Local Equilibria in Logic-Based Multi-Player Games

Game theory provides a well-established framework for the analysis and verification of concurrent and multi-agent systems. Typically, the analysis of a multi-agent system involves computing the set of equilibria in the associated multi-player game representing the behaviour of the system. As systems grow larger, it becomes increasingly harder to find equilibria in the game -- which represent the rationally stable behaviours of the multi-agent system (the solutions of the game). To address this issue, in this paper, we study the concept of local equilibria, which are defined with respect to (maximal) stable coalitions of agents for which an equilibrium can de found. We focus on the solutions given by the Nash equilibria of Boolean games and iterated Boolean games, two logic-based models for multi-agent systems, in which the players' goals are given by formulae of propositional logic and LTL, respectively.

Full Article (PDF , ACM)