Skip to main content

Real−Time Resource Allocation for Tracking Systems

Yash Satsangi‚ Shimon Whiteson‚ Frans Oliehoek and Henri Bouma

Abstract

Automated tracking is key to many computer vision applications. However, many tracking systems struggle to perform in real-time due to the high computational cost of detecting people, especially in ultra high resolution images. We propose a new algorithm called PartiMax that greatly reduces this cost by applying the person detector only to the relevant parts of the image. PartiMax exploits information in the particle filter to select k of the n candidate pixel boxes in the image. We prove that PartiMax is guaranteed to make a near-optimal selection with error bounds that are independent of the problem size. Furthermore, empirical results on a real-life dataset show that our system runs in real-time by processing only 10% of the pixel boxes in the image while still retaining 80% of the original tracking performance achieved when processing all pixel boxes.

Book Title
UAI 2017: Proceedings of the Conference on Uncertainty in Artificial Intelligence
Month
July
Note
To appear.
Pages
3220−3227
Year
2017