Skip to main content

Revolutionizing Medicine through Machine Learning and Artificial Intelligence

Professor Mihaela van der Schaar ( Oxford-Man Institute of Quantitative Finance, Department of Engineering Science, University of Oxford )

Current medical practice is driven by the experience of clinicians, by the difficulties of integrating enormous amounts of complex and heterogeneous static and dynamic data and by clinical guidelines designed for the “average” patient. In this talk, I will describe some of my research on developing novel, specially-crafted machine learning theories, methods and systems aimed at extracting actionable intelligence from the wide variety of information that is becoming available (in electronic health records and elsewhere) and enabling every aspect of medical care to be personalized to the patient at hand. Because of the unique and complex characteristics of medical data and medical questions, many familiar machine-learning methods are inadequate. My work therefore develops and applies novel machine learning theory and methods to construct risk scores, early warning systems and clinical decision support systems for screening and diagnosis and for prognosis and treatment. This work achieves enormous improvements over current clinical practice and over existing state-of-the-art machine learning methods. By design, these systems are easily interpretable and so allow clinicians to extract from data the necessary knowledge and representations to derive data-driven medical epistemology and to permit easy adoption in hospitals and clinical practice. My team has collaborated with researchers and clinicians in oncology, emergency care, cardiology, transplantation, internal medicine, etc. You can find more information about our past research in this area at: [ ] .

Bio: Mihaela van der Schaar is the Man Professor, Oxford-Man Institute, Department of Engineering Science, University of Oxford and a Turing Fellow at the Alan Turing Institute. Her main research interest nowadays is on machine learning and artificial intelligence for medicine. She is an IEEE Fellow (2009) and has been a Distinguished Lecturer of the Communications Society, the Editor in Chief of IEEE Transactions on Multimedia, and member of the Senior Editorial Board member of IEEE Journal on Emerging and Selected Topics in Circuits and Systems (JETCAS) and IEEE Journal on Selected Topics in Signal Processing (JSTSP). She received an NSF CAREER Award (2004) from NSF Theoretical Foundations, the Best Paper Award from IEEE Transactions on Circuits and Systems for Video Technology (2005), the Okawa Foundation Award (2006), the IBM Faculty Award (2005, 2007, 2008), the Most Cited Paper Award from EURASIP: Image Communications Journal (2006), the Gamenets Conference Best Paper Award (2011) and the 2011 IEEE Circuits and Systems Society Darlington Best Paper Award. She holds 33 US patents. Her research is supported by ONR Mathematical Sciences Divisions, NSF Theoretical Foundations, and by various companies and medical research organizations.



Share this: