

laws appear to be completely orthogonal to the choice of representation, and to the isomorphism,

so we do not address them in this paper.)

There is a dual story for prisms, which provide access onto a component in a composite sum type,

in terms of cocartesian profunctors. Lenses and prisms are particular kinds of optic. The profunctor
representation LensP has a number of benefits over the concrete representation Lens [Pickering
et al. 2017]. For one thing, the profunctor representation is in terms of ordinary functions, and

so profunctor optics compose using ordinary function composition. For a second, the profunctor

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 84. Publication date: September 2018.

What You Needa Know about Yoneda 84:3

representation readily supports heterogeneous optics, providing access onto components of a sum-

of-products composite, which cannot be captured using the concrete representations.

We provide a new proof of the equivalence of the concrete and profunctor representations of

optics. The proof depends heavily on the Yoneda Lemma. It can be expressed in great generality,

applying to lenses, prisms, and other kinds of optic too. It is considerably simpler and more

straightforward than previous proofs—both our own [Pickering et al. 2017] and others’ [Milewski

2017b].

The remainder of this paper is structured as follows. In Section 2, we introduce the necessary

background in category theory, and more precisely define profunctor optics. Section 3 describes a

number of more or less familiar concrete applications of the Yoneda Lemma, in order to provide

some intuition for what follows. The main content of the paper is Section 4, presenting our proof

using the Yoneda Lemma that profunctor optics are equivalent to their concrete cousins. Section 5

concludes, with a summary, discussion, and thoughts for future work.

2 BACKGROUND
2.1 Notational Conventions
We conduct our proofs using categorical notations, for generality, but translate the ideas into a

programming language for concreteness. We choose Haskell as that language, but the choice is

not particularly important. We do use types as partial specifications; in order to express various

abstractions at the type level, one does require generics of higher kind—so Scala would also suffice

for this aspect, but Java would not. But static types are not essential, and the ideas would also work

in a dynamically typed language.

Although we use Haskell as a programming notation, we make some simplifications. We ignore

non-termination and partially defined values, treating Haskell types as sets and Haskell programs

as total functions. We write ‘A × B’ for the Haskell pair type (A,B), and ‘A + B’ for the sum type

Either A B. We sometimes subscript methods of a type class, to give a hint as to which instance is

being used; for example, we might write ‘fmapList ’ to indicate the List instance of fmap. Where in

Haskell one would write ‘forall’ outside a datatype constructor to indicate what is effectively an

existential quantification, we actually write ‘∃’; for example,

dataBoolable = ∃a . Boolable (a, a→ Bool)

We write ‘f : A ≃ B : g’ to indicate that f : A→ B and g : B→ A form an isomorphism.

2.2 Categorical Prerequisites
Categories. A category C consists of:

• a collection |C| of objects;
• a set C(A,B) of arrows from A to B for each pair of objects A,B ∈ |C|;
• an identity arrow idA ∈ C(A,A) for each object A ∈ |C|;
• the composition g◦f ∈ C(A,C) for each pair of compatible arrows f ∈ C(A, B) and g ∈ C(B,C),

such that

• composition is associative; and

• appropriate identity arrows serve as neutral elements for composition.

The sets C(A,B) are called homsets. (Technically, this is the definition of a locally small category;
for cardinality reasons, sometimes the collection of arrows between a pair of objects can be too

large to be a set. We gloss over such technicalities.)

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 84. Publication date: September 2018.

84:4 Guillaume Boisseau and Jeremy Gibbons

One very familiar example is the category Set, whose objects are sets, with the homset Set (A, B)
consisting of the set of total functions from A to B; we can see the objects and arrows as representa-

tions of types and programs, respectively. But we will also draw inspiration (and later illustrations)

from two other examples. Any preordered set (A,⩽) induces a category Pre(A,⩽), whose objects
are the elements of A, with the homset Pre(A,⩽) (a, b) consisting of a single element when a ⩽ b
and empty otherwise; reflexivity of ⩽ accounts for the identity arrows, and transitivity of ⩽ for

composition. And any monoid (M, ⊕, e) induces a categoryMon(M, ⊕, e), with a single object ∗,

and sole homsetMon(M, ⊕, e) (∗, ∗) consisting of the elements of M; the neutral element e of the
monoid forms the identity arrow, and composition is given by ⊕. Indeed, one can see category

theory as a kind of common generalization of preorders and monoids.

Any category C has an opposite category Cop, with the same objects but reversed arrows:

• the objects |Cop | are the objects |C|;
• the arrows Cop (A,B) from A to B in Cop are the arrows C(B,A) from B to A in C;
• composition is backwards.

Given two categories C,D, the product category C × D has pairs of objects and pairs of arrows:

• an object (A,B) ∈ |C × D| for each pair of objects A ∈ |C| and B ∈ |D|;
• an arrow (f , g) ∈ (C×D) ((A, B), (C,D)) for each pair of arrows f ∈ C(A,C) and g ∈ D(B,D);
• composition is pointwise.

Functors. Categories are evidently structured entities, so one should consider the structure-

preserving mappings between categories, called functors. Formally, a functor F : C → D from

category C to category D is a mapping from the objects and arrows of C to those of D, respecting
the structure:

• an object F (A) ∈ |D| for each object A ∈ |C|;
• an arrow F (f) ∈ D(F (A), F (B)) for each arrow f ∈ C(A,B),

such that

• F (idA) = idF (A) for each object A ∈ |C|;
• F (g ◦ f) = F (g) ◦ F (f) for each pair f , g of compatible arrows.

One class of functors F : Set → Set on Set are the container types; for example, the functor

List : Set → Set takes the set A of elements to the set List (A) of finite lists of elements drawn

from A, and acts on arrows as the ‘map’ operation, taking f : A→ B to List (f) : List (A) → List (B).
(A functor F : C→ C from a category to itself is called an endofunctor.)

For any category C and objects A, B ∈ |C|, the homset C(A, B) is a set of arrows; so C(A,−) is a
function from |C| to |Set |, taking object B to set C(A, B). This function on objects can be extended

to a function on arrows too, taking f ∈ C(B,C) to (f ◦) ∈ Set (C(A, B),C(A,C)), that is, the function
that takes g ∈ C(A,B) to f ◦ g ∈ C(A,C). This makes C(A,−) a functor from C to Set, called the

homfunctor. Similarly, C(−,B) is a functor, taking arrow f to (◦f); but this action on arrows is

contravariant, so this homfunctor is a functor from Cop to Set.
Functors Pre(A,⩽) → Pre(B,⊑) correspond to monotonic functions between preordered sets,

and functors Mon(M, ⊕, e) → Mon(N , ⊗, e′) correspond to homomorphisms between monoids.

A functor F : Mon(M, ⊕, e) → Set takes the sole object ∗ to some set S ∈ |Set | and each arrow

m : ∗ → ∗ to a function S → S in a way that respects ⊕ and e, so amounts to a left action of the

monoid (M, ⊕, e) on S. In particular, the homfunctorMon(M, ⊕, e) (∗,−) :Mon(M, ⊕, e) → Set takes
sole object ∗ to the set M , and each arrow m : ∗ → ∗ to the function (m ⊕ −) :M → M , so it is the

left action of (M, ⊕, e) on M itself.

It is a worthwhile exercise to verify all of these assertions.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 84. Publication date: September 2018.

What You Needa Know about Yoneda 84:5

Natural Transformations. Functors too are evidently structured entities, so one should consider the
structure-preserving mappings between them, which are called natural transformations. Formally,

given two functors F ,G :C→ D between the same two categories C andD, a natural transformation

ϕ : F
.
→ G from F to G is a family of arrows in D, indexed by objects in C:

• an arrow ϕA ∈ D(F (A),G(A)) for each object A ∈ |C|,
satisfying the naturality condition
• ϕB ◦ F (f) = G(f) ◦ ϕA for each arrow f ∈ C(A,B).

F (A)
F (f) //

ϕA ��

F (B)
ϕB��

G(A)
G(f)
// G(B)

The natural transformations between endofunctors on Set correspond to polymorphic functions.

For example, reverse : List
.
→ List is a natural transformation from the list functor to itself; and if

Tree is the Set functor representing finite node-labelled binary trees of elements, then the function

inorder that computes the in-order traversal is a natural transformation Tree
.
→ List. The naturality

condition for inorder states that mapping a function f : A→ B over a Tree(A) and then traversing

the tree yields the same result as traversing and then mapping over the ensuing List (A):

inorderB ◦ Tree(f) = List (f) ◦ inorderA

Given two functors f , g : Pre(A,⩽) → Pre(B,⊑)—that is, monotonic functions—between two

preorders, a natural transformation ϕ : f
.
→ g is a witness to the pointwise ordering f ⊑ g between

the functions, in the sense that ϕa : f (a) ⊑ g(a) for each a ∈ A.
For any two categories C,D, the functor category [C,D] has as objects the functors from C to D,

and as arrows [C,D](F ,G) between objects F ,G ∈ |[C,D]| the natural transformations F
.
→ G.

The Yoneda Lemma. The Yoneda Lemma states that for (locally small) category C, there is a
bijection

⌈−⌉A,F : [C,Set](C(A,−), F) ≃ F (A) : ⌊−⌋A,F

natural in object A ∈ C and functor F ∈ [C,Set]. Let us unpack what that says, following Leinster

[2000]. The lemma asserts a bijection between two sets. Apart from category C, the two free

variables are the object A ∈ C and the functor F : C→ Set. In addition to functor F , also appearing

is the homfunctor C(A,−), another functor C → Set. On the left of the bijection is a homset in

the functor category [C,Set]; that is, the set of natural transformations ϕ : C(A,−)
.
→ F , namely

families of functions ϕB : C(A, B)
.
→ F (B) in Set satisfying an appropriate naturality condition. On

the right is simply the set F (A).
The proof of the lemma amounts to constructing the two functions that form the bijection. From

left to right, the function ⌈−⌉A,F should take a natural transformation ϕ : C(A,−)
.
→ F and yield an

element of the set F (A). That is achieved by picking the Ath component ϕA : C(A,A) → F (A) of
the family ϕ, and applying this to the identity arrow idA ∈ C(A,A):

⌈ϕ⌉A,F = ϕA (idA)

From right to left, the function ⌊−⌋A,F should take an element x of the set F (A) and yield a natural

transformation C(A,−)
.
→ F . We construct such a natural transformation ϕ from x as follows. For

object B ∈ |C|, the Bth component ϕB should be an arrow in Set—that is, a function—from C(A, B)
to F (B). Given an f ∈ C(A, B), we can map f over x using the functorial action of F to yield a value

of the correct type:

⌊x⌋A,FB (f) = F (f) (x)

It is worth noting the essence of this construction: in the ⌈−⌉ direction, there is an ‘application to

the identity arrow’, and in the ⌊−⌋ direction, ‘use of the functorial action’. We will see this essence

also in the various applications of the Yoneda Lemma in the rest of the paper.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 84. Publication date: September 2018.

84:6 Guillaume Boisseau and Jeremy Gibbons

The two naturality conditions amount to the following. Given an arrow g ∈ C(A,C) and a natural
transformation ϕ : F

.
→ G, it does not matter whether one uses the isomorphism (⌈−⌉A,F , ⌊−⌋A,F) at

object A and functor F , then transforms A and F to C and G using g and ϕ, or one transforms A, F
to C,G using g,ϕ then uses the isomorphism (⌈−⌉C,G, ⌊−⌋C,G) at object C and functor G. However,
we will make no further explicit use of these naturality conditions, so we do not attempt to spell

them out in greater detail.

To complete the proof, we would need to show that ⌊x⌋A,F really is a natural transformation

for any x ∈ F (A), that ⌈−⌉A,F and ⌊−⌋A,F are each other’s inverses, and that the two additional

naturality conditions hold. The proofs are standard, so we direct the curious reader to the literature

[Awodey 2006; Mac Lane 1971]. We present a number of illuminating examples in Section 3.

There is a dual version of the Yoneda Lemma, expressed in terms of the other homfunctor C(−, B)
which is obtained by fixing the target rather than the source object of the homset. This homfunctor

is contravariant, that is, a functor from Cop to Set; so we must also have F :Cop → Set. Then Yoneda

states that

[Cop,Set](C(−,B), F) ≃ F (B)

(Equivalently, this contravariant version of the Yoneda Lemma is obtained immediately by consid-

ering the covariant version in the category Cop. So this is not a separate result, but an alternative

presentation of the original result.)

The whole homfunctor C(−,=) of a category C is a functor Cop × C→ Set. Since it is a functor
from a product category, we can curry it; doing so yields a functor Cop → [C,Set], sometimes

written ‘H•’. Then we have:

Theorem 2.1 (Yoneda Embedding). The functor H• : Cop → [C,Set] is full and faithful, and
injective on objects.

A functor is called full when it is surjective on each homset, and faithful when it is injective. The

‘full and faithful’ part of the theorem is a corollary of Yoneda, obtained by instantiating the functor

F in the statement of the Yoneda Lemma also to a homfunctor C(B,−) to yield the equivalence

[C,Set](C(A,−),C(B,−)) ≃ C(B,A)

for all objects A,B ∈ |C|. Indeed, the mapping ⌊=⌋A,C(B,−) from right to left takes an arrow f ∈
C(B,A) to C(f ,−) = (◦f), and the Yoneda Lemma proves that this mapping forms an isomorphism.

The ‘injective on objects’ part of the theorem is automatic, since by convention distinct homsets of

a category are disjoint.

2.3 Profunctor Optics
As already summarized briefly in Section 1, a lens provides access onto component within a

composite product data structure. The concrete representation Lens A B S T of type-varying lenses

consists of a pair of functions: a ‘getter’ view :: S → A which extracts a view of type A from a source

of type S; and a ‘setter’ update :: S × B → T which inserts an updated view of type B (possibly

different from A) into an old source of type S to yield an updated source of type T (correspondingly,

possibly different from S).

data Lens a b s t = Lens {view :: s → a, update :: s × b → t }

For example, there is an obvious lens onto the second component of a pair:

sndLens :: Lens a b (c × a) (c × b)
sndLens = Lens vw upwhere

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 84. Publication date: September 2018.

What You Needa Know about Yoneda 84:7

vw (c, a) = a
up ((c, a), a′) = (c, a′)

The view function vw extracts the second component, and the update function up replaces that

component with a new one.

Dually, a prism provides access onto a component within a composite sum data structure. The

concrete representation PrismAB S T of type-varying prisms consists of a pair of functions: a

‘getter’ match :: S → T + A which ‘downcasts’ the source of type S to a view of type A, if possible;
and a ‘setter’ build :: B→ T which ‘upcasts’ an updated view of type B (possibly different from S)
back to an updated source of type T (correspondingly, possibly different from S). When the getter

cannot downcast the source to type A, then the source must inhabit another variant of the sum

structure, and so it can be directly coerced by match to the updated source type T .

data Prism a b s t = Prism {match :: s → t + a, build :: b → t }

For example, there is a prism onto an optional value:

the :: Prism a b (Maybe a) (Maybe b)
the = Prismmt bdwhere
mt (Just a) = Right a
mt Nothing = Left Nothing
bd b = Just b

The match function mt extracts the optional value when it is present, and yields the complement

(that is, Nothing) when it is absent; and the build function bd injects an updated value.

Lenses and prisms turn out to be divergent generalizations of a common specialization, called

adapters, which provide access onto a value via a change of representation:

dataAdapter a b s t = Adapter { from :: s → a, to :: b → t }

For example, there is an adapter allowing one to act on a nested pair as if it were a triple:

flatten :: Adapter (a × b × c) (a′ × b′ × c′) ((a × b) × c) ((a′ × b′) × c′)
flatten = Adapter fro towhere
fro ((a, b), c) = (a, b, c)
to (a, b, c) = ((a, b), c)

(writing ‘(a × b × c)’ for a type of triples). An adapter is equivalent to a lens in which the view

completely determines the source, so that the update function need not be provided with the old

source; and conversely, an adapter is equivalent to a prism in which there is only one variant, so

that the match downcast always succeeds.

The Functor class in Haskell

class Functor f where
fmap :: (a→ b) → f a→ f b

-- law: fmap (g ◦ h) = fmap g ◦ fmap h
-- law: fmap id = id

represents container types, in the sense that for a functor F , a value of type F A ‘contains’ elements

of type A, and so might in principle deliver values of that type. They are analogous to categorical

endofunctors on Set. The Profunctor class

class Profunctor pwhere
dimap :: (c → a) → (b → d) → p a b → p c d

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 84. Publication date: September 2018.

84:8 Guillaume Boisseau and Jeremy Gibbons

P AB P (1 × A) (1 × B)
dimap lunit lunit ′

second1

P AB P (D × A) (D × B)

P ((C × D) × A) ((C × D) × B) P (C × (D × A)) (C × (D × B))

secondD
secondCsecondC×D

dimap assoc assoc′

Fig. 1. Cartesian profunctor laws

-- law: dimap (f ′ ◦ f) (g ◦ g′) = dimap f g ◦ dimap f ′ g′

-- law: dimap id id = id

generalizes this to ‘transformer’ types, which may both consume and produce values: for pro-

functor P , a transformer of type P AB ‘consumes’ A values and ‘produces’ B values—note that

the dimap operator which modifies the consumed and produced values is contravariant in the

‘consumed’ argument. The canonical Profunctor instance is the function type former, for which

dimap is obtained simply by function composition:

instance Profunctor (→)where
dimap f g h = g ◦ h ◦ f

A profunctor P is cartesian (or strong) if it is coherent with products, in the sense that there

is an operator second that, for any type C, lifts a transformer of type P AB to a transformer of

type P (C × A) (C × B) that acts on pairs, transforming As into Bs but passing the Cs around
unchanged, respecting the isomorphisms

assoc : (A × B) × C ≃ A × (B × C) : assoc′

lunit : 1 × A ≃ A : lunit ′

of products:

class Profunctor p ⇒ Cartesian pwhere
second :: p a b → p (c × a) (c × b)

-- law: dimap assoc assoc′ (secondC (secondD h)) = secondC×D h
-- law: dimap lunit lunit ′ h = second1 h

These laws are illustrated by the commutative diagrams in Figure 1.

The function type former is an instance:

instanceCartesian (→)where
second f (c, a) = (c, f a)

(Given second, one can construct a symmetric operator first that transforms the first component of

a pair.)

Dually, a profunctor P is co-cartesian (sometimes called choice) if it is coherent with the structure

of sums

coassoc : (A + B) + C ≃ A + (B + C) : coassoc′

lzero : 0 + A ≃ A : lzero′

in the same way:

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 84. Publication date: September 2018.

What You Needa Know about Yoneda 84:9

P AB P (0 + A) (0 + B)
dimap lzero lzero′

right
0

P AB P (D + A) (D + B)

P ((C + D) + A) ((C + D) + B) P (C + (D + A)) (C + (D + B))

rightD
rightCrightC+D

dimap coassoc coassoc′

Fig. 2. Cocartesian profunctor laws

class Profunctor p ⇒ Cocartesian pwhere
right :: p a b → p (c + a) (c + b)

-- law: dimap coassoc coassoc′ (rightC (rightD h)) = rightC+D h
-- law: dimap lzero lzero′ h = right

0
h

These laws are illustrated by similar commutative diagrams in Figure 2.

Again, the function type former is an instance:

instanceCocartesian (→)where
right f (Left c) = Left c
right f (Right a) = Right (f a)

The profunctor representationAdapterP A B S T of an adapter is as a function lifting a component-

transformer P AB to a composite-transformer P S T , that works uniformly for all profunctors P :

typeAdapterP a b s t = ∀p . Profunctor p ⇒ p a b → p s t

For example, the profunctor representation flattenP of the concrete adapter flatten is:

flattenP :: AdapterP (a × b × c) (a′ × b′ × c′) ((a × b) × c) ((a′ × b′) × c′)
flattenP h = dimap f t hwhere
f ((a, b), c) = (a, b, c)
t (a, b, c) = ((a, b), c)

which wraps its argument transformer in the two halves of the isomorphism.

Similarly, the profunctor representation LensP A B S T of a lens is as a function lifting a component-

transformer P AB to a composite-transformer P S T , that works uniformly for all cartesian profunc-

tors P :

type LensP a b s t = ∀p .Cartesian p ⇒ p a b → p s t

For example, the profunctor representation sndLensP of the concrete lens sndLens is:

sndLensP :: LensP a b (c × a) (c × b)
sndLensP h = second h

which is simply an application of the second method.

Dually, the profunctor representation PrismP AB S T of a prism is as a function lifting a component-

transformer P AB to a composite-transformer P S T , that works uniformly for all co-cartesian
profunctors P :

type PrismP a b s t = ∀p .Cocartesian p ⇒ p a b → p s t

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 84. Publication date: September 2018.

84:10 Guillaume Boisseau and Jeremy Gibbons

For example, the profunctor representation theP of the is:

theP :: PrismP a b (Maybe a) (Maybe b)
theP h = dimapm2s s2m (right h)where

m2s Nothing = Left ()

m2s (Just x) = Right c
s2m (Left ()) = Nothing
s2m (Right x) = Just x

Given a transformer h :: P AB, we can lift it using right to a transformer of type P (() + A) (() + B),
and then use dimap to adapt this to one of type P (Maybe A) (Maybe B) as required.

3 EXAMPLES OF YONEDA
The power of the Yoneda Lemma comes from its high level of abstraction; but that also makes it

difficult to get to grips with at first. To provide some intuition, in this section we present a number

of more or less familiar concrete applications of the Yoneda Lemma and Yoneda Embedding.

One way of gaining some intuition for an abstract result in category theory is to consider what

it says in the two very special cases of preorder categories Pre(A,⩽), where the homsets are all

either empty or singletons, and monoid categoriesMon(M, ⊕, e), where there is only a single object;
these are the two simplest kinds of category. As noted in Section 2, one can see category theory as

the least common generalization of preorders and monoids. For example, one common route to

gaining some intuition for the rather abstract notions of adjunction and monad is through their

specialization to preorder categories, where they simplify to the perhaps more familiar Galois

connections and to closure operators respectively.

3.1 Indirect Inequality
One important technique in the mathematics of program construction is the method of proof by
indirect inequality [Feijen 2001; von Karger 2002], also called the rule of indirect order [Backhouse
2003]: for a preorder (A,⩽),

(b ⩽ a) ⇔ (∀c . (a ⩽ c) ⇒ (b ⩽ c))

The right-to-left direction is equivalent to reflexivity of ⩽, and the left-to-right direction to transi-

tivity [Dijkstra 1991]. In some situations, the right-hand side can be much easier to manipulate than

the left. This equivalence is an instance of the Yoneda Embedding in the category Pre(A,⩽). In this

category, the homset Pre(A,⩽) (b, a) is a ‘thin set’—a singleton when b ⩽ a, and empty otherwise.

The homfunctor Pre(A,⩽) (a,−) is a ‘thin function’, taking an element c ∈ A to a singleton set when

a ⩽ c and to the empty set otherwise. A natural transformationϕ :Pre(A,⩽) (a,−)
.
→ Pre(A,⩽) (b,−)

is a family of functions ϕc : Pre(A,⩽) (a, c) → Pre(A,⩽) (b, c) between the thin sets. But the total

functions between thin sets X and Y are highly constrained—indeed, they are completely deter-

mined, unless X is non-empty and Y is empty, in which case no such function can exist. So the

family ϕ of functions is a witness to the fact that for each c, if Pre(A,⩽) (a, c) is non-empty then so

is Pre(A,⩽) (b, c); that is, that a ⩽ c implies b ⩽ c.

3.2 Indirect Equality
In a similar vein, Yoneda can yield elegant proofs of many equivalences, through the rule of indirect
equality [Backhouse 2003; Feijen 2001]. One nice property of full and faithful functors is that they

both preserve and reflect isomorphisms. Any functor preserves isomorphisms:

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 84. Publication date: September 2018.

What You Needa Know about Yoneda 84:11

F (f) ◦ F (g) = id
⇔ [[F is a functor]]

F (f ◦ g) = F (id)
⇐ [[Leibniz]]

f ◦ g = id

That is, if f and g form an isomorphism, then so do F (f) and F (g). When F is faithful (injective on

arrows), then the last step is an equivalence; in that case, when F (f) and F (g) form an isomorphism,

so too do f and g. And when F is full (surjective on arrows), if F (f) does have an inverse h, then
h is in the range of F—there is a g such that h = F (g). Thus, for a full and faithful functor F , the
arrow f forms an isomorphism if and only if F (f) does. The Yoneda Embedding provides a full and

faithful functor; therefore we have

(C(B,−) ≃ C(A,−)) ⇔ (A ≃ B) ⇔ (C(−,A) ≃ C(−,B))

As Leinster [2000, §2.3] writes, if one regards C(−,A) (U) = C(U ,A) as ‘A viewed from U ’, then this

states that two objects A,B are the same if and only if they look the same from all viewpoints U ;

this is Mazzola’s ‘Yoneda Philosophy’ as discussed in Section 1.

For a preorder (A,⩽), this equivalence manifests itself as the rule of indirect equality that forms

a significant tool in Backhouse’s textbook [Backhouse 2003]:

(b = a) ⇔ (∀c . (a ⩽ c) ⇔ (b ⩽ c))

For another example, following Awodey [2006, §8.4], the category Set supports currying—a function
from a product type is equivalent to a function to an exponential, that is, a function of one argument

that yields a function of the other argument:

Set (A × C,B) ≃ Set (A,BC)

and the sum type constructor satisfies the universal property that a function from a sum type is

equivalent to a pair of functions with a common target:

Set (A + B,C) ≃ Set (A,C) × Set (B,C)

From these two properties we can calculate:

Set ((A + B) × C,X)

≃ [[currying]]

Set (A + B,XC)

≃ [[sum]]

Set (A,XC) × Set (B,XC)

≃ [[currying]]

Set (A × C,X) × Set (B × C,X)

≃ [[sum]]

Set ((A × C) + (B × C),X)

and so by the rule of indirect equality we can conclude that

(A + B) × C ≃ (A × C) + (B × C)

(As an aside for the categorically wise: the only fact about product and exponential that we used

here is that −×C is left adjoint to −C ; the same calculation works to show that L (A+B) ≃ LA+L B
for any left adjoint L. Indeed, it works in any category C, for any colimit in place of +. As a result,

we get a proof of the slogan ‘left adjoints preserve colimits’. Dually, right adjoints preserve limits.)

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 84. Publication date: September 2018.

84:12 Guillaume Boisseau and Jeremy Gibbons

3.3 Cayley’s Theorem
Cayley’s Theorem states that every group (G, ⊕, e, (−)−1) is isomorphic to a group of endomor-

phisms, a subgroup of the symmetric group acting on G: in one direction, each element g ∈ G
is taken to the endomorphism (g ⊕ −); in the opposite direction, the endomorphism f is taken

to the element f (e). Cayley’s Theorem is an instance of the Yoneda Embedding. But groups are

not very familiar to functional programmers, so we will illustrate with the slight generalization to

Cayley’s Theorem for Monoids: every monoid (M, ⊕, e) is isomorphic to a monoid of endomorphisms,

sometimes called a transformation monoid, a submonoid of the ‘full transformation monoid’ of M
consisting of all functions M → M . The construction and proof is entirely analogous, except that it

omits discussion of the inverse operation of a group.

Recall that a monoid (M, ⊕, e) can be represented as a categoryMon(M, ⊕, e), with a single object

∗, and with sole homset Mon(M, ⊕, e) (∗, ∗) consisting of the elements of M , with ⊕ serving as

composition and e as the identity arrow. The functor H• :Mon(M, ⊕, e)op → [Mon(M, ⊕, e),Set]
takes the sole object ∗ to the homfunctor Mon(M, ⊕, e) (∗,−), and each arrow m : ∗ → ∗ to the

function (m ⊕ −) :M → M . Then the Yoneda Embedding in this category states that this mapping

is a bijection; again, in one direction, each element m ∈ M is taken to the endomorphism (m ⊕ −)
(that is, the functorial action of the homfunctor), and in the opposite direction, an endomorphism f
is taken to f (e) (that is, application to the identity arrow).

This construction is common in functional programming. It’s the essence of the accumulating

parameter technique [Bird 1984], and of ‘the concatenate vanishes’ [Wadler 1987]. For example,

Hughes’ ‘novel representation of lists’ [Hughes 1986] amounts to Cayley’s Theorem, substituting the

monoid of endomorphisms ([A]→ [A], (◦), id) for the monoid of lists ([A],++, []), representing
each list xs :: [A] by the endomorphism (xs++) :: [A] → [A]; with this data representation, the

formerly quadratic-time reverse function becomes linear-time.

The analogous construction on a preorder (A,⩽) of Cayley’s Theorem on monoids is essentially

the rule of indirect inequality discussed in Section 3.1. If we define the upwards closure ↑a of an
element a ∈ A as {c ∈ A | a ⩽ c}, then indirect inequality can be stated as follows:

(b ⩽ a) ⇔ (∀c . (c ∈ ↑a) ⇒ (c ∈ ↑b))
⇔ ↑a ⊆ ↑b

This gives the representation of the preordered set (A,⩽) by its upward-closed sets. Thus, a preorder
on any kind of carrier is equivalent to one on sets using inclusion, just as a monoid on any kind of

carrier is equivalent to one on functions using composition.

As Awodey [2006, §8.4] observes, it is often the case that the Yoneda Embedding is into a space

with better structural properties, thereby simplifying reasoning. For example, the representation

of a rational number as an upward-closed set under the usual ordering is a Dedekind Cut, and
this mapping embeds the rationals into the real line, which admits solutions to more equations;

a similar phenomenon happens for other instances of the Yoneda Embedding. (Formally, the functor

category [C,Set] has various kinds of limit, even when C does not.)

3.4 Universal and Existential
The Yoneda Lemma can be almost directly rendered into Haskell, via the following type declaration:

data Yo f a = Yo {unYo :: ∀r . (a→ r) → f r }

This declares a container datatype Yo f for every f , with constructor Yo and deconstructor unYo;
the body of a data structure of type Yo f a is a polymorphic function of type ∀r . (a → r) → f r .
The Yoneda Lemma states that Yo f a ≃ f a when f is a functor; the two halves of the isomorphism

are given by the following two functions:

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 84. Publication date: September 2018.

What You Needa Know about Yoneda 84:13

fromYo :: Yo f a→ f a
fromYo y = unYo y id

toYo :: Functor f ⇒ f a→ Yo f a
toYo x = Yo (λh→ fmap h x)

(Note again the essence: ‘application to the identity arrow’ in one direction, and ‘use of the functorial

action’ in the other.) Informally, a value of type Yo f a can take an arbitrary function of type a→ r ,
for any r , and yield a value of type f r ; so it must in some sense have an f a stored inside [Piponi

2006].

In the special case that f is the identity functor Id, we get Yo Id a, which is essentially a function

of type ∀r . (a→ r) → r , the continuation-passing representation of the type a [Hinze and James

2010; Stay 2008]. Or perhaps more precisely, the CPS transformation of a function of type b → a is
a function of type b → Yo Id a; and the correctness of the CPS transformation boils down to this

special case of the Yoneda Lemma.

This rendering of the Yoneda Lemma into Haskell uses a universal type quantification. There

is a complementary rendering, sometimes called ‘co-Yoneda’, using an existential quantification

instead. To discover it, consider the following calculation with types:

∀a . f a→ (∀r . (a→ r) → g r)
≃ [[universal property of universal quantification]]

∀a .∀r . f a→ (a→ r) → g r
≃ [[uncurrying]]

∀a .∀r . (f a × (a→ r)) → g r
≃ [[swapping the two quantifiers]]

∀r .∀a . (f a × (a→ r)) → g r
≃ [[universal property of existential quantification]]

∀r . (∃a . (f a × (a→ r))) → g r

Note that in the final step, it is the contravariant position of the function type that is being distributed

over the quantifier, so the universal quantification turns into an existential. Let us define a datatype

capturing the source type of the final function type above:

dataCoYo f r = ∃a .CoYo {unCoYo :: f a × (a→ r) }

Informally, this is an abstract datatype, representing an f r abstraction in terms of an f a structure
for some hidden type a, together with a function a→ r .

The first line of the type calculation is (modulo the constructor Yo) the type of natural transfor-
mations f

.
→ Yo g, and now the last line is (again, modulo the constructor) the type CoYo f

.
→ g; so

provided that f and g are functors, we have:

f
.
→ g

≃ [[Yoneda Lemma: g ≃ Yo g for functor g]]

f
.
→ Yo g

≃ [[calculation above]]

CoYo f
.
→ g

and so, by indirect equality, it follows that f ≃ CoYo f . The components of this isomorphism

between the abstraction f and the representation CoYo f are as follows:

fromCoYo :: Functor f ⇒ CoYo f b → f b
fromCoYo (CoYo (x, h)) = fmap h x

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 84. Publication date: September 2018.

84:14 Guillaume Boisseau and Jeremy Gibbons

toCoYo :: f b → CoYo f b
toCoYo y = CoYo (y, id)

Even if f is not a functor, CoYo f is—to ‘map’ a function g :: b → c over a CoYo f b, it suffices to

compose g with the function inside:

instance Functor (CoYo f)where
fmap g (CoYo (x, h)) = CoYo (x, g ◦ h)

This is sometimes called ‘the co-Yoneda trick’ [Manzyuk 2013]. It can be used to make a generalized

algebraic datatype a functor when the type parameter is used only as an index, so cannot be

varied freely; for example, Gibbons [2016] uses it to enable do notation on a GADT representing

monomorphic typed commands. Even when the f parameter is already a functor, this change of

representation can be an efficiency-improving transformation, because it turns a traversal over

each of the elements of the payload x into a simple composition with one function h [Avramenko

2017]—that is, it implements the map fusion rule for free. New [2017] shows that the closure

conversion of a function of type a→ b yields one of type a→ ∃e . e × (e → b), the result of which
is a closure with hidden environment type e. That is, the closure conversion of function type a→ b
is a → CoYo Id b; New describes closure conversion itself as a kind of dual to CPS, both being

applications of the Yoneda Lemma for the identity functor.

3.5 Representable Functors
A representation of a functor F : C→ Set is an object X ∈ |C| together with a natural isomorphism

t : C(X ,−)
.
→ F ; and functor F is called representable if it has such a representation. It is then a

corollary of the Yoneda Lemma that a representation of F is given equivalently by X ∈ |C| and a

universal element ps ∈ F (X) such that, for any A ∈ |C| and x ∈ F (A), there exists a unique arrow
f ∈ C(X ,A) such that F (f) (ps) = x. That is, there is a one-to-one correspondence between pairs

(X , t) and pairs (X , ps).
This result explains part of the design of Hancock’s notion of Naperian functor [Gibbons 2017;

Hancock 2005], expressed in Haskell as the type class

class Functor f ⇒ Naperian f where
type Log f
lookup :: f a→ (Log f → a) -- each other’s. . .

tabulate :: (Log f → a) → f a -- . . . inverses

positions :: f (Log f)

tabulate h = fmap h positions
positions = tabulate id

The idea here is that a functor f is Naperian if there is a type Log f of ‘positions’, such that

f a ≃ Log f → a. For example, the functor Pair is Naperian, with Log Pair = Bool, because there
are two positions in a pair. The two halves of the isomorphism are given by lookup and tabulate.
But there is an alternative presentation given instead by lookup and positions, since tabulate and
positions are interdefinable; often positions is easier to define, but tabulate more convenient to

use. For pairs, positions = (True, False) and tabulate f = (f True, f False). The tabulate version
corresponds to the presentation in terms of representable functors, and the positions version to that

in terms of universal elements. The Yoneda Lemma shows that the two presentations are equivalent.

Again, the construction involves ‘application to the identity arrow’ in one direction, and ‘use of the

functorial action’ in the other.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 84. Publication date: September 2018.

What You Needa Know about Yoneda 84:15

The reader should by now have some intuition as to the structure of instances of the Yoneda

Lemma, and in particular of the recurring pattern of ‘application to the identity arrow’ and ‘use of

the functorial action’.

4 PROFUNCTOR OPTICS
We now exploit the power of the Yoneda Lemma in order to understand the isomorphisms between

profunctor optics and their concrete analogues. The key result is the Double Yoneda Embedding,

presented in Section 4.1. We apply the Double Yoneda Embedding to adapters in Section 4.2, to

lenses in Section 4.3, and to prisms in Section 4.4. The proofs are all very similar; so in Section 4.5

we present an abstraction that covers all three specific cases, and use it in Sections 4.6 and 4.7 to

cover more optics.

4.1 Double Yoneda
The key insight to understanding the profunctor representation of optics is the following general

result, which we dub the Double Yoneda Embedding; the name is ours, but the result is due to

Milewski [2017a,b].

Lemma 4.1 (Double Yoneda Embedding). For arbitrary A, B ∈ C, we have the following isomor-
phism:

C(A,B) ≃ [[C,Set],Set](−(A),−(B))

The isomorphism is natural in A and B, and respects composition and identity.

Proof. For an object A ∈ C, the operation of applying a functor F : C→ Set to A, denoted −(A),
is indeed a functor from [C,Set] to Set: it maps F ∈ [C,Set] to F (A) ∈ Set, and ϕ : F

.
→ G to ϕA.

Now, the Yoneda Lemma in C states that:

F (X) ≃ [C,Set](C(X ,=), F)

(naturally in F and X). Therefore the functor −(X) is isomorphic to [C,Set](C(X ,=),−), naturally
in X . Then using the Yoneda Embedding twice, we get the following:

[[C,Set],Set](−(A),−(B))
≃ [[as noted above: −(X) ≃ [C,Set](C(X ,=),−)]]

[[C,Set],Set]([C,Set](C(A,=),−), [C,Set](C(B,=),−))
≃ [[Yoneda Embedding in [C,Set]]]

[C,Set](C(B,=),C(A,=))
≃ [[Yoneda Embedding in C]]

C(A,B)

All the isomorphisms used are natural in the relevant variables, hence the overall isomorphism is

natural in A and B. From the proof of the isomorphism we extract one of its components:

η : C(A,B) → [[C,Set],Set](−(A),−(B))
(η f)F := F (f)

Because the index F is a functor, η clearly respects composition and identity; and therefore so too

does its inverse. Therefore the isomorphism respects composition and identity. □

For the particular case of Haskell endofunctors Set → Set, this result can be expressed as follows:

(a→ b) ≃ ∀f . Functor f ⇒ f a→ f b

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 84. Publication date: September 2018.

84:16 Guillaume Boisseau and Jeremy Gibbons

Informally, this says that if we know nothing about f other than that it is a functor, the only way

to go from f a to f b is to fmap a function a→ b:

fromFun :: (a→ b) → (∀f . Functor f ⇒ f a→ f b)
fromFun f = fmap f

and conversely, if we can go from f a to f b for any functor f , we can in particular do so for the

identity functor:

toFun :: (∀f . Functor f ⇒ f a→ f b) → (a→ b)
toFun h = unId ◦ h ◦ Id

and moreover that these two transformations are each other’s inverses. Note again the recurring

pattern: ‘use of the functorial action’ and ‘application to the identity’ (that is, to the identity functor).

4.2 Adapters
We now show that concrete adapters and profunctor adapters are equivalent. The construction in

this section is also originally due to Milewski [2017a,b].

Recall the datatype of concrete adapters:

dataAdapter a b s t = Adapter { from :: s → a, to :: b → t }

In categorical language, this corresponds to a pair of arrows C(S,A) × C(B, T), that is, an arrow

(Cop × C) ((A, B), (S, T)). Adapters with matching types can be composed, and there is an identity

adapter Adapter id id, in both cases adopting the structure of Cop × C. We therefore introduce the

synonym Ada for the category Cop × C, and think of it as the category whose arrows are adapters.

Likewise, the profunctor representation of adapters was defined as follows:

typeAdapterP a b s t = ∀p . Profunctor p ⇒ p a b → p s t

Categorically, a profunctor P is a functor P : Cop × C→ Set. It takes an object (A, B) in Cop × C to

the set P (A, B), and an arrow (Cop × C) ((A, B), (C,D)) (that is, a pair of arrows C(C,A) × C(B,D))
to a function P (A,B) → P (C,D) in Set. Thus, the action on arrows corresponds precisely to the

dimap method of the Profunctor type class, and the functor laws on Cop × C precisely to the dimap
laws in the type class. We therefore define the category Prof (over a base category C) to be the

functor category [Cop × C,Set].
Now, in categorical language, the universal quantification in the definition of AdapterP cor-

responds to a natural transformation. We therefore define the category AdaP whose arrows are

profunctor adapters (over a base category C): the objects (A, B) are those of Cop × C, as before, but
the arrows are natural transformations:

AdaP ((A,B), (S, T)) := [Prof ,Set](−(A,B),−(S, T))
= [[Cop × C,Set],Set](−(A,B),−(S, T))

Then the Double Yoneda Embedding states:

(Cop × C) ((A,B), (S, T)) ≃ [[Cop × C,Set],Set](−(A,B),−(S, T))

that is,

Ada((A,B), (S, T)) ≃ AdaP ((A,B), (S, T))

On the left are arrows in Ada, which are concrete adapters; on the right are arrows in AdaP , which
are profunctor adapters; and the Double Yoneda Embedding tells us that these are in one-to-one

correspondence (moreover, with nice naturality and functoriality properties).

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 84. Publication date: September 2018.

What You Needa Know about Yoneda 84:17

4.3 Lenses
So much for adapters; what about lenses? Here, we take a different approach from Milewski

[2017a,b]. Recall the definition of a concrete lens:

data Lens a b s t = Lens {view :: s → a, update :: s × b → t }

Translated into categorical language, this again corresponds to a pair of arrows, but now also

involving a product. We therefore introduce a category Lens (over a base category C), whose objects
are those of Cop × C as before, but whose arrows are concrete lenses:

Lens((A,B), (S, T)) := C(S,A) × C(S × B, T)

Using the co-Yoneda Lemma, we can derive a more symmetrical characterization of the arrows:

C(S,A) × C(S × B, T)
≃ [[co-Yoneda (see below)]]

C(S,A) × ∃C .C(S,C) × C(C × B, T)
≃ [[first component is independent of the quantification]]

∃C .C(S,A) × C(S,C) × C(C × B, T)
≃ [[universal property of products]]

∃C .C(S,C × A) × C(C × B, T)

Thus Lens((A,B), (S, T)) ≃ ∃C .C(S,C × A) × C(C × B, T). In Haskell, we might write:

data LensC a b s t = ∃c . LensC (s → c × a, c × b → t)

Informally, a source S is factorized into a view A and its complement C, such that a new view B
can be combined with the complement C to make a new source T . (But note that this is not the
constant complement encoding of lenses [Bancilhon and Spyratos 1981; Foster et al. 2005]: there is

no requirement that this pair of functions be in any sense inverses.)

The first step in the calculation uses the co-Yoneda Lemma from Section 3.4:

F (S) ≃ (∃C .C(C, S) × F (C))

but in the opposite category: for functor F : Cop → Set,

F (S) ≃ (∃C .Cop (C, S) × F (C)) ≃ (∃C .C(S,C) × F (C))

In the calculation, F is C(− × B, T), which is indeed a functor Cop → Set.
In this symmetric form, it is easier to see that Lens does indeed form a category. The identity lens

on object (A,B) is (lunitA, lunit ′B), where the complement chosen is the unit type 1, the neutral

element of product; composition works by taking the product of complements:

(S → C × A) × (A→ D × X) 7→ (S → (C × D) × X)

(C × B→ T) × (D × Y → B) 7→ ((C × D) × Y → T)

Cartesian product forms a monoid only up to isomorphism; but those isomorphisms get quotiented

out by the existential quantification, so composition of lenses forms a monoid up to equivalence of

values of existential types.

The approach we took for adapters in Section 4.2 involved profunctors, which are functors

Ada→ Set. By analogy, let us investigate functors P : Lens → Set. Such a functor takes an object

(A, B) of Lens to a set P (A, B), and an arrow Lens((A, B), (S, T)) (that is, a concrete lens) to a function
P (A,B) → P (S, T) in Set. Let us name that action on arrows:

mapLens ∈ ∀AB S T . Set (Lens((A,B), (S, T)),Set (P (A,B), P (S, T)))

Then we calculate with the type of mapLens:

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 84. Publication date: September 2018.

84:18 Guillaume Boisseau and Jeremy Gibbons

∀AB S T . Set (Lens((A,B), (S, T)),Set (P (A,B), P (S, T)))
≃ [[symmetric characterization of arrows in Lens]]

∀AB S T . Set ((∃C .C(S,C × A) × C(C × B, T)),Set (P (A,B), P (S, T)))
≃ [[universal property of existential quantification]]

∀ABC S T . Set (C(S,C × A) × C(C × B, T),Set (P (A,B), P (S, T)))
≃ [[arrows in Cop × C]]

∀ABC S T . Set ((Cop × C) ((C × A,C × B), (S, T)),Set (P (A,B), P (S, T)))
≃ [[natural transformations in Set as polymorphic functions]]

∀ABC . [Cop × C,Set]((Cop × C) ((C × A,C × B),−),Set (P (A,B), P (−)))
≃ [[Yoneda Lemma in Cop × C]]

∀ABC . Set (P (A,B), P (C × A,C × B))

(To be precise, for these calculations to be valid, the functors mentioned must be functorial in

arrows of Cop × C and not only in arrows of Lens. For this to hold, we need an identity-on-objects

functor LiftLens : C
op × C→ Lens, the details of which will be spelled out in Section 4.5.)

The final type in the calculation above is precisely the type of the second method of a Cartesian

profunctor:

class Profunctor p ⇒ Cartesian pwhere
second :: p a b → p (c × a) (c × b)

Moreover, the property that mapLens respects composition and identity of arrows in Lens maps

precisely onto the property that second respects the monoidal structure of products and the unit

type (this will be worked out in detail in Section 4.5). That is, Cartesian profunctors are precisely

the functors Lens → Set.
Profunctor lenses were defined in terms of Cartesian profunctors:

type LensP a b s t = ∀p .Cartesian p ⇒ p a b → p s t

As with adapters, the universal quantification corresponds categorically to a natural transformation,

between the functors −(A, B) and −(S, T) from [Lens,Set] to Set. We therefore define the category

LensP , with objects from Cop × C, and profunctor lenses (natural transformations) as arrows:

LensP ((A,B), (S, T)) := [[Lens,Set],Set](−(A,B),−(S, T))

The Double Yoneda Embedding in category Lens states:

Lens((A,B), (S, T)) ≃ [[Lens,Set],Set](−(A,B),−(S, T))

which immediately shows that

Lens((A,B), (S, T)) ≃ LensP ((A,B), (S, T))

On the left are arrows in Lens, which are concrete lenses; on the right are arrows in LensP , which
are profunctor lenses; and the Double Yoneda Embedding tells us that these are in one-to-one

correspondence (again, with nice naturality properties).

4.4 Prisms
Prisms are to sums as lenses are to products; the development is entirely dual. Concrete prisms

were defined as follows:

data Prism a b s t = Prism {match :: s → t + a, build :: b → t }

Categorically, we represent concrete prisms (over a base category C) as arrows in a category Prism,

whose objects are those of Cop × C and whose arrows are pairs of base arrows:

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 84. Publication date: September 2018.

What You Needa Know about Yoneda 84:19

Prism((A,B), (S, T)) = C(S, T + A) × C(B, T)

Using co-Yoneda again, we can derive an equivalent but more symmetric characterization:

C(S, T + A) × C(B, T)
≃ [[co-Yoneda]]

∃C .C(S,C + A) × C(C, T) × C(B, T)
≃ [[universal property of sum]]

∃C .C(S,C + A) × C(C + B, T)

This time, the co-Yoneda Lemma is used covariantly, with the functor being C(S,− + A). Thus,
Prism((A, B), (S, T)) ≃ ∃C .C(S,C +A)×C(C +B, T). Informally, a prism downcasts a source S into
either a view A or its complement C, in such a way that either the complement or a new view B
may be upcast to a new source T .

As with lenses, from the monoidal structure of sumwe derive a composition operator and identity

that make Prism into a category (as well as a functor LiftPrism : Cop × C → Prism; we postpone

the details to Section 4.5, where we consider the general case having seen a couple of specific

instances).

A functor P : Prism→ Set takes objects (A, B) to sets P (A, B), and has action on arrows given by:

mapPrism ∈ ∀AB S T . Set (Prism((A,B), (S, T)),Set (P (A,B), P (S, T)))

Using Yoneda, we can massage the type of mapPrism:

∀AB S T . Set (Prism((A,B), (S, T)),Set (P (A,B), P (S, T)))
≃ [[symmetric characterization of arrows in Prism]]

∀ABC S T . Set (C(S,C + A) × C(C + B, T),Set (P (A,B), P (S, T)))
≃ [[arrows in Cop × C]]

∀ABC S T . Set ((Cop × C) ((C + A,C + B), (S, T)),Set (P (A,B), P (S, T)))
≃ [[natural transformations in Set as polymorphic functions]]

∀ABC . [Cop × C,Set]((Cop × C) ((C + A,C + B),−),Set (P (A,B), P (−)))
≃ [[Yoneda Lemma in Cop × C]]

∀ABC . Set (P (A,B), P (C + A,C + B))

This is precisely the type of the right method of a co-Cartesian profunctor:

class Profunctor p ⇒ Cocartesian pwhere
right :: p a b → p (c + a) (c + b)

Moreover, the property that mapPrism respects composition and identity of arrows in Prism maps

precisely onto the property that right respects the monoidal structure of sums and the empty type

(see details in Section 4.5). That is, co-Cartesian profunctors are precisely the functors Prism→ Set.
Profunctor prisms are defined in terms of co-Cartesian profunctors:

type PrismP a b s t = ∀p .Cocartesian p ⇒ p a b → p s t

We define the category PrismP , with objects from Cop ×C, and profunctor prisms (natural transfor-

mations) as arrows:

PrismP ((A,B), (S, T)) := [[Prism,Set],Set](−(A,B),−(S, T))

The Double Yoneda Embedding in category Prism states:

Prism((A,B), (S, T)) ≃ [[Prism,Set],Set](−(A,B),−(S, T))

which immediately shows that

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 84. Publication date: September 2018.

84:20 Guillaume Boisseau and Jeremy Gibbons

Prism((A,B), (S, T)) ≃ PrismP ((A,B), (S, T))

—that is, concrete prisms are equivalent to profunctor prisms.

4.5 Arbitrary Profunctor Optics
The proofs in Sections 4.3 and 4.4 both look very similar: they rely on a particular monoidal structure

that induces both an associated structure on profunctors and an associated category whose arrows

are characterized by existential quantification. We can define those generically as follows.

Given a category D of profunctors over C with some additional structure, we define the category

ProfOptic(D) as follows:

ProfOptic(D) (X , Y) := [D,Set](−(X),−(Y))

This corresponds to a profunctor optic of type:

typeProfOpticD a b s t = ∀p . p ∈ D⇒ p a b → p s t

Define a shape as a family Σ of functors in [C,C] that (up to isomorphism) is closed under compo-

sition and contains the identity functor (i.e. is a ‘monoid up to isomorphism’ under composition).

Given a shape Σ, we can define a corresponding concrete existential optic:

ExOpticΣ ((A,B), (S, T)) = ∃F ∈ Σ .C(S, F (A)) × C(F (B), T)

a subclass of profunctors that respect the shape:

class Profunctor p ⇒ ShapedΣ pwhere
shapeΣ :: f ∈ Σ⇒ p a b → p (f a) (f b)

and a corresponding profunctor existential optic:

typeExOpticPΣ = ProfOpticShapedΣ
(The notation ‘f ∈ Σ’ is intended to suggest that the family Σ of functors be thought of as a type

constructor class, and f an instance of this class.)

The laws imposed on shapeΣ are:

shapeΣ Id ≃ id
shapeΣ f ◦ shapeΣ g ≃ shapeΣ (f ◦g)

(Those equalities are to be understood modulo appropriate wrapping/unwrapping of constructors).

Then we have the following theorem.

Theorem 4.2 (Representation theorem for profunctor optics). Profunctor existential optics
are isomorphic to concrete existential optics:

ExOpticPΣ ≃ ExOpticΣ

Proof. As with lenses and prisms, we introduce a category ExOpticΣ whose objects are those of

Cop × C and whose arrows are concrete existential optics:

ExOpticΣ ((A,B), (S, T)) = ∃F ∈ Σ .C(S, F (A)) × C(F (B), T)

The identity and composition of arrows are inherited from the identity and composition on functors

in Σ in a similar way as they were for lenses:

id(A,B) := ExOpticId idA idB
ExOpticF to fro ◦ ExOpticG to′ fro′ := ExOpticF◦G (F (to′) ◦ to) (fro ◦ F (fro′))

Using the identity functor we also build an identity-on-objects functor LiftExOpticΣ : C
op × C→

ExOpticΣ that takes an arrow from C(S,A) × C(B, T) to C(S, Id A) × C(Id B, T).

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 84. Publication date: September 2018.

What You Needa Know about Yoneda 84:21

A functor P : ExOpticΣ → Set takes objects (A, B) to P (A, B), and has action on arrows given by:

mapExOpticΣ ∈ ∀AB S T . Set (ExOpticΣ ((A,B), (S, T)),Set (P (A,B), P (S, T)))

By precomposing with LiftExOpticΣ , P moreover acquires the structure of a profunctor Cop×C→ Set
with the same mapping on objects. This allows us to use the Yoneda Lemma to calculate with the

type of mapExOpticΣ:

∀AB S T . Set (ExOpticΣ ((A,B), (S, T)),Set (P (A,B), P (S, T)))
≃ [[arrows in ExOpticΣ]]

∀AB S T . Set (∃F ∈ Σ .C(S, F (A)) × C(F (B), T),Set (P (A,B), P (S, T)))
≃ [[universal property of existential quantification]]

∀AB S T .∀F ∈ Σ . Set (C(S, F (A)) × C(F (B), T),Set (P (A,B), P (S, T)))
≃ [[arrows in Cop × C]]

∀AB S T .∀F ∈ Σ . Set ((Cop × C) ((F (A), F (B)), (S, T)),Set (P (A,B), P (S, T)))
≃ [[natural transformations in Set as polymorphic functions]]

∀AB .∀F ∈ Σ . [Cop × C,Set]((Cop × C) ((F (A), F (B)),−),Set (P (A,B), P (−)))
≃ [[Yoneda Lemma in Cop × C]]

∀AB .∀F ∈ Σ . Set (P (A,B), P (F (A), F (B)))

—the latter type being the type of shapeΣ.
To work out the correspondence between the functor laws of mapExOpticΣ and the laws of

shapeΣ, we extract from the proof above the relationship between those two maps. The main step

of the proof is the application of the Yoneda Lemma, which gives us an idea of the components of

the isomorphism: the Yoneda isomorphism in one direction involves applying to the identity, and

the other direction involves mapping an arrow through a functorial action. Formally, shapeΣ and

mapExOpticΣ are thus related as follows:

shapeΣ F = mapExOpticΣ (ExOpticF idF (A) idF (B))
mapExOpticΣ (ExOpticF to fro) = dimap to fro ◦ shapeΣ F

The interaction between mapExOpticΣ and composition of arrows is linked with the interaction

between shapeΣ and composition of functors:

mapExOpticΣ (ExOpticF to fro) ◦mapExOpticΣ (ExOpticG to′ fro′)
= [[mapExOpticΣ and shapeΣ]]

dimap to fro ◦ shapeΣ F ◦ dimap to′ fro′ ◦ shapeΣG
= [[by naturality, shapeΣ F ◦ dimap α β = dimap F (α) F (β) ◦ shapeΣ F]]

dimap to fro ◦ dimap (F (to′)) (F (fro′)) ◦ shapeΣ F ◦ shapeΣG
= [[dimap laws]]

dimap (F (to′) ◦ to) (fro ◦ F (fro′)) ◦ shapeΣ F ◦ shapeΣG

and

mapExOpticΣ (ExOpticF to fro ◦ ExOpticG to′ fro′)
= [[composition in ExOpticΣ]]

mapExOpticΣ (ExOpticF◦G (F (to′) ◦ to) (fro ◦ F (fro′)))
= [[mapExOpticΣ and shapeΣ]]

dimap (F (to′) ◦ to) (fro ◦ F (fro′)) ◦ shapeΣ (F◦G)

From this we see that shapeΣ respects composition of functors (shapeΣ F ◦ shapeΣG ≃ shapeΣ (F◦G))

if and only if mapExOpticΣ respects composition of arrows (mapExOpticΣ l ◦ mapExOpticΣ l
′ =

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 84. Publication date: September 2018.

84:22 Guillaume Boisseau and Jeremy Gibbons

mapExOpticΣ (l ◦ l
′)). A similar correspondence applies with relation to the identity of those

compositions:

shapeΣ Id A B = mapExOpticΣ (ExOpticId idA idB) = mapExOpticΣ id(A,B)
Therefore shapeΣ respects its laws if and only if mapExOpticΣ respects the functor laws. Thus

functors P :ExOpticΣ → Set are in one-to-one correspondence with profunctors P ∈ ShapedΣ. Using
the Double Yoneda Embedding, we deduce:

ExOpticΣ ((A,B), (S, T)) ≃ ExOpticPΣ ((A,B), (S, T))

as required.

□

The general form ofExOpticPΣ capturesmost known profunctor optics. For lenses, the appropriate

shape is Σ× := { (C × −) | C ∈ C }. By Cayley’s Theorem, this forms a monoid isomorphic to the

monoid (C, (×), 1). Then, for that particular shape, the type of shapeΣ× is the same as the type

of second from the Cartesian typeclass, and the appropriate laws correspond as well. Thus the

profunctors that respect shape Σ× are precisely Cartesian profunctors, and profunctor lenses are

isomorphic to ExOpticPΣ× . By the representation theorem, we recover the isomorphism between

profunctor lenses and ExOpticΣ× ≃ Lens that we derived in Section 4.3. Similarly, prisms are an

instance of this scheme for the shape Σ+ := { (C + −) | C ∈ C }, and we recover the isomorphism

from Section 4.4. Finally, adapters correspond to the trivial shape Σ1 := { Id }.

4.6 Traversals and More
Equipped with this representation theorem, we can now easily derive the isomorphism between

profunctor optics and their concrete analogue for other known optics. For example, a common

optic used for container-like values is called traversal. The Traversable class in the Haskell libraries

is defined as follows:

class Functor t ⇒ Traversable twhere
traverse :: Applicative f ⇒ (a→ f b) → t a→ f (t b)

Informally, a finite container type T is traversable when one can iterate over the elements of a

structure T A, in a fixed order, using an effectful operation of type A→ F B for some applicative

functor F , effectfully yielding a new T B structure [Gibbons and dos Santos Oliveira 2009; McBride

and Paterson 2008]. The family of traversable functors is a valid shape, since the identity functor

is traversable and traversable functors compose. We can therefore define concrete traversals as

follows [O’Connor 2014]:

Traversal = ExOpticTraversable
Moreover, we immediately get the corresponding subclass Traversing = ShapedTraversable of profunc-
tors that respect traversable, the associated profunctor optic ExOpticPTraversing , and a proof that the

concrete and profunctor representations are isomorphic. This associated profunctor optic appears

in profunctor optics libraries such as mezzolens [O’Connor 2015b].

We can also apply the representation theorem to some lesser-known optics, such as grates

[O’Connor 2015a]. Concrete grates are defined by the rather un-enlightening type:

dataGrate a b s t = ((s → a) → b) → t

O’Connor presents this type alongside an equivalent profunctor encoding, in terms of closed

profunctors:

dataGrateP a b s t = ∀p .Closed p ⇒ p a b → p s t

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 84. Publication date: September 2018.

What You Needa Know about Yoneda 84:23

Closed profunctors are profunctors that can lift through functors of the form (C → −) for some

type C—that is, through Naperian functors [Hancock 2005], or representable functors as discussed in
Section 3.5. A Naperian functor F is a container of fixed shape: a value of type F A contains exactly

one element for each position of type C. Just as Traversing profunctors can lift through Traversable
containers, Closed profunctors can lift through fixed-shape containers:

class Profunctor p ⇒ Closed pwhere
closed :: p a b → p (c → a) (c → b)

Typical examples of Naperian functors are the identity functor, which is isomorphic to (1→ −),
and pairs, isomorphic to (Bool → −). Naperian functors are also closed under composition, as can

be shown using the currying isomorphism C → (D → −) ≃ (C × D) → −; therefore Naperian
functors form a valid shape, and we have GrateP = ProfOpticClosed ≃ ExOpticPNaperian. Using the

representation theorem, we can derive a third isomorphic form for grates: ExOpticNaperian. Spelling
out its definition, we get:

ExOpticNaperian ((A,B), (S, T)) = ∃C .C(S,C → A) × C(C → B, T)

Using the co-Yoneda lemma, we recover the concrete representation of grates:

∃C .C(S,C → A) × C(C → B, T)
≃ [[currying]]

∃C .C(S × C,A) × C(C → B, T)
≃ [[currying]]

∃C .C(C, S → A) × C(C → B, T)
≃ [[co-Yoneda lemma]]

C((S → A) → B, T)
≃ [[arrows in Grate]]

Grate((A,B), (S, T))

This existential form comes in useful for deriving properties of grates from properties of Naperian

functors. Being of a fixed shape, different containers for the same Naperian functor can be zipped

together. For example, three copies of such a container can be assembled into one copy containing

triples:

zipWith3Naperian :: (a × a × a→ b) → (c → a) × (c → a) × (c → a) → (c → b)
zipWith3Naperian op (f , g, h) c = op (f c, g c, h c)

As O’Connor [2015a] explains, a grate can be used to perform a similar zipping. Using the existential

encoding, it becomes apparent how this property on Naperian functors is lifted to work with grates:

zipWith3Grate :: (∃c . (s → (c → a)) × ((c → b) → t)) → (a × a × a→ b) → (s × s × s → t)
zipWith3Grate (to, fro) op = fro ◦ zipWith3Naperian op ◦map3 to

wheremap3 :: (a→ b) → a × a × a→ b × b × b
map3 f (x, y, z) = (f x, f y, f z)

4.7 Composing Profunctor Optics
The main advantage of profunctor optics over concrete ones is their compositionality [Pickering

et al. 2017]. They are just polymorphic functions, so may be combined using ordinary function

composition; and the constraints for different kinds of optic simply conjoin, so even mixed compo-

sitions work fine — thus forming a semilattice of those optics. In contrast, concrete optics do not

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 84. Publication date: September 2018.

84:24 Guillaume Boisseau and Jeremy Gibbons

compose nearly so well; in particular, mixed combinations, such as a lens with a prism, are not

even expressible.

To put it anotherway, a profunctor adapter is automatically also a profunctor lens and a profunctor

prism: if it is applicable for all profunctors P , then it is certainly applicable for all Cartesian

profunctors, and for all co-Cartesian ones. Less obviously, a lens is also a traversal, because the

shapes (C×) for lenses are instances of Traversable; and similarly for prisms, because (C+) is also
Traversable.

This in particular means that if we compose a lens and a traversal, by subsumption the resulting

composition will be a traversal. What happens if we compose a lens and a prism? We know that

the resulting optic will be a traversal, but it actually has a more precise type: it is the profunctor

optic ProfOptic(Cartesian ∧ Cocartesian) for the intersection of the two typeclasses Cartesian
and Cocartesian. Such optics are called affine traversals [Grenrus 2017]. We might capture this

intersection via the following typeclass:

class (Cartesian p,Cocartesian p) ⇒ AffineTraversing p

This typeclass has just two members, inherited from the parent classes:

second :: p a b → p (c × a) (c × b)
right :: p a b → p (c + a) (c + b)

This is equivalent to having a sole member:

rightsecond :: p a b → p (c + d × a) (c + d × b)

that respects the relevant monoidal structure (in one direction, compose the two methods; in the

other direction, instantiate one of the extra types to be the appropriate neutral element).

Following the route taken earlier, we define a category

AffineTraversal ((A,B), (S, T)) = ∃C,D .C(S,C + D × A) × C(C + D × B, T)

and deduce from the representation theorem that:

ProfOptic(Cartesian ∧ Cocartesian) ≃ AffineTraversal

When C is closed, co-Yoneda implies:

AffineTraversal ((A,B), (S, T)) ≃ C(S, T + A × (B→ T))

Such optics manipulate, as expected, structures made from both sums and products.

5 CONCLUSION
5.1 Summary
We have presented a new and much simpler proof than any previously published of the correspon-

dence between concrete optics (lenses, prisms, traversals, and so on) and their profunctor variants.

The proof makes essential use of the Yoneda Lemma and its corollary the Yoneda Embedding; we

hope to have inspired the reader to absorb this beautiful and powerful result, and hope also to have

provided some intuition and guidance that will facilitate that outcome.

5.2 Related Work
The correspondence between concrete and profunctor optics is not new. It was well known to people

such as Kmett and O’Connor, who have written optic libraries [Kmett 2018; O’Connor 2015b], and

publicly discussed their properties online in blogs and chat channels. A formal presentation of the

correspondence was first published by Pickering et al. [2017]; however, their proof made no use

of the Yoneda Lemma, and instead went back to first principles in terms of free theorems—and as

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 84. Publication date: September 2018.

What You Needa Know about Yoneda 84:25

a result, their proofs are more complicated than ours. An online talk and blog post by Milewski

[2017a,b] present a proof that does use Yoneda, and in particular introduced the Double Yoneda

Embedding (Lemma 4.1), of which we make crucial use. Our presentation follows his as far as

profunctor adapters—the construction in Section 4.2 is also originally his—but then we diverge;

specifically, Milewski makes use of a somewhat complicated adjunction in order to deal with lenses

and prisms, introducing ‘free Tambara modules for a tensor’, whereas we think our approach is

much simpler.

Matsuda and Wang [2015] present an approach to bidirectional programming in terms of the

Yoneda Embedding of concrete (two-parameter) lenses into the higher-order space of functions

between lenses. However, they do not make use of the isomorphism in the Yoneda Lemma for

equational reasoning with lenses, or for proving equivalence with concrete lenses, reverting again

to free theorems. Moreover, they only consider lenses, not prisms and other optics. Jaskelioff and

O’Connor [2015] do make thorough use of the equational consequences of Yoneda for reasoning

about a class of second-order functions, including some optics under the alternative van Laarhoven

representation [van Laarhoven 2009], but they do not address the more convenient profunctor

representation.

5.3 Discussion
One should note that there are (at least) three different kinds of dual to the Yoneda Lemma, as

it was stated formally in Section 1. Duality in one sense arises from currying the homfunctor,

and fixing one of the two arguments; the main version we have stated fixes the contravariant

argument, leaving a covariant homfunctor. There is also a contravariant version of the Yoneda

Lemma, arising from fixing instead the covariant argument; but as discussed in Section 2, this

is not a separate result, because it is equivalent to the covariant case in the opposite category.

Duality in a second sense arises as in Section 3.4: a straightforward rendering into Haskell of the

natural transformations in the statement of the Yoneda Lemma uses a universal quantification,

but there is a related presentation using existential quantification. The existential presentation

is sometimes called ‘co-Yoneda’ [Manzyuk 2013; New 2017]; but it is essentially a consequence

of the same Yoneda Lemma, not a separate result. Duality also arises in a third sense: both the

covariant and the contravariant readings of the Yoneda Lemma involve natural transformations

from a homfunctor to another functor, but one might ask instead about natural transformations to
a homfunctor. This has been discussed in passing by Mac Lane [1971, Exercise III.2.3], attributed

by him to Kan and also called ‘co-Yoneda’; this really is a separate result, but it seems much less

familiar, and less obviously useful.

The reader familiar with the literature on lenses will have noticed that we did not discuss

well-behavedness [Foster et al. 2005], sometimes called Put–Get and Get–Put or correctness and
hippocraticness [Stevens 2010]: informally, if one puts a view and then immediately retrieves it, one

obtains the view that was put (the view was correctly stored), and conversely, if one gets a view

from a source and immediately puts it back, the source does not change (no unnecessary harm was

done in restoring consistency). In fact, well-behavedness is an orthogonal issue to the profunctor

representation: profunctor optics may be well-behaved or ill-behaved, just as concrete optics may

[Pickering et al. 2017]. In particular, note that the existential encoding ∃C .C(S,C×A)×C(C×B, T)
of a concrete lens in Section 4.3 does not imply ‘constant complement’ [Bancilhon and Spyratos

1981; Foster et al. 2005], which would imply well-behavedness: although this encoding entails two

functions that relate a source S to a view A and a complement C, it does not follow that these two

functions are each other’s inverses, so we do not get hippocraticness. We leave for future work the

question of precisely how the correctness properties of lenses and other optics manifest themselves

in the profunctor representation.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 84. Publication date: September 2018.

84:26 Guillaume Boisseau and Jeremy Gibbons

More categorically-inclined readers will have recognized the construction we used to make a

category out of a homset with appropriate compositionality properties. Such a homset corresponds

precisely to a monad in the bicategory Prof of profunctors. A standard property of those monads

is that they can be identified with a category equipped with an identity-on-objects functor [nLab

contributors 2018]. In our case, the constructed categories are Lens, Prism, etc., and the associated

functors are LiftLens , LiftPrism, etc. Note that we manipulate two different kinds of profunctors:

profunctors over C, which are the ones mentioned explicitly, for which we consider additional

properties such as being Cartesian; and profunctors over Cop × C, which are the homsets and are

monads in Prof . As such, we do not encounter profunctors that would be both monads and strong,

as described by Asada [2010]. Further exploration of the links between optics and monads in Prof
is left as a topic for future research.

ACKNOWLEDGMENTS
Profunctor optics were introduced by Edward Kmett, Elliott Hird, Shachaf Ben-Kiki and others in

the Haskell lens and profunctor libraries [Kmett 2015, 2018], and in some blog posts by Russell

O’Connor describing his mezzolens library [O’Connor 2015b]; that history is documented in our

earlier paper [Pickering et al. 2017]. The inspiration for this particular paper came from a talk by

Bartosz Milewski [Milewski 2017a,b], and the results in Sections 4.1 and 4.2 are due to him. We

are grateful to members of the Algebra of Programming group at Oxford, especially Ohad Kammar

and Sam Staton, and to Ichiro Hasuo and Thorsten Wißmann at NII, for helpful comments and

discussion; and to Tara Stubbs, for help in tracking down the Valéry quotation. The first author is

funded by the UK EPSRC, and the paper was mostly written while the second author was a Visiting

Professor at the National Institute of Informatics in Tokyo; we thank both EPSRC and NII for their

support.

REFERENCES
Theodor Adorno. 1956. Fragment über Musik und Sprache. Reprinted in Gesammelte Schriften, Band 16: Musikalische

Schriften I–III, Suhrkamp Verlag, 1978, p251–256.

Kazuyuki Asada. 2010. Arrows are Strong Monads. In Mathematically Structured Functional Programming. ACM. https:

//doi.org/10.1145/1863597.1863607

Alexey Avramenko. 2017. Yoneda and Coyoneda Trick. (April 2017). https://medium.com/@olxc/

yoneda-and-coyoneda-trick-f5a0321aeba4.

Steve Awodey. 2006. Category Theory. Oxford University Press.

Roland Backhouse. 2003. Program Construction: Calculating Implementations from Specifcations. Wiley.

F. Bancilhon and N. Spyratos. 1981. Update Semantics of Relational Views. ACM Trans. Database Syst. 6, 4 (Dec. 1981),
557–575. https://doi.org/10.1145/319628.319634

Richard S. Bird. 1984. The Promotion and Accumulation Strategies in Transformational Programming. ACM Transactions on
Programming Languages and Systems 6, 4 (Oct. 1984), 487–504. https://doi.org/10.1145/1780.1781 See also [Bird 1985].

Richard S. Bird. 1985. Addendum to “The Promotion and Accumulation Strategies in Transformational Programming”. ACM
Transactions on Programming Languages and Systems 7, 3 (July 1985), 490–492.

Edsger W. Dijkstra. 1991. Why Preorders Are Beautiful. (June 1991). EWD1102; available from http://www.cs.utexas.edu/

~EWD/ewd11xx/EWD1102.PDF.

Wim Feijen. 2001. The Joy of Formula Manipulation. Inform. Process. Lett. 77 (2001), 89–96. https://doi.org/10.1016/

S0020-0190(00)00195-2

J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce, and Alan Schmitt. 2005. Combinators for

Bidirectional Tree Transformations: A Linguistic Approach to the View Update Problem. In Principles of Programming
Languages. ACM Press, 233–246. https://doi.org/10.1145/1040305.1040325

Jeremy Gibbons. 2016. Free Delivery (Functional Pearl). In Haskell Symposium. ACM, 45–50. https://doi.org/10.1145/2976002.

2976005

Jeremy Gibbons. 2017. APLicative Programming with Naperian Functors. In European Symposium on Programming
(Lecture Notes in Computer Science), Hongseok Yang (Ed.), Vol. 10201. Springer Berlin Heidelberg, 556–583. https:

//doi.org/10.1007/978-3-662-54434-1_21

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 84. Publication date: September 2018.

https://doi.org/10.1145/1863597.1863607
https://doi.org/10.1145/1863597.1863607
https://medium.com/@olxc/yoneda-and-coyoneda-trick-f5a0321aeba4
https://medium.com/@olxc/yoneda-and-coyoneda-trick-f5a0321aeba4
https://doi.org/10.1145/319628.319634
https://doi.org/10.1145/1780.1781
http://www.cs.utexas.edu/~EWD/ewd11xx/EWD1102.PDF
http://www.cs.utexas.edu/~EWD/ewd11xx/EWD1102.PDF
https://doi.org/10.1016/S0020-0190(00)00195-2
https://doi.org/10.1016/S0020-0190(00)00195-2
https://doi.org/10.1145/1040305.1040325
https://doi.org/10.1145/2976002.2976005
https://doi.org/10.1145/2976002.2976005
https://doi.org/10.1007/978-3-662-54434-1_21
https://doi.org/10.1007/978-3-662-54434-1_21

What You Needa Know about Yoneda 84:27

Jeremy Gibbons and Bruno César dos Santos Oliveira. 2009. The Essence of the Iterator Pattern. Journal of Functional
Programming 19, 3,4 (2009), 377–402. https://doi.org/10.1017/S0956796809007291

Oleg Grenrus. 2017. Affine Traversal. http://oleg.fi/gists/posts/2017-03-20-affine-traversal.html

Peter Hancock. 2005. What is a Naperian Container? (June 2005). http://sneezy.cs.nott.ac.uk/containers/blog/?p=14.

Ralf Hinze andDanielW. H. James. 2010. Reason Isomorphically!. InWorkshop on Generic Programming, Bruno C. d. S. Oliveira
and Marcin Zalewski (Eds.). ACM, 85–96. https://doi.org/10.1145/1863495.1863507

R. John Muir Hughes. 1986. A Novel Representation of Lists and Its Application to the Function ‘Reverse’. Inform. Process.
Lett. 22 (1986), 141–144. https://doi.org/10.1016/0020-0190(86)90059-1

Mauro Jaskelioff and Russell O’Connor. 2015. A Representation Theorem for Second-Order Functionals. Journal of Functtional
Programming 25 (2015). https://doi.org/10.1017/S0956796815000088

Edward Kmett. 2015. profunctor library, Version 5. https://hackage.haskell.org/package/profunctors-5

Edward Kmett. 2018. lens library, Version 4.16. https://hackage.haskell.org/package/lens-4.16

Tom Leinster. 2000. The Yoneda Lemma: What’s It All About? (Oct. 2000). http://www.maths.ed.ac.uk/~tl/categories/

yoneda.ps.

Saunders Mac Lane. 1971. Categories for the Working Mathematician. Springer-Verlag.
Oleksandr Manzyuk. 2013. Co-Yoneda Lemma. (Jan. 2013). https://oleksandrmanzyuk.wordpress.com/2013/01/18/

co-yoneda-lemma/.

Kazutaka Matsuda and MengWang. 2015. Applicative Bidirectional Programming with Lenses. In International Conference on
Functional Programming, Kathleen Fisher and John H. Reppy (Eds.). ACM, 62–74. https://doi.org/10.1145/2784731.2784750

Shoukei Matsumoto. 2018. I Clean, Therefore I Am. The Guardian (5th January 2018). https://www.theguardian.com/

commentisfree/2018/jan/05/buddhist-monk-cleaning-good-for-you.

Guerino Mazzola. 2002. The Topos of Music. Birkhäuser.
Conor McBride and Ross Paterson. 2008. Applicative Programming with Effects. Journal of Functional Programming 18, 1

(2008), 1–13. https://doi.org/10.1017/S0956796807006326

Bartosz Milewski. 2017a. Profunctor Optics: The Categorical Approach. https://www.youtube.com/watch?v=l1FCXUi6Vlw.

Keynote at Lambda World conference, Cadiz.

Bartosz Milewski. 2017b. Profunctor Optics: The Categorical View. (July 2017). https://bartoszmilewski.com/2017/07/07/

profunctor-optics-the-categorical-view/.

Max New. 2017. Closure Conversion as CoYoneda. (Aug. 2017). http://prl.ccs.neu.edu/blog/2017/08/28/

closure-conversion-as-coyoneda/.

nLab contributors. 2018. monad in nLab. https://ncatlab.org/nlab/revision/monad/72#other_examples [Online; accessed

16-March-2018].

Russell O’Connor. 2014. Mainline Profunctor Hierarchy for Optics. http://r6research.livejournal.com/27476.html

Russell O’Connor. 2015a. Grate: A new kind of Optic. https://r6research.livejournal.com/28050.html

Russell O’Connor. 2015b. mezzolens library, Version 0. https://hackage.haskell.org/package/mezzolens-0

Matthew Pickering, Jeremy Gibbons, and Nicolas Wu. 2017. Profunctor Optics: Modular Data Accessors. The Art, Science,
and Engineering of Programming 1, 2 (2017), Article 7. https://doi.org/10.22152/programming-journal.org/2017/1/7

Dan Piponi. 2006. Reverse Engineering Machines with the Yoneda Lemma. (Nov. 2006). http://blog.sigfpe.com/2006/11/

yoneda-lemma.html.

Emily Riehl. 2016. Category Theory in Context. Dover Publications. Available from http://www.math.jhu.edu/~eriehl/

context.pdf.

Mike Stay. 2008. The Continuation Passing Transform and the Yoneda Embedding. (Jan. 2008). https://golem.ph.utexas.edu/

category/2008/01/the_continuation_passing_trans.html.

Perdita Stevens. 2010. Bidirectional Model Transformations in QVT: Semantic Issues and Open Questions. Software and
System Modeling 9, 1 (2010), 7–20. https://doi.org/10.1007/s10270-008-0109-9

Paul Valéry. 1937. Leçon Inaugurale du Cours de Poétique du Collège de France. Reprinted in Variété V, Gallimard, 1944,

p295–322.

Twan van Laarhoven. 2009. CPS-Based Functional References. (July 2009). http://www.twanvl.nl/blog/haskell/

cps-functional-references

Burghard von Karger. 2002. Temporal Algebra. In Algebraic and Coalgebraic Methods in the Mathematics of Program
Construction (Lecture Notes in Computer Science), Roland Backhouse, Roy Crole, and Jeremy Gibbons (Eds.), Vol. 2297.

Springer-Verlag, 310–386. https://doi.org/10.1007/3-540-47797-7_9

Philip Wadler. 1987. The Concatenate Vanishes. (Dec. 1987). University of Glasgow. Revised November 1989.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 84. Publication date: September 2018.

https://doi.org/10.1017/S0956796809007291
http://oleg.fi/gists/posts/2017-03-20-affine-traversal.html
http://sneezy.cs.nott.ac.uk/containers/blog/?p=14
https://doi.org/10.1145/1863495.1863507
https://doi.org/10.1016/0020-0190(86)90059-1
https://doi.org/10.1017/S0956796815000088
https://hackage.haskell.org/package/profunctors-5
https://hackage.haskell.org/package/lens-4.16
http://www.maths.ed.ac.uk/~tl/categories/yoneda.ps
http://www.maths.ed.ac.uk/~tl/categories/yoneda.ps
https://oleksandrmanzyuk.wordpress.com/2013/01/18/co-yoneda-lemma/
https://oleksandrmanzyuk.wordpress.com/2013/01/18/co-yoneda-lemma/
https://doi.org/10.1145/2784731.2784750
https://www.theguardian.com/commentisfree/2018/jan/05/buddhist-monk-cleaning-good-for-you
https://www.theguardian.com/commentisfree/2018/jan/05/buddhist-monk-cleaning-good-for-you
https://doi.org/10.1017/S0956796807006326
https://www.youtube.com/watch?v=l1FCXUi6Vlw
https://bartoszmilewski.com/2017/07/07/profunctor-optics-the-categorical-view/
https://bartoszmilewski.com/2017/07/07/profunctor-optics-the-categorical-view/
http://prl.ccs.neu.edu/blog/2017/08/28/closure-conversion-as-coyoneda/
http://prl.ccs.neu.edu/blog/2017/08/28/closure-conversion-as-coyoneda/
https://ncatlab.org/nlab/revision/monad/72#other_examples
http://r6research.livejournal.com/27476.html
https://r6research.livejournal.com/28050.html
https://hackage.haskell.org/package/mezzolens-0
https://doi.org/10.22152/programming-journal.org/2017/1/7
http://blog.sigfpe.com/2006/11/yoneda-lemma.html
http://blog.sigfpe.com/2006/11/yoneda-lemma.html
http://www.math.jhu.edu/~eriehl/context.pdf
http://www.math.jhu.edu/~eriehl/context.pdf
https://golem.ph.utexas.edu/category/2008/01/the_continuation_passing_trans.html
https://golem.ph.utexas.edu/category/2008/01/the_continuation_passing_trans.html
https://doi.org/10.1007/s10270-008-0109-9
http://www.twanvl.nl/blog/haskell/cps-functional-references
http://www.twanvl.nl/blog/haskell/cps-functional-references
https://doi.org/10.1007/3-540-47797-7_9

	Abstract
	1 Introduction
	2 Background
	2.1 Notational Conventions
	2.2 Categorical Prerequisites
	2.3 Profunctor Optics

	3 Examples of Yoneda
	3.1 Indirect Inequality
	3.2 Indirect Equality
	3.3 Cayley's Theorem
	3.4 Universal and Existential
	3.5 Representable Functors

	4 Profunctor Optics
	4.1 Double Yoneda
	4.2 Adapters
	4.3 Lenses
	4.4 Prisms
	4.5 Arbitrary Profunctor Optics
	4.6 Traversals and More
	4.7 Composing Profunctor Optics

	5 Conclusion
	5.1 Summary
	5.2 Related Work
	5.3 Discussion

	Acknowledgments
	References

