Skip to main content

Learning with Opponent−Learning Awareness

Jakob Foerster‚ Richard Chen‚ Maruan Al−Shedivat‚ Shimon Whiteson‚ Pieter Abbeel and Igor Mordatch


Multi-agent settings are quickly gathering importance in machine learning. Beyond a plethora of recent work on deep multi-agent reinforcement learning, hierarchical reinforcement learning, generative adversarial networks and decentralized optimization can all be seen as instances of this setting. However, the presence of multiple learning agents in these settings renders the training problem non-stationary and often leads to unstable training or undesired final results. We present Learning with Opponent-Learning Awareness (LOLA), a method that reasons about the anticipated learning of the other agents. The LOLA learning rule includes an additional term that accounts for the impact of the agent's policy on the anticipated parameter update of the other agents. We show that the LOLA update rule can be efficiently calculated using an extension of the likelihood ratio policy gradient update, making the method suitable for model-free RL. This method thus scales to large parameter and input spaces and nonlinear function approximators. Preliminary results show that the encounter of two LOLA agents leads to the emergence of tit-for-tat and therefore cooperation in the iterated prisoners' dilemma (IPD), while independent learning does not. In this domain, LOLA also receives higher payouts compared to a naive learner, and is robust against exploitation by higher order gradient-based methods. Applied to infinitely repeated matching pennies, LOLA agents converge to the Nash equilibrium. In a round robin tournament we show that LOLA agents can successfully shape the learning of a range of multi-agent learning algorithms from literature, resulting in the highest average returns on the IPD. We also apply LOLA to a grid world task with an embedded social dilemma using deep recurrent policies. Again, by considering the learning of the other agent, LOLA agents learn to cooperate out of selfish interests.

Book Title
AAMAS 2018: Proceedings of the Seventeenth International Joint Conference on Autonomous Agents and Multi−Agent Systems
To appear.