Skip to main content

Modeling Chemistry for Drug Discovery: Current State and Unsolved Challenges

Regina Barzilay ( MIT )

Until today, all the available therapeutics are designed by human experts, with no help from AI tools. This reliance on human knowledge and dependence on large-scale experimentations result in prohibitive development cost and high failure rate. Recent developments in machine learning algorithms for molecular modeling aim to transform this field. In my talk, I will present state-of-the-art approaches for property prediction and de-novo molecular generation, describing their use in drug design. In addition, I will highlight unsolved algorithmic questions in this field, including confidence estimation, pretraining, and deficiencies in learned molecular representations.  

𝗛𝗼𝘄 𝗰𝗮𝗻 𝘆𝗼𝘂 𝗷𝗼𝗶𝗻?
Register here.
(Registration closes 2 hours before the beginning of the seminar).

Speaker bio

Regina Barzilay is a School of Engineering Distinguished Professor for AI and Health in the Department of Electrical Engineering and Computer Science and a member of the Computer Science and Artificial Intelligence Laboratory at the Massachusetts Institute of Technology. She is an AI faculty lead for Jameel Clinic, an MIT center for Machine Learning in Health. Her research interests are in natural language processing and applications of deep learning to chemistry and oncology. She is a recipient of various awards including the NSF Career Award, the MIT Technology Review TR-35 Award, Microsoft Faculty Fellowship and several Best Paper Awards at NAACL and ACL. In 2017, she received a MacArthur fellowship, an ACL fellowship and an AAAI fellowship. In 2020, she was awarded the Squirrel AI Award for Artificial Intelligence for the Benefit of Humanity. She received her PhD in Computer Science from Columbia University, and spent a year as a postdoc at Cornell University. Prof. Barzilay received her undergraduate degree from Ben-Gurion University of the Negev, Israel.

 

 

Share this: