------------------------------------------------------------------------
-- Convenient syntax for equational reasoning
------------------------------------------------------------------------
{-# OPTIONS --universe-polymorphism #-}
-- Example use:
-- n*0≡0 : ∀ n → n * 0 ≡ 0
-- n*0≡0 zero = refl
-- n*0≡0 (suc n) =
-- begin
-- suc n * 0
-- ≈⟨ refl ⟩
-- n * 0 + 0
-- ≈⟨ ... ⟩
-- n * 0
-- ≈⟨ n*0≡0 n ⟩
-- 0
-- ∎
-- Note that some modules contain generalised versions of specific
-- instantiations of this module. For instance, the module ≡-Reasoning
-- in Relation.Binary.PropositionalEquality is recommended for
-- equational reasoning when the underlying equality is
-- Relation.Binary.PropositionalEquality._≡_.
open import Relation.Binary
module Relation.Binary.EqReasoning {s₁ s₂} (S : Setoid s₁ s₂) where
open Setoid S
import Relation.Binary.PreorderReasoning as PreR
open PreR preorder public
renaming ( _∼⟨_⟩_ to _≈⟨_⟩_
; _≈⟨_⟩_ to _≡⟨_⟩_
)