Skip to main content

Privacy−Enhanced Bi−Directional Communication in the Smart Grid using Trusted Computing

Andrew J Paverd‚ Andrew P Martin and Ian Brown

Abstract

Although privacy concerns in smart metering have been widely studied, relatively little attention has been given to privacy in bi-directional communication between consumers and service providers. Full bi-directional communication is necessary for incentive-based demand response (DR) protocols, such as demand bidding, in which consumers bid to reduce their energy consumption. However, this can reveal private information about consumers. Existing proposals for privacy-enhancing protocols do not support bi-directional communication. To address this challenge, we present a privacy-enhancing communication architecture that incorporates all three major information flows (network monitoring, billing and bi-directional DR) using a combination of spatial and temporal aggregation and differential privacy. The key element of our architecture is the Trustworthy Remote Entity (TRE), a node that is singularly trusted by mutually distrusting entities. The TRE differs from a trusted third party in that it uses Trusted Computing approaches and techniques to provide a technical foundation for its trustworthiness. A automated formal analysis of our communication architecture shows that it achieves its security and privacy objectives with respect to a previously-defined adversary model. This is therefore the first application of privacy-enhancing techniques to bi-directional smart grid communication between mutually distrusting agents.

Book Title
Fifth IEEE International Conference on Smart Grid Communications (SmartGridComm 2014)
Year
2014